
A Temporal Logic-Based Planning and Execution Monitoring System

Jonas Kvarnström and Fredrik Heintz and Patrick Doherty
Department of Computer and Information Science, Linköpings universitet

SE-581 83 Linköping, Sweden
{jonkv,frehe,patdo}@ida.liu.se

Abstract

As no plan can cover all possible contingencies, the ability to
detect failures during plan execution is crucial to the robust-
ness of any autonomous system operating in a dynamic and
uncertain environment. In this paper we present a general
planning and execution monitoring system where formulas in
an expressive temporal logic specify the desired behavior of
a system and its environment. A unified domain description
for planning and monitoring provides a solid shared declara-
tive semantics permitting the monitoring of both global and
operator-specific conditions. During plan execution, an exe-
cution monitor subsystem detects violations of monitor for-
mulas in a timely manner using a progression algorithm on
incrementally generated partial logical models. The sys-
tem has been integrated on a fully deployed autonomous
unmanned aircraft system. Extensive empirical testing has
been performed using a combination of actual flight tests
and hardware-in-the-loop simulations in a number of differ-
ent mission scenarios.

Introduction
Now and then, things will go wrong. This is both a fact of
life and a fundamental problem in any robotic system oper-
ating autonomously or semi-autonomously in the real world.
Like humans, robust systems must be able to take this into
account and detect when events do not occur according to
plan, regardless of whether this is the result of mechanical
problems, incorrect assumptions about the world, or inter-
ference from other agents.

Some of these contingencies are best monitored in the
low-level implementation of an action, especially when tight
integration with control loops is necessary. However, much
can be gained by complementing this with a higher level ex-
ecution monitor. In addition to simplifying the specification
of conditions that span multiple actions, this also improves
the modularity of the execution system and avoids duplica-
tion of the necessary functionalities. Using an expressive
declarative specification allows monitor conditions to be rea-
soned about at a higher level of abstraction.

In this paper, we present a general task planning and exe-
cution monitoring system based on the use of Temporal Ac-
tion Logic (TAL, Doherty and Kvarnström 2008), a logic

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for reasoning about action and change. TAL has already
been used as the semantic basis for TALplanner (Doherty
and Kvarnström 2001; Kvarnström 2005). We show how
formulas in the same logic can be used to specify the desired
behavior of an autonomous system and its environment, al-
lowing easy specification of complex temporal conditions.
An integrated domain description is used for both planning
and monitoring, where conditions to be monitored may be
global or specific to a particular plan operator. Some of these
conditions can be automatically extracted from a plan. Dur-
ing execution, the DyKnow knowledge processing middle-
ware (Heintz and Doherty 2004; 2006) incrementally builds
a partial logical model representing the actual development
of the system and its environment over time. The execution
monitor uses this model together with a progression algo-
rithm for prompt failure detection.

The planning and monitoring system is fully general and
can be applied to a wide class of autonomous systems. It has
currently been integrated and extensively tested on a fully
deployed rotor-based unmanned aerial vehicle (UAV) sys-
tem (Doherty 2004; 2005) using actual flight tests as well as
hardware-in-the-loop simulations.

An Emergency Service Scenario
A number of very challenging scenarios have been used to
drive both theoretical and applied research in our long-term
UAV project. In this paper, we focus on a scenario where
multiple UAVs are used to effectively aid the emergency ser-
vices in a disaster situation such as the tsunami catastrophe
in December 2004. The highest priorities in the initial stages
of this disaster included searching for survivors in isolated
areas where road systems had become inaccessible and pro-
viding relief in the form of food, water and medical supplies.

In the first phase of this mission, one or more UAVs coop-
eratively scan large regions generating a saliency map pin-
pointing potential victims. Our approach, which uses a com-
bination of thermal and color cameras, has been successfully
tested using two UAVs in an urban environment (Doherty
and Rudol 2007; Rudol and Doherty 2008). In the second
phase, used as a running example throughout the paper, the
saliency map is used as a basis for generating a logistics plan
for several UAVs to deliver food, water and medical sup-
plies. In addition to directly delivering boxes, a UAV can
also load several boxes onto a supply carrier, increasing its

Plan Executor

Command ExecutorCommand Executor

Task Procedure Task Procedure
Execution Module

Miscellaneous UAV Services and Controllers

DyKnow

Execution MonitorExecution Monitor
Path PlannerPath Planner

Service

Task Planner Task Planner
(TALplanner)

←
co

m
m

an
d

se
q

u
en

ce

st
at

u
s
→

← plan solution

← execution
flags

st
at

e
p

o
lic

ie
s
→

←
st

at
e

plan request →

←
TP

 r
eq

u
es

t

st
at

u
s

ev
en

ts
 →

st
at

u
s

ev
en

ts
 →

←
FC

L
co

m
m

an
d

s

←
co

st
 r

eq
u

es
t

co
st

 e
st

im
at

e
→

Figure 1: Task planning and execution monitoring overview

transportation capacity manyfold over longer distances.
A winch and electromagnet permitting a UAV to han-

dle boxes without human assistance is under development.
In the mean time, the second phase has been implemented
and tested in simulation with hardware in the loop, using
the same flight control software as the physical UAV. Faults
can be intentionally injected or occur spontaneously due to
the fact that our simulation environment incorporates rigid
body dynamics, leading to effects such as boxes bouncing
and rolling away should they be dropped.

A Planning and Monitoring System
Our approach to execution monitoring builds on the use of
monitor formulas in an expressive temporal logic for declar-
atively specifying the desired behavior of an autonomous
system and its environment over time. Monitor formulas
are similar to temporal control formulas guiding forward-
chaining search in planners such as TALplanner (Kvarn-
ström 2005), but describe conditions on the actual state se-
quence resulting from plan execution rather than the state
sequence predicted using operator definitions.

A unified domain specification for planning and monitor-
ing supports the specification of global and operator-specific
monitor formulas. Global formulas define domain-specific
conditions that must hold over the entire execution of any
plan. Operator-specific formulas must be satisfied starting
when an instance of the associated operator is executed. This
facilitates the use of context-dependent conditions, such as
the fact that when a UAV collects a box, the action should
succeed within a specific time interval, and the box should
remain attached until explicitly detached. The fact that the
box is explicitly detached can be referred to using a set of ex-
ecution flags added to the logical model allowing a formula
to determine what actions are currently executing.

System Overview. Figure 1 shows the relevant part of the
UAV software architecture associated with task planning,
plan execution and execution monitoring.

An autonomous system intended to perform complex mis-
sions requires timely data, information and knowledge pro-

cessing on many levels of abstraction. Low-level quanti-
tative sensor data must be processed in multiple steps to
eventually generate qualitative data structures which are
grounded in the world and can be interpreted as knowledge
by higher level deliberative services. DyKnow, a knowl-
edge processing middleware framework, provides this ser-
vice (Heintz and Doherty 2004; 2006).

Given a mission request, the plan executor calls DyKnow
to acquire essential context-dependent information about
the current state of the world and the UAV’s own internal
state. Together with domain and goal specifications related
to the current mission, this information is fed to TALplan-
ner, which generates a high-level plan for the given goal.
The domain specification also contains information about
conditions to be monitored during plan execution, which is
instantiated by TALplanner and included in the final plan.

The plan executor translates the high-level plan into lower
level command sequences, leaving monitor conditions in-
tact. The result is sent to the command executor, which is re-
sponsible for controlling the UAV, either by directly using its
lowest level Flight Command Language (FCL) interface or
by using task procedures (TPs). A TP is a high-level proce-
dural execution component which provides a computational
mechanism for achieving different robotic behaviors by us-
ing deliberative services and traditional control components
in a highly distributed and concurrent manner. Flight-related
TPs also use a path planning service (Wzorek et al. 2006;
Wzorek and Doherty 2007) supporting several different path
planning algorithms.

When execution starts, all global monitor formulas are
immediately sent by the command executor to the execution
monitor. Similarly, operator-specific monitor formulas are
sent as execution of a particular operator instance begins.

The monitor subscribes to the necessary state information
from DyKnow, providing a state policy describing desired
sample rates, interpolation settings for use in case of miss-
ing values, and similar requirements on the state stream to
be generated. As states are received, a progression algo-
rithm is used to detect formula violations, which are imme-
diately signaled to the command executor. The system can
then perform a context-dependent recovery procedure taking
information about the violated formula into account.

Domain Definition. Though this approach is not bound to
a specific language, our implementation uses a domain de-
scription language based on the TAL (Temporal Action Log-
ics) family of logics for reasoning about action and change
(Doherty and Kvarnström 2008). Below, we describe the
most pertinent aspects of the unified UAV domain definition.

TAL uses an order-sorted type system with a hierarchy of
types. In the UAV domain, the type LOCATABLE represents
objects having specific world coordinates. It has the sub-
types UAV and CARRYABLE, the latter of which has the sub-
types BOX and CARRIER. CARRIER-POSITION represents
obstacle-free positions where a carrier may be placed.

Reasonable estimates of distances and timing are essen-
tial in order to predict mission completion times and fuel
usage and to ensure no UAV has to wait unnecessarily for
another. We therefore use a metric coordinate system rep-

resented by the xpos(LOCATABLE) and ypos(LOCATABLE)
features (state variables), taking values from a finite do-
main FP of fixed-point numbers. Altitude is modeled us-
ing the altitude(UAV) feature, also taking values from FP.
The boolean feature attached(UAV, CARRYABLE) holds if a
certain UAV has attached its electromagnet to a certain car-
ryable. Goals are specified in terms of boxes being suffi-
ciently close to given coordinates.

The need to support monitoring and replanning after a
failure serves to move the domain definition closer to the
real world. For example, since boxes may be dropped, the
common assumption that all objects are neatly placed must
be withdrawn. Therefore on-carrier(BOX, CARRIER) has a
three-valued domain where a box may be definitely correctly
placed on the carrier, definitely not on the carrier, or possi-
bly misplaced (where it could block the electromagnet from
attaching to the carrier, or could fall off when the carrier is
lifted). Lifting a carrier with potentially misplaced boxes is
not permitted. These cases are identified using object coor-
dinates together with the approximate size of each carryable
and the minimum safety distances between them.

Operators. We choose a comparatively fine-grained ac-
tion model, where a UAV can align itself for attachment
using adjust-for-attach, and then either attach-box or attach-
carrier. After a subsequent climb-for-flying-with, which reels
in the winch and climbs to the standard flight altitude, it can
fly the carryable to another location, adjust-for-detach, and
either detach-box or detach-carrier. After finishing with a
climb-for-flying-empty action, the UAV is free to pursue other
goals. Though a more coarse-grained model is also possible,
the fine-grained model facilitates replanning and simplifies
the specification of monitor formulas appliable during a cer-
tain phase such as attachment or flight.

Five different fly operators are used: fly-empty-to-box,
fly-empty-to-carrier, fly-box-to-carrier, fly-box-to-goal, and fly-
carrier. This also simplifies the specification of control and
monitor formulas, as the action of flying without cargo to
pick up a box is appropriate in different circumstances than
flying with a box to place it on a carrier and requires differ-
ent conditions to be monitored.

Though operator parameters are generally not relevant
for the purpose of this paper, an example is in order.
The operator fly-empty-to-carrier(uav, fromx, fromy, carrier,
tox, toy) requires a UAV and its coordinates, plus a destina-
tion carrier and its coordinates, as parameters. Note that if
one models an area of 10000 meters square at a resolution
of 1 meter, the operator has 1016 ground instances, even with
only a single UAV and a single carrier. Obviously, TALplan-
ner does not generate all ground instances.

Control Formulas in TALplanner
TALplanner uses forward-chaining search guided by tempo-
ral control formulas that must be satisfied by the final plan.

In the sequential case, each search node corresponds to
an executable action sequence that can be predicted to gen-
erate a finite state sequence [s0, s1, . . . , sm] if executed in
the initial state s0. The corresponding (infinite) TAL inter-
pretation cannot be constructed by repeating sm indefinitely

([s0, s1, . . . , sm, sm, . . .]), as this would correspond to the
assumption that no further actions can be performed. The
possibility of future changes is properly taken into account
by constructing a partial interpretation I where feature val-
ues up to the time of state sm are completely determined,
after which no information is available. If φ is a control
formula and I |= ¬φ, then any descendant must also vi-
olate the control formula: Adding a new action leaves the
“past” intact while adding information about one or more
new states, which cannot cause previous conclusions to be
retracted. The planner can then reject the node and back-
track. How to test this efficiently, and how to adapt this pro-
cess for concurrency, is discussed in Kvarnström (2005).

The following two examples use the TAL macro language
L(ND), which can be translated into a first-order base lan-
guage L(FL). In L(ND), [τ] φ means that φ holds at time τ ,
and f =̂ ω indicates that the feature f has the value ω.
Example 1 (Global Control) In the UAV domain, there
are two acceptable reasons to move a box: It is not suf-
ficiently close to its goal coordinates, or its location must
temporarily be freed for other purposes, possibly because it
is too close to a carrier position. This condition is simpli-
fied and modularized using several feature macros defined
in terms of basic features: close-enough-to-goal(box), need-
to-move-temporarily(box), and is-at(locatable, x, y).
∀t, box, x, y.[t] is-at(box, x, y) → [t + 1] is-at(box, x, y) ∨

[t] ¬close-enough-to-goal(box) ∨
[t] need-to-move-temporarily(box) �

Example 2 (Operator-Specific Control) A UAV should
not prepare to attach to a carrier if there are potentially
misplaced boxes closer than the designated safety distance.
This can be specified as operator-specific control, which is
similar to a precondition and has access to all operator pa-
rameters. For adjust-for-attach, start is the invocation time-
point and carryable the box or carrier to be attached.
[start] ∀carrier, box.

carrier = carryable ∧ too-close(box, carrier) →
on-carrier(box, carrier) =̂ correctly placed �

Execution Monitor Formulas
Monitor formulas and control formulas are quite similar in
intent, expressing constraints on permitted state sequences.
However, since they are applied in quite different circum-
stances, different evaluation mechanisms are appropriate.

Control formulas constrain the predicted development of
the world during the planning phase. This development is
already limited by the possible ways of composing actions
in a plan, which enables the use of an operator-specific state
transition analysis improving efficiency (Kvarnström 2005).

Monitor formulas describe conditions on the actual de-
velopment of the world during execution. A progression
algorithm (Bacchus and Kabanza 1998) applied to a state
sequence incrementally generated by DyKnow can provide
better performance in this situation, where unforeseen and
unpredictable events and failures must be taken into account.
Progression is expressed more naturally for formulas using
relative time, where each formula is evaluated relative to a
“current” timepoint. Thus we follow the TAL strategy of

adapting the L(ND) macro language for the application at
hand and introduce the macros U (until), ♦ (eventually) and
� (always), inspired by temporal modal logics such as MTL
(Alur and Henzinger 1990). By convention, time is mea-
sured in milliseconds.

Definition 1 (Monitor Formula) A monitor formula is
one of the following:

• f =̂ ω, ω = ω′,
• φU[τ,τ ′] ψ, ♦[τ,τ ′] φ, �[τ,τ ′] φ, or
• a combination of monitor formulas using the standard

logical connectives and quantification over values,

where f is a feature term, ω and ω′ are value terms, τ and τ ′
temporal terms, and φ and ψ monitor formulas. We al-
low the shorthand notation f for boolean features, meaning
f =̂ true, and define φUψ ≡ φU[0,∞) ψ, ♦φ ≡ ♦[0,∞) φ,
and �φ ≡ �[0,∞) φ. �

The semantics of monitor formulas is defined in terms of a
translation into the TAL base language L(FL), preserving
the common semantic ground for planning and monitoring.
The following conditions are satisfied by the translation:

• The formula φU[τ,τ ′] ψ (“until”) holds at time t iffψ holds
at some time t′ ∈ [t+ τ, t+ τ ′] and φ holds until then (at
all timepoints in [t, t′), which may be an empty interval).

• The formula ♦[τ,τ ′] φ (“eventually”) is equivalent to
>U[τ,τ ′] φ and holds at t iff φ holds at some timepoint
t′ ∈ [t+ τ, t+ τ ′].

• The formula �[τ,τ ′] φ is equivalent to ¬♦[τ,τ ′] ¬φ and
holds at t iff φ holds at all timepoints t′ ∈ [t+ τ, t+ τ ′].

Definition 2 (Translation of Monitor Formulas) Let τ
be a temporal term and γ be a monitor formula intended
to be evaluated at τ . The following translation yields an
equivalent formula in L(ND) without tense operators.
TM(τ ,Qx.φ)

def
= Qx.TM(τ , φ), where Q is a quantifier

TM(τ , φ⊗ ψ)
def
= TM(τ , φ)⊗ TM(τ , ψ), where ⊗ is

a binary connective
TM(τ ,¬φ)

def
= ¬TM(τ , φ)

TM(τ , f =̂ v)
def
= [τ] f =̂ v

TM(τ , γ)
def
= γ, where γ has no tense operators

TM(τ , φU[τ,τ ′] ψ)
def
= ∃t[τ + τ ≤ t ≤ τ + τ ′ ∧

TM(t, ψ) ∧ ∀t′[τ ≤ t′ < t → TM(t′, φ)]]

TM(τ ,�[τ,τ ′] φ)
def
= ∀t[τ + τ ≤ t ≤ τ + τ ′ → TM(t, φ)]

TM(τ ,♦[τ,τ ′] φ)
def
= ∃t[τ + τ ≤ t ≤ τ + τ ′ ∧ TM(t, φ)]

The TAL translation function Trans from the L(ND) to
L(FL) is extended for tense monitor formulas γ by defin-
ing Trans(γ) = Trans(TM(0, γ)). �

Global monitor formulas are similar to global control formu-
las in TAL, expressing conditions that should be monitored
throughout the execution of a plan.

Example 3 Suppose that a UAV supports a maximum con-
tinuous power usage of M , but can exceed this by a factor
of f for up to τ units of time, if this is followed by normal
power usage for a period of length at least τ ′. The following

formula can be used to detect violations of this specification:

�∀uav.(power(uav) > M →
power < f ·M U[0,τ] �[0,τ ′] power(uav) ≤M) �

Operator-specific formulas are not activated before plan exe-
cution but before the execution of a particular step in a plan,
providing the ability to contextualize a monitor condition
relative to a particular action. An operator-specific formula
can also directly refer to the arguments of the associated op-
erator. Note that while these conditions are triggered by the
invocation of an operator, they can express conditions on the
development of the world beyond the end of that operator.

Example 4 As attaching to a box may fail, the success of
attach-box(uav, box, x, y) should be monitored. The follow-
ing operator-specific formula uses the first two arguments:

♦[0,5000] �[0,1000] attached(uav, box)
Within 5000 ms, the box should be attached. It should re-
main attached for at least 1000 ms, to detect problems dur-
ing the attachment phase, where the electromagnet might
briefly attach to the box but ultimately fail. �

Operator-specific monitor formulas are instantiated with the
parameters of the associated action. For example, attach-box
(heli1,bx7, 127.52, 5821.23) is annotated with the formula
♦[0,5000] �[0,1000] attached(heli1,bx7).

Execution Flag Features
The power of monitor formulas can be extended further by
also giving introspective access to certain information about
the plan execution state, in addition to the world state. For
example, one might like to state that once a carrier has been
attached to the UAV, it should remain attached until the UAV
intentionally detaches it, that is, until the corresponding de-
tach action is executed. Similarly, perhaps a certain fact
should hold during the execution of an action, or an effect
should be achieved during the execution of an action.

We therefore introduce execution flags, standard param-
eterized boolean features that hold exactly when the cor-
responding operator is being executed with a specific set
of arguments. By convention, an execution flag is named
by prepending “executing-” to the name of the correspond-
ing operator. For example, attach-box is associated with the
executing-attach-box flag, which takes a subset of the opera-
tor’s parameters as defined in the domain description. This
flag is part of the state information extracted by DyKnow.

Example 5 The fact that climb-for-flying-empty(uav) suc-
ceeds in ascending to a sufficient flight altitude A can be
monitored using the operator-specific formula executing-
climb-for-flying-empty(uav) U altitude(uav) ≥ A. �

When the operator is obvious from context, the shorthand
notation EXEC is used to refer to its associated execution
flag feature with the default parameters. Using this notation,
Example 5 is written as EXEC U altitude(uav) ≥ A.

Example 6 The more specific formula (rpm(uav) ≥ T U
altitude(uav) ≥ A) ∨ (EXEC U altitude(uav) ≥ A) is only
violated if the engine RPM drops below a threshold T be-
fore success, indicating engine trouble. Note that low RPM

is in itself not sufficient to trigger the formula, if the opera-
tor eventually succeeds. Additional monitors can be used to
model other causes of failure. �

Example 7 The attach-box(uav,box,x,y) operator should
succeed within 5000 ms, after which the box should remain
attached until intentionally detached. This can be expressed
using the following operator-specific formula:
executing-attach-box(uav, box) U[0,5000]

(attached(uav, box) U executing-detach-box(uav, box)) �

Checking Monitor Conditions using Progression
Inspired by Ben Lamine and Kabanza (2002), we use a for-
mula progression algorithm Pr to incrementally detect mon-
itor formula violations during plan execution. By definition,
φ holds in [s0, s1, . . . , sn] iff Pr(φ, s0) holds in [s1, . . . , sn].
Thus, as soon as a single state s0 has been created from sen-
sory inputs, the progression algorithm can be applied to eval-
uate those parts of φ that depend on this state.

If the information provided by s0 is sufficient to determine
that the formula must be violated regardless of the future
development of the world, Pr(φ, s0) will return ⊥ (false),
ensuring prompt failure detection. For example, this will
happen as soon as the formula � speed < 50 is progressed
through a state where speed ≥ 50. Otherwise, progression
returns a new and potentially different formula to be pro-
gressed again when the next state is available.

As states are not first class entities in TAL, the progression
algorithm below is given a TAL interpretation and a time-
point corresponding to a state. The algorithm also takes ad-
vantage of regularities in state sampling periods: If samples
arrive every m timepoints and all lower temporal bounds
of tense operators in a formula φ are multiples of m′, we
progress φ through n = gcd(m,m′) timepoints in a single
step. The value of n is provided to the progression procedure
defined below. This permits the temporal unit to be decou-
pled from the sample rate while at the same time retaining
the standard TAL-based semantics, where states exist at ev-
ery discrete timepoint. For example, suppose a timepoint
corresponds to 1 ms. If samples arrive every 100 ms, the for-
mula ♦[0,3037] φ can be progressed through gcd(100, 0) =
100 timepoints in one step, while ♦[40,3037] φ can be pro-
gressed through gcd(100, 40) = 20 timepoints.

Let n be a progression step in timepoints, φ a monitor
formula where lower bounds are multiples of n, τ a numeric
timepoint, and I a TAL interpretation. Then, Pr(φ, τ, n, I)
holds at τ +n in I iff φ holds at τ in I. More formally, I |=
Trans(TM(τ, φ)) iff I |= Trans(TM(τ + n,Pr(φ, τ, n, I))).

Definition 3 (Progression of Monitor Formulas) The
following algorithm is used for progression. Special cases
for � and ♦ can also be introduced for performance.

1 procedure Pr(φ, τ, n, I)
2 if φ = f(x) =̂ v
3 if I |= Trans([τ] φ) return > else return ⊥
4 if φ = ¬φ1 return ¬Pr(φ1, τ, n, I)
5 if φ = φ1 ⊗ φ2 return Pr(φ1, τ, n, I)⊗ Pr(φ2, τ, n, I)
6 if φ = ∀x.φ // where x belongs to the finite domain X
7 return

V
c∈X Pr(φ[x 7→ c], τ, n, I)

8 if φ = ∃x.φ // where x belongs to the finite domain X

9 return
W

c∈X Pr(φ[x 7→ c], τ, n, I)
10 if φ contains no tense operator
11 if I |= Trans(φ) return > else return ⊥
12 if φ = φ1 U[τ1,τ2] φ2

13 if τ2 < 0 return ⊥
14 elsif 0 ∈ [τ1, τ2] return Pr(φ2, τ, n, I) ∨
15 (Pr(φ1, τ, n, I) ∧ (φ1 U[τ1−n,τ2−n] φ2))
16 else return Pr(φ1, τ, n, I) ∧ (φ1 U[τ1−n,τ2−n] φ2)

The result of Pr is simplified using the rules ¬⊥ = >, (⊥ ∧
α) = (α ∧ ⊥) = ⊥, (⊥ ∨ α) = (α ∨ ⊥) = α, ¬> = ⊥,
(> ∧ α) = (α ∧ >) = α, and (> ∨ α) = (α ∨ >) =
>. Further simplification is possible using identities such as
♦[0,τ] φ ∧ ♦[0,τ ′] φ ≡ ♦[0,min(τ,τ ′′)] φ. �

Automatic Generation of Monitor Formulas
Using a single logical formalism for both planning and mon-
itoring provides a suitable basis for automatic generation of
monitor formulas. Automation can help eliminate many po-
tential sources of inconsistencies and inaccuracies, but at the
same time, a certain degree of selectivity is required. Some
violations are not fatal, some information about the envi-
ronment may be expensive or difficult to sense, and sensing
may require actions that interfere with normal mission oper-
ations. Also, the introduction of a richer and more detailed
domain model should not automatically lead to heavier use
of sensors. For these reasons, each declaration that can be
used to extract monitor conditions can be annotated with a
flag stating whether monitoring is required. This increases
the benefits of automatic formula generation by keeping the
control in the hands of the domain designer.

Preconditions. An operator precondition φ can be di-
rectly used as a monitor formula, testing whether φ holds
when the operator is invoked.

Prevail conditions. A prevail condition φ is similar to a
precondition, but must hold throughout the execution of the
action. The formula (EXEC ∧ φ) U¬EXEC can be used.

Effects. The formula EXEC Uφ expresses the condition
that the effect φ is achieved at some time during the execu-
tion of an action while EXEC U(¬EXEC ∧ φ) ensures that φ
still holds at the end of the action.

Temporal Constraints. An operator can be associated
with constraints on the duration of its execution. Such con-
straints can be used to generate monitor formulas constrain-
ing the amount of time that can pass before ¬EXEC holds.

Causal Links. A precondition might depend on earlier
effects. For example, detaching a box at its destination re-
quires that the box is still attached, which was an effect of
an earlier attach-box action. Effect and precondition mon-
itors provide a partial solution, but do not monitor attach-
ment during intervening flight actions. Causal link analysis
in the complete plan detects the fact that attached(uav, box)
is made true by attach-box, is required by detach-box, and
is not altered by any action in between. The initial attach-
box action can then automatically be annotated with the for-
mula executing-attach-box(uav, box) U(attached(uav, box) U
executing-detach-box(uav, box)), instantiated with the ap-
propriate UAV and box.

Execution Monitoring with Imperfect Sensors
To be useful in an autonomous system, an execution mon-
itor must be robust against a certain amount of sensor
noise. Similarly, it should be possible to handle occasional
dropouts, communication delays and values arriving out of
order. This is especially important in distributed archi-
tectures, perhaps consisting of multiple UAV platforms to-
gether with a set of ground stations.

Careful state generation provides part of the solution.
Temporary dropouts can sometimes be handled through ex-
trapolation. Communication delays can be handled by de-
laying progression for a certain amount of time, at the cost
of also delaying failure detection. Noise could be minimized
through sensor value smoothing techniques and fusion of
values from multiple sensors. However, the possibility of
inaccuracies in the generated state sequence can in the gen-
eral case never be completely eliminated.

Monitor formulas provide the required expressivity to
take temporary inaccuracies into account, while making
the necessary domain-dependent tradeoffs between false
positives and delayed failure detection. For example,
�∀uav.speed(uav) ≤ T means that the sensed approximate
speed of a UAV should never exceed T . As a single observa-
tion above T might be a sensor error, one could instead re-
quire that the sensed speed never exceed the threshold in an
interval of length τ , expressed as �♦[0,τ] speed(uav) ≤ T .

Since this formula would be satisfied by a single sample
below the threshold every τ milliseconds, it might be con-
sidered too weak. An alternative would be to require an in-
terval of length τ ′ where the UAV stays within the limits:
�(speed(uav) > T → ♦[0,τ] �[0,τ ′] speed(uav) ≤ T).

Empirical Evaluation of the Progressor
Compared to a desktop computer, an autonomous system
generally has considerably less processing power. As much
of this power tends to be required for execution, a monitor-
ing system must be able to run using quite limited resources.

Testing in the emergency services domain, both in flight
tests and in hardware-in-the-loop simulation, indicates that
the formulas we use can easily be handled using only a frac-
tion of the 1.4 GHz Pentium M CPU onboard one of our
UAVs. If there is a bottleneck, then it lies not in the use of
formula progression but in retrieving and processing sensory
data, which is necessary regardless of the specific approach
being used for monitoring execution. Nevertheless, process-
ing requirements for typical formulas should be quantified.

Two different formulas were used in the experiments.
The first formula is �♦[0,1000] p, where p is a single fea-
ture, corresponding to the fact that p must never remain
false for more than one second. The second formula is
�(¬p→ ♦[0,1000] �[0,999] p), corresponding to the fact that
if p becomes false, then within 1000 ms, there must begin a
period lasting at least 1000 ms where p is true.

For each formula we constructed two different state se-
quences corresponding to the best and worst case with re-
gard to expansion of the formulas during progression. The
sample period was 100 ms.

• (true) – p is always true. This is the best case in terms

 0

 20

 40

 60

 80

 100

 120

 140

 0 500 1000 1500 2000 2500 3000 3500

tim
e

(m
ill

is
ec

on
ds

)

formulas

average time to progress formulas through a state

always (eventually [0, 1000] p) p=true
always (eventually [0, 1000] p) p=(false*10,true*1)

always not p -> (eventually [0, 1000] always [0,999] p) p=true
always not p -> (eventually [0, 1000] always [0,999] p) p=(false*10,true*10)

Figure 2: Average Progression Time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60

tim
e

(m
ill

is
ec

on
ds

)

iteration

time to progress 1000 formulas through a state

always (eventually [0, 1000] p) p=true
always (eventually [0, 1000] p) p=(false*10,true*1)

always not p -> (eventually [0, 1000] always [0,999] p) p=true
always not p -> (eventually [0, 1000] always [0,999] p) p=(false*10,true*10)

Figure 3: Progression Time per Iteration

of performance for both formulas. For the first formula,
each time ♦[0,1000] p is progressed through a state, it im-
mediately “collapses” into >. What remains to evaluate
in the next state is the original formula, �♦[0,1000] p. For
the second formula it is enough to check that p is not false
and then return the original formula.

• (false*10,true*1) – the worst case for the first formula,
where p remains false for 10 consecutive sampling peri-
ods (1000 ms), after which it is true in a single sample.
The sequence then repeats. Had p remained false for 11
samples, both formulas would have been violated.

• (false*10,true*10) – the worst case for the second for-
mula, where p is false during 10 samples and true during
10 samples, after which the sequence repeats.

The results from progressing multiple instances of each for-
mula are shown in Figure 2. Given a sample period of 100
ms and full use of the CPU, approximately 2500 instances
of the first formula or 1500 instances of the second formula
can be used even with the worst case state sequence. Equiv-
alently, 5% of the CPU is sufficient for 125 instances of the
first formula or 75 instances of the second formula.

As progression returns a new and not necessarily identi-
cal formula, time requirements may vary across iterations.
The average progression time must be sufficiently low, or
the progressor will permanently fall behind. The maximum

progression time should also be sufficiently low, or the pro-
gressor will temporarily fall behind.

Figure 3 shows the precise time used for each state (it-
eration) when progressing 1000 formula instances. As
can be seen, the time to progress a formula through its
worst case state sequence essentially alternates between two
plateaus. The lower plateau corresponds to p being true,
while the higher plateau corresponds to p being false. Vary-
ing I and J in the generalized formulas �♦[0,I] p and
�(¬p → ♦[0,I] �[0,J−1]) will only affect the permissible
lengths of these plateaus without affecting their levels. Av-
erage time requirements must be somewhere between these
fixed plateaus, which is confirmed by experimental results.

Recovery from Failures
Any monitor formula violation signals a potential or actual
failure from which the system must attempt to recover in
order to achieve its designated goals. This is a complex
topic, especially when combined with the stringent safety
regulations associated with flying a UAV and the possibility
of having time-dependent goals and constraints. For exam-
ple, if heli1 fails to deliver a box of medicine on time, heli2
might have to be rerouted in order to meet a deadline. There-
fore, our first iteration of the recovery system has not tackled
incremental plan repair, even though this may be desirable
in the long run. Instead, each monitor formula is associ-
ated with a recovery operator that can perform emergency
recovery procedures if necessary, and possibly also adjust
the UAV’s assumptions about the world. For example, if the
UAV fails to take off with a carrier, this information is used
to contextually modify assumptions about how many boxes
can be lifted at once. This is followed by gathering informa-
tion about the current state from DyKnow and replanning.
Since TALplanner is sufficiently fast, this does not adversely
affect the execution of a fully autonomous mission.

Alternative Approaches
Many architectures that deal with both planning and exe-
cution focus entirely on recovery from detected problems
by plan repair or replanning (Lemai and Ingrand 2004;
Ambros-Ingerson and Steel 1988). These architectures usu-
ally assume that state variables are correctly updated and
that plan operator implementations detect any possible fail-
ure in some unspecified manner, and thereby do not consider
the full execution monitoring problem. A more elaborate
and general approach is taken by Wilkins, Lee and Berry
(2003) where a large set of different types of monitors are
used in two different applications. However, monitors are
procedurally rather than declaratively encoded.

In those architectures that do consider execution monitor-
ing it is often an intrinsic part of an execution component
rather than integrated with the planner (Fernández and Sim-
mons 1998; Simmons and Apfelbaum 1998). The most com-
mon approach uses a predictive model to determine what
state a robot should be in, continuously comparing this to
the current state as detected by sensors (Chien et al. 2000;
Washington, Golden, and Bresina 2000). However, the fact
that a discrepancy between the current state and the pre-

dicted state has been detected does not necessarily mean
that this discrepancy has a detrimental effect on the plan.
Thus, one must take great care to distinguish essential devi-
ations from unimportant ones, reducing the benefits of this
approach. One should also take into account that not all pre-
dictable facts can be monitored, as a system may lack the
necessary sensors and resources to simultaneously monitor
all possible conditions. Even for those conditions that a sys-
tem can detect, excessive monitoring may cause problems
when the cost of information gathering is not negligible.

Another major weakness in these approaches is that only
the current state is considered. Adapting ideas from model
checking to be able to express constraints on sequences of
states, Ben Lamine and Kabanza (2002) expressed the de-
sired properties of a system in a temporal logical formal-
ism. Whereas standard model checking tests such properties
against a system model, their monitoring system tests them
against an actual execution trace. Similar ideas have also
been independently developed in the model checking com-
munity, where the problem of testing against a single execu-
tion trace is called path model checking (Markey and Raskin
2006), or runtime verification if the evaluation is done incre-
mentally as the trace develops (Thati and Rosu 2005).

Though this provided part of the inspiration for this arti-
cle, the work by Ben Lamine and Kabanza focuses on a re-
active behavior-based architecture where the combined ef-
fects of a set of interactive behaviors is difficult to predict
in advance. There, monitor formulas generally state global
properties that cannot be monitored by internal behaviors,
such as the fact that after three consecutive losses of commu-
nication, a given behavior must be active. A violation trig-
gers an ad-hoc behavior that attempts to correct the problem.
In comparison, our system is based on the use of planning,
with an integrated domain description language. Formulas
are not necessarily global, but can be operator-specific. We
provide a selective mechanism for extracting monitor for-
mulas through automated plan analysis and support recov-
ery through replanning. DyKnow also gives us the possi-
bility to provide attention focused state descriptions, where
the execution monitor contextually subscribes only to those
state variables that are required for progressing the currently
active monitor formulas. Additionally, state sampling rates
can be decided individually for each monitor formula. Com-
bining this with the use of operator-specific monitor formu-
las that are only active when specific tasks are being per-
formed ensures that state variables are only computed when
strictly required, ensuring minimal usage of resources in-
cluding sensors and computational power. This can be par-
ticularly beneficial in the case of state variables requiring
image processing or other complex operations.

See Pettersson (2005) for an overview of systems related
to execution monitoring.

Conclusions
We have presented a system where conditions to be moni-
tored during plan execution are integrated into a declarative
logic-based domain specification that also provides the nec-
essary information for plan generation. Using the same ex-
pressive logic formalism and the same underlying semantics

for both planning and monitoring has several important ad-
vantages. For example, monitor conditions can be attached
to specific plan operators, and plans can be analyzed to auto-
matically extract conditions to be monitored. There are also
significant benefits to lifting many aspects of monitoring and
failure detection from the execution subsystem into a high-
level declarative specification used by a distinct execution
monitor subsystem. Perhaps most importantly, this serves
to decouple action implementations, which by their very na-
ture must be domain-specific, from the domain-independent
functionality required for execution monitoring in any ap-
plication. Thus, the planning and execution monitor system
presented here is fully generic and can be applied to a large
class of autonomous systems.

Currently, the system has been implemented and inte-
grated into an unmanned aircraft system. Quantitative em-
pirical testing shows that a large number of conditions can
be monitored concurrently using a fraction of the computa-
tional resources available onboard a UAV. Extensive empir-
ical testing has also been performed using a combination of
actual flight tests and hardware-in-the-loop simulations in a
number of challenging mission scenarios. For example, a
variety of failure types have successfully been detected in
an emergency services mission.

Based on a great deal of experience with our UAV sys-
tems, it is our strong belief that using logics as the basis
for deliberative functionalities such as planning and moni-
toring simplifies the development of complex intelligent au-
tonomous systems. Temporal Action Logic and its tense
formula subset are highly expressive languages which are
well suited for describing planning domains and for express-
ing the monitoring conditions we are interested in. There-
fore we believe this approach provides a viable path towards
even more sophisticated, capable, and robust autonomous
systems.

Acknowledgements
This work is partially supported by grants from the Swedish
Research Council (50405001, 50405002), the Swedish
Aeronautics Research Council (NFFP4-S4203), the Swedish
Foundation for Strategic Research (SSF) Strategic Research
Center MOVIII, and CENIIT, the Center for Industrial In-
formation Technology.

References
Alur, R., and Henzinger, T. 1990. Real time logics: com-
plexity and expressiveness. In Fifth annual symposium on
logic in computer science.
Ambros-Ingerson, J., and Steel, S. 1988. Integrating plan-
ning, execution and monitoring. In Proc. AAAI.
Bacchus, F., and Kabanza, F. 1998. Planning for tempo-
rally extended goals. Annals of Mathematics and Artificial
Intelligence 22.
Ben Lamine, K., and Kabanza, F. 2002. Reasoning about
robot actions: A model checking approach. In Advances in
Plan-Based Control of Robotic Agents.
Chien, S.; Knight, R.; Stechert, A.; Sherwood, R.; and Ra-

bideau, G. 2000. Using iterative repair to improve the
responsiveness of planning and scheduling. In Proc. AAAI.
Doherty, P., and Kvarnström, J. 2001. TALplanner: A
temporal logic-based planner. AI Magazine 22(3).
Doherty, P., and Kvarnström, J. 2008. Temporal action
logics. In Lifschitz, V.; van Harmelen, F.; and Porter, F.,
eds., Handbook of Knowledge Representation. Elsevier.
Doherty, P., and Rudol, P. 2007. A UAV search and rescue
scenario with human body detection and geolocalization.
In Proc. Australian Joint Conference on AI.
Doherty, P. 2004. Advanced research with autonomous
unmanned aerial vehicles. In Proc. KR.
Doherty, P. 2005. Knowledge representation and un-
manned aerial vehicles. In Proc. IEEE Conference on In-
telligent Agent Technology.
Fernández, J. L., and Simmons, R. G. 1998. Robust exe-
cution monitoring for navigation plans. In Proc. IROS.
Heintz, F., and Doherty, P. 2004. DyKnow: An approach
to middleware for knowledge processing. J. Intelligent and
Fuzzy Systems 15(1).
Heintz, F., and Doherty, P. 2006. DyKnow: A knowledge
processing middleware framework and its relation to the
JDL data fusion model. J. Intell. and Fuzzy Systems 17(4).
Kvarnström, J. 2005. TALplanner and Other Extensions
to Temporal Action Logic. Ph.D. Dissertation, Linköpings
universitet.
Lemai, S., and Ingrand, F. 2004. Interleaving temporal
planning and execution in robotics domains. In Proc. AAAI.
Markey, N., and Raskin, J.-F. 2006. Model checking re-
stricted sets of timed paths. Theoretical Computer Science
358(2-3).
Pettersson, O. 2005. Execution monitoring in robotics: A
survey. Robotics and Autonomous Systems 53(2).
Rudol, P., and Doherty, P. 2008. Human body detection
and geolocalization for UAV search and rescue missions
using color and thermal imagery. In Proc. IEEE Aerospace
Conference.
Simmons, R., and Apfelbaum, D. 1998. A task description
language for robot control. In Proc. IROS.
Thati, P., and Rosu, G. 2005. Monitoring algorithms for
metric temporal logic specifications. Electronic Notes in
Theoretical Computer Science 113.
Washington, R.; Golden, K.; and Bresina, J. 2000. Plan
execution, monitoring, and adaptation for planetary rovers.
Electronic Transactions on Artificial Intelligence 5(17).
Wilkins, D.; Lee, T.; and Berry, P. 2003. Interactive exe-
cution monitoring of agent teams. J. Artificial Intelligence
Research 18.
Wzorek, M., and Doherty, P. 2007. A framework for recon-
figurable path planning for autonomous unmanned aerial
vehicles. J. Applied Artificial Intelligence. Forthcoming.
Wzorek, M.; Conte, G.; Rudol, P.; Merz, T.; Duranti, S.;
and Doherty, P. 2006. From Motion Planning to Control
– A Navigation Framework for an Autonomous Unmanned
Aerial Vehicle. In Proc. Bristol Int’l UAV Systems Conf.

