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Abstract— This paper addresses the robust fuzzy control
problem for discrete-time nonlinear systems in the presence
of sampling time uncertainties. The case of the discrete T-S
fuzzy system with sampling-time uncertainty is considered and
a robust controller design method is proposed. The sufficient
conditions and the design procedure are formulated in the form
of linear matrix inequalities (EMI). The effectiveness of the
proposed controller design methodology is demonstrated of a
visuai-servoing control problem.

I. INTRODUCTION

Robustness in fuzzy model-based control in discrete-time
models with fixed sampling-time and parametric uncertainties
has been studied before [1]. Asymptotic stability for Takagi—
Sugene (T-S) fuzzy system with fixed and known time-delays
was addressed for both the continucus- and discrete-time cases
in [2]. Augmented stability with guaranteed-cost design for T—
S fuzzy controllers in discrete-time case with fixed sampling-
time is presented in [3]. Our novel contribution in this work is
to reflect these approaches altogether into a scheme to tackle
the problem of uncerrainty due to varying sampling-time in
the discrete-time case. The idea that the system is described
as a combination of locally linear sub-models where the
varying sampling-time is a used as a gain scheduled parameter
motivates the FGS approach and LMIs-based performance
analysis.

In the following pages, section [I addresses the discrete-time

model and its T-S form using the FGS approach. Section Il

presents the controller design method for robust stabilization
in discrete-time of the T-S fuzzy systems in the presence of
varying sampling-time. Section IV illustrate an application for
the use of the control method proposed, and section V shows
controller design feasibility and simulation results.

{I. T-S FUZZY MODEL
The discrete-time model considered is of the form
Ty = Gz + H(zg )ug M

=T+ TB(IE};)Uk

where (7 is the identity matrix I, and H is the discrete Euler
approximation depending on the state variable xx, the varying
sampling-time 7, and is expressed as H = 7B where B is
the control matrix in the continuous-time case. Uncertainties
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may originate from the model parameters, or disturbances in
the state. We are aware of these uncertainties but, cannot
give an explicit quantification of them. Thus the resulting
uncertain system will be reduced to its varying sampling-time
description. Then the T-S version of the discrete-time model
in (1) develops as follows

Thtl = Zwi(zk)(wk + 7 Bjug),
=1

TE [Tmina Tmaz]§ Tp € [Imimmmam]

2

where z;, = [Ty, 7] is the vector of scheduled variables, and
r is the number of rules. w;{z;) are the weights given as
combination of s membership functions F; in the [F-part of
the rules [4], given a particular value of zj, and expressed as

_ I Pt

Do wilzx)
The system (2) is obtained from a fuzzy rule base where a
rule r is of the form

Wi

()

r: [Fzis Fy and ---
THEN zp41 = 2 + 7Brug

and z is F

e

In order to cope with the uncertainty in sampling time, the
control matrix H from (1)} is represented in the discrete-time
version of the rule (4), which is expanded into two rules, as:
H,. = 7By for rpyy, and Hy = TpaeBr for rpge. This
increase the number of rules to 2r, and this transformation
will —by convexity arguments— guarantee that the system is
robust with respect to the varying sampling-time. Each rule r
will be expanded as follows

Fmin : IFzi8 Fyand - and z is F; and 7 is Trin
THEN Zj11 = Zp + Tnin Brug )

Fmax + IF 2is Fyand --- and z is F;; and 7 18 Ty
THEN zk41 = %k + Tmaz Bruk

The next step in the control design will be to deveiop the
closed-loop system in a T-S form.
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III. FGS CONTROL DESIGN

This section presents a fuzzy gain scheduled state-feedback
controller for the system in (2), which is of the form

8
Uk = —K(Zk):ltk = Zwr(zk)K,.:ck (6)

r=1

where the weights w.(z;) are the ones used for the model
description in (3). The closed-loop develops as

8 8

oot = 3y wi(z)wi(z)l — 7B K loe ()

i=1 j=1
Notice that the control matrix B; and the control gain matrix
K differ for each region described by a rule ». In this case,
each one of the rules #,,,;, and £, in (5) will be written as
follows
IF zis Fyand --- and z is F; and 7 i$ Timin
THEN Tht1 = (I — TminBrKr)-Tk
Fraz - W zis Fpand - -
THEN 41 = (I — Trmee Br K}y

Frin *
and z is F; and 7 1S Tinag

Notice that, in both the rules rpin and rpgqe, the gain K, is
the same.The objective of the control design is to compute the
feedback gains K, (j = 1..8), so that
« the closed-loop system in (7) is asymptotically stable w.r.t
sampling-time uncertainty.
« the ciosed loop system in (7) has a guaranteed H,
performance.
Asymptotic stability and guaranteed-cost will be developed in
the next sections

A. Asymptotic stability using LMIs

The closed-loop fuzzy system (7) is globally asymptotically
stable, if there exist a positive-definite ma_trix P which satisfies
the following Lyapunov inequality [2]

(G-HKYP(G-HK)-P=0; ®
K=XP

where X > 0. Pre- and post-multiplying both sides of (8)
by P! and using the change of variables ¥ = P~! and
X; = K;Y we obtain a set of quadratic inequalities. For easing
the annotations we define the matrices Ny and O;;. as follows
N = GY — B KGY = I — 7. B, X5
O,‘jk = (Gl -+ GJ)Y - (TkB,-Kj + TkBjK,')Y (9
= 2[2 - TkBin s TkBin
The system described in (8) can be transformed into LMIs as
follows

Y>0 i=1.87j<i<8k=1.2
Y NI _
[Ni Y ] >0 (10)
Yy oT
ik
L%k Y]>O

1088

FUZZ-IEEE 2004

If the above LMIs have a common positive definite solution,
stability is guaranteed. But stability in most of physical
problems is not enough by itself most of the time, since the
control has to satisfy certain design objectives. This will be
addressed in the following section.

B. Optimal Hy cost design

The discrete-time performance for a fixed and known time-
delay has been discussed in [2]. Optimal Hs cost for discrete-
time T-S without delays is presented in [3]. In this section, we
combine these results for the discrete-time case with varying
sampling-time. We show that the problem of minimizing an
upper bound on a quadratic performance measure can be recast
as a trace minimization problem. This is done subject to a set
LMIs , which guarantees that the quadratic cost of the system
would not exceed a specified limit. To achieve guaranteed H»
performance, the following cost function is minimized

oG
J = Z zi Qxy + uj Ruy, an
i=1
subject to (2) and (6). This is the common LQR cost-function
used in linear optimal control. The closed-loop fuzzy system
(7) has a H; performance with a guaranteed cost if there

exist a positive-definite matrix P which satisfies the following

Lyapunov inequality (8) augmented with the cost functien [3].
(G- HK)'P(G-HK)-P+Q+KTRK =0;
K=R1HTP
where @ > 0 and B > 0. Minimizing the cost function
results in finding the positive-definite matrix P, solution of
the Lyapunov equation (8). The solution of the optimal cost

problem is dealt using the LMI approach by solving the
following optimization problem

Min tr(_Z) Subject to
i=1.8,j <i<8k=1.2
Z L] _
[IQ Y] >0;
v NE voi XTRY ... XTR?Y]
% Y 0 0 ... 0
QY 0 I 0 0
R:X; 0 0 L ... 0 |>%
: : : : : (12)
[RiXs 0 0 0 ... L |
[ v 0%, Y@ XTr* ... X{R%]
Ope Y 0 o ... ©
QY 0 I 0 0
REX; 0 0 b ... o |>0
(R’Xs 0 0 0 ... I

If these LMIs are feasible, we calculate the controller gains
as

K. =X, ¥ ! r=1.28 (13)
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The obtained K.’s insure closed-loop asymptotic stablity w.r.t
the varying 7 with guaranteed cost. Once the controller gains
in (13) are found, the global T-S controller is obtained using
(6).
IV. VISUAL-SERVOING APPLICATION
A. General scheme
The global visual-servoing scheme, on which the control

design described in section I is implemented, is illustrated
in Fig. 1

ZOH {Ts=10msec)

F&G visual Servos  Servoed : Camera Pose

Wraf=K(X).eX Camera  Fixed Camera sampie { thetax, theta.y )
= e
Reference Foatur x e — ()
p.ref=(0,0)

Carmera Rata

om0 W= (Wx Wy)
3
Varying image sample Featury
(40=Ti<100msec}

FeaturePosition
p={pxpy)

Fig. 1. The visual-servoing scheme

This system functions as follows:

« The camera has its own internal rate and pose controllers.
Its inputs are reference values of pan/tilt rates wj and wy.
The output of this subsystem is the camera orientation
(pose), 6, and f,, and a video-stream of the region
exposed.

o« The video-flow is processed by the image-grabber
and 1mage-processing subsystem. The image grabber
’samples’ the optical flow into separate images (25
images/sec.) which are buffered for further image-
processing: Time-delays of varying nature occur at this
stage.

+ The image-processing inputs the images, and outputs a
position p = [p,, py} in image coordinates of a particular
feature (see Fig. 2).

« This data is feeded back in real-time to the visnal con-
troller. The controller subsystem objective is to position
the camera so that the feature is centered in the image
(see Fig. 2). It delivers thus a profile of reference values
in terms of camera pose-rates to be regulated, in order
center the (moving) feature in the image.

'y

Ye

error _.
fmage .
plane

camera lens

Feature point p=(x.y}

Fig. 2. The control objective

Many factors may be responsible for the degraded stability

and performance for the control scheme presented above:

o Time-delays can occur from both the feature extraction
process or unknown/unmodelled dynamics of the camera
control loop: The performance of the feature extraction
process could extend from 40 msec. (video-stream rate),
to a 100 msec. (image-processing inherent delays).

o Model parameters, states and un-modelled dynamics may
affect the performance: In our setup, the camera —once
mounted on the UAV in motion— will see a degradation
of its pan/tilt performance due to Coriolis forces induced
by the helicopter motion.

Though these conditions affect the performance of the camera,
the dynamics induced are not considered for the control
design. We only consider the time-sampling uncertainties. The
camera and fmage-processing (CIP) model used [5] is of the

form
. Py p2+f?
[pz] _ { T 7 ] [wm}
P, pt _PsPy w
v 7 ; y
where p = [P, p,|7 is the translational velocity of the feature
p in the image frame, and w = [wg,wy|T is the angular
velocity of the camera and f is the focal distance for the
camera lens. Using the design method described in section 111

and the method of exact linearization [6], [7], [8], the T-§
version of (14) is given as

(14)

8§ 8
zir =9 wilmdw ()l - TBiK ok

i=1 j=1

where the weights w,(z} are computed from the membership
functions FS_(z) for s = 4,7,k = 1..2, for a particular value
of z. Using the expression in (3) we obtain

FiFLF
3
Zr;1 wy(z)

The membership functions F7,{z) are’ derived from the
nonlinearities in the matrix B(xzy) in the boundaries p, €

[_pzmv pxm]: Py € [_pynu pym]: with (pxm =
2.21073m, pym = 1.9107%m), and are expressed as follows

w2} =

8
and Zwr(z) =1
r=1

L. _ 1 x
Fiu(s) =3~ mope

F121(3) =1 —F111

F112(Z) = ;%%:: F122(2) = 1—F112

Fh()  =1-F5  Fh(e) =1-Fh
The fuzzy rules r are then of the form
r: IFzis F}, and z is Ffz and z is Fi, and 7 is Tyin
THEN z411 = (Is — Trin By Kr ) Tk

where the control matrix B, is expressed in terms of bound-
aries for the membership functions F3,.(z) and is of the form

by b
B, =B = [ 1 ! :|
I (& T
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with
p2
bil = ~PzmPym; bla=—f— jcm; bh =f;
»2 . B2 = _f pym
11 — pzmpym: 12 — f: 21 - .f+ f

The graphs illustrating the membership functions Fj;  are
shown in Fig. 3.
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Fig. 3.

Membership functions 7, FYy and FJ;

V. SIMULATION AND EXPERIMENTS

In this section, we will illustrate the application of the
proposed controller and its performance.

Using the above procedure as described in the previous
section, for the given model parameters in terms of image size
and focal distance, we perform the design with the following
I, cost parameters ¢ and R in (11). These parameters are
set to: Q@ = Diag(107%,107%), R = Diag(107%,1078). We
achieve feasibility of the problem (12), and by minimizing
the linear objective, we obtain the P matrix venfying the
asymptotic stability and guaranteed-cost robustness

p_ 694 107%  5.70 10718
~ 5701071 7271073

We achieve a feasible solution of required accuracy with best
objective value: J = 14 1072 and tr(Z) = 14 10 Next, we
will perform a series of simulations in Matlab — Simulink.
These simulations are executed comparing the behavior of the
system with regards to time-sample variations, for each control
channel (pan and tilt). The controllers are implemented in C-
language and are used to control the real camera platform as
well.

The first simulation is performed for the regulation of
position reference values of a point p (image feature), for both
sampling times Ty, = 40 msec. and g, = 100 msec. All
values of sampling-time within the limits [Ty, Timaz] Show
stable behavior. Fig. 4 shows the response by regulation w.r.t

= [0, 0]F. The upper-part shows both the error profiles and
the camera regulation responses for the x-channe! (middle-
part) and y-channel (lower-part). The regulation is done for the
size of the image. The error is settled to zero after =270 msec.
for the system sampled atr = 40 msec., while for the system
sampled at 7 = 100 msec., the error settles after ~230 msec.
The middle- and lower-parts of Fig. 4 show a step-response
for each channel. The system sampled at 7,,,;;, has a smoother
response, which translates to a camera rotation without shake,
which in term translates to a settlement without overshoot.
The system sampled at Tynq has a dead-beat behavior with
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FUZZ-IEEE 2004

x107 Emor for x- and y-channsls

xfy channaly {m}
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Fig. 4.
regulation

Comparison between systems sampled at 40 and 100 msec. for

faster response {up to 140 msec. to reach 90% of the reference
value) and an overshoot of (= 6%).

The second simulation is performed for the tracking of the
same feature, for both sampling times 7,,;, = 40 msec. and
Tmaz = 100 msec. with inducing in the reference values an
error profile of a sinusoidal shape. Fig. 5 shows both the
error profiles (upper-part) and the camera tracking responses
for x-channel (middle-part) and y-chammel (lower-part). The .
tracking error presents a saw-teeth shaped oscillation around
the sinusoidal shape of the error fluctuation. This oscillation
is due to the integration factor that the sampled position
undergo in the closed-loop, thus is more pronounced for the
time sampling 7,,.. The oscillation does not appear in the
regulation case because of the signal flatness between two
reference values. The oscillation is bounded to ~ 8% of
the error amplitude, while the error fluctuation is bounded to
~ 2% of the amplitude of the tracked profile of reference.

x 107 Errur for x- and y—d’mnnqls
1P I
£ —- e 4 sac
%' 0.5f- s Mwﬁ,wn,, 5 .1’.# R .—-.: ?4:«:[
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;—0.5 éﬁ\fﬁ“ Py M T
% :
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2L
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o

®

Fig. 5.
tracking-

Comparison between systems sampled at 40 and 100 msec. for
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The delays between reference values and output response for
the tracking scheme are respectively about 80 msec. for the
system sampled at 7 = 40 msec. and 70 msec. for the one at
T == 100 msec., that is for both the channels x and y.
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Fig. 6. Camera angles regulation using angular rate control

Third, we run an experiment on the real camera platform, for
regulation. Fig. 6 show a scenario in which a beacon whose
pattern permits to identify the feature is placed suddenly in
the image field of a the camera. The camera is controlled
in angular rate control mode, and responds by centering the
feature in the image.Fig. 6 shows both the error profiles (upper-
part) and the camera pose responses for the x-channel (middle-
part) and y-channel (lower-part). The last two profiles in Fig.
6 are in degrees, and these readings are done at sampling time
of =88 msec. The x-channel presents an overshoot of == 14%,
with a time response of ~ 1.3 sec. for both channels. The
profiles show overshoots for both the x- and y-channels: this
occurs mainly due to coupling between the two channels. The
time responses for the real platform are longer than this of
simulation model. This is due to the camera DC-motor closed-
loop dynamics, which are not taken into account in the model
used for simulation.

L ast, we proceed similarly as experiment 3, with moving the
camera over the pattern, or moving the pattern in front of the
camera. This results in a profile tracking scheme whose results
are illustrated in Fig. 7. Both the error profiles for the x- and y-
channels are shown in the upper-part of Fig. 7, and the camera
pose responses for the x-channel (middle-part) and y-channel
(lower-part) illustrate the rotation of the camera in pan and tilt
in order to center the feature in the image. The amplitude of
the error fluctuation is higher the one in the simulation case.
This is due to the latency of the camera DC-motors responses
to the control signal. The last two profiles in Fig. 7 are in
degrees. The sudden artifacts in the pose profiles are mainly
due to reading errors of the camera angles (absence of sensor-
data when queried by the control software), and do not affect
in any case the control performance.

Error for x- and y-channats.

100

=
a
3
£ a
H
5
B

x channet {deg }

I

585 &
Traclung |m y—l:hmmal

y channel (deg.)

:[”

Fig. 7. Camera angles tracking using angular rate control
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VI. CONCLUSIONS

This paper presented a novel method for the design of
a fuzzy gain scheduled discrete-time control that is able to
deal with varying sampling-times. The design was applied to
the problem of visual-servoing which is a nonlinear control
problem where the varying sampling-time is due to image-
processing. The results show the effectiveness of the proposed
design method.

Future work will be dedicated to exploring the robustness
of the system developed to both sampling-time uncertainty,
unstructured uncertaintics and external disturbances in actual
UAV flight senarii.
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