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AbsirarCThis paper addresses the rohnst fuzzy control 
problem for discrete-time nonlinear systems in the presence 
of sampling time uncertainties. The case of the discrete T S  
fuzzy system with sampling-time uncertainty is considered and 
a robust controller design method is proposed. The sufficient 
conditions and the design procedure are formulated in the form 
of linear matrix inequalities (LMI). The effectiveness of the 
proposed controller design methodology is demonstrated of a 
visual-servoing control problem. 

I .  INTRODUCTION 
Robustness in fuzzy model-based control in discrete-time 

models with /ked sampling-time and parametric uncertainties 
has been studied before [I]. Asymptotic stability for Takngi- 
Sugeno (7-S) fuzzy system with frred and known time-delays 
was addressed for both the continuous- and discrete-time cases 
in 121. Augmented stability with guaranteed-cost design for T- 
S fuzzy controllers in discrete-time case with fixed sampling- 
time is presented in [3]. Our novel contribution in this work is 
to reflect these approaches altogether into a scheme to tackle 
the problem of uncertainty due to varying sampling-time in 
the discrete-time case. The idea that the system is described 
as a combination of locally linear sub-models where the 
varying sampling-time is a used as a gain scheduled parameter 
motivates the FGS approach and LMIs-based performance 
analysis. 

In the following pages, section I1 addresses the discrete-time 
model and its T-S form using the FGS approach. Section I11 
presents the controller design method for robust stabilization 
in discrete-time of the T-S fuzzy systems in the presence of 
varying sampling-time. Section IV illustrate an application for 
the use of the control method proposed, and section V shows 
controller design feasibility and simulation results. 

11. T-s FUZZY MODEL 

The discrete-time model considered is of the form 

Z ~ + I  = G x ~  + H ( ~ g ) u g  
(1) = 51; + T B ( X k ) U k  

where G is the identity matrix I, and H is the discrete Euler 
approximation depending on the state variable X k ,  the varying 
sampling-time T ,  and is expressed as H = T B  where B i s  
the control matrix in the continuous-time case. Uncertainties 
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may originate from the model parameters, or disturbances in 
the state. We are aware of these uncertainties but, cannot 
give an explicit quantification of them. Thus the resulting 
uncertain system will he reduced to its varying sampling-time 
description. Then the T-S version of the discrete-time model 
in ( I )  develops as follows 

7 E [Tmmzn.Tmmar]; Xk E [ X m m , X m m ]  

where zg = [zk, 71 is the vector of scheduled variables, and 
r is the number of rules. w i ( i k )  are the weights given as 
combination of s membership functions F, in the IF-part of 
the rules [4]. given a particular value of i k ,  and expressed as 

(3) 

The system (2) is obtained from a fuzzy rule base where a 
rule r is of the form 

T : IF is Fl and . . . and i is F, 
THEN x g + l  = z k  + r B , u k  

(4) 

In order to cope with the uncertainty in sampling time, the 
control matrix H from ( I )  is represented in the discrete-time 
version of the rule (4), which is expanded into two rules, as: 
H, = T,,,B, for rmin and H, = T ~ ~ ~ B ~  for r,,,. This 
increase the number of rules to 2r, and this transformation 
will -by convexity arguments- guarantee that the system is 
robust with respect to the varying sampling-time. Each rule r 
will be expanded as follows 

rmin : IF i is 4 and . . . and i is F, and T is T ~ , , ,  

THEN X k + l  = Xg + T m i n B r U k  
(5) r,,, : .IF I is and . . . and i is F, and T is r,,, 

THEN Z k + l  = Xk + T m L a z B r U k  

The next step in the control design will be to develop the 
closed-loop system in a T-S form. 
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111. FGS CONTROL DESIGN If the above LMIs have a common positive definite solution, 
stability is guaranteed. But stability in most of physical 
problems is not enough by itself most of the time, since the 
control has to satisfy certain design objectives. This will be 
addressed in the following section. 

B. Optimal Hz cost design 

This section presents a fuzzy gain scheduled state-feedback 
controller for the system in (2), which is of the form 

8 

U k  = - K ( i k ) X k  = - x U J r ( Z k ) K v X k  (6) 
?=I 

- Y O E . k  YQf  X T R i  ... X F R f -  
OZjk Y 0 0 . . .  0 
QtY 0 I2 0 . . .  0 
R i X 1  0 0 I2 ,.. 0 > 0  

,RfXs 0 0 0 ... 12 

where the weights w,.(zk) are the ones used for the model 
description in (3). The closed-loop develops as 

The discrete-time performance for a fixed and known time- 
delay has been discussed in [2]. Optimal Hz cost for discrete- 
time T-S without delays is presented in [3]. In this section, we 
combine these results for the discrete-time case with varying 
sampling-time. We show that the problem of minimizing an 

. a n  

X k f l  = c U J i ( z k ) U J j ( i k ) [ I  TBiKjlzk ( 7 )  
i=l j - 1  

Notice that the control matrix Bi and the control gain matrix 
IC3 differ for each region described by a rule r. In this case, 
each one of the rules r,,, and r,,, in ( 5 )  will be written as 
follows 

rmzn : IF i is 4 and . . . and i is F, and T is 7,in 

THEN X k + l  (I - T m i n B , K , ) X k  

rmaZ : I F  i is 4 and . . . and i is F, and T is T , ~ ~ ~  

THEN X k f l  = (I - TmazB&T')Xk 

Notice that, in both the rules rmin and r,,,, the gain K, is 
the same.The objective of the control design is to compute the 
feedback gains K3, ( j  = 1.3) .  so that . the closed-loop system in (7) is asymptotically stable w.r.t 

s the closed loop system in (7) has a guaranteed Hz 

Asymptotic stability and guaranteed-cost will be developed in 
the next sections 

A. Asymptotic stability using LMIs 
The closed-loop fuzzy system (7) is globally asymptotically 

stable, if there exist a positive-definite matrix P which satisfies 
the following Lyapunov inequality [2] 

sampling-time uncertainty. 

performance. 

(G - H K ) T P ( G  - H K )  - P = 0: 
(8) K = X P  

where X 2 0. Pre- and post-multiplying both sides of (8) 
by P-' and using the change of variables Y = P-' and 
X i  = KiY we obtain a set of quadratic inequalities. For easing 
the annotations we define the matrices N ; k  and 0 ; j k  as fo~lows 

Nia = GiY - r k B i K i Y  = Iz ~ ~ k B i X i ;  
o i j k  = (G, + G j ) Y  - ( T k B i K j  4- T k B j K ; ) Y  (9) 

= 212 - rkBiXj - r k B j X i  

The system described in (8) can be transformed into LMIs as 
follows 

Y > 0; i = 1.3.f < i 5 8> k = 1..2 

upper bound on a quadratic performance measure can be recast 
as a trace minimization problem. This is done subject to a set 
LMIs , which guarantees that the quadratic cost of the system 
would not exceed a specified limit. To achieve guaranteed Hz 
performance, the following cost function is minimized 

m 

J = X r Q X k  + U z R U k  (11) 
3-1 

subject to (2) and (6). This is the common LQR cost-function 
used in linear optimal control. The closed-loop fuzzy system 
(7) has a H2 performance with a guaranteed cost if there 
exist a positive-definite matrix P which satisfies the following 
Lyapunov inequality (8) augmented with the cost function [3]. 

(G ~ H K ) T P ( G  - H K )  - P + Q + K T R K  = 0: 
K = R-'HTP 

where Q 2 0 and R 2 0. Minimizing the cost function 
results in finding the positive-definite matrix P, solution of 
the Lyapunov equation (8). The solution of the optimal cost 
problem is dealt using the LMI approach by solving the 
following optimization problem 

Min tr(Z) Subject to 
i = 1..8,j < z 5 8,k = 1..2 

> 0; 

0 ... 0 
N: YQ; X T R i  _ _ .  
Y O  
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The obtained K,'s insure closed-loop asymptotic stablity w.r.t 
the varying T with guaranteed cost. Once the controller gains 
in (13) are found, the global T-S controller is obtained using 
(6). 

Iv. VISUAL-SERVOING APPLICATION 

A. General scheme 

The global visual-servoing scheme, on which the control 
design described in section 111 is implemented, is illustrated 
in Fig. 1 

Fig. I .  The visual-servoing scheme 

This system functions as follows: . The camera has its own internal rate and pose controllers. 
Its inputs are reference values of padtilt rates w: and U;. 

The output of this subsystem is the camera orientation 
(pose), 8, and O,, and a video-stream of the region 
exposed. . The video-flow is processed by the image-grabber 
and image-processing subsystem. The image grabber 
'samples' the optical flow into separate images (25 
imagedsec.) which are buffered for further image- 
processing: Time-delays of varying nature occur at this 
stage. . The image-processing inputs the images, and outputs a 
position p = [p,,p,] in image coordinates of a particular 
feature (see Fig. 2). . This data is feeded hack in real-time to the visual con- 
troller. The controller subsystem objective is to position 
the camera so that the feature is centered in the image 
(see Fig. 2). It delivers thus a profile of reference values 
in terms of camera pose-rates to he regulated, in order 
center the (moving) feature in the image. 

i" 

Many factors may be responsible for the degraded stability 

Time-delays can occur from both the feature extraction 
process or unknowdunmodelled dynamics of the camera 
control loop: The performance of the feature extraction 
process could extend from 40 msec. (video-stream rate), 
to a 100 msec. (image-processing inherent delays). . Model parameters, states and un-modelled dynamics may 
affect the performance: In our setup, the camera +rice 

mounted on the UAV in motion- will see a degradation 
of its padtilt performance due to Coriolis forces induced 
by the helicopter motion 

Though these conditions affect the performance of the camera, 
the dynamics induced are not considered for the control 
design. We only consider the time-sampling uncertainties. The 
camera and image-processing (CIP) model used [ 5 ]  is of the 
form 

and performance for the control scheme presented above: 

where p = [pZ,p,lr is the translational velocity of the feature 
p in the image frame, and w = [uzr~+,lT is the angular 
velocity of the camera and f is the focal distance for the 
camera lens. Using the design method described in section III  
and the method of exact linearization [6], [7], [XI, the T-S 
version of (14) is given as 

8 8  

X k + i  = ~ ~ W i ( z k ) w j ( z k ) [ ~ ~  - TBiKj lxk  

where the weights w7(i) are computed from the membership 
functions F;,(i) for s = i . j ,  k = 1.2, for a particular value 
of i. Using the expression in (3) we obtain 

i=l j=1 

The membership functions F&(z) are' derived from the 
nonlineanties in the matrix B ( x k )  in the boundaries p ,  E 

2.ZIO-'m, p, ,  = 1.910-'m), and are expressed as follows 
[ -PWZ,  P z ~ ] ,  p ,  E [-py,, p,,], with (pzm = 

Ft1(;) = ; - p,P, 
Fi2(z) P;, 

F;l(i) = 1 - p: F;l(z) = 1 - F;] 

F:, ( z )  = 1 - F:, 2P, ,P , ,  ' 
= &, F?'(z) = 1 - Fi2 

C' 
The fuzzy rules r are then of the form 

T : IF i is Fll and z is F:, and i is F.: and 7 is rmi, 

THEN X k f l  = (12 - T m m B , K r ) X k  

where the control matrix B,. is expressed in terms of bound- 
aries for the membership functions F;,(z) and is of the form 

Fig. 2. The control objective 
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Fig. 3. Membership functions Ff,, Ff2 and Fil 

v. SIMULATION AND EXPERIMENTS 
In this section, we will illustrate the application of the 

proposed controller and its performance. 
Using the above procedure as described in the previous 

section, for the given model parameters in tenns of image size 
and focal distance, we perform the design with the following 
Hz cost parameters Q and R in (1 I ) .  These parameters are 
set to: Q = Diag(10-6, R = Dzag(lO-', We 
achieve feasibility of the problem (IZ), and by minimizing 
the linear objective, we obtain the P matrix verifying the 
asymptotic stability and guaranteed-cost robustness 

[ 6.94 10-3 5.70 1 0 - 7  
5.70 10-15 7.27 10-3 P =  

We achieve a feasible solution of required accuracy with best 
objective value: J = 14 Next, we 
will perform a series of simulations in Matlab - Simulink. 
These simulations are executed comparing the behavior of the 
system with regards to time-sample variations, for each control 
channel (pan and tilt). The controllers are implemented in C- 
language and are used to control the real camera platform as 
well. 

The first simulation is performed for the regulation of 
position reference values of a point p (image feature), for both 
sampling times ~~f~ = 40 msec. and T,,, = 100 msec. All 
values of sampling-time within the limits [ ~ ~ i ~ ,  T ~ ~ ~ ]  show 
stable behavior. Fig. 4 shows the response by regulation w.r.t 
pd = [0, 0lT. The upper-part shows both the error profiles and 
the camera regulation responses for the k-channel (middle- 
part) and y-channel (lower-part). The regulation is done for the 
size of the image. The error is settled to zero after a270 msec. 
for the system sampled atr = 40 msec., while for the system 
sampled at T = 100 msec., the error settles after x230 msec. 
The middle- and lower-parts of Fig. 4 show a step-response 
for each channel. The system sampled at rmi, has a smoother 
response, which translates to a camera rotation without shake, 
which in term translates to a settlement without overshoot. 
The system sampled at T~,,, has a dead-beat behavior with 

and tr(2) = 14 

Fig. 4. 
regula ion 

Comparison hetween systems sampled at 40 and 100 msec. for 

faster response (up to 140 msec. to reach 90% of the reference 
value) and an overshoot of (= 6%). 

The second simulation is performed for the tracking of the 
same feature, for both sampling times rmin = 40 msec. and 
rmaz = 100 msec. with inducing in the reference values an 
error profile of a sinusoidal shape. Fig. 5 shows both the 
error profiles (upper-part) and the camera tracking responses 
for x-channel (middle-part) and y-channel (lower-part). The 
tracking error presents a saw-teeth shaped oscillation around 
the sinusoidal shape of the error fluctuation. This oscillation 
is due to the integration factor that the sampled position 
undergo in the closed-loop, thus is more pronounced for the 
time sampling T ~ ~ ~ .  The oscillation does not appear in the 
regulation case because of the signal flatness between two 
reference values. The oscillation is bounded to % 8% of 
the error amplitude, while the error fluctuation is bounded to 
x 2% of the amplitude of the tracked profile of reference. 

1 I" 

. . . . . . . .. . . .. . 

5 I g o  ... S 2- *pkJ7* . .,... b. p ... .. . - _? . . .. . . . . . . 

Fig. 5. 
tracking 

Comparison helween systems sampled at 40 and 100 msec. for 
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The delays between reference values and output response for 
the tracking scheme are respectively about 80 msec. for the 
system sampled at r = 40 msec. and 70 msec. for the one at 
T = 100 msec., that is for both the channels x and y. 

- sm m"mnC8. 
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Fig. 6. Camera angles regulation using angular rate control 

Third, we run an experiment on the real camera platform, for 
regulation. Fig. 6 show a scenario in which a beacon whose 
pattern permits to identify the featue is placed suddenly in 
the image field of a the camera. The camera is controlled 
in angular rate control mode, and responds by centering the 
feature in the image.Fig. 6 shows both the error profiles (upper- 
part) and the camera pose responses for the x-channel (middle- 
part) and y-channel (lower-part). The last two profiles in Fig. 
6 are in degrees, and these readings are done at sampling time 
of 0 8 8  msec. The x-channel presents an overshoot of sz 14%, 
with a time response of sz 1.3 sec. for both channels.The 
profiles show overshoots for both the x- and y-channels; this 
o c c m  mainly due to coupling between the two channels. The 
time responses for the real platform are longer than this of 
simulation model. This is due to the camera DC-motor closed- 
loop dynamics, which are not taken into account in the model 
used for simulation. 

Last, we proceed similarly as experiment 3, with moving the 
camera over the pattem, or moving the pattem in front of the 
camera. This results in a profile tracking scheme whose results 
are illustrated in Fig. 7. Both the error profiles for the x- and y- 
channels are shown in the upper-part of  Fig. 7, and the camera 
pose responses for the x-channel (middle-part) and y-channel 
(lower-part) illustrate the rotation of the camera in pan and tilt 
in order to center the feature in the image. The amplitude of 
the error fluctuation is higher the one in the simulation case. 
This is due to the latency of the camera DC-motors responses 
to the control signal. The last two profiles in Fig. 7 are in 
degrees. The sudden artifacts in the pose profiles are mainly 
due to reading errors of the camera angles (absence of sensor- 
data when queried by the control software), and do not affect 
in any case the control performance. 

Fig. 7. Camera angles tracking using angular rate control 

VI. CONCLUSIONS 
This paper presented a novel method for the design of 

a fuzzy gain scheduled discrete-time control that is able to 
deal with varying sampling-times. The design was applied to 
the problem of visual-servoing which is a nonlinear control 
problem where the varying sampling-time is due to image- 
processing. The results show the effectiveness of the proposed 
design method. 

Future work will be dedicated to exploring the robustness 
of the system developed to both sampling-time uncertainty, 
unstructured uncertainties and extemal disturbances in actual 
UAV flight senarii. 
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