
EfficientIDC: A Faster Incremental Dynamic Controllability Algorithm

Mikael Nilsson and Jonas Kvarnström and Patrick Doherty
Department of Computer and Information Science

Linköping University, SE-58183 Linköping, Sweden
{mikni,jonkv,patdo}@ida.liu.se

Abstract

The exact duration of an action generally cannot be predicted
in advance. Temporal planning therefore tends to use upper
bounds on durations, with the explicit or implicit assumption
that if an action happens to be executed more quickly, the plan
will still succeed. However, this assumption is often false: If
we finish cooking too early, the dinner will be cold before
everyone is at home and can eat. Simple Temporal Problems
with Uncertainty (STPUs) allow us to model such situations.
An STPU-based planner must then verify that the networks
it generates are executable, captured by the property of dy-
namic controllability. The FastIDC algorithm can do this in-
crementally during planning. In this paper we show that the
FastIDC method can result in traversing part of a temporal
network multiple times, with constraints slowly tightening
towards their final values. We then present a new algorithm
that uses additional analysis together with a different traver-
sal strategy to avoid this behavior. The new algorithm has a
guaranteed time complexity lower than that of FastIDC and
is proven sound and complete.

Introduction and Background
When planning for multiple agents, for example a joint UAV
rescue operation, generating concurrent plans is usually es-
sential. This requires a temporal formalism allowing the
planner to reason about the possible times at which plan
events will occur during execution. A variety of such for-
malisms exist in the literature. For example, Simple Tempo-
ral Problems (STPs, Dechter, Meiri, and Pearl 1991) allow
us to define a set of events related by binary temporal con-
straints. The beginning and end of each action can then be
modeled as an event, and the interval of possible durations
for each action as a constraint. However, an STP solution is
defined as any assignment of timepoints to events satisfying
the associated constraints. Thus, if an action is specified to
have a duration d ∈ [t1, t2], it is assumed that the planner can
choose any duration within the interval. In a joint UAV res-
cue operation this is an unrealistic simplification as there are
many actions whose durations cannot be chosen by the plan-
ner. Nature is one cause affecting action times, for instance
timings of UAV flights and interaction with ground objects
will be affected by bad weather.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A formalism which allows uncertainty in timings is STPs
with Uncertainty (STPUs) (Vidal and Ghallab 1996), intro-
ducing contingent constraints, where the time between two
events is assumed to be assigned by nature. In essence, if an
action is specified to have a contingent duration d ∈ [t1, t2],
the “ordinary” constraints must be satisfied for every dura-
tion within the interval.

In general, STPUs cannot be expected to have static solu-
tions where actions are scheduled at static times in advance.
Instead we need dynamic solutions, taking into account the
observed times of uncontrollable events (the observed dura-
tions of actions). If such a dynamic solution can be found the
STPU is dynamically controllable (DC) and the plan it rep-
resents can be executed correctly regardless of the outcomes
of the contingent constraints.

If a plan is not dynamically controllable, adding further
actions or constraints can never restore controllability. If a
planner generates such a plan at some point during search,
backtracking will be necessary. To detect this as early as pos-
sible the planner should determine after each action is added
whether the plan remains DC. For most of the published DC
verification algorithms, this would require (re-)testing the
entire plan in each step (Morris, Muscettola, and Vidal 2001;
Morris and Muscettola 2005; Morris 2006; Stedl 2004). This
takes non-trivial time, and one could benefit greatly from
using an incremental algorithm instead. The only such algo-
rithm in the literature is FastIDC (Stedl and Williams 2005;
Shah et al. 2007), which was recently proven unsound and
corrected (Nilsson, Kvarnström, and Doherty 2013). In this
paper we show that the worst-case run-time complexity of
FastIDC is at least O(n4). This worst case can be attained by
incrementally changing only one edge in the STPU. We also
show that one can use several of the ideas behind FastIDC in
a different way, and introduce additional analysis of certain
structures, to create a new algorithm with a strictly better
amortized run-time of O(n3).

Definitions
Before we go into details we define the fundamental con-
cepts used in this paper.
Definition 1. A simple temporal problem (STP) (Dechter,
Meiri, and Pearl 1991) consists of a number of real vari-
ables x1, . . . ,xn and constraints Ti j = [ai j,bi j], i 6= j limiting
the distance ai j ≤ x j− xi ≤ bi j between the variables.

[35,40]

[-5,5]

Requirement Constraint

Contingent Constraint

[x,y]

[x,y]

Start
Driving

Wife at
HomeDrive

Start
Cooking

Dinner
Ready

[25,30]

Cook
Wife at
Store

[30,60] Shopping

Figure 1: Example STNU.

Definition 2. A simple temporal problem with uncertainty
(STPU) (Vidal and Ghallab 1996) consists of a number of
real variables x1, . . . ,xn, divided into two disjoint sets of
controlled timepoints R and contingent timepoints C. An
STPU also contains a number of requirement constraints
Ri j = [ai j,bi j] limiting the distance ai j ≤ x j− xi ≤ bi j, and
a number of contingent constraints Ci j = [ci j,di j] limiting
the distance ci j ≤ x j − xi ≤ di j. For the constraints Ci j we
require that x j ∈C, 0 < ci j < di j < ∞.
We will work with STPs and STPUs in graph form, with
timepoints represented as nodes and constraints as labeled
edges. They are then referred to as Simple Temporal Net-
works (STNs) and STNs with Uncertainty (STNUs), respec-
tively. An example is shown in figure 1. In this example a
man wants to cook for his wife. He does not want her to wait
too long after she returns home, nor does he want the food to
wait too long. These two requirements are captured by a sin-
gle requirement constraint, whereas the uncontrollable (but
bounded) durations of shopping, driving home and cooking
are captured by the contingent constraints. The question is
whether this can be guaranteed regardless of the outcomes
of the uncontrollable durations.
Definition 3. A dynamic execution strategy is a strategy
for assigning timepoints to controllable events during execu-
tion, given that at each timepoint, it is known which contin-
gent events have already occurred. The strategy must ensure
that all requirement constraints will be respected regardless
of the outcomes for the contingent timepoints.

An STNU is dynamically controllable (DC) if there exists
a dynamic execution strategy for it.
In figure 1 a dynamic execution strategy is to start cooking
10 time units after receiving a call that the wife starts driving
home. This guarantees that cooking is done within the re-
quired time, since she will arrive at home 35 to 40 time units
after starting to drive and the dinner will be ready within 35
to 40 time units after she started driving.
Any STN can be represented as an equivalent distance graph
(Dechter, Meiri, and Pearl 1991). Each constraint [u,v] on
an edge AB in an STN is represented as two correspond-
ing edges in its distance graph: AB with weight v and BA
with weight −u. The weight of an edge XY then always
represents an upper bound on the temporal distance from
its source to its target: time(Y)− time(X) ≤ weight(XY).
Computing the all-pairs-shortest-path (APSP) distances in
the distance graph yields a minimal representation contain-
ing the tightest distance constraints that are implicit in the

original problem (Dechter, Meiri, and Pearl 1991). This di-
rectly corresponds to the tightest interval constraints [u′,v′]
implicit in the original STN. If there is a negative cycle in
the distance graph, then no assignment of timepoints to vari-
ables satisfies the STN: It is inconsistent.

In the same way, an STNU always has an equivalent ex-
tended distance graph (Stedl 2004).

Definition 4. An extended distance graph (EDG) is a di-
rected multi-graph with weighted edges of 5 kinds: positive
requirement, negative requirement, positive contingent, neg-
ative contingent and conditional.

Requirement edges and contingent edges in an STNU are
translated into pairs of edges of the corresponding type in a
manner similar to what was previously described for STNs.
A conditional edge (Stedl 2004) is never present in the ini-
tial EDG, but can be derived from other constraints through
calculations discussed in the following section (figure 2).

Definition 5. A conditional edge CA annotated < B,−w >
encodes a conditional constraint: C must execute after B or
at least w time units after A, whichever comes first. The node
B is called the conditioning node of the constraint/edge.

The FastIDC Algorithm
The FastIDC algorithm (Stedl and Williams 2005; Shah
et al. 2007) incrementally checks the dynamic controlla-
bility of an STNU. While it can be used for loosening
constraints, we will focus only on the part responsible for
adding/tightening constraints. The reason is that when it is
detected that a plan is not DC, a planner would normally
backtrack to a previously visited plan (whose associated
STNU can be saved), which does not require arbitrary loos-
ening of existing constraints.

FastIDC (algorithm 1) is based on a set of derivation rules
(figure 2). When a constraint is added or tightened in an
STNU, FastIDC will derive the effects of this on existing
events. It does so by making implicit constraints explicit,
adding them to the STNU. The new constraints may then
lead to more derivations and so the process propagates until
no more constraints can be derived.

The version of FastIDC shown here is slightly modified
compared to the original presentation. First, it includes an
adaptation of the soundness fix described in Nilsson, Kvarn-
ström, and Doherty (2013) which checks for cycles contain-
ing only negative edges. Second, the presentation has been
streamlined by assigning rule IDs (D8 and D9 in figure 2) to
the general and unordered reduction rules (Morris, Muscet-
tola, and Vidal 2001) which are required for soundness. In
figure 2 all variables are assumed to be positive, i.e. ’-v’ is
negative, with the exception of ’-u’ in D8 which may be ei-
ther negative or positive.
Being incremental, FastIDC assumes that at some point
a dynamically controllable STNU was already constructed
(for example, the empty STNU is trivially DC). Now one or
more requirement edges e1, . . . ,en have been added or tight-
ened, together with zero or more contingent edges and zero
or more new nodes, resulting in the graph G. FastIDC should
then determine whether G is DC.

Algorithm 1: FastIDC – sound version
function FAST-IDC(G,e1, . . . ,en)
Q← sort e1, . . . ,en by distance to temporal reference

(order important for efficiency, irrelevant for correctness)
for each modified edge ei in ordered Q do

if IS-POS-LOOP(ei) then SKIP ei
if IS-NEG-LOOP(ei) then return false
for each rule (Figure 2) applicable with ei as focus do

if edge zi in G is modified or created then
Update CCGraph
if Negative cycle created in CCGraph then
return false
if G is squeezed then return false
if not FAST-IDC(G,zi) then return false

end
end

end
return true

A

C

B
v

-x
y

<B,v-y>

A

C

B
v

-xv-x

A

D

C
<B,-y>

-u
v

<B,u-y>

A

C

B
v

<D,-x>
<D,v-x>

A

D

C
<B,-y>

v
<B,v-y>

A

C

B
-u

-x
yx-u

A

C

B
-u

y
y-u

B ≠ D

A ≠ D

Requirement Edge
Contingent Edge
Conditional Edge

Derived Edge – Leftmost
Focus Edge – Topmost (except in D8/D9)

A

C

B
-x

-u
<B,-u>

A

C

B
-x

-x
<B,-u>

u ≤ x u > x

Removed Edge

Figure 2: FastIDC Derivation Rules.

The algorithm works in the EDG of the STNU. First it adds
the newly modified/added requirement edges to a queue, Q
(a contingent edge must be added before any other constraint
is added to its target node and is then handled implicitly
through requirement edges). Q is sorted in order of decreas-
ing distance to the temporal reference (TR), a node always
executed before all other nodes at time zero. Therefore nodes
close to the “end” of the STNU will be dequeued before
nodes closer to the “start”. This to some extent prevents du-
plication of effort by the algorithm, but is not essential for
correctness or for understanding the derivation process.

In each iteration an edge ei is dequeued from Q.
A positive loop (an edge of positive weight from a node

to itself) represents a trivially satisfied constraint that can be
skipped. A negative loop entails that a node must be exe-
cuted before itself, which violates DC and is reported.

If ei is not a loop, FastIDC determines whether one or
more of the derivation rules in figure 2 can be applied with
ei as focus. The topmost edge in the figure is the focus in all
rules except D8 and D9, where the focus is the conditional
edge < B,−u >. Note that rule D8 is special: The derived
requirement edge represents a stronger constraint than the
conditional focus edge, so the conditional edge is removed.

For example, consider rule D1. This rule will be matched
if ei is a positive requirement edge, there is a negative con-
tingent edge from its target B to some other node C, and
there is a positive contingent edge from C to B. Then a new
constraint (the bold edge) can be derived. This constraint is
only added to the EDG if it is strictly tighter than any exist-
ing constraint of the same type between the same nodes.

More intuitively, D1 represents the situation where an ac-
tion is started at C and ends at B, with an uncontrollable du-
ration in the interval [x,y]. The focus edge AB represents the
fact that B, the end of the action, must not occur more than v
time units after A. This can be represented more explicitly
with a conditional constraint AC labeled < B,v− y >: If B
has occurred (the action has ended), it is safe to execute A. If
at most v−y time units remain until C (equivalently, at least
y− v time units have passed after C), no more than v time
units can remain until B occurs, so it is also safe to execute A.

Whenever a new edge is created, the corrected FastIDC
tests whether a cycle containing only negative edges is gen-
erated. The test is performed by keeping the nodes in an
incrementally updated topological order relative to nega-
tive edges. The unlabeled graph which is used for keeping
the topological order is called the CCGraph. It contains the
same nodes as the EDG and has an edge between two nodes
iff there is a negative edge between them in the EDG.

After this a check is done to see if the new edge squeezes
a contingent constraint. Suppose FastIDC derives a require-
ment edge BA of weight w, for example w =−12, represent-
ing the fact that B must occur at least 12 time units after A.
Suppose there is also a contingent edge BA of weight w′>w,
for example w′ = −10, representing the fact that an action
started at A and ending at B may in fact take as little as 10
time units to execute. Then there are situations where nature
may violate the requirement edge constraint, and the STNU
is not DC. Situations where a meeting a requirement con-
straint would force a contingent constraint to be squeezed

If the tests are passed and the edge is tighter than any
existing edges in the same position, FastIDC is called re-
cursively to take care of any derivations caused by this new
edge. Although perhaps not easy to see on a first glance, all
derivations lead to new edges that are closer to the tempo-
ral reference. Derivations therefore have a direction and will
eventually stop. When no more derivations can be done the
algorithm returns true to testify that the STNU is DC.

Analysis of FastIDC
We will now analyze certain aspects of the FastIDC algo-
rithm in more detail.

5

6

7

4

2

5

6

7

4

3

-100

-95

-91

-93

Figure 3: Why depth first is a suboptimal strategy.

Edge processing order. Following (Shah et al. 2007), the
initial list of modified edges is processed in order of distance
to the temporal reference, but all edges derived by FastIDC
itself are handled recursively and depth-first. The small ex-
ample in figure 3 shows why this is a suboptimal strategy for
selecting focus edges. In this example the positive edges are
present in the initial graph. The negative IA edge is added as
the only edge in this increment. Thus FastIDC is called and
Q will contain only e1 = IA. This leads to derivation of the
GA edge, with weight −95. The depth first strategy then de-
rives FA, weight −91, and additional edges moving toward
the start of the STNU. However at a later step the IA and
FI edges will be used to derive a strictly smaller weight for
FA,−93. This derivation will then propagate to decrease the
weights of all the previously derived edges. In the worst case
a number of paths of positive edges from A to I, proportional
to the total number of paths, may be traversed in reverse by
FastIDC as new negative weights are incrementally derived.
There is an exponential number of different paths in a graph
which makes this worst case suboptimal.
An Improved Search Strategy. As noted above, the algo-
rithm as published sorts the initial list of modified edges but
processes newly derived edges depth first. This can be im-
proved by keeping a global priority queue Q of modified
edges. When a new edge is derived, it is not processed re-
cursively but added at the proper place in this queue. The
algorithm then iterates until the queue of modified edges
is empty. The effect is that in each iteration the algorithm
chooses among all known modified edges the one that is
the furthest from the temporal reference, as was perhaps in-
tended by the authors but not realized in the pseudo-code.
A Lower Bound on Time Complexity. An example will
now show that even with the improved search strategy, the
worst case run-time complexity of FastIDC is still at least
O(n4) when processing the tightening of one edge.

The left part of figure 4 shows a part of an EDG cre-
ated by FastIDC when incrementally adding constraints to
an STNU. The figure contains three categories of nodes: A,
B and C nodes. All B nodes are connected in sequence by
edges of weight 1 as illustrated in the figure. So are the A
nodes, except the one with highest index. A0 is connected
to all B nodes by edges whose weights increase with the in-
dices of B nodes. There is also one edge of weight 100 from
each B node to each A node. These |A| · |B| edges are omitted
in the figure for clarity.

The nodes in the figure are ordered from left to right by

3

0

1

3

0

1

0

1

1

94

200

1

2

22

1
1

1

-250

-50

100

98

96

2

-251

3

0

1

3

0

1

0
22

-249

-1501

2

Figure 4: High complexity scenario part 1.

3

0

1

3

0

1

0
22

-249

-148

-150

-149

52

1

2

3

0

1

3

0

1

0
22

49

1

2

-1

1

-250

Figure 5: High complexity scenario part 2.

path distance to the temporal reference node (TR), which is
not shown in the figures. This means that there are negative
edges or paths from the nodes to the TR and that these are
more negative the further to the right in the figure a node is
placed. Recall that negative edges are sorted in the FastIDC
queue by the distance from their source node to the TR.

FastIDC derives edges by giving higher priority to neg-
ative edges whose source nodes are closer to the end of
the EDG. The example in figure 4 contains a shortest path
A0,B0,B1,B2,B3 from the end towards earlier nodes. How-
ever this order works against FastIDC since derivation rule
D7 derives tighter constraints in the opposite direction (the
source of the derived edge is that of the positive edge). We
will exemplify this now.

Suppose the B3→C0 edge shown in bold in the right part
of figure 4 is added or tightened to a weight of −250 and
that FastIDC is called with this edge as e1. FastIDC will find
two applicable derivations where this is the focus edge. Both
derivations are instances of D7, resulting in B2 → C0 and
A0→C0 being created and placed in the queue.

In the next iteration, A0→C0 has the highest priority (be-
cause A0 is farther from the TR than B2 is), and will be taken
from the queue. When processing this edge, derivations us-
ing D7 will combine it with the “hidden” edges Bi→A0 with
weight 100 to derive |B| edges Bi→C0. These are all put in
the queue. An edge A1→C0 with weight −149 will also be
generated and ends up in front of the queue (figure 5).

When A1 → C0 is taken for processing, |B| new edges
are derived through combination with Bi → A1, but these
are discarded since they have higher weights than the pre-
viously derived edges in their positions. An edge A2 → C0
with weight−148 is also derived and will be processed first.

Processing this leads to a similar procedure, again with |B|
edges discarded. The edge A3→C0 is among those derived.
Since it has a positive weight it ends up last in the queue
(sorted on the distance from C0 to the TR). The left part of
figure 5 shows the current situation.

At this point the edges from Bi → C0 will be taken from
the queue and not lead to any derivations until B2 → C0
is processed. This is used to derive tighter B1 → C0 and
A0 → C0 edges which in turn follow the pattern just de-
scribed leading to tightenings of the Ai → C0 edges. This
happens again when B0→C0 and A0→C0 are tightened. At
this point the A3→C0 edge reaches its final weight 49. The
queue is then processed until A3→C0 is removed as the last
edge in the queue. This leads to derivation of A3→C1 with
weight −1 which in turn leads to B3 →C1 of weight 1 and
B3 → C2 with weight −250. Here we again have an edge
from B3 with weight −250. FastIDC will then continue the
exact same sequence as before but now deriving edges to-
ward C2 instead of C0.

It is possible that |A|, |B| and |C| are all O(n) and follow
the same pattern as in the example. Then there are O(n) spins
around the A−B cycle as the target of the negative B→ C
edges traverses all C nodes. Each spin around the cycle takes
O(n3) time: There are O(n) updates to A0→Cx and each of
these updates the O(n) Ai→Cx edges, each of which tries to
update the O(n) B→ Cx edges. The worst case complexity
of one call to FastIDC must therefore be at least O(n4).

Unfortunately, even though the structure in the example
requires the addition of many edges that are handled quickly
by FastIDC, the complexity cannot be amortized to reach
a lower value. The problem is that FastIDC will always pay
the full O(n4) price each time the B3→C0 edge in the exam-
ple is tightened. This may happen as part of other tightenings
or by direct change many times as the final STNU is built.
As such there are no cheaper increments that can pay for the
more expensive ones.

One cause for this complexity is the existence of a region
of nodes (the A and B nodes) where there is at least initially
no forced ordering between the nodes. We will now present
a new way of handling such regions.

The EfficientIDC Algorithm
We now present the Efficient Incremental Dynamic Control-
lability checking algorithm (Algorithm 2, EfficientIDC or
EIDC for short). The key to EIDC’s efficiency is the use of
focus nodes instead of focus edges. When EIDC tightens an
edge, it adds the target of this edge as a new focus node to be
processed. When EIDC processes a focus node n, it applies
all derivation rules that have an incoming edge to n as focus
edge, guaranteeing that no tightenings are missed.

The use of a focus node allows us to use a modified ver-
sion of Dijkstra’s algorithm to efficiently process parts of an
EDG in a way that avoids certain forms of repetitive inter-
mediate edge tightenings performed by FastIDC. The key to
understanding this is that derivation rules essentially calcu-
late shortest distances. For example, rule D4 states that if we
have tightened edge AB and there is an edge BC, an edge AC
may have to be tightened to indicate the length of the short-

Algorithm 2: The EfficientIDC Algorithm
function EfficientIDC(EDG G, DDG D, CCGraph C, edge e)

todo← {Target(e)}
if e is negative and e /∈C then

add e to C
if negative cycle detected then return false
todo← todo ∪ {Source(e)}

end
while todo 6= /0 do

current← pop some n from todo where
∀e ∈ Incoming(C,n) : Source(e) /∈ todo

ProcessCond(G,D,current)
ProcessNegReq(G,D,C,current)
ProcessPosReq(G,current)
for each edge e added to G in this iteration do

if Target (e) 6= current then
todo← todo ∪{Target(e)}

end
if e is a negative requirement edge and e /∈C then

add e to C
if negative cycle detected then return false
todo← todo ∪{Target(e),Source(e)}

end
end
if G is squeezed then return false

end
return true

est path between A and C. Shortest path algorithms cannot
be applied indiscriminately, since there are complex interac-
tions between the different kinds of edges, but can still be
applied in certain important cases.

The final tightening performed for each edge will still be
identical in EIDC and FastIDC, which is required for cor-
rectness. An extensive example will be provided below.

As in (the corrected) FastIDC, the EDG is associated with
a CCGraph used for detecting cycles of negative edges.
The graph also helps EIDC determine in which order to
process nodes: In reverse temporal order, from the “end”
towards the “start”, taking care of incoming edges to one
node in each iteration. The EDG is also associated with
a Dijkstra Distance Graph (DDG), a new structure used
for the modified Dijkstra algorithm as described below. To
simplify the presentation, EIDC will be given one new or
tightened requirement edge e at a time.
The EfficientIDC algorithm. First, the target of e is added
to todo, a set of focus nodes to be processed.

If e is a negative requirement edge, a corresponding edge
is added to the CCGraph C which keeps track of all negative
edges. If this causes a negative cycle, G is not DC. Else, the
source of e should also be processed for efficiency, as this
may produce new edges into Target(e), and is added to todo.
Iteration. As long as there are nodes to process:

A node to process, current, is selected and removed from
todo. Incoming negative edges e to the chosen node n must
not originate in a node also marked as todo: Otherwise,
Source(e) should be processed first, since this has the po-
tential of adding new incoming edges to n. There is always a
todo node satisfying this criterion, or there would be a cycle

of negative edges which would have been detected.
Then it is time to process all existing incoming edges.

Incoming conditional edges are processed as FastIDC fo-
cus edges using ProcessCond(). This function is equivalent
to applying rules D2, D3, D8 and D9, but does so for a larger
part of the graph in a single step.

There are only O(n) contingent constraints in an EDG and
hence only O(n) conditioning nodes (which have to be the
target of a contingent constraint). All times in conditional
constraints/edges are measured towards the source of the
contingent constraint. This means that all conditional con-
straints conditioned on the same node have the same target.

Now, it is important to note that EIDC processes condi-
tional edges conditioned on the same node separately. This is
possible because FastIDC does not “mix” conditional edges
with different conditioning nodes in any of the rules, so they
cannot be derived “from each other”.

For any condition node c, the function finds all edges that
are conditioned on c and have current as target. We now in
essence want to create a single destination shortest path tree
rooted in current. We can do this using Dijkstra’s algorithm
given that edges are added to the DDG in the reverse direc-
tion and given that no edge weights are negative. To achieve
the latter we let minw be the absolute value of the most nega-
tive edge weight and add this weight to all conditional edges.
Then Dijkstra’s algorithm is run but allowed to stop in any
direction as soon as the minw distance is reached. This will
in a single call to Dijkstra derive a final set of shortest dis-
tances that FastIDC might have had to perform a large num-
ber of iterations to converge towards.

The function directly applies the “special” derivation
rules D8 and D9, which convert conditional edges to require-
ment edges, to the result. It then checks whether any calcu-
lated shortest distance corresponds to a new derived edge,
corresponding to applying D2 and D3 over the processed
part of the graph. Note: If a conditional edge is derived and
reduced by D8 rather than D9, it will cause a negative re-
quirement edge to also be added for a total of two new edges.

This function may generate new incoming requirement
edges for current, which is why it must be called before in-
coming requirement edges are processed.
Incoming negative requirement edges are processed using
ProcessNegReq(). This function is almost identical to Pro-
cessCond with the only differences being that the edges are
negative requirement instead of conditional and that because
of this there is no need to apply the D8 and D9 derivations.
Applying the calculated shortest distances in this case corre-
sponds to applying the derivation rules D6 and D7.

This function may generate new incoming positive re-
quirement edges for current, which is why it must be called
before incoming requirement edges are processed.
Incoming positive requirement edges are processed using
ProcessPosReq(), which applies rules D1, D4 and D5.
These are the only possible types of focus edge, and there-
fore all focus edges that could possibly have given rise to the
current focus node have now been processed.

We now check all edges that were derived above. Edges
that do not have current as a target need to be processed, so

their targets are added to todo. If there is a negative require-
ment edge that is not already in the CCGraph, this edge rep-
resents a new forced ordering between two nodes. We must
then update the CCGraph and check for negative cycles. If a
new edge is added to the CCGraph both the source and the
target of the edge must be added to todo.

Finally, EIDC verifies that there is no squeeze when a new
edge is added, precisely as FastIDC does.
Updating the CCGraph. By letting the CCGraph contain
the transitive closure of its edges we enable the algorithm to
select nodes for processing in the best known order. As will
be seen later this has a direct impact on its run-time.
Updating the DDG graph. The DDG graph contains
weights and directions of edges that FastIDC derivations use
to derive new edges, and is needed to process edges effec-
tively. The DDG contains:

1. The positive requirement edges of the EDG, in reverse
direction

2. The negative contingent edges of the EDG, with weights
replaced by their absolute values

To make the algorithm easier to read, updates have been
omitted. Updating the DDG is quite simple. When a positive
edge is added to the EDG it is added to the DDG in reversed
direction. Negative contingent edges also have to be added
to the DDG. In case a positive requirement edge disappears
from the EDG it is removed from the DDG.

Example
We now go through a detailed example of how EIDC pro-
cesses the three kinds of incoming edges. Like before,
dashed edges represent conditional constraints, filled arrow-
heads represent contingent constraints, and solid lines with
unfilled arrowheads represent requirement constraints.

Figure 6 shows an initial EDG constructed by incremen-
tally calling EIDC with one new edge at a time. We will ini-
tially focus on the nodes and edges marked in black, while
the gray part will be discussed at a later stage.
Assume we add a new requirement edge of weight −10 as
shown in the rightmost part of figure 7. When we call EIDC
for this edge, current will become the target of this edge, X .
No incoming conditional edges exist, but there is now one
incoming negative requirement edge to be processed. Using
Dijkstra’s algorithm we generate two requirement edges of
weight 25 and 30 that also end in X . Now current has two
incoming positive requirement edges that are also processed

Y X

Y

10

20

10

10

10 10-5-5

-10

-5

-5
-5

10 -6

<X,-25>

<X,-20>

X

50

-10
-10

50

25

30

40

35

10

20

10

10

10 10-5-5

-10

-5

-5
-5

10 -6

50

-10

50

40

35

Figure 6: Initial EDG.

Algorithm 3: Helper Functions
function ProcessCond(G,D,current)
allcond← IncomingCond(current,G)
condnodes←{n ∈ G | n is the conditioning node of

some e ∈ allcond}
for each c ∈ condnodes do

edges←{e ∈ allcond | conditioning node of e is c}
minw← |min{weight(e) : e ∈ edges)}|
add minw to the weight of all e ∈ edges
for e ∈ edges do

add e to D with reversed direction
end
LimitedDijkstra (current, D, minw)
for all nodes n reached by LimitedDijkstra do

e← cond. edge (n→ current), weight Dist (n) - minw
if e is a tightening then

add e to G
apply D8 and D9 to e

end
end
Revert all changes to D

end
return

function ProcessNegReq(G,D,current)
edges← IncomingNegReq(current,G)
minw← |min{weight(e) : e ∈ edges)}|
add minw to the weight of all e ∈ edges
for e ∈ edges do

add e to D with reversed direction
end
LimitedDijkstra (current, D, minw)
for all nodes n reached by LimitedDijkstra do

e← req. edge (n→ current) of weight Dist (n) - minw
if e is a tightening then add e to G

end
Revert all changes to D
return

function ProcessPosReq(G,current)
for each e ∈ IncomingPosReq(current,G) do

apply derivation rule D1, D4 and D5 with e as focus edge
end
return

(using D1) to generate two conditional edges having Y as
target. Since these are not incoming to X they require no
further processing at the moment. However, the addition of
the edges leads to Y being marked as todo.

In the next iteration, Y is selected as current. We now fo-
cus on the part of the EDG shown in figure 8 and see that
Y has two incoming conditional edges with the same condi-
tioning node X . These edges are processed together, result-
ing in a minw value of 25. After adding reversed conditional
edges with this weight increase, we have the DDG used for
Dijkstra as shown in figure 9. In the figure we have labeled
each node with its shortest distance from Y in the DDG.
Processing current = Y gives rise to the bold edges in fig-
ure 10. We consider how the −9 edge is created. First the
distance to the source node of the −9 edge is calculated by

Y X

Y

10

20

10

10

10 10-5-5

-10

-5

-5
-5

10 -6

<X,-25>

<X,-20>

X

50

-10
-10

50

25

30

40

35

10

20

10

10

10 10-5-5

-10

-5

-5
-5

10 -6

50

-10

50

40

35

Figure 7: Derivation of smaller scenario.

10

20

10

10

10
10-5-5

-10

-5

-5

-5

10 -6

<X,-25>

<X,-20>

10

20

10

10

10
10

6

0

5

Y

Y

Figure 8: Example scenario for conditional edges.

Dijkstra’s algorithm. This is 16 (see figure 9). Subtraction
of 25 gives a conditional edge with weight −9. However,
since the lower bound of the contingent constraint involving
X is 10, D8 is then applied to remove the conditional edge
and create a requirement edge with weight−9. The distance
calculation corresponds in this case to what FastIDC would
derive by applying first D3 and then D6 with the conditional
< X ,−25 > edge as focus.

The example shows that we need to add minw to get posi-
tive edges for Dijkstra’s algorithm to work with. Note that all
new edges need to be checked for local consistency and all
negative edges should be added to the cycle checking graph.

Correctness of the EfficientIDC Algorithm
The following theorem states the correctness of the algo-
rithm based on the corrected version of FastIDC as proven
by Nilsson, Kvarnström, and Doherty (2014). Since FastIDC
may update the same edge more than once when processing
an increment the theorem compares the EDG of Efficient-
IDC against the final result of FastIDC. In the proof it is

0

10

5

15

16

26
10

20

10

10

10
10

6

0

5

Y

10

20

10

10

10
10-5-5

-10

-5

-5

-5

10
-6

<X,-25>

<X,-20>

Y

<X,-15>

<X,-10>

-9

1

Figure 9: Dijkstra Distance Graph of the small scenario.

0

10

5

15

16

26
10

20

10

10

10
10

6

0

5

Y

10

20

10

10

10
10-5-5

-10

-5

-5

-5

10
-6

<X,-25>

<X,-20>

Y

<X,-15>

<X,-10>

-9

1

Figure 10: Result of processing current = Y .

assumed for simplicity that each call consists of only one
edge tightening/addition. Any increment consisting of more
changes can be broken down to several without affecting the
end results, thus preserving correctness.

Theorem 1. Let G be an EDG of a DC STNU and e be
a single tightened edge in G. Let G′ be the graph pro-
duced by FastIDC(G,e) and let G′′ be the graph produced
by EfficientIDC(G,e). Then G′ = G′′. Additionally, the algo-
rithms agree on whether the corresponding STNU is dynam-
ically controllable.

Proof. (Sketch) First, derivation rules only generate sound
conclusions. The derivations performed by EIDC are either
through direct use of derivation rules or through the use of
Dijkstra in a way that corresponds directly to repeated appli-
cation of derivation rules. Therefore EIDC is sound in terms
of edge generation.

Second, completeness requires that for every tightened
edge, all applicable derivation rules are applied. When an
edge is tightened, EIDC always adds the target node to todo.
All nodes in todo will eventually be processed, and when a
node current is removed from todo, all derivation rules ap-
plicable with any incoming edge as focus are applied. This
is guaranteed since the last time a node is processed as cur-
rent all nodes that will be executed after it have been pro-
cessed and it is only via these that new incoming edges can
be derived. Since all these nodes have had all derivation rules
applied to them so becomes the case also for current. Apply-
ing the rules is done either directly or indirectly through the
use of Dijkstra’s algorithm. Therefore no derivations can be
missed and EIDC is complete in terms of edge generation.

Thus, the algorithms eventually derive the same edges.
Since they both check the DC property in the same way they
also agree on which STNUs are DC and which are not.

Run-time Complexity of EfficientIDC
Since the run-time of EfficientIDC is the main focus of this
paper we formulate it as a theorem.

Theorem 2. The run-time of EfficientIDC when process-
ing one tightened or added edge is O(n4) in worst case but
O(n3) amortized over the creation of an STNU, where n is
the number of nodes.

Proof. When EIDC adds a negative requirement edge e, it
checks whether this is already represented in the CCGraph.

If not (e /∈C), the edge previously had positive weight, and
its new negative weight represents a new forced ordering.
First, assume this does not happen: Whenever a new nega-
tive requirement edge e is created, it is already in C.

Consider what happens when a node X is selected and re-
moved from current. Clearly X cannot have incoming nega-
tive edges from any node in todo. After it is processed, the
only way that X could enter todo again is (given our assump-
tion) as the target of an edge derived from another node Y .
Such edges are only created in ProcessPosReq(), and must
therefore have been created using derivation rules D1, D4 or
D5. We see in figure 2 that for these to be applicable, X must
have an incoming negative edge from Y (possibly alongside
a contingent or conditional edge). Then Y would have to be
executed before X due to the negative weight edge.

Clearly Y was not in todo when X was selected, or it
would have been selected before X . It must have been added
to todo later. Then there must be a chain of nodes respon-
sible for the addition of Y into todo. Like every chain, this
chain must originate in some node Z that was in todo when
X was selected.

We know Z 6= X , since X cannot lead to itself later being
added to todo: Then it must be “before itself”, since only
later nodes can derive new edges into a node (excepting the
fact that a node can itself derive new incoming edges).

Also, Z cannot be a node that is executed after X , since
then X would not be chosen. But since Y is added to todo
as a consequence of derivations via Z, we know that Z is
executed after Y . And since Y is executed after X we now
see that Z must be executed after X . Therefore there is a
negative edge between them and Z cannot have been in todo
when X was executed. This leads to a contradiction.

Thus, X cannot be added to todo after it has been removed.
As a consequence each node is only processed once, assum-
ing no new order is detected (no new edge added to C). We
now analyze the complexity of EIDC under this assumption.
Complexity 1. Since each node can be selected as current at
most once, the main while loop iterates O(n) times.

In each iteration, the incoming positive requirement edges
for current can be processed in O(n2) time: Each derivation
is O(1) and there are at most O(n) incoming positive edges
which can find at most O(n) outgoing edges for derivations.

Processing incoming conditional and negative require-
ment edges is more complicated, due to the use of Dijkstra’s
algorithm. Conditional edges require slightly more work
than negative requirement edges and as such provide an up-
per bound for both types. The cost of updating the DDG used
for Dijkstra calculations is O(1) per edge change which is
hidden in the normal cost of adding edges. The following
list shows the complexity of the different steps done when
processing conditional edges conditioned on one node.

1. Add conditional edges to the DDG, O(n)
2. Find minw among these, O(n)
3. Replace weights on the negative contingent edges, O(n)
4. Run the limited Dijkstra’s algorithm O(n2)

5. Add new conditional/requirement edges to the EDG, O(n)
6. Remove conditional edges from the DDG, O(n)

This sums to O(n2) for processing all conditional edges
conditioned on one node. Taking care of all conditioning
nodes throughout the EDG causes the procedure to be car-
ried out O(n) times and incurs an O(n3) aggregated cost.

It follows from the described procedure that processing
negative requirement edges for current takes O(n2) time.

Each outer loop adds O(n2) new edges. Checking local
consistency takes O(n2) time. Adding them to the CCGraph
takes accumulated O(n3) time over the whole increment.

The final step is to choose the next current node for pro-
cessing and this is done by picking any node from todo that
has no predecessors in todo. In practice a list of candidates is
kept which is updated every time a node has been removed
from todo. This is clearly below O(n2) and done once in
each outer iteration, for a total below O(n3).

Second, we consider what happens when new orderings are
found and added to C while processing an increment.

Let X be the node that was found to be ordered after cur-
rent. Finding all incoming edges to current depends on the
fact that all nodes ordered after it, including X , must have
been processed before current. If X was processed after cur-
rent, edges targeting current that could be derived via X may
be missed and the algorithm would not be complete. These
are however the only edges targeting current that would be
missed. So the algorithm goes back to process X and then
reprocesses current to find these edges.

An order such as the one just discovered can only be
found when processing a node that is ordered after cur-
rent or when processing current. The new edge must be de-
rived through interaction of a positive edge and a negative
edge targeting current, i.e. it would be found at current or
when processing the source of the negative edge which is
by definition ordered after current. If the new order is found
when processing any other node ordered after current there
is no need for reprocessing as the requirement for finding all
edges at current is satisfied.

Complexity 2. New orderings that lead to reprocessing of
nodes are detected when the node needing reprocessing is
being processed as current. As such the cost for reprocessing
is only that of one iteration in the algorithm per new order-
ing found. Over the course of constructing an STNU there
can be O(n2) new orderings found, however each may only
affect the same node O(n) times. This is important since the
cost of processing a node is O(n2) plus any processing of
conditional edges for up to a total of O(n3), for instance if
this node is the target of a maximum of conditional edges
in the STNU. Regardless of how the cost of processing con-
ditional nodes is spread throughout the STNU they may be
involved in reprocessing O(n) times in the worst case. This
leads to an O(n4) bound on building the whole STNU in-
cluding any reprocessings.

The worst case is therefore O(n4) for one increment.
However, the amortized work done when reprocessing stays
at O(n2) per increment for a total amortized time of O(n3),
taking into consideration that without reprocessing an incre-
ment may still take O(n3).

Conclusion
A new way of incrementally testing dynamic controllability
is presented. It is more efficient than FastIDC but provides
the same result, both in form of EDG and DC classification.
Higher efficiency is gained by observing that FastIDC is in-
efficient when deriving constraints over unordered sections
in the EDG. EIDC overcomes this by applying Dijkstra’s al-
gorithm to quickly derive all constraints over such sections.
The EDG processed by EIDC is dispatchable since it derives
the same constraints as FastIDC.

Acknowledgments
This work is partially supported by the Swedish Research Coun-
cil (VR) Linnaeus Center CADICS, the ELLIIT network organiza-
tion for Information and Communication Technology, the Swedish
Foundation for Strategic Research (CUAS Project), the EU FP7
project SHERPA (grant agreement 600958), and Vinnova NFFP6
Project 2013-01206.

References
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint
networks. Artificial Intelligence 49(1-3):61–95.
Morris, P., and Muscettola, N. 2005. Temporal dynamic controlla-
bility revisited. In Proceedings of the 20th National Conference on
Artificial Intelligence (AAAI), 1193–1198. AAAI Press / The MIT
Press.
Morris, P.; Muscettola, N.; and Vidal, T. 2001. Dynamic con-
trol of plans with temporal uncertainty. In Proceedings of the 17th
International Joint Conference on Artificial Intelligence (IJCAI),
494–499. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc.
Morris, P. 2006. A structural characterization of temporal dy-
namic controllability. In Proceedings of the 12th International
Conference on Principles and Practice of Constraint Programming
(CP), volume 4204 of Lecture Notes in Computer Science, 375–
389. Springer.
Nilsson, M.; Kvarnström, J.; and Doherty, P. 2013. Incremen-
tal dynamic controllability revisited. In Proceedings of the 23rd
International Conference on Automated Planning and Scheduling
(ICAPS).
Nilsson, M.; Kvarnström, J.; and Doherty, P. 2014. Classical Dy-
namic Controllability Revisited: A Tighter Bound on the Classical
Algorithm. In Proceedings of the 6th International Conference on
Agents and Artificial Intelligence (ICAART).
Shah, J. A.; Stedl, J.; Williams, B. C.; and Robertson, P. 2007. A
fast incremental algorithm for maintaining dispatchability of par-
tially controllable plans. In Boddy, M. S.; Fox, M.; and Thibaux,
S., eds., Proceedings of the 17th International Conference on Auto-
mated Planning and Scheduling (ICAPS), 296–303. AAAI Press.
Stedl, J., and Williams, B. 2005. A fast incremental dynamic con-
trollability algorithm. In Proceedings of the ICAPS Workshop on
Plan Execution: A Reality Check.
Stedl, J. L. 2004. Managing temporal uncertainty under limited
communication: A formal model of tight and loose team coordina-
tion. Master’s thesis, Massachusetts Institute of Technology.
Vidal, T., and Ghallab, M. 1996. Dealing with uncertain dura-
tions in temporal constraints networks dedicated to planning. In
Proceedings of the 12th European Conference on Artificial Intelli-
gence (ECAI), 48–52.

