
Evaluation of Reactive Obstacle Avoidance
Algorithms for a Quadcopter

Cyrille Berger, Piotr Rudol and Mariusz Wzorek
Linköping Univeristy

SE-581 83 LINKÖPING, SWEDEN
firstname.lastname@liu.se

Alexander Kleiner
iRobot, Pasadena, CA
akleiner@irobot.com

Abstract—In this work we are investigating reactive avoidance
techniques which can be used on board of a small quadcopter and
which do not require absolute localisation. We propose a local
map representation which can be updated with proprioceptive
sensors. The local map is centred around the robot and uses
spherical coordinates to represent a point cloud. The local map is
updated using a depth sensor, the Inertial Measurement Unit and
a registration algorithm. We propose an extension of the Dynamic
Window Approach to compute a velocity vector based on the
current local map. We propose to use an OctoMap structure to
compute a 2-pass A* which provide a path which is converted
to a velocity vector. Both approaches are reactive as they only
make use of local information. The algorithms were evaluated in
a simulator which offers a realistic environment, both in terms
of control and sensors. The results obtained were also validated
by running the algorithms on a real platform.

I. INTRODUCTION

For successful deployment of Unmanned Aerial Vehicles
(UAV) into a civil airspace, it is necessary to guarantee that
they can operate safely in the environment. This requires robust
collision avoidance algorithms and that UAVs can navigate
using only proprioceptive sensors and algorithm should run
on board.

There are two main categories of algorithms that solve
the problem of obstacle avoidance and navigation of an au-
tonomous vehicle, path planning and reactive algorithms. Path
planning techniques compute a globally optimal path in the
environment, such as the A* algorithm [8]. When combined
with a globally consistent map, path planning algorithms can
compute an optimal solution. Path planning algorithms are
computationally intensive for ground robots [12], which have
fewer degrees of freedom than an UAV. For UAVs, the main
challenge is the explosion of the search space dimensionality,
to address this problem a random set of nodes can be generated
and then checked for collision [16], the position of the nodes
can be updated dynamically [10].

Reactive techniques only consider local information and
attempt to steer the vehicle away from obstacles while aiming
towards the goal. Reactive techniques have been applied for
many types of vehicles, such as ground robots [6], boats [1]
or airplanes [14], where the motion model of the vehicle has

This work is partially supported by the Swedish Research Council (VR)
Linnaeus Center CADICS, the ELLIIT network organization for Information
and Communication Technology, and the Swedish Foundation for Strategic
Research (CUAS Project, SymbiKCloud Project).

to be taken into consideration. Using only current sensor data,
the Dynamic Window Approach (DWA) [5] use the motion
model of the vehicle to select the best trajectories among the
controllable and safe ones.

In practice, it is desirable to combine a path planning
approach with a reactive one. The robot can move along a path
that guarantees it will reach its goal. The reactive technique
would be able to guarantee to avoid local obstacles.

Both types of obstacle avoidance techniques require the
detection of obstacles, which can be realized with a variety
of sensors. A comparison between vision-based and Lidar ap-
proaches can be found in [11]. For UAVs, vision is commonly
used, such as in [15], where a Kalman Filter is used to track
and estimate the size of obstacles. It is possible to use a
2D Lidar [3] and to apply the same kind of path planning
techniques for UAVs than for ground robot. The drawback is
that this does not allow to detect obstacles that are outside of
the scanning plane of the sensor.

Since reactive obstacle avoidance techniques do not require
accurate localisation, they are the more suited to guarantee safe
navigation for quadcopters. For this work, small quadcopters,
around 0.7m in diameter, equipped with a 3D depth sensor and
with limited computational power, are considered.

Based on those considerations, the obstacle avoidance al-
gorithm cannot rely on a globally consistent map, but it
can use a local map. The main contributions of this paper
include an efficient algorithm for local map construction and
representation and two obstacle avoidance algorithms. The
local world model is based on the idea of a spherical depth
and the fusion of IMU information with depth sensor using a
modified Iterative Closest Point (ICP) technique [4]. The first
obstacle avoidance algorithm is inspired by DWA [5], which
we adapted to quadcopters. The second one is a local 2-pass
A*, using an OctoMap [9] representation which allows to get
a structure for computing the algorithm efficiently.

Section 2 of this paper presents the construction of the local
world model and how it is updated with new sensor readings.
In section 3 and 4 the two obstacle avoidance algorithms
are presented, respectively. In section 5 we present simulated
experimental results as well as the validation on an actual
platform. The significance of those results are discussed in
the last section.

Both obstacle avoidance algorithm assume that the robot is

(a) 3D view

(b) Sensor readings

(c) Spherical depth map

Fig. 1: This figure show the 3D view (1a), the sensor readings
(1b) and the corresponding spherical depth map (1c). In blue
the point clouds from the local map, in red the point cloud
from the sensor readings.

currently at position O and trying to reach a goal G. dmax is
the maximum depth provided by the depth sensor.

II. LOCAL SPHERICAL DEPTH MAP

To compensate the narro field-of-view (FOV) of the depth
sensor (less than 60◦ horizontal), past information is fused with
current information in a local spherical depth map. The map
is centred around the robot. The point cloud is stored using
spherical coordinates, in a 2D matrix (see fig. 1), where the
values of the matrixM are the depth while rows and columns
correspond to the polar and azimuth angle:

M(idx(θ, π, sp), idx(φ, 2π, sa) = depth(θ, φ) (1)

sp and sa specify the resolution of the depth image on the
polar axis and the azimuth axis and idx is a function that
computes an integer index from a floating point angle:

idx(x,m, s) =
x mod m

m
s (2)

This representation is very quick to query for obstacle and
for fusion but does not handle occlusion. For each sensor
reading, the local map is updated with the following algorithm:

1) The first step is to compute the transformation Tt−1,t =
(Rt−1,t,~tt−1,t) (where Rt−1,t is the rotation and ~tt−1,t is
the translation) between the map at the previous time step
Mt−1 and the point cloud St coming from the current
sensor data at instant t.
The rotation Rt−1,t is initialised with the IMU data
from the quadcopter. Then a simple variant of the ICP
algorithm, using a Levenberg-Marquardt optimisation, is
used to estimate the translation ~tt−1,t and to improve the
estimation of the rotation.

2) The transformation Tt−1,t is used to provide an initial
estimate of the map Mt for the current time step:

Mt = Tt−1,t · Mt−1 (3)

3) The points from St are projected in the spherical coor-
dinate and replace the value from the local map Mt

(a) Obstacles, FOV and
observation

(b) DWA

(c) Octomap divisions
and non-flyable area

(d) First A* on the end-
nodes of the OctoMap

(e) Second A* with
higher accuracy but
limited to the end-nodes
selected in the first A*

Fig. 2: Diagram explaining the concept behind the dynamic
window and 2-pass A* approach. For simplification reasons,
the diagrams show the concepts in 2D but the algorithms are
working in 3D. In all figures, the blue cross represent the
goal, the grey lines are the obstacles, the black lines are the
perceived obstacles, the black dot represents the quadcopter
and the red lines show the FOV. In fig. 2b, the green line
shows the admissible velocities. In fig. 2c, the grid shows the
octomap structure, the black squares are the obstacles, the red
squares are the no-fly zone. In fig. 2d, the blue circle indicates
admissible nodes in the OctoMap and the green polyline shows
the result of the A* algorithm. In fig. 2e, the green rectangles
represent the area where the second A* is computed. The red
polyline is the final path.

III. DYNAMIC WINDOW APPROACH

DWA was introduced in [5] for ground robots whose admis-
sible trajectories are circular arcs. The robot is controlled with
its curvilinear velocity and its angular velocity. Quadcopters
have more degrees of freedom and are controlled with a ve-
locity vector. Given the current velocity vector ~vt = (θ0, φ0, ρ̇),
in spherical coordinates. The admissible controllable velocity
vectors are given by:

~vi = vi · ~di (4)
|~vt − ~vi| < δt · amax (5)

Where δt is the time interval between two sensor readings
frame, amax is the maximum acceleration of the quadcopter
and ~di is the direction vector of the velocity. For each admis-
sible direction ~di, DWA computes the best velocity vbi and an
heuristic value(~di) of the quality of that direction. The next
controlled velocity is then selected with:

∃j, ~vt+1 = vbj
~dj | ∀i, value(~di) ≤ value(~dj) (6)

a) Computation of distance to obstacle: For a given
direction ~d, given a point on an obstacle pt and its projection
p~d(pt) on the line (O, ~d), dto(pt, ~d) is the distance to the

Fig. 3: Measurements used to evaluate a direction ~d in DWA.
The gray area represent an obstacle. ~n is the normal of the
obstacle surface, dtc(~d) is the distance to collision from the
quadcopter to the first obstacle in the safety distance (ds).

obstacle pt, along the direction d:

dto(pt, ~d) = dist(p~d(pt), O) (7)

Where dist(A,B) is the euclidean distance between the
point A and B. The quadcopter will collide with an obstacle
pt, if dto(pt, ~d) < ds, where ds is the safety distance. The
distance to collision dtc(~d) along the direction ~d is given by:

dtc(~d) = min
pt|dto(pt,~d)<ds

(dist(p~d(pt), O))− ds (8)

b) Computation of the best velocity: The maximum
admissible velocity is the maximum that the quadcopter can
reach and still be able to stop before colliding with the
obstacle. It is given by the following equation:

v2max = dtc(~d)amax +
v2t
2

(9)

Flying at the maximum admissible velocity can be danger-
ous since it would require to be highly reactive to stop before
reaching the obstacle. Instead, a lower speed is selected, which
depends on the distance to collision:

vbest = vmax
dtc(~d)

dmax
(10)

c) Evaluation of safety of a direction : To check if a
direction ~d is going closer to an obstacle or if it is going further
away, the angle of the direction ~d with the normal vector of
each obstacles can be used (see fig. 3). That value is then
averaged:

Σn =
1

n

∑
~n ·

~OG

‖ ~OG‖
(11)

Lets name Σo the average distance between all the obstacles
and a direction. Then the maximum of that value is max(Σo).

d) Computation of the value of a direction: The follow-
ing measurements are computed:
• h (goal directness), a measurement of how much the

vector ~d is in the direction of the goal:

h =
~OG

‖ ~OG‖
· ~d ∈ [0, 1] (12)

• r, a measurement of how closer to the goal the quadcopter
can be if following that direction:

r = max(1,
dtc(~d)

dist(O,G)
) ∈ [0, 1] (13)

• n, a measurement of whether the quadcopter is moving
closer to the obstacle or further away:

n = 1− Σn ∈ [0, 1] (14)

• ao, a measurement of how far this trajectory is from the
obstacles:

ao =
Σo

max(Σo)
∈ [0, 1] (15)

• tti, a measurement of the time to impact, if the quadcopter
move at velocity vbest in the direction ~d:

tti =
dtc(~d)

dmax

vmin

vbest
∈ [0, 1] (16)

• kh, a measurement of how much the direction ~d is aligned
with the current heading of the quadcopter, given ψ the
current heading and ψ(~d) the heading of ~d:

kh = cos(ψ − ψ(~d)) ∈ [0, 1] (17)

• s (speed maximization), a measurement of how fast the
quadcopter can go in the direction ~d:

s =
vbest
vmax

∈ [0, 1] (18)

The value of a direction is given by:

value(~di) =αh2r2 + βn2 + γa2o + δs2

+ εtti2 + ζkh2
(19)

The result of that function is in the range [0, 1], a value
closer to 1 will make the direction ~di more likely to be selected
by the algorithm. The parameters α, β, γ, δ, ε and ζ are
constants weights that select the importance given to each
measurements and have been selected empirically. We selected
for our test platform the following values α = 0.3, β = 0.3,
γ = 0.15, δ = 0.05, ε = 0.05, ζ = 0.15. α and β are the
highest, since α encourages the quadcopter to move towards
the goal while β ensure that the quadcopter moves away from
obstacles. γ controls how close to the obstacle the quadcopter
flies and ζ discourages change of direction, it is set at an
average value, since a high value would prevent the quadcopter
to turn while a low value would encourage the quadcopter to
zigzag. δ controls how fast the quadcopter can go while ε
controls how quickly the quadcopter would reach an obstacle.

IV. TWO-PASSES A*

Hierarchical A* has been used to solve global path planning
for large scale problems [7]. It sacrifices the guarantee of opti-
mality in exchange for a significant reduction in computational
cost. Considering the size of the problem, a 2-pass A* was
used, the first pass is done using a very coarse model, with a
very limited number of nodes, and the result is used to restrict
the search area in the second A* pass.

(a) 3D View of an Oc-
toMap

(b) Corresponding tree

Fig. 4: The black cube correspond to a cell that has been
marked as an obstacle.

a) Octomap representation: The main benefits of the
OctoMap [9] structure is that it is very fast to query for
obstacles and to compute distance to obstacle and it provides a
subdivision of the space into large open area, see fig. 2c, which
reduces the search space dimension for the A* algorithm. An
OctoMap covering a cube of length l0 was used, the robot is
located at coordinate (0, l02 ,

l0
2), so that the OctoMap covers

the cube in front of the robot and it covers the FOV of the
depth sensor.

b) Notations: C(k, u, v, w) is a cube in the OctoMap at
level k and with the index (u, v, w) it covers the cubic space
from coordinates (u · lk, v · lk, w · lk) to ((u+ 1) · lk, (v + 1) ·
lk, (w + 1) · lk) where lk = l0

2(k−1) .
In the hierarchy, if k 6= 0, C(k, u, v, w) has parent C(k −

1, bu2 c, b
v
2c, b

w
2 c) and if k 6= n, it can have the following eight

children: C(k + 1, 2 · u+ a, 2v + b, 2 · w + c) with (a, b, c) ∈
{0, 1}3. The notations can be seen in fig. 4.

c) OctoMap construction: The OctoMap is constructed
by iterating over all points in the local map, and marking the
cube in the lowest level as an obstacle. A cube C(k, u, v, w) is
instantiated, if only if, ∃pt ∈Mt such as pt ∈ C(k, u, v, w).

d) A* from node to node: Lets call end-nodes, the nodes
of the OctoMap that do not have children. To get a rough
estimate of the path, the A* algorithm is used on the end-
nodes of the OctoMap which are at least partially in the FOV
of the sensor, as shown in fig. 2d.

Two safety distances are used, dss and ds. dss defines an
area where the UAV is absolutely forbidden to go, while ds
defines a distance that the UAV should avoid, if possible. A
node is considered to be admissible if it is in the FOV of the
sensor and if at least one point of that node is at a distance
superior to dss from any obstacle. Two nodes are compatible if
they have a common corner in the FOV. If they are compatible,
they can be considered as part of the same path. The following
cost function between two nodes (the source node, n1, and the
destination node, n2) is used:

cost(n1, n2) = max(1,
dmax − b
dto(n2)− b

) · dist(n1, n2) (20)

b = 2 · ds − dmax1 (21)

dto(n2) is the distance to the closest obstacle of n2. The
path found by the A* on the end-nodes of the OctoMap is

Fig. 5: LinkQuad platform and the Asus Xtion Pro sensor used
for experimental validation.

denoted as:

P1 = {C(ki, ui, vi, wi)/i ∈ [0, p]} (22)

e) Second A* pass on the set of nodes: the path given
by the A* on the end-node of the OctoMap is not usable for
navigation. The second A* pass is restricted to the volume of
the environment given by the path P1:

V(P1) = ∪
i∈[0,p]

C(ki, ui, vi, wi) (23)

That volume is subdivided in cube of size ln = 0.15m,
which constitutes the node for the A* search. Like for the first
A* pass, a node is admissible if it is in the FOV of the sensor
and if the centre of that node is at a distance superior to dss of
any obstacle. The same cost function (20) is used. The second
A* pass generates a path P2 = {p0, . . . , pq}. This path P2 is
used to compute a velocity vector that can be used to control
the quadcopter. Given the r first points of P2 which form a
line, the velocity is selected with the following equation:

~vel =
−−→p0pq
‖−−→p0pq‖

·min(vmax,
‖−−→p0pq‖

4
) (24)

Where vmax is a maximum velocity. When no path is found
with the first or second pass, the UAV turn around on itself
until it finds a path.

V. EXPERIMENTAL VALIDATION

We have conducted experimentation with a simulation and
with a real platform. During our experimentation no collision
between an UAV and an obstacle occurred. The results shown
in this section are to evaluate how well a UAV could perform
using exclusively our collision avoidance algorithms for navi-
gation to perform challenging missions.

We are targeting an internally developed autonomous UAV
(see fig. 5) of 0.70m radius. It can carry a range of different
sensors, such as the Asus Xtion Pro depth camera with a
maximum range of 10m, with an horizontal FOV of 57◦ and
a vertical one of 45◦.

For the kind of sensor installed on our platform, dmax =
10m. Therefore we used l0 = 10m for the OctoMap size. The
number of levels n of the OctoMap defines the accuracy of
the model. In our experiments we have used a value of n = 7,
which correspond to a size of ln = 0.15m for the lowest levels
in the OctoMap.

(a) A*

(b) DWA

Fig. 6: Trajectories with 60◦ FOV and ICP for a 4m wide
corridor.

FOV Experiment Average time Best distance reached Count
ICP 632s 56m 3

A* AL 656s 56m 1
60◦ SV 877s 49m 1

ICP 373s 7m 4
DWA AL 627s 29m 3

SV 872s 15m 2
ICP 403s 56m 4

A* AL 384s 56m 4
120◦ SV 500s 56m 1

ICP 690s 25m 1
DWA AL 728s 15m 1

SV 891s 19m 2

TABLE I: Corridor experiment. The experiment was run four
times. The count is the number of time the UAV reached the
maximum distance.

A. Simulation

A simulator based on Gazebo [13] with ROS integration
was used to evaluate the algorithms. The same control system
and dynamic model as our quadcopter is used. Two types
of experiments where conducted to evaluate the presented
methods. In the first experiment the UAV has to fly in a corridor
filled with obstacles. In the second one it has to reach a number
of beacons in any order.

The experiments were conducted using different sensor
setups and local map algorithms. We used a simulated sensor
with a FOV of 60◦, similar to what currently available real
depth sensors provide, and of 120◦, a FOV that we consider
would be more adapted for obstacle avoidance. For the local
map algorithm, we use three variants, one using ICP, one
with a single view (SV) (the local map of previous time is
ignored) and one with accurate localisation (AL). The single
view mode is used to evaluate the benefit of using a local map.
The accurate localisation mode allows to evaluate the quality
loss due to the lack of a good localisation.

1) Corridor: For this experiment, the UAV have to move
through a 50 meters long corridor, filled with obstacles, as
shown in fig. 6. The experiment stops after 900s.

The timing for the various experimental settings are shown
in table I.

2) Reaching Beacons: In this experiment a number of
beacons are put in the environment, and the UAVs knows the
direction and relative distance, for instance it could be WiFi
access point detected with signal strength [2].

There are seven beacons as shown in fig. 7. The UAV gets 3

FOV Experiment 0 1 2 3 4 5 6
ICP 4 4 4 2 3 3 4

A* AL 3 4 2 0 4 4 4
60◦ SV 4 4 1 0 1 4 3

ICP 4 4 0 0 0 1 3
DWA AL 2 1 1 0 1 3 4

SV 4 4 0 0 1 4 4
ICP 4 4 1 0 3 4 4

A* AL 4 4 0 0 1 4 4
120◦ SV 2 3 0 2 0 3 3

ICP 3 4 0 0 0 1 2
DWA AL 1 2 0 0 0 4 1

SV 4 4 1 0 1 4 0

TABLE II: Number of times a beacon has been reached
by the different combinations of algorithm and modes. The
experiments were performed four times.

(a) A*

(b) DWA

Fig. 7: Trajectories with 60◦ FOV and ICP for the beacon
reaching experiment.

minutes to reach a beacon, otherwise it switches to a different
beacon, the closest one. The number of times a beacon has
been reached is shown in table II.

3) Computational time: On a desktop computer, the update
of local spherical map takes around 150ms. DWA needs 10ms
to evaluate one direction. In our experimentation, 40 possible
directions are evaluated, which means a running time of
400ms. The 2-pass A* has a non constant run time, in average
is is under 300ms but it could some times reach up to 6s. A
deadline of 300ms was set to get a result from the 2-pass A*.
When the deadline is reached the current best path is returned.

B. Experimentation with a real-platform

Experimentation with a real-platform were conducted to
validate the simulation.

1) Experiment:
a) Accurate localisation and static obstacle: In the first

experiment, accurate localisation is used in combination with
a static obstacle. The UAV was successful in avoiding the
obstacle and reaching the goal, as seen in fig. 8.

Fig. 8: With accurate localisation and a static obstacle. In each
figure, the top left window is the sensor view, the bottom left
is the local map. The blue point cloud is the local map and the
red one is the sensor. The blue trajectory represent the plan by
the 2-pass A*, and the black arrow is the velocity computed
from the plan. The green cross represent the goal.

Fig. 9: With inaccurate localisation and a dynamic obstacle.
The blue point cloud is the local map and the red one is the
sensor. The blue trajectory represent the plane by the 2-pass
A*, and the black arrow is the velocity computed from the
plan. The orange line represents the path.

b) No accurate localisation and dynamic obstacle:
In the second experiment, only IMU localisation is used in
combination with a dynamic obstacle. The quadcopter was
successful in avoiding the obstacle and reaching the goal, as
seen in fig. 9.

VI. DISCUSSION AND CONCLUSION

In this work, we have presented two obstacle avoidance
algorithms that use a spherical depth map to control the ve-
locity of an UAV while avoiding obstacles in the environment.
The methods that we have presented only use proprioceptive
sensors and can therefore be used to guarantee that the UAVs
will not collide when flying in the environment.

In all our experiments, as expected, the 2-pass A* behave
better than the DWA. The experiments were designed to be
challenging, with small distances between obstacles and under
such circumstances both approaches demonstrated they would
allow a UAV to perform part of its misson.

The result show that, without a local map, a sensor with
a FOV of 60◦ is inadequate for navigation. However, with a
FOV of 120◦, our algorithms perform nearly as well, with or
without the local map.

The experimentations with a real platform have validated
that the simulation algorithm can be transposed to a real
platform. The quadcopter was successful in avoiding a static
obstacle as well as a dynamic obstacle.

Further work will involve the integration of a path planner
with the DWA that would then be executed on board of the
quadcopter. As DWA can be used to validate and adjust in
real time the current velocity generated from the path of the
motion planner.

REFERENCES

[1] T. Bandyophadyay, L. Sarcione, and F. Hover. A simple reactive obstacle
avoidance algorithm and its application in singapore harbor. In Field and
Service Robotics, volume 62 of Springer Tracts in Advanced Robotics,
pages 455–465. 2010.

[2] J. Biswas and M. Veloso. Wifi localization and navigation for au-
tonomous indoor mobile robots. In Robotics and Automation (ICRA),
2010 IEEE International Conference on, pages 4379–4384, May 2010.

[3] A. Ferrick, J. Fish, E. Venator, and G.S. Lee. Uav obstacle avoidance
using image processing techniques. In IEEE International Conference
on Technologies for Practical Robot Applications (TePRA), pages 73–78,
April 2012.

[4] A. W. Fitzgibbon. Robust registration of 2D and 3D point sets. In British
Machine Vision Conference, pages 662–670, 2001.

[5] D. Fox, Burgard W, and S. Thrun. The dynamic window approach to
collision avoidance. Robotics Automation Magazine, IEEE, 4(1):23–33,
Mar 1997.

[6] R. Glasius, A. Komoda, and S. C.A.M. Gielen. Neural network dynamics
for path planning and obstacle avoidance. Neural Networks, 8(1):125 –
133, 1995.

[7] D. Harabor and A. Botea. Hierarchical path planning for multi-size
agents in heterogeneous environments. In Computational Intelligence
and Games, 2008. CIG ’08. IEEE Symposium On, pages 258–265, Dec
2008.

[8] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. Systems Science and Cybernetics,
IEEE Transactions on, 4(2):100–107, July 1968.

[9] A. Hornung, K. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard.
Octomap: an efficient probabilistic 3d mapping framework based on
octrees. Autonomous Robots, 34(3):189–206, 2013.

[10] S. Hrabar. 3d path planning and stereo-based obstacle avoidance for
rotorcraft uavs. In Intelligent Robots and Systems, 2008. IROS 2008.
IEEE/RSJ International Conference on, pages 807–814. IEEE, 2008.

[11] S. Hrabar. An evaluation of stereo and laser-based range sensing for
rotorcraft unmanned aerial vehicle obstacle avoidance. Journal of Field
Robotics, 29(2):215–239, 2012.

[12] S. Lacroix, A. Mallet, D. Bonnafous, G. Bauzil, S. Fleury, M. Herrb, and
R. Chatila. Autonomous rover navigation on unknown terrains: Functions
and integration. The International Journal of Robotics Research, 21(10-
11):917–942, 2002.

[13] J. Meyer, A. Sendobry, S. Kohlbrecher, U. Klingauf, and O. von Stryk.
Comprehensive simulation of quadrotor uavs using ros and gazebo.
In Simulation, Modeling, and Programming for Autonomous Robots,
volume 7628 of Lecture Notes in Computer Science, pages 400–411.
2012.

[14] R. Sharma, J. B. Saunders, and R. W. Beard. Reactive path planning
for micro air vehicles using bearing-only measurements. Journal of
Intelligent and Robotic Systems, 65(1-4):409–416, January 2012.

[15] Y. Watanabe, A. J. Calise, and E. N. Johnson. Vision-based obstacle
avoidance for uavs. In AIAA Guidance, Navigation and Control Confer-
ence and Exhibit, August 2007.

[16] M. Wzorek, G. Conte, P. Rudol, T. Merz, S. Duranti, and P. Doherty.
From motion planning to control - a navigation framework for an
autonomous unmanned aerial vehicle. In Proceedings of the 21st Bristol
UAV Systems Conference (UAVS), 2006.

