
Reconfigurable Path Planning for an Autonomous Unmanned Aerial Vehicle

Mariusz Wzorek and Patrick Doherty
Department of Computer and Information Science

Linköping University, SE-58183 Linköping, Sweden
{marwz,patdo}@ida.liu.se

Abstract

In this paper, we present a motion planning framework
for a fully deployed autonomous unmanned aerial ve-
hicle which integrates two sample-based motion plan-
ning techniques, Probabilistic Roadmaps and Rapidly
Exploring Random Trees. Additionally, we incorporate
dynamic reconfigurability into the framework by inte-
grating the motion planners with the control kernel of
the UAV in a novel manner with little modification to
the original algorithms. The framework has been ver-
ified through simulation and in actual flight. Empiri-
cal results show that these techniques used with such a
framework offer a surprisingly efficient method for dy-
namically reconfiguring a motion plan based on unfore-
seen contingencies which may arise during the execu-
tion of a plan. The framework is generic and can be
used for additional platforms.

Introduction
The use of Unmanned Aerial Vehicles (UAVs) which can op-
erate autonomously in dynamic and complex operational en-
vironments is becoming increasingly more common. While
the application domains in which they are currently used
are still predominantly military in nature, in the future
we can expect widespread usage in the civil and commer-
cial sectors. In order to insert such vehicles into com-
mercial airspace, it is inherently important that these vehi-
cles can generate collision-free motion plans and also be
able to modify such plans during their execution in order
to deal with contingencies which arise during the course
of operation. Motion planners capable of dynamic replan-
ning will be an essential functionality in any high-level
autonomous UAV system. The motion planning problem,
that of generating a collision-free path from an initial to
a goal waypoint, is inherently intractable for vehicles with
many degrees of freedom. Recently, a number of sample-
based motion planning techniques (Kavraki et al. 1996;
Kuffner & LaValle 2000) have been proposed which trade
off completeness in the planning algorithm for tractability
and efficiency in most cases.

The purpose of this paper is to show how one can incor-
porate dynamic replanning in such motion planners on a de-

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

ployed and fully operational UAV by integrating the motion
planner with the control kernel of the UAV in a novel man-
ner with little modification of the original algorithms. Inte-
grating both high- and low-end functionality seamlessly in
autonomous architectures is currently one of the major open
problems in robotics research. UAV platforms offer an espe-
cially difficult challenge in comparison with ground robotic
systems due to the often tight time constraints present in the
plan generation, execution and replanning stages in many
complex mission scenarios. It is the intent of this paper to
show how one can leverage sample-based motion planning
techniques in this respect, first by describing how such in-
tegration would be done and then empirically testing the re-
sults in a fully deployed system.

Figure 1: Paths generated during the experimental flight.
Solid black line - updated path (white dot - helicopter po-
sition); white dashed line - invalid path; polygon box - for-
bidden region. View from top to bottom.

An example of a dynamic path replanning experiment is
shown in Fig. 1. It shows sample paths generated during a
flight in which four no-fly zones were added incrementally.
The plan was continuously monitored and repaired as new
no-fly zones were added through a ground operator inter-
face.

The techniques and solutions described are generic in na-
ture and suitable for platforms other than the one used in
this experimentation. An important point to note is that to
our knowledge we are the first to use these sample-based
motion planning techniques with fully deployed UAVs. The
experiments were conducted using the WITAS 1 UAV sys-
tem (Doherty et al. 2004) shown in Fig. 2.

1WITAS is an acronym for the Wallenberg Information Tech-

438

Figure 2: The WITAS UAV platform.

The Path Planning Algorithms
In this section, we provide a brief overview of the sample-
based path planning techniques used in the experiments. The
problem of finding optimal paths between two configura-
tions in a high-dimensional configuration space such as a he-
licopter is intractable in general. Sample-based approaches
such as probabilistic roadmaps (PRM) or rapidly exploring
random trees (RRT) often make the path planning problem
solvable in practice by sacrificing completeness and opti-
mality.

The standard probabilistic roadmap (PRM) algorithm
(Kavraki et al. 1996) works in two phases, one off-line and
the other on-line. In the off-line phase a roadmap is gener-
ated using a 3D world model. Configurations are randomly
generated and checked for collisions with the model. A local
path planner is then used to connect collision-free configura-
tions taking into account kinematic and dynamic constraints
of the helicopter. Paths between two configurations are also
checked for collisions. In the on-line or querying phase, ini-
tial and goal configurations are provided and an attempt is
made to connect each configuration to the previously gener-
ated roadmap using the local path planner. A graph search
algorithm such as A∗ is then used to find a path from the ini-
tial to the goal configuration in the augmented roadmap. The
PRM path planner implemented in the WITAS UAV system
uses an OBBTree-algorithmfor collision checking and an A∗

algorithm for graph search. Here one can optimize for short-
est path, minimal fuel usage, etc. The following extensions
have been made with respect to the standard version of the
PRM algorithm in order to adapt the approach to our UAV
platform.

• Multi-level roadmap planning: The standard probabilistic
roadmap algorithm is formulated for fully controllable systems
only. This assumption is true for a helicopter flying at low speed
with the capability to stop and hover at each waypoint. How-
ever, when the speed is increased the helicopter is no longer able
to negotiate turns of a smaller radius, which imposes demands
on the planner similar to non-holonomic constraints for car-like
robots. In this case, linear paths are first used to connect con-
figurations in the graph and at a later stage these are replaced
with cubic curves when possible. These are required for smooth
high speed flight. If it is not possible to replace a linear path
segment with a cubic curve then the helicopter has to slow down
and switch to hovering mode at the connecting waypoint before
continuing. From our experience, this rarely happens.

nology and Autonomous Systems Lab which hosted a long term
UAV research project (1997-2004).
This research is partially founded by the Wallenberg Foundation
under the WITAS Project and an NFFP4-S4203 grant.

• Runtime constraint handling: Our motion planner has been ex-
tended to deal with different types of constraints at runtime not
available during roadmap construction. Such constraints can be
introduced at the time of a query for a path plan. Some examples
of runtime constraints currently implemented include maximum
and minimum altitude, adding forbidden regions (no-fly zones)
and placing limits on the ascent-/descent-rate. Such constraints
are dealt with during the A∗ search phase.

The use of rapidly exploring random trees (RRT) provides
an efficient motion planning algorithm that constructs a
roadmap online rather than offline. The algorithm (Kuffner
& LaValle 2000) generates two trees rooted in the start and
end configurations by exploring the configuration space ran-
domly in both directions. While the trees are being gener-
ated, an attempt is made at specific intervals to connect them
to create one roadmap. After the roadmap is created, the re-
maining steps in the algorithm are the same as with PRMs.

In the current implementation the mean planning time for
both planners is below 1000 ms and the use of runtime con-
straints do not noticeably influence the mean. In the case of
RRT planner the success rate is much lower than in PRM
and generated plans are not optimal which may sometimes
cause anomalous detours (Pettersson 2006).

The Path Execution Mechanism
The standard path execution scheme in our architecture for
static operational environments is depicted in Fig. 3. A UAV

Path
Planner

Segment requestsPlan
2
1

Path segments C
on

tro
l

sy
st

em

in
te

rfa
ce

Task
Procedure

Dynamic
Path

Following
Controller

(DPF)

End points,
Constraints 3

4

Figure 3: Plan execution scheme

mission is specified via a task procedure (TP) in the reac-
tive layer of our architecture, (perhaps after calling a task-
based planner). A TP is a high-level procedural execution
component which provides a computational mechanism for
achieving different robotic behaviors. For the purposes of
this paper, it can be viewed as an augmented state machine.

For the case of flying to a waypoint, an instance of a nav-
igation TP is created. First it calls the path planner service
(step 1) with the following parameters: initial position, goal
position, desired velocity and additional constraints.

If successful, the path planner (step 2) generates a seg-
mented cubic curve. Each segment is defined by start and
end points, start and end directions, target velocity and end
velocity. The TP sends the first segment (step 3) of the tra-
jectory via the control system interface and waits for the Re-
quest Segment event that is generated by the controller.

At the control level, the path is executed using a Dynamic
Path Following (DPF) controller (Conte, Duranti, & Merz
2004) which is a reference controller that can follow cubic
splines. When a Request Segment event arrives (step 4) the
TP sends the next segment. This procedure is repeated (step
3-4) until the last segment is sent. However, because the
high-level system is not implemented in hard real-time it

439

may happen that the next segment does not arrive at the con-
trol kernel on time. In this case, the controller has a timeout
limit after which it goes into safety braking mode in order to
stop and hover at the end of the current segment. The time-
out is determined by a velocity profile and current position.

∆t
2t

im
eo

ut

∆t
1t

ot
al

∆t
1t

im
eo

ut

br
ak

in
g fly
in

g
se

gm
en

t 1

TP
t0

DPF

tstart1

to1

tarrive1

t1

br
ak

in
g

fly
in

g
se

gm
en

t 2

to2

tarrive2

1

2

3

t t
1 – segment 1; 2 – Request segment
3 – segment 2

tstart2 t2

∆t
2t

ot
al

Figure 4: Execution timeline for trajectory consisting of 2
segments

Fig. 4 depicts a timeline plot of the execution of a trajec-
tory (2 segments). At time t0, a TP sends the first segment
of the path to the DPF controller and waits for a Request
segment event which arrives immediately (t1) after the he-
licopter starts to fly (tstart1). Typical time values for re-
ceiving a Request segment event (t1 − t0) are well below
200ms. Time to1 is the timeout for the first segment which
means that the TP has a ∆t1timeout time window to send
the next segment to the DPF controller before it initiates a
safety braking procedure. If the segment is sent after to1, the
helicopter will start braking. In the current implementation,
segments are not allowed to be sent after a timeout. This
will be changed in a future implementation. In practice, the
∆t1timeout time window is large enough to replan the path
using the standard path planner. The updated segments are
then sent to the DPF controller transparently.

Dynamic Replanning of the Path
There are several services that are used during the path re-
planning stage. They are called when changes in the envi-
ronment are detected and an update event is generated in the
system. The augmented state machine associated with the
TP used for the dynamic replanning of a path is depicted in
Fig. 5. The TP takes a start and an end point and a target
velocity as input. The TP then calls a path planning service
(Plan state) which returns an initial path.

If the helicopter is not aligned with the direction of the
flight, a command to align is sent to the controller (Align
state).The TP then sends the first segment of the generated
path to the DPF controller (Send segment state) and calls the

Prediction service to estimate a timeout for the current seg-
ment (Estimate timeout state). Based on the segment timeout
and system latency, a condition is calculated for sending the
next segment. If there is no change in the environment the
TP waits (Wait state) until a timeout condition is true and
then sends the next segment to the DPF controller. In case

Init

Align
Send

segment

Exit

Plan

no
t a

lig
ne

d

aligned

last
segment sent

no-fly zone
updated

re
qu

es
t

se
gm

en
t

re
ce

iv
ed

Estimate
timeout

timeout
calculated

Check
collision

Replan

Wait

tim
eo

ut
co

nd
itio

n

up
da

te
d

pa
th

no collision

Strategy
Selection

Times
Estimation

Strategy
Library

collis
ion dete

cte
d

strategy query
strategy

pa
th

pl
an

 p
at

h
w

ith
 st

ra
te

gy

pa
th estimated timings

estimate timings

for segments

St
at

ic

plan path

Figure 5: The dynamic path replanning automaton

new information about newly added or deleted forbidden re-
gions (no-fly zone updated) arrives, the TP checks if the cur-
rent path is in collision with the updated world model (Check
Collision state). If a collision is detected in one or more seg-
ments the TP calls a Strategy Selector service (Strategy Se-
lection state) to determine which replanning strategy is the
most appropriate to use at the time. The Strategy Selector
service uses the Prediction service for path timings estima-
tion (Times Estimation state) to get estimated timeouts, to-
tal travel times etc. It also uses the Strategy Library service
(Strategy Library state) to get available replanning strategies
that will be used to replan when calling the path planner (Re-
plan state). The TP terminates when the last segment is sent.

All time estimations that have to do with paths or parts
of paths are handled by the Prediction service. It uses the
velocity profile of a vehicle and path parameters to cal-
culate timeouts, total times, and combinations of those.
For instance, in the case of flying a two-segment trajec-
tory (see execution timeline in Fig. 4) it can estimate time-
outs (∆t1timeout, ∆t2timeout), total travel times (∆t1total,
∆t2total) as well as a combined timeout for the first and the
second segment (to2-t1).

There are many strategies that can be used during replan-
ning step which can give different results depending on the
situation. The Strategy Library stores different replanning
strategies including information about the replanning algo-
rithm to be used, the estimated execution time and the prior-
ity. Example strategies are shown in Fig. 6.
Strategy 1: Replanning is done from the next waypoint (start point
of the next segment) to the final end point. This implies longer
planning times and eventual replacement of collision-free segments
that could be reused. The distance to the obstacle in this case is
usually large so the generated path should be smoother and can
possibly result in a shorter flight time.
Strategy 2: Segments up to the colliding one are left intact and re-
planning is done from the last collision-free waypoint to the final
end point. In this case, planning times are cut down and some parts

440

helicopter
position
waypoint

forbidden
region

final
path

invalid
path

Strategy 1

Strategy 2

Strategy 3

Strategy 4

new pass
waypoint

Figure 6: Examples of replanning strategies.

of the old plan will be reused. But since the distance to the obsta-
cle is shorter than in the previous case, it might be necessary for
the vehicle to slow down at the joint point of two plans, this can
result in a longer flight time.
Strategy 3: Replanning is done only for colliding segments. The
helicopter will stay as close to the initial path as possible.
Strategy 4: There can be many other strategies that take into ac-
count additional information that can make the result of the replan-
ning better from a global perspective. An example is a strategy that
allows new pass waypoints that should be included in the repaired
plan.

Note that each of these strategies progressively re-uses
more of the plan that was originally generated, thus cutting
down on planning times but maybe producing less optimal
plans.

The Strategy selector service is responsible for choosing
the strategy or strategies to execute in the event of path oc-
clusion. It keeps track of the time that it uses, so that a
valid path is always available when the timeout condition
becomes true. The Strategy Selector holds information as to
which segments of the path were invalidated and it can use
the Prediction service to get estimated timings for a path or
parts of a path. Based on that and available strategies (from
the Strategy Library) it can make a decision which strategy
or strategies to use for replanning at the current time. If
many strategies are applied and more new plans are gener-
ated, it also evaluates them according to a given optimization
criterion that is declared by the user or another service. For
instance, if the time window for making a decision about the
next segment is short then the fastest strategy is used in order
to produce a valid plan on time.

Experimental Results
In our experiments we have used both the PRM and the RRT
planner. We included the first three strategies from Fig. 6
in the Strategy Library. During the flight, forbidden regions
were randomly added by a ground operator. In order to com-
pare the performance of different strategies only, one strat-
egy was used per experiment.

Typical values of parameters related to the execution and
the planning phases are presented in Table 1. The number
of segments is taken from the final path.

Observe that in the case of Strategy 1, ∆t (time win-
dow for replanning) is generally greater than four times the
amount of time required to generate full plans using either
the PRM or RRT planners. The difference is even greater (up

to 20 times) in the case of Strategy 3. This is as expected,
the more the existing plan is reused the less time is needed
to repair it. Although replanning times for applying Strategy
3 are much smaller, the paths have many more segments (up
to 15). Such paths usually imply a smaller average velocity
which can result in a longer flight time.

Table 1: Results of the experiments while using two strate-
gies. Values presented in the table are the avarage from
many experiments. 1-Strategy 1,2-Strategy 3

path num- added min. max. min.
Planner length ber of forbid- seg- replan- ∆t

(m) seg- den re- ment nig time (ms)
ments gions length(m) (ms)

PRM1 464.5 6.6 4.9 48.6 579.9 3229.0
PRM2 564.2 12.0 4.7 26.2 174.6 2336.7
RRT1 477.2 6.4 4.9 43.2 512.9 3379.4
RRT2 558.8 12.3 4.7 19.4 178.4 2128.6

Conclusions
The planning framework that has been described in this pa-
per was tested and used in a fully deployed autonomous
UAV system with a distributed software architecture. We
have considered how one can successfully integrate sample-
based motion planning techniques with such an architecture
in a robust and efficient manner. We have also shown how
these techniques can be used to deal with contingencies such
as new no-fly zones during plan execution. This has been
done by analyzing the course of plan execution and extract-
ing upper bounds on the time that can be spent generating
new plans or repairing old plans by calling a PRM or RRT
planner. Experimental results show the feasibility of using
these techniques in the UAV domain, but similar analyses
and frameworks could in fact be used for other robotic plat-
forms.

References
Conte, G.; Duranti, S.; and Merz, T. 2004. Dynamic 3D
Path Following for an Autonomous Helicopter. In Proc. of
the IFAC Symp. on Intelligent Autonomous Vehicles.
Doherty, P.; Haslum, P.; Heintz, F.; Merz, T.; Persson, T.;
and Wingman, B. 2004. A Distributed Architecture for Au-
tonomous Unmanned Aerial Vehicle Experimentation. In
Proc. of the Int. Symp. on Distributed Autonomous Robotic
Systems, 221–230.
Kavraki, L. E.; S̆vestka, P.; Latombe, J.; and Overmars,
M. H. 1996. Probabilistic Roadmaps for Path Planning in
High Dimensional Configuration Spaces. Proc. of the IEEE
Transactions on Robotics and Automation 12(4):566–580.
Kuffner, J. J., and LaValle, S. M. 2000. RRT-connect:
An Efficient Approach to Single-Query Path Planning. In
Proc. of the IEEE Int. Conf. on Robotics and Automation.
Pettersson, P.-O. 2006. Using Randomized Algorithms for
Helicopter Path Planning. Lic. Thesis Linköping Univer-
sity.

441

