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Abstract

We consider a general and industrially motivated class of
planning problems involving a combination of requirements
that can be essential to autonomous robotic systems plan-
ning to act in the real world: Support for temporal uncertainty
where nature determines the eventual duration of an action,
resource consumption with a non-linear relationship to dura-
tions, and the need to select appropriate values for control pa-
rameters that affect time requirements and resource usage.
To this end, an existing planner is extended with support for
Simple Temporal Networks with Uncertainty, Timed Initial
Literals, and temporal coverage goals. Control parameters are
lifted from the main combinatorial planning problem into a
constraint satisfaction problem that connects them to resource
usage. Constraint processing is then integrated and inter-
leaved with verification of temporal feasibility, using projec-
tions for partial temporal awareness in the constraint solver.

1 Introduction
In recent years there has been great interest in extending
and adapting automated planning to better deal with require-
ments arising when autonomous robotic systems must plan
to act in the real world. While each extension allows a plan-
ner to cover interesting new problem classes, there is of-
ten significant interference between different potential ex-
tensions: Planning algorithms are not “additive” in the sense
that once a feature has been explored in one setting, it can
easily be introduced in another. This often leads to new fea-
tures being explored in isolation, frequently also requiring
reduced expressivity in the underlying planning framework.

In this paper we consider a wide class of scenarios requir-
ing multiple distinct features on top of the “baseline” for
temporal concurrent planning, all of which are directly mo-
tivated by the requirements of an airplane surveillance sce-
nario (Section 2) resulting from collaboration with industry.
Efficiently supporting the combination of these features re-
quires taking their interactions into careful consideration.

First, there are areas to be surveilled during specific inter-
vals of time, which requires support for non-classical tem-
poral coverage goals. Also, actions such as in-air refueling
can only be executed within certain time windows.

Second, actions such as flying have “ordinary parameters”
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affecting discrete state transitions and control parameters
that (in this paper) are defined by the fact that they exclu-
sively affect time and resource usage. Selecting a good con-
trol parameterization is essential for time and resource con-
straints to be satisfied, but what is “good” depends on com-
plex interdependencies throughout the entire plan: In one
case, preserving fuel may be the best choice. In another, an
airplane may need to spend additional fuel to be able to take
over surveillance earlier, leaving another airplane with more
fuel than strictly necessary, because it could then reach a re-
fueling location within an earlier time window and therefore
take over another surveillance task at an earlier time. Such
trees of consequences can be complex to completely analyze
in a heuristic function. Therefore much can be gained by de-
laying commitment for the control parameters, lifting their
constraints into an independent problem. (Note that these
parameters, when chosen, will not vary during action exe-
cution. This differs from how control parameters are used in
other areas, e.g. control theory and dynamics.)

Third, the relation between time and resource require-
ments is highly non-linear, whereas existing research into
separating control parameters has mainly focused on linear
dependencies (see related work below).

Fourth, action durations are uncertain and cannot be per-
fectly predicted even if control parameters are fixed, and
overestimating durations would be unsound, as it could lead
to surveillance ending earlier than predicted. The temporal
aspects of such problems can be modeled as STNUs, Sim-
ple Temporal Networks with Uncertainty (Vidal and Ghal-
lab 1996). If an STNU is dynamically controllable (DC), the
corresponding plan is guaranteed to be executable given that
certain information about execution progress is dynamically
provided to the execution algorithm. However, current effi-
cient STNU algorithms require predetermined lower and up-
per bounds on durations, whereas in our case, bounds de-
pend on control parameters. As an example setting a con-
trol parameter to FAST may yield STNU time bounds of
[60, 75] seconds and cause a resource consumption of [2, 3]
kg whereas the value SLOW would result in longer durations
in the range of [80, 100] seconds but instead consumes less
resources, [1.5, 2.2] kg.

This examplifies a class of planning problems where con-
trol parameter selection strongly interacts with uncertain
temporal bounds and non-linear resource consumption, and
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where existing approaches to individual aspects cannot triv-
ially be combined while retaining efficiency. For example,
setting control parameters relative to resource constraints
and testing whether the result is DC leads to an inefficient
brute force generate-and-test method.

An integrated treatment is therefore required. At the same
time, forcing all aspects of the problem into a single solver is
not the most efficient solution. We can benefit greatly from
carefully integrating the use of existing efficient algorithms
for verifying dynamic controllability.

After discussing the motivating example and related
work, we present such an integrated system. The presenta-
tion follows a step by step approach where section 4 de-
scribes our starting point: an existing planner generating
partially ordered plans (TFPOP, (Kvarnström 2011)). Af-
ter gaining background knowledge of STNUs in section 5
we proceed stepwise in sections 6 to 9 to integrate and ex-
tend TFPOP with in turn: a DC-checking algorithm, tempo-
ral constraint derivation, temporal coverage goals and timed
initial literals. Section 10 concludes the extensions by inte-
grating a general constraint solver for efficient handling of
control parameters and non-linear resource usage. Figure 1
shows the final configuration of system.

We then identify an opportunity to provide additional
feedback between the two algorithms: Though modeling an
entire STNU in a general constraint solver would be ineffi-
cient, specific projections from the STNU can be efficiently
modeled as constraints that are necessary but not sufficient
for dynamic controllability. This allows the constraint solver
to very efficiently take into account many interactions be-
tween time and resources and to avoid a large majority of
the control parameter assignments that would have violated
DC, while still using a highly efficient DC verification algo-
rithm to detect violations that satisfy the projections.

Finally, we empirically test and analyze the performance
of the resulting integrated planner.

2 Motivating Example
The techniques presented in this paper are applicable to
a wide variety of planning problems involving uncertain
durations and non-linear dependencies between alternative
time and resource requirements. To demonstrate these tech-
niques, we will now describe an industrially motivated ex-
ample where a set of manned or unmanned airplanes surveil
a set of bridges to detect cars matching given descriptions.

As an airplane cannot hover, it must instead perform a se-
quence of sweeps, each of which consists of crossing its as-

signed bridge, turning around, crossing in the other direc-
tion, and turning around again. To guarantee that all cars
passing the bridge will be seen by on-board sensors, each
sweep must be finished within the bridge’s maximum sweep
duration, which depends on the length of the bridge and the
maximum speed of a car. The range of possible sweep dura-
tions for a particular airplane depends on its flight envelope
(including minimum/maximum airspeed and turn accelera-
tion) and the length of the bridge.

The objective is to surveil each bridge throughout its own
surveillance interval, which requires both arriving on time
and sufficient endurance: “Finishing early” is unacceptable.
When an airplane flies from its initial base location to a
bridge, it may (depending on the required airspeed) consume
a significant proportion of its fuel. The airplane can then per-
form a number of sweeps, after which it may have to hand
over surveillance to another in order to return to base or go
to a designated in-air refueling location. Due to multiple on-
going missions, in-air refueling is only allowed during spe-
cific time slots, 20 minutes each hour.
Estimating Time and Resource Usage. Each flight action
has a single control parameter: The target airspeed. For any
given value we can estimate time and fuel requirements us-
ing a motion planner that generates 3D trajectories relative
to known no-fly-zones using a simulated airplane model,
taking into account limits on speed, acceleration, turn accel-
eration, and rate of rise and descent. The effect of altitude on
fuel consumption is also considered. As this cannot be de-
scribed using analytic expressions, the control parameter is
discretized and the motion planner is called for each value.
The empirical evaluation tests different discretizations.

Some uncertainty arises from imperfectly capturing the
dynamics and fuel consumption characteristics of an air-
plane. More importantly, unpredictable wind can signifi-
cantly affect the distance an airplane must travel relative to
the air, especially at lower speeds. With a fixed airspeed, the
duration of a flight can vary. If one attempts to achieve a
fixed action duration, the required airspeed will instead vary
significantly and more fuel must be reserved.
The Importance of Full DC Verification. When crossing
a bridge, lower temporal bounds must be considered as they
determine the amount of guaranteed surveillance coverage.
Upper bounds must also be considered as they must be be-
low the maximum permitted sweep duration. Both bounds
also affect handover scheduling and the ability to reach refu-
eling locations within a window. For example, if an aircraft
B that will take over surveillance from A arrives early, it
must loiter more, and if it arrives late (relative to the earliest
time A may finish its sweeps), coverage may be interrupted.
DC checking verifies all bounds within the entire plan. This
can in turn rule out control parameter choices, affect the
number of possible sweeps for a particular aircraft, etc.

3 Related Work
There is a wide variety of planners that in certain ways over-
lap with the functionality required by our motivating exam-
ple, but still lack support for critical aspects.

The focus of Kongming (Li and Williams 2008) and



Scotty (Fernández-González, Karpas, and Williams 2017) is
on continuous control parameters and continuous dynamics
modeled using Flow Tubes. These planners assume control-
lable action durations and are therefore not suited for han-
dling the temporal uncertainty aspect that we address.

Partial-order heuristic planners supporting linear pro-
grams include COLIN (Coles et al. 2009), POPF (Coles et al.
2010), OPTIC (Benton, Coles, and Coles 2012) (focusing on
optimization) and POPCORN (Savas et al. 2016). Of these,
POPCORN is most closely related to our work, extending
POPF to allow control parameters that are separated into an
LP and can affect resources. However, it assumes that the
execution mechanism can choose both times and resource
usages of actions within given bounds. Thus it cannot han-
dle temporal or resource uncertainty. Being LP-based, it also
cannot handle the type of non-linear effects that we require.

Among Hierarchical Task Network (HTN) planners,
FAPE (Dvorák et al. 2014) supports temporal uncertainty but
does not allow lifting control parameters that affect tempo-
ral bounds. CHIMP (Stock et al. 2015) and GSCCB-SHOP2
(Qi et al. 2017) allow resources but not temporal uncertainty.
CTPU-HTN (Liu et al. 2016) supports CSTNUs, where tem-
poral bounds can differ depending on observations during
execution as opposed to being chosen by a planner. Re-
sources and control parameters are not supported. A recent
unnamed HTN planner (Zhao et al. 2017) handles temporal
uncertainty but not control parameters.

Timeline-based planners, and specifically flexible time-
line-based planners (Mayer, Orlandini, and Umbrico 2016),
are related to our work since they also use intervals to bound
event times. However, they either support resources but not
uncertain durations (Umbrico, Orlandini, and Mayer 2015)
or the opposite (Cimatti et al. 2018; Umbrico et al. 2017). A
further difference when comparing with our planner is that
current flexible timeline based planners do not support the
type of control parameters that we deal with: Control pa-
rameters that affect both duration bounds and resource con-
sumption/production, both being uncertain.

The InCell library (Pralet et al. 2014) is more focused on
scheduling than planning. It can be used for planning with
resources and control parameters but lacks support for un-
certain action durations.

Recently a new temporal formalism was proposed. The
CCTPU formalism (Cui and Haslum 2017) can model
STNUs with duration / edge alternatives, where sub-
networks are chosen dynamically during execution. But this
high expressivity comes at a price: Its verification algo-
rithms are shown by benchmarks to scale like generate-and-
test methods. Therefore, combining this formalism with the
other aspects that we target in this paper would be infeasible.

4 Background: TFPOP
Our planner is based on TFPOP, a temporal partial-order
planner where each action is associated with an agent and
each agent has one or more sequential threads of execution,
with partial ordering across threads (Figure 2). This allows
strong state information to be generated, allowing the use of
precondition control formulas (Bacchus and Ady 1999) for
guidance. We briefly present a simplified version of TFPOP,
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Figure 2: Plan Structure with Precedence Constraints

removing features that will be replaced by new functional-
ity. See (Kvarnström 2011) for details and (Weld 1994) for
an overview of standard partial order (POCL) planning.
Planning Problems. TFPOP uses a typed finite-domain flu-
ent (state variable) representation, where loc(object) may be
a location-valued fluent taking an object as a parameter.

The first parameter of an operator is always the executing
agent: fly(plane, from, to). For agents with multiple threads
(independent flying and camera control), the second parame-
ter identifies the thread. The precondition pre(o) may be dis-
junctive and quantified and can use goal(φ) to test whether
a formula φ is entailed by the goal. Effects are conjunctive
and unconditional. An action is a fully grounded operator.

The initial state is assumed to be completely defined,
while the goal formula can be disjunctive.
Expressivity. Some features from PDDL (Edelkamp and
Hoffmann 2004) are not supported in TFPOP, such as start
effects. This follows from the fact that (a) we wish to ex-
plore new combinations of features such as temporal uncer-
tainty and control parameters, (b) certain other features were
less essential for this case, and (c) unconditionally retaining
all features of earlier planners is prohibitively complex.
Plan Structures. A plan is a tuple π = 〈A,N,L,O〉:
• A is the set of all actions occurring in the plan. We define

act(π, t) as the subset of A executed by thread t.
• N contains, for each a ∈ A, an invocation node inv(a)

where preconditions must hold, and an effect node eff(a)
where effects are guaranteed to have taken place.

• L is a set of ground causal links ai f=v−−→ aj stating that
ai ∈ A will achieve the condition f = v for aj ∈ A.

• O is a set of explicit ordering constraints (ai, aj) denot-
ing that aj begins after or at the same time ai ends. For
each thread t, act(π, t) must be totally ordered by O.

The transitive closure of O is a strict (irreflexive) partial or-
der denoted by ≺O, or by ≺ when the index is obvious from
context. This ordering carries over directly to nodes: If a ∈
A then inv(a) ≺ eff(a), and if a ≺ a′ then eff(a) ≺ inv(a′).
Executability. Actions can start and end in any order corre-
sponding to a node sequence [n0, n1, . . . , n|N |−1] consistent
with ≺. Executability requires that in all such sequences, no
two overlapping actions (where both are invoked but not ter-
minated) affect the same fluent and no action affects a fluent
required by an overlapping action. Also, preconditions must
be satisfied: Let s0 be the initial state and for all 0 < i ≤ k:

si =

{
si−1 updated by ni if ni is an effect node,
si−1 otherwise.

Then for every invocation node nj corresponding to an ac-
tion a, we must have sj , goal |= pre(a).



Note. If the precondition of an invocation node nj depends
on the result of an effect node ni, the TFPOP algorithm en-
sures that (ni, nj) ∈ O, so that ni ≺ nj . Similarly, any po-
tential interference between effects and preconditions will
be prevented through constraints in O.
Solutions. An executable plan is a solution iff every associ-
ated node sequence results in a state s satisfying the goal.
Algorithm. In the following, choose refers to standard non-
deterministic choice, often implemented by backtracking.
procedure TFPOP
〈A,N,L,O〉 ← 〈{a0}, {inv(a0), eff(a0)},∅,∅〉 // Initial plan
repeat

if goal satisfied return 〈A,N,L,O〉
choose a thread t to which an action should be added
choose an action a for t s.t. pre(a) is not false at the end of t
choose, from alternatives provided by make-true,

causal links L′ and precedence constraints O′ ensuring
pre(a) is satisfied, a does not interfere with existing actions
and no existing action interferes with a

add a to A, {inv(a), eff(a)} to N, L′ to L, and O′ to O
update existing partial states; create new partial state after a

Initialization. The initial plan / search node is an executable
“empty” plan 〈A,N,L,O〉 containing only the special ini-
tial action a0, which is associated with all threads. As in
standard POCL planning, a0 has no preconditions but its ef-
fects define the initial state. As TFPOP does not use means-
ends analysis, no action represents the goal.
Goal Check. If the goal is satisfied, a solution is returned.
Successor. A successor adds one new action to the end of
an existing thread t. Threads can be selected using multiple
strategies, for example by balancing actions across agents.

Then we must find an executable action a to add at the end
of t. Knowing the exact state of the world when a will be
invoked is in general impossible due to partial ordering. In-
stead each action in a thread is associated with a partial state
mapping each fluent f to a set {v1, . . . , v|N |} containing all
values that f may take on between that action and the next, or
until infinity for the last action in the thread. The state of the
last action (possibly a0) is used to determine whether pre(a)
is definitely false, in which case a can efficiently be dis-
carded. This is essential for effective precondition control.

If pre(a) is definitely true, causal links and precedence
constraints must be added. If unknown, the reason may be
potential interference, avoidable by promoting or demot-
ing actions in the partial order. In both cases TFPOP uses
make-true() (Kvarnström 2011) to find all possible exten-
sions to L and O that result in new executable plans without
interference (POCL threats) across actions.
State Inference. A new partial state is created by strength-
ening the previous one using the effects of a and weaken-
ing it according to all effects from actions that are in other
threads and may finish after a. The states of other threads
must also be weakened wherever the effects of a may occur.

5 Background: STNs with Uncertainty
Durations di of actions Ai can rarely be perfectly predicted,
but one can often find context-dependent upper and lower
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bounds [li, ui]. Temporal planners have traditionally (often
implicitly) focused on the upper bound. While this can suf-
fice for handling classical deadlines, we consider scenarios
where events can both occur too early and too late. STNUs
(Vidal and Ghallab 1996) allow us to succinctly model the
temporal aspects of such plans.
Definition 1. A simple temporal network with uncertainty
(STNU) is a graph S = 〈N = NR ∪NC , E = ER ∪ EC〉.

The nodes N = {n1, . . . , n|N |} are divided into disjoint
sets of controlled events NR and contingent events NC .
Each ni ∈ N is associated with a temporal variable ti.

An edge ni
[l,u]−−→ nj is either a requirement edge in ER,

representing the requirement constraint l ≤ tj−ti ≤ u, or a
contingent edge in EC , representing a contingent constraint
l ≤ tj − ti ≤ u where the outcome will be determined by
nature. For contingent edges, nj ∈ EC . �

In Figure 3, a man wants to surprise his wife with a dinner
when she returns after a shopping trip. The dinner must not
be ready too early, or it will grow cold. It must also not be
ready too late, or the wife will have to wait. This is captured
by the requirement edge labeled [-5,5], while the uncontrol-
lable (but bounded) durations of shopping, driving home and
cooking are captured by contingent edges.

Can the man ensure that the requirement is respected re-
gardless of the actual duration outcome for each action (con-
tingent edge), given that he can observe when events in NC

occur (when driving begins) so that he can adapt his execu-
tion schedule for nodes in NR (decide when to start cook-
ing)? Yes, if cooking starts exactly 10 time units after receiv-
ing information that the wife starts driving home. This prob-
lem is captured by the property of dynamic controllability
(DC, see (Morris, Muscettola, and Vidal 2001) for details):
Definition 2. A dynamic execution strategy is a strategy
for assigning timepoints to controllable events during execu-
tion, given that at each timepoint, it is known which contin-
gent events have already occurred. The strategy must ensure
that all requirement constraints will be respected regardless
of the outcomes for the contingent events.

An STNU is dynamically controllable if there exists a dy-
namic execution strategy for executing it. �

6 TFPOP with Uncontrollable Durations
We now add initial support for actions with uncontrollable
durations, using E2IDC (Nilsson, Kvarnström, and Doherty
2016) to incrementally verify dynamic controllability.
Planning Problems. For each action a, the planning prob-
lem must now specify duration bounds 0 < mindur(a) ≤
maxdur(a).



Plan Structures. A plan is now a tuple π = 〈A,S, L,O〉,
where the STNU S = 〈N = NR ∪ NC , E = ER ∪ EC〉
contains the nodes N . Each action a ∈ A has a controlled
invocation node inv(a) ∈ NR and a contingent effect node
eff(a) ∈ NC , except a0, both of whose nodes are con-
trolled. All explicit ordering constraints (ai, aj) ∈ O will be
added as requirement edges eff(ai) [0,∞)−−−→ inv(aj). Contin-
gent edges represent actions.
Executability. Executability now requires S to be dynami-
cally controllable. Plans will be executed by an STNU dis-
patcher. Previous executability conditions apply to all node
sequences [n0, n1, . . . , n|N |−1] compatible with ≺ and S.
Note. Using STNUs, it will be technically possible to con-
strain two TFPOP nodes ni and nj to occur at exactly the
same time. For invocation nodes, this is unproblematic. If nj
is an invocation node and ni an effect node, either their order
is irrelevant for TFPOP or the node sequence order is also
uniquely constrained by (nj , ni) ∈ O or (ni, nj) ∈ O to
guarantee precondition support or non-interference. If both
are effect nodes, they cannot affect the same fluents and (due
to non-interference) the correctness of the plan cannot de-
pend on the order in which the effects are applied.
Algorithm. The TFPOP algorithm is extended as follows.
procedure TFPOP-STNU
S0 ← 〈{inv(a0), eff(a0)}, {inv(a0)

[0,0]−−−→ eff(a0)}〉
〈A,S, L,O〉 ← 〈{a0}, S0,∅,∅〉
checker← new instance of E2IDC initialized for S0

repeat
if goal satisfied return 〈A,S, L,O〉
choose a thread t to which an action should be added
choose an action a for t s.t. pre(a) is not false at the end of t
choose L′ and O′ as in original TFPOP
add a to A, inv(a) to NR, eff(a) to NC , L′ to L, and O′ to O
// update STNU edges E = ER ∪ EC

add inv(a) [mindur(a),maxdur(a)]−−−−−−−−−−−−→ eff(a) to EC

for every (ai, aj) in O′, add eff(ai)
[0,∞]−−−→ inv(aj) to ER

for every edge e that was added to ER, EC :
if not checker.update(e) then fail (backtrack)

update existing partial states; create new partial state after a

Initialization. The initial node now contains an initial
STNU where inv(a0) and eff(a0) are controlled (in NR),
with a requirement constraint specifying that these synthetic
events are simultaneous. An instance of the incremental DC
checker is created and updated with all existing constraints.
STNU Update. When an action is linked into the partial or-
der, the STNU is updated with new nodes as well as edges:
A contingent edge representing the action duration and a re-
quirement constraint for each new precedence generated by
make-true. E2IDC is called once for each new edge to in-
crementally determine whether the plan remains DC. (Back-
tracking is synchronized for E2IDC and TFPOP.)

7 Deriving Temporal Constraints
Any STNU generated above is trivially DC: It directly rep-
resents a partial order, where any action can be delayed until
its predecessors have finished. The full power of STNUs is
required when events can occur either too early or too late.

Such situations arise from temporal constraints across mul-
tiple actions, constraints that are hardcoded in typical STNU
examples but that we must instead derive incrementally dur-
ing planning. Derivation rules must be able to refer to spe-
cific nodes and node precedence (≺), and are not in them-
selves constraints (such as PDDL plan constraints) – they
cause the derivation of STNU constraints. We therefore de-
fine a new structure for derivation rules. Additional intu-
itions are given by the examples below.
Definition 3. A temporal derivation rule 〈V, φ,D〉 for a plan
π = 〈A,S, L,O〉 is defined as follows. V is a set of vari-
ables {a1, . . . , an} ranging over actions in A and shared
between φ andD. φ is a first-order formula with equality al-
lowing free variables from V , supporting quantification over
additional action variables ai and node variables ni. Sup-
ported atomic formulas and terms in φ include:
• assigns(a, f, v) to test if action a has the effect f := v,

and holds(n, f, v) to test if f = v in the partial state
associated with node n

• ai ≺ aj , ni ≺ nj to test precedence
• inv(a), eff(a) – the invocation / effect node of a
• act(n) – the action of node n
Finally, D is a set of requirement edges to be derived for
every instantiation of the variables in V that satisfies φ. �

When an action has been added, TFPOP applies all appli-
cable instances of temporal derivation rules before verifying
dynamic controllability (before “for every edge”).
Example 1. In a planning version of the “cooking STNU”,
the rule 〈{a1, a2}, assigns(a1, dinner-ready, true) ∧ assigns
(a2,wife-home, true), {eff(a1)

[−5,5]−−−−→ eff(a2)}〉 expresses
the desire for dinner to be finished at arrival ±5 minutes. �

Example 2. In the TFPOP formalization of the airplane
surveillance problem, an agent can explicitly assign itself as
the surveillor of a particular bridge. Domain-specific con-
trol ensures a surveillor can only fly to the start of its bridge
(a location and a specific heading) and perform sequences of
flights that result in sweeps. Before leaving, an airplane must
unassign itself from the bridge, so that another can take over.
A non-surveillor can fly to a bridge in preparation for taking
over, fly to a refueling location, or fly back to its base.

Each sweep is then an action sequence of unknown length
whose maximum duration must be constrained to (e.g.) 280
seconds. For each bridge b, we derive such a duration con-
straint whenever there is an action a1 that begins at the start
of the bridge, a later action a2 that returns to the start, and
(to ensure these nodes cover only a single sweep) no inter-
mediate node where the surveillor is at the start of b:
〈{a1, a2}, a1 ≺ a2 ∧ holds(inv(a1), loc(surveillor(b)), start(b)) ∧
assigns(a2, loc(surveillor(b)), start(b)) ∧
∀n.inv(a1)≺n≺eff(a2) → ¬holds(n, loc(surveillor(b)), start(b)),

{inv(a1)
[0,280]−−−−→ eff(a2)}〉 �

Performance. TFPOP already indexes nodes where specific
facts hold or are assigned, allowing it to quickly find pos-
sible values for a1 and a2 above. Common patterns such as
finding nodes n where n1 ≺ n ≺ n2 are also optimized, al-
lowing efficient use of quantification.



8 Temporal Coverage Goals
A bridge can be considered surveilled throughout the exe-
cution of each sweep. We now need a way of expressing the
goal that a bridge is surveilled without interruption through-
out longer periods, a form of temporal coverage goal, and a
way of determining when such goals are satisfied.

Each coverage goal is expressed on the form 〈t1, t2, f〉,
denoting the need to ensure the special fluent f remains true
throughout [t1, t2]. For example, a three-hour surveillance
goal can be expressed as 〈1800, 12600, surveilled(b)〉. Goals
referring to the same fluent (surveilling the same bridge)
must have disjoint temporal intervals.

Full coverage can require multiple actions performed by
different collaborating agents, where no single agent has the
required endurance. Setting f to true at the start of each sat-
isfying action and false at the end would not suffice: f must
hold without interruption, and upholding actions can over-
lap. We therefore introduce the notion that an action can up-
hold a set of (boolean) fluents upheld(a), which are then true
during exactly those intervals where they are upheld by at
least one action. This resembles the use of durational fluents
in Temporal Action Logic (Doherty and Kvarnström 2008).
modify the initialization of TFPOP-STNU as follows, result-
ing in the new algorithm TFPOP-STNU-CSP:
• Each coverage goal can be unstarted (no action upholds

it), started (partially covered), or finished (completely
covered). Initially, mark all goals as unstarted.

• Then, for each coverage goal gi = 〈t1, t2, f〉, add two
controlled events beg(gi) and end(gi) to NR, and add
eff(a0)

[t1,t1]−−−−→ beg(gi) and eff(a0)
[t2,t2]−−−−→ end(gi) to ER.

These are processed by the initialization of E2IDC.
The following is inserted before “for every edge”:

for each f ∈ upheld(a): // May be empty!
if at least one coverage goal for f is not finished:

g = 〈t1, t2, f〉 ← the earliest of these goals (minimal t1)
if g is marked started:

// Ensure no gaps in coverage – overlap is permitted
Let a′ be the latest added action upholding f

add inv(a) [0,∞]−−−→ eff(a′) to ER

else:
// First action covering interval must start before or at t1
add inv(a) [0,∞]−−−→ beg(g) to ER; mark g started

choose between: // Described below
– add end(g) [0,∞]−−−→ eff(a) to ER; mark g finished
– pass (do nothing, remain in started mode)

Each interval goal g is first unstarted. The first action cov-
ering it will be constrained to start on time, and the goal
will be marked started. Subsequent actions are constrained
to ensure there are no gaps. Finally, any action (including the
first) could potentially be the last to cover the interval. The
concrete implementation prioritizes testing this and mark-
ing g finished. TFPOP then continues with DC testing.

If the existing actions cannot cover the entire interval of g
while preserving DC, this leads to immediate backtracking
to the second alternative: Retain partial coverage.

Finally, the goal satisfaction check must be extended to
test whether all coverage goals are marked finished.

9 Time Slots and Timed Initial literals
In the motivating example, refueling can only be performed
during specific time slots. Such slots can be supported
through Timed Initial Literals (Edelkamp and Hoffmann
2004), which are implemented in TFPOP as follows.

First, let a planning problem specify a set of timed as-
signments of fluent values 〈t, f, v〉 stating that at time t,
the fluent f will be assigned the value v – for example,
〈3600, can-refuel, true〉 and 〈4500, can-refuel, false〉.

Second, for each fluent f , collect all such assignments in
a sequence 〈ti, fi, vi〉ni=1 sorted by increasing ti. For each
assignment, create a synthetic action ai having no precondi-
tions, a controllable duration of 0, a single effect f := v, and
a synthetic execution thread Tf used for timed changes to the
fluent f . Add a to A, inv(a) and eff(a) to NR, (ai−1, aj) to
O (for the first effect a1 this relates to the initial action a0),
and eff(a0)

[ti,ti]−−−→ inv(ai) and inv(ai)
[0,0]−−−→ eff(ai) to ER.

For each added action, perform DC verification, update ex-
isting partial states, and create a new partial state for Tf .

When searching for applicable actions, TFPOP will never
add new actions to synthetic threads but can use assignments
by synthetic actions to support preconditions. Existing inter-
ference (threat) resolution mechanisms will ensure that an
action requiring can-refuel is constrained to take place com-
pletely within an interval when can-refuel remains true.

This can trivially be extended to support uncertain time-
points using contingent edges eff(a0)

[l,u]−−→ inv(ai).

10 Control Parameters, Resources and Time
We now turn to the full problem of introducing control pa-
rameters that affect both time and resource requirements. To
keep this presentation concise we will use a single control
parameter. Multiple parameters can be introduced similarly.
We will also focus the current presentation on resources be-
longing to specific agents. Resource effects then become
totally ordered since each agents actions are, and resource
constraints are tested relative to this order. Earlier versions
of TFPOP support a considerably looser ordering among
resource-affecting actions, which can easily be modeled as
CSP constraints.

We choose to use an expressive general constraint solver
to support discrete choice of control parameters, arbitrary
non-linear resource usage, general and action-specific re-
source constraints, certain temporal aspects (Solver 3 be-
low), as well as certain planned future extensions.
Planning Problems. Assume each action a has a single con-
trol parameter ctrl(a) taking on values c of a specified finite
(possibly numeric) type: ctrl(fly(...)) = speed ∈ {100, . . .}.
STNU duration bounds now depend on the value c through
the new functions mindur(a, c) and maxdur(a, c).

Each problem specifies a set of consumable reser-
voir type resources. Each action has a possibly empty
set reseff(a) of resource effects 〈e, r, v〉, where e ∈
{consume, produce, assign} is the type of effect, r is the
resource being affected, and v is a function from control
parameter values c to upper and lower bounds [l, u] on
consumption, production, or the resulting assigned value.



An action has at most one effect on any given resource.
The initial state defines the possibly available amount
[avail−(r), avail+(r)] for each resource r as well as the
minimum and maximum permitted amounts minr(r) and
maxr(r). Similar to ordinary fluents, this turns into assign-
ment effects in the initial action a0.

To ensure that control parameters (together with time and
resources) can be separated from the main (action) search
space, they must not appear in preconditions or effects.
CSP for Resources. We will now define a Constraint Satis-
faction Problem (CSP, (Tsang 2014)) relating control param-
eters to resource usage/constraints given a candidate plan
π = 〈A,S, L,O〉. For simplicity, the presented formulation
requires the sequence resact(π, r) of actions affecting a re-
source r to be totally ordered by≺O, which is true for many
thread-local resources such as an agent’s fuel. This assump-
tion can be relaxed using techniques such as those employed
by TFPOP in (Kvarnström 2011).

• For each action a ∈ A, create a constraint variable ctrla
representing ctrl(a), its domain being the permitted val-
ues for this parameter. The value will be selected by the
constraint solver or optimizer relative to other constraints.

• For each resource r and each a ∈ resact(π, r), let 〈e, r, v〉
be the unique resource effect of a that affects r and:

– Create the numeric constraint variables avail−r,a and
avail+r,a representing the minimum and maximum
amounts of r available at the end of a, respectively.
Constrain both to be in [minr(r),maxr(r)].

– For each value c of ctrl(a) with resource effect bounds
v(c) = [l, u]:
– If e = assign (which first occurs for a0), add the
constraint ctrla = c→ avail−r,a = l ∧ avail+r,a = u.
– If e = consume, a previous action a′ referenced
the same resource. Add the constraint ctrla = c →
avail−r,a = avail−r,a′ − u ∧ avail+r,a = avail+r,a′ − l
– If e = produce, add the constraint ctrla = c →
avail−r,a = avail−r,a′ + l ∧ avail+r,a = avail+r,a′ + u

Expressive CSP solvers allow succinct and efficient array
lookup representations of the constraints above (indexed by
ctrl(a)), which our implementation uses for performance.
Note that all constraints are bidirectional, allowing resources
to constrain possible values for control parameters.
Inter-Action Resource Usage. In many domains the for-
malization above is sufficient to completely characterize re-
source usage and resource constraints. However, airplanes
will continue consuming fuel as long as they are airborne,
regardless of whether they are explicitly executing actions
or loitering while waiting for (for example) the correct time
to take over surveillance. Techniques for computing bounds
on such loiter durations and the associated loiter resource
usage have been implemented through analysis of the entire
STNU structure.
Example 3. Agent X executes A and B, and Agent Y exe-
cutes C. The uncertain duration between A and B must be
derived from the STNU because it affects possible resource
usage for X. Action B must occur after both A and C, so the

time between A and B depends on when actions A and C
end. This in turn depends on other plan aspects.

While loiter effects are applied in our empirical testing,
the techniques themselves are outside the scope of this paper
and will be published in another forthcoming paper. Integrat-
ing such inter-action resource usage in the constraints above
is straight-forward, resulting in one more resource consump-
tion term between each pair of actions in resact(π, r).
Action-Specific Resource Constraints. Actions can de-
clare resource constraints: At the start of in-air refueling, at
least 750 kg of fuel must be available (avail−fuel,a′ ≥ 750,
where a′ is the previous action affecting fuel).
Solver 1: Generate-and-Test. The full expressivity of con-
trol parameters could be achieved with minimal integration:
Each time a new action is added to π, generate and solve the
above constraint problem. The control parameter values ctrla
selected by the solution are “resource-feasible”. To deter-
mine temporal feasibility, generate an STNU where for each
action a, the uncontrollable duration is [mindur(a, ctrla),
maxdur(a, ctrla)]. If this STNU is not DC, find an alternative
solution to the CSP, create an STNU, and test again.

This is very inefficient: As there is no information about
why a CSP solution is non-DC, we must blindly test many
solutions that may only differ in non-essential parameters.
Solver 2: Integrating CSP and STNU. Many constraint
solvers are based on a combination of constraint propaga-
tion and search. In every search node, each variable v is as-
sociated with a domain Dv , a set of possible values. Initially
the domain consists of all values of the given type. In de-
scendant nodes, domains can be reduced by constraint prop-
agation or through assumptions made in the search process,
but not expanded – information increases monotonically.

Therefore, an integrated CSP and STNU solver can in-
crementally add a contingent edge for an action as soon as
its control parameter has been given a value. If this violates
DC, the CSP search process can safely backtrack to try other
alternatives: All descendant nodes would include the same
constraints (and more), and would also be non-DC.

We first modify the end of TFPOP-STNU as follows.
procedure TFPOP-CSP-STNU (changes for the final part)

PS ← ∅ // Singleton control parameter choices
. . .
add a to A, inv(a) to NR, eff(a) to NC , L′ to L, and O′ to O
// update STNU requirement edges in ER

for every (ai, aj) in O′, add eff(ai)
[0,∞]−−−→ inv(aj) to ER

for every edge e that was added to ER:
if not checker.update(e) then fail (backtrack)

generate constraint satisfaction problem csp
if interleave-csp-stnu(A,S,csp,PS ,checker) signals error then

fail
update existing partial states; create new partial state for t

The STNU generated by TFPOP now only contains the
(control-independent) requirement edges. Contingent edges
can only be added when control parameters are determined.
The set PS keeps track of all control parameter choices for
contingent constraints that are added to the STNU. These
contingent constraints are only added to the STNU when



their corresponding control parameters have a single choice
value left.

The basis for interleave-csp-stnu is a standard constraint
solver as described above. In each search node, after con-
straint propagation, it calls the procedure below to update
contingent edges in the STNU.
procedure incrementally-check-STNU(A,S,csp,PS ,checker)

Ptarget = {ctrla = x | a ∈ A ∧ csp.Dctrla = {x}}
revert S to state corresponding to knowing only Ptarget ∩ PS

PS = Ptarget ∩ PS

for each ctrla = x in Ptarget − PS :
PS = PS ∪ {ctrla = x}
add e = (inv(a) [mindur(a,ctrla),maxdur(a,ctrla)]−−−−−−−−−−−−−−−−−→ eff(a)) to EC

if not checker.update(e) then fail
Our objective is for the STNU to have one contingent edge
for each control parameter currently assigned a definite (sin-
gle) value by the CSP, represented by Ptarget.

The STNU currently has such edges corresponding to
assignments in PS (initialized to ∅ before the first call,
and updated incrementally within each call). However, the
CSP solver may have backtracked and removed assignments
since the last call. Thus, edges in S not motivated by the cur-
rent shared assignments Ptarget ∩PS must be removed by re-
verting S to the state it had when only these assignments ex-
isted. Then new edges corresponding to Ptarget − PS can be
added. If this fails, the constraint solver will backtrack.
Solver 3: Temporal Projections in the CSP. Interleav-
ing general constraint solving with DC verification provides
early feedback as soon as a subset of control parameters
are set in a way that violates DC. This is distinct from the
stronger bidirectional relationship between control parame-
ters and resources within the CSP: If an airplane has lim-
ited fuel, one can directly eliminate a range of values for the
speed control parameter, which can then lead to additional
chains of inferences through constraint propagation as op-
posed to search. Could we then gain additional performance
by also introducing time into the CSP?

A potential approach would be to also encode the DC ver-
ification problem as a constraint problem, placing all con-
straints in a single solver. However, because such encodings
require disjunctive constraints (Cui et al. 2015), interleav-
ing a dedicated DC verification algorithm such as E2IDC is
much faster than processing the complete STNU with a gen-
eral solver (up to 60 times in our testing).

Instead we encode some STNU aspects that are necessary
for dynamic controllability and can be efficiently handled by
constraint solving, use these for improved constraint propa-
gation (including detecting many of the control choices lead-
ing to non-DC STNUs), and retain the interleaved use of
E2IDC to find cases that fall through the first “filter”.

Recall that a contingent edge n [l,u]−−→ n′ represents a need
to handle all possible duration outcomes in [l, u]. A projec-
tion (Vidal and Ghallab 1996) replaces such edges with re-
quirement edges n [v,v]−−−→ n′ where v ∈ [l, u], representing
the need to handle a particular outcome. The result is an STN
(Dechter, Meiri, and Pearl 1991) whose constraint encoding
is far less complex. If the STN is inconsistent, the original
STNU was not DC.

The AllMax projection uses v = u, representing the case
where all actions happened to have their maximum dura-
tions, while AllMin uses v = l. Both can be very useful, but
even their combination does not catch all cases: In the cook-
ing example, we would miss the case where driving takes
maximal time and cooking takes minimal time. Similarly,
surveillance planning would miss cases such as one airplane
finishing its sweeps in minimal time while its replacement
requires maximal time to reach the surveillance area.

To add the AllMax projection to the CSP:

• For each node ni ∈ N , create a corresponding constraint
variable tmaxi representing its execution time.

• For each requirement edge ni
[l,u]−−→ nj in ER, create a

constraint l ≤ tmaxj − tmaxi ≤ u.

• For each action a with invocation and effect nodes ni =
inv(a) and nj = eff(a), and each value c of ctrl(a), create
a constraint ctrla = c→ tmaxj − tmaxi = maxdur(a, c).

• Finally, let ni = inv(a0) and nj = eff(a0). Then add the
constraints tmaxi = 0 and tmaxj = 0, representing the
fact that the plan starts at time 0.

For AllMin, replace tmax with tmin and use mindur(a, c).
Time variables are separate, but resources and projections
are connected through shared control variables ctrla.
Performance and Redundancy. While the problem for-
mulation above contains all information that is required to
characterize correct solutions, many constraint solvers (and
many planners) can benefit from a bit of targeted redundancy
in order to find solutions more quickly. In our implementa-
tion, based on the JaCoP solver (http://jacop.osolpro.com/),
we have found the following additional information to be of
assistance in the AllMin projection:

• For each action ai ∈ A, a constraint variable dmini repre-
senting the lower bound on its duration.

• For each action ai ∈ A and each value c of ctrl(a), create
a constraint ctrla = c→ dmini = mindur(a, c).

• For each finished temporal coverage goal 〈t1, t2, f〉 in-
tended to be covered by the actions ak1 , . . . , akn , the con-
straint sum(dmink1 , . . . , dminkn) ≥ t2 − t1.

This permits the solver to more efficiently rule out control
parameter values that do not allow finished interval goals to
be completely covered when uncertain durations have their
worst-case (minimal-duration) outcomes.

11 Empirical Evaluation
We will now analyze and evaluate the presented approach
to supporting temporal uncertainty, control parameters, and
non-linear resource consumption. To this end we have gen-
erated a total of 576 instances of the surveillance problem,
varying the following parameters:

• Number of airplanes: {3, 4, 5}.
• Start of the first surveillance interval: {1800, 3600} sec-

onds. This has a large effect on the required speed for the
initial flight, and thereby the initial fuel consumption.



• Total surveillance duration: {600, 1200, 1800, 3600,
5400, 7200, 9000, 10800} seconds (10 minutes to 3 h).

• Flight speed discretization: {10, 20, 30, 40} different
flight speed levels.

• Fuel capacity for an airplane: {2500, 3000, 3500} kg. The
effect on surveillance endurance is significant, as a 500 kg
reserve is required and part of the fuel is used to fly to and
from the surveillance area.

Benchmarks are single-threaded and were run on an older
compute cluster running AMD Opteron 6174 processors.
Modern CPUs are typically around 3 times faster per core.
TFPOP, E2IDC and the JaCoP constraint solver (http://jacop.
osolpro.com/) are implemented in Java (version 8). Solutions
contained 34 to 366 actions, mainly depending on duration.
Evaluation Purpose. The evaluation will not be based on
comparisons between different planners. This is partly be-
cause no other planner directly supports this particular com-
bination of features as is discussed in the related work sec-
tion, and partly because the most expressive planners tend to
use hand-coded guidance, whether it is expressed as control
formulas or HTN tasks and methods. As identical guidance
could not be used, comparisons would be less than enlight-
ening. We therefore focus on the following aspects.
What is the impact of interleaving constraint propaga-
tion and DC verification? Figure 4 shows, for all solvers,
the proportion of problem instances solvable within a given
period of time. The “non-incremental” curve shows the
baseline (solver 1), with no interleaving. To allow this solver
to produce plans we added problems with artificially low
surveillance durations of 600 / 1200 seconds, which could be
solved within 7 minutes, and 1800 seconds, which could not
be solved within several hours. As expected, this generate-
and-test solver is unable to handle more complex problems.

Interleaving DC verification (solver 2) results in an inter-
mediate curve (“Incremental”), where no problem instance
requires more than 1140 sec (19 minutes). The instances
solved by the baseline can now be solved within 1.1 sec.
What is the impact of introducing temporal projections?
As shown by the topmost line in Figure 4, this provides an
additional performance improvement, if not as significant as
that of interleaving DC verification. The maximum time re-
quirement is now reduced to 2.5 minutes. A closer inspec-
tion of the constraint solving process shows that much of this
is due to enabling longer chains of inferences where time
and resources interact through control parameters.
What is the overall impact of temporal uncertainty? Pro-
filing shows that for shorter plans, at least 80% of the CPU
time is spent on DC verification in the final solver. For longer
plans the proportion rises to above 95%. This is also in line
with expectations, E2IDC requires time cubic in the number
of nodes, which increases linearly with plan size.
What is the impact of a denser discretization of control
parameters? As shown in Figure 5, the incremental solver
on average takes slightly over twice as much time with 40
distinct airspeeds compared to 10.

In contrast, runtimes for the final solver are close to inde-
pendent of the number of airspeeds. In this domain, the in-
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teraction between time and resources allows the planner to
efficiently detect feasible parameter values.

12 Conclusions
We have presented a new planner with support for control
parameters affecting uncertain bounds on action durations
as well as on non-linear resource consumption. Extracting
these specific aspects of planning into a separate problem
allows the main planner to focus on the non-metric prob-
lem of finding actions that can be combined to achieve the
final goal, without commitment to control parameterization.
A combination of constraint solving and efficient algorithms
for dynamic controllability verification in STNUs is then
used to find suitable control parameters allowing these ac-
tions to satisfy temporal and resource constraints.
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