
Online Sparse Gaussian Process Regression for
Trajectory Modeling

Mattias Tiger
Department of Computer and Information Science

Linköping University, Sweden
Email: mattias.tiger@liu.se

Fredrik Heintz
Department of Computer and Information Science

Linköping University, Sweden
Email: fredrik.heintz@liu.se

Abstract—Trajectories are used in many target tracking and
other fusion-related applications. In this paper we consider the
problem of modeling trajectories as Gaussian processes and
learning such models from sets of observed trajectories. We
demonstrate that the traditional approach to Gaussian process
regression is not suitable when modeling a set of trajectories.
Instead we introduce an approach to Gaussian process trajectory
regression based on an alternative way of combing two Gaussian
process (GP) trajectory models and inverse GP regression. The
benefit of our approach is that it works well online and efficiently
supports sophisticated trajectory model manipulations such as
merging and splitting of trajectory models. Splitting and merging
is very useful in spatio-temporal activity modeling and learning
where trajectory models are considered discrete objects. The
presented method and accompanying approximation algorithm
have time and memory complexities comparable to state of the art
of regular full and approximative GP regression, while having
a more flexible model suitable for modeling trajectories. The
novelty of our approach is in the very flexible and accurate
model, especially for trajectories, and the proposed approxima-
tive method based on solving the inverse problem of Gaussian
process regression.

I. INTRODUCTION

Gaussian processes [1] (GPs) is a flexible and powerful
Bayesian non-parametric approach to modeling functions and
performing inference on functions. They have been demon-
strated to be practical and applicable to a wide variety of
real-world statistical learning problems but also modeling,
detecting and predicting spatio-temporal trajectories such as
vehicles in crossings [2], marine vessel paths [3] and human
body dynamics [4]. GPs are also good for handling noisy or
missing data [2], [4], where large chunks of trajectories can
be reliably reconstructed.

The usage of GPs for modeling purposes can be divided into
two categories, (1) where an underlying function with exactly
one function value for every input is sought from a set of data
points or (2) where a distribution over functions is sought
from a set of functions represented by sets of data points. In
the first case we want to recover a function in an unknown or
noisy environment where the variance of the GP distribution is
the uncertainty of the predicted underlying function value. In
the second case the variance of the predictive GP distribution
should capture the paths of allowed or expected functions.
Examples of the later are the modeling of allowed robot arm
moment trajectories for task learning by demonstration [5] and

modeling expected spatio-temporal car trajectories in crossings
for traffic understanding and prediction [2]. This approach
is useful for modeling trajectory clusters and for modeling
motion paths. The second (2) modeling purpose is the focus
of this paper.

Gaussian process regression is the inference of continuous
values from a set of data with a Gaussian process prior. In this
paper we demonstrate that the traditional approach to Gaussian
process regression is not always the best option when GPs are
used for modeling multiple trajectories. Instead we introduce
an approach to Gaussian process trajectory regression based
on an alternative way of combing two GP trajectory models
and solving an inverse GP regression problem. Our method
requires an existing Gaussian process regression algorithm for
most applications, but is not limited to any specific algorithm
since our method only needs to be able to evaluate the predic-
tive mean and predictive variance of a GP distribution. This
means that recent and future improvements of GP regression
algorithms directly benefits our approach as well.

The benefit of our approach is that it allows for the
usage of all available data, works well online and allows
for sophisticated trajectory model manipulation. The flexibil-
ity of the methodology allows the merging and splitting of
trajectory models, both parallel and sequential in the input
space, accurately and in an efficient manner. The splitting and
merging is very useful in spatio-temporal activity modeling
and learning where trajectory models are considered discrete
objects capturing for example a typical left turn or a slow
down in a traffic monitoring application [6]. The presented
method and accompanying approximate algorithm have time
and memory complexities comparable to state of the art of
regular full and approximative GP regression, while having a
more flexible model for trajectory model manipulation.

The novelty of our approach is in the very flexible and
accurate modeling, especially for trajectories, and the proposed
approximative method based on solving the inverse problem
of Gaussian process regression.

The structure of the paper is as follows. Section 2 provides
the background to Gaussian processes and Gaussian process
regression and section 3 contain related work. Our approach
to trajectory modeling is presented in section 4 where we
introduce the trajectory aggregation methods of combining and
fusion and end the section with a computational complexity

analysis. Section 5 describes sparse inverse Gaussian process
regression which is used in section 6 for our approach to sparse
Gaussian process trajectory regression. This section describes
trajectory learning in batch, online and contain a discussion of
the complexities of the algorithms. Experiments are presented
in section 7 and our conclusions in section 8.

II. GAUSSIAN PROCESS REGRESSION

A Gaussian process is a distribution over functions,

f ∼ GP(m, k), (1)

where the function f is distributed as a GP with mean function
m and covariance function k. The mean function is often
assumed to be zero, m(x) = 0, which means that a subtracted
mean value of the data must be kept and handled outside of any
Gaussian process regression in many applications. In this work
we make use of the squared exponential kernel function (Eq.
2) which is commonly used in Gaussian Process regression.

k(x1, x2) = θ20e
−
||x1−x2||

2
2

2θ2
1 , (2)

where θ20 denotes the global variance of the mapping and θ21
denotes the global smoothness parameter of the mapping. It
provides a non-linear kernel space which allows a Gaussian
process to model arbitrary non-linear functions.

In Gaussian process regression (GPR) [7] we want to
estimate a mapping f ,

y = f(x) + ε, ε ∼ N (0, σ2
ε), (3)

from a set of data points {xi, yi, σ2
εi | i = 1, . . . , N} =

{x, y, εσ}, where x, y and εσ are column vectors of the
input, output and output noise respectively. The observation
noise ε might be unknown but possible to estimate or even
zero in the case of noise free observations. The noise is
often assumed identically distributed for all data points. The
parameters learned in GPR are the hyper parameters, in our
case θ0 and θ1 (Eq. 2), and they are found by optimizing
over the marginal likelihood function P (y|x) of the Gaussian
process,

logP (y|x) = −1

2
yTV−1y− 1

2
log(det(V))− 1

2
N log(2π),

(4)
where V = K(x, x) + diag(εσ) and K(a,b) is the Gram
matrix with entries Kij = k(ai,bj) given by Eq. 2. The hyper
parameters θ0 and θ1 that maximize the log likelihood are
found by numerical optimization, but since the problem is non-
convex only a local minimum is guaranteed and a good initial
guess or the usage of random restarts is important.

For Gaussian process regression we assume a prior distribu-
tion over the function space. A prior distribution is shown in
Fig. 1 (left) for the case of no previous training data (with the
prior θ0 = 1 and θ1 = 2), in which the predictive distribution
is flat with constant variance, and in Fig. 1 (middle) for
the case that two data points have already been learned. A
posterior distribution is calculated when some training data
has been added to the process, which is illustrated in Fig. 1

(middle) for adding two data points and in Fig. 1 (right) for
adding one additional data point. The third data point is noise
free, while the two first data points was accompanies by some
observation noise.

Fig. 1. Three GP probability density functions (pdf). Since GPs are generative
models it is possible to generate samples from the distribution. Five function
samples for each pdf are plotted in different colors. The pdf mean is showed
as a thick red line and the 95% confidence is shown in light red around the
mean. (Left) GP Prior. (Middle) GP Posterior with two data points. (Right)
GP Posterior with three data points

The mean and confidence are shown in Fig. 1 are calculated
by the predictive mean function (Eq. 5) and predictive variance
function (Eq. 6) of the posterior GP distribution.

µ(x∗) = m(x) + k(x∗, x)V−1(y−m(x)), (5)

σ2(x∗) = K(x∗, x∗)−K(x∗, x)V−1K(x∗, x)T . (6)

The predictive mean and variance functions provide the pos-
sibility to represent the posterior distribution as a Gaussian
distribution at any point x∗,

P (y∗|x, y, x∗) = N (µ(x∗), σ2(x∗)). (7)

Gaussian processes are continuous in the input x of the
mapping (Eq. 3) and provide a value (the predictive mean)
and an uncertainty (the predictive variance) everywhere in the
domain of x.

The drawback with using GPs is their high computational
costs. The optimization of the hyper parameters for training
requires the inversion of a matrix (V) as seen in Eq. 4 which
has the complexity O(N3) in the number of data points
N . The evaluation of the predictive mean (Eq. 5) and the
predictive variance (Eq. 6) has the complexity O(N) and
O(N2) respectively per evaluated input x∗ given that V−1

is pre-calculated. To reduce this computational cost a number
of approximative inference approaches for a sparse posterior
have been developed [8][9][10].

III. RELATED WORK

There are several approximative methods for sparse GPs.
Snelson and Ghahramani [8] introduce a set of pseudo-
inputs as parameters in the covariance of their GPR model
to get a sparse regression method with O(NM2) training
time complexity and O(M) respective O(M2) prediction time
complexity per prediction, where M is the number of pseudo-
inputs. Further approximations to this method combine local
and global approaches which can perform even better under
certain circumstances [11]. Local GP models [12] split the
input domain into patches with a set of GPs modeling different

patches, thereby reducing the over all complexity of training
and prediction to each patch’s GP. This do however introduce
problems with how the local models should overlap, and how
to handle high densities of data in a single or several patches.

The sparse GP method of Snelson and Ghahramani requires
all observed data points to be saved which means that the
models grow linearly with the number of observations and
prediction is computationally expensive for large data sets.
The online sparse GP method of Ranganathan et al. [9] have
an approximation that only keeps a window of data points
with a ”oldest-first” discarding strategy. Hensman et al. [10]
get around the limitation of saving data points by using a
set of global data points in a different way than Snelson and
Ghahramani by using stochastic variational inference. In their
approximative approach of online sparse Gaussian processes
for Big Data the memory complexity is bounded in the
number of induced points they use. As a consequence the time
complexity for learning becomes O(K3) per data point and
O(K) respectively O(K2) for predicting mean and variance
per prediction respectively, where K is the number of inducing
variables. The memory complexity is O(K). This means that
the complexity of their approximation becomes independent of
the number of data points, which allow much larger number
of pseudo-inputs compared to the other approaches.

Modeling trajectory clusters is an important problem for
trajectory clustering approaches to traffic behavior understand-
ing [13]. Two approaches currently used are route envelopes
consisting of a chain of connected nodes with breadth in their
normal direction [14], chains of Gaussian distributions and
Hidden Markov models [15]. The former method is susceptible
to noise and is made more robust by defining the envelope
probabilistically. Gaussian distributions have been widely used
for this purpose. Gaussian processes is a generalization of a
chain of Gaussian distributions.

Kim et al. [2] use GPs to model trajectories in a traffic
monitoring application and address two important issues.

The first is how to model trajectories which may have
different lengths. This is solved by normalizing all trajectories
to run between time-point 0.0 and 1.0, given that they overlap
fully spatially in the input domain.

The second is how to handle multiple GP trajectory models
trained from different numbers of trajectories. The issue here
is that the confidence band of a GP is narrower in regions
with more samples, and it is therefore unfair to compare an
input trajectory to the trajectory models because of uneven
concentrations of data points within these models. Kim et
al. balances the different trajectory models by a sampling
strategy. They train GP models by using a representative set
of observed trajectories known to be of the same class. These
trajectories are normalized in a number of evenly distributed
time segments and the data points used for training are selected
by sampling the interpolated trajectories for a number of
samples at each time segment. The number of samples at each
time segment need to be the same for all learned trajectory
models and they choose to sample three times per segment.
This means that regardless of the number of representative

trajectories of a class, only three of these will at any time
segment be selected to sample from and to represent the class
in this segment. This certainly provides good results with high
probability, but the technique imposes limitations on future
refinements of the model.

The approach we present allows us to make use of every
continuous time point of all observed trajectories which we
consider to be of the same class. This without having to
worry about the issues related to varying data density between
different time segments and varying number of observed
trajectories used to learn the different classes’ models. Our
approach therefore allows future refinements without having to
relearn the representative model from scratch and does in fact
provide efficient online learning capabilities for continuous
refinement of the models for each new observed trajectory.

IV. TRAJECTORY MODELING

For a given trajectory class that we want to model, we
assume that it is representable by a Gaussian process posterior
distribution. An example of a trajectory class capturing a
2D turn is shown in Fig. 2. The Gaussian process posterior
distribution’s predictive-mean function captures the mean tra-
jectory path of the class. The predictive-variance function of
the GP posterior distribution captures the allowed variance
of trajectory paths, the density within which any trajectory
belonging to this class is expected to reside within. In the case
of trajectories of higher dimension, for example 2D positions
or a larger state space model, the trajectory class is modeled
using a Gaussian process for each dimension for simplicity
reasons. Treating the dimensions as independent introduces
some limitations because we cannot capture the covariance
between the outputs of each dimension, but we are still able
to model common trajectories. We leave to future work to
handle this for example using dependent GPs [16]. The two
1D GP models constituting the x- and y-dimensions of the full
2D trajectory class model in Fig. 2 are shown in Fig. 3.

Fig. 2. A 2D GP model of a right turn class in a crossing. The black dots
are the data points observed as part of 100 individual trajectories.

Fig. 3. The left figure shows the GP mapping normalized time t ∈ [0 1] to
the position in x-dimension (y1 = f(t)), while the right figure shows the GP
mapping to the y-dimension (y2 = f(t)).

The first model to consider is the one which is learned
from a single observed trajectory. It is reasonable to model
a single observed trajectory using a Gaussian process with its
inherent smoothing properties, given our assumption that the
underlying model producing or explaining the observation is a
Gaussian process. The smoothing of the trajectory compared
to the observed points come from the ability of GPs to account
for observation noise. We assume that trajectories are smooth,
and that the posterior GP distribution of an observed trajectory
is a good representative model of the un-observed trajectory
of which the observations are samples of. This is illustrated in
Fig. 4. Models of single trajectories are modeled using GPs
and standard GPR is used.

Fig. 4. The underlying function in blue is observed at 15 random x-values
(blue diamonds) as y = f(x) + ε (red diamonds) with ε ∼ N (0, 0.52). The
GP predictive distribution of the GP regression using the observed data points
is shown with the mean as a red dashed line and the 95% confidence in light
red.

Now that we are able to generate models of single tra-
jectories, we would like to aggregate a set of observed
trajectories modeled as GP posterior distributions into a new
joint distribution of all the trajectory models together. The
traditional approach would be to perform GP regression on the
original set of data points from all the trajectories. However,
this does not consider that each trajectory’s data points are
related and that the total set of data points are not independent,
noisy samples from a single underlying process. Instead we
therefore aggregate the trajectory models by treating each
GP distribution as infinitely many point-wise Gaussian dis-
tributions seen as slices (Eq. 5-6). Using this approach we
can both combine and fuse trajectory models. Combining is
suitable for aggregating models of different trajectories while
fusion is suitable for aggregating different models of the same

trajectory. An example of the difference between regular GP
regression and our approach to combining is shown in Fig. 5.
The combining provides a Gaussian approximation of the
distribution of a set of trajectories at each slice. It is a way to
utilize the knowledge that the data points are divided into sets
representing trajectories. Because of this, we argue that the
representation is better in the case of modeling trajectories
than merely GP regression over the total set of data points
belonging to all trajectories in question.

Fig. 5. Two trajectories are observed, one is blue and the other is red. The
black/grey GP posterior in the top figure is the result of GPR of the data points
from both trajectories while the bottom figure is the result of the combining
of the two individual GP posteriors of each trajectory. The GP of all points
do only barely capture the most likely trajectory paths (their predictive mean)
of the two trajectories. The combined posterior captures the uncertainties in
respective trajectory observation and accounts for this for both of them.

A. Combining trajectory models

Consider the case of each GP distribution representing a
single trajectory. For a given slice for any given model we
view the Gaussian distribution to be a distribution over a set
of data points {zk}Nk=1 which we do not know except for
their total mean and variance. Each Gaussian distribution of
each model for a given slice contains an equal amount of data
points since they all represent the same number of observed
trajectories (namely one trajectory each). The data points of
each Gaussian distribution is unique since the trajectories of
each model are unique observations. Given the mean and
variance of each Gaussian distribution {N (µj , σ

2
j)}Jj=1 of a

slice, we can calculate the total mean and variance of all the
unknown data points zk of all the Gaussian distributions. How
this is done at any slice, indexed by x∗, is shown in Eq. 8-9
and these two equations constitutes the combining formula,
which are derived in the appendix based on a re-written form
of the population mean and population variance formula.

µ(x∗) =

∑J
j=1Njµj(x

∗)∑J
j=1Nj

, (8)

σ2(x∗) =

∑J
j=1Nj(σ

2
j (x

∗) + µ2
j (x

∗))∑J
j=1Nj

− µ(x∗)2, (9)

where µj(x∗) and σ2
j (x

∗) are the predictive mean and variance
functions (Eq. 5-6) respectively. With the same amount of
data points per set, these can be simplified by setting each
Nj = 1, which is the case since the normalization by the sum∑J
j=1Nj makes the weighting with {Nj}Jj=1 relative and not

absolute. However, if one of the trajectory models is based
on two trajectories instead of one as the rest, then Nk of that
set is twice as large compared to the other sets, i.e. Nk = 2.
This provides a straight forward way of combining trajectory
models learned with varying amount of training data (in the
number of trajectories, independent of the number of data
points in each trajectory). Nj in Eq. 8-9 is thereby the number
of trajectories used to learn trajectory model j.

B. Fusion of trajectory models

One of the issues with local GP models is how the local
models should overlap as well as how to perform coherent
prediction over a chain of connected local GP models. In
our setting this problem can be managed by applying the
fusion formula [17] on the predictive mean and variance of the
respective local GP posterior distributions. The resulting fused
posterior distribution is a single continuous GP posterior-like
distribution.

σ2(x∗) =

∑J
j=1Nj∑J

j=1Nj(σ
2
j (x

∗))−1
, (10)

µ(x∗) = σ2(x∗)

(∑J
j=1Nj (σ

2
j (x

∗))−1 µj(x
∗)∑J

j=1Nj

)
(11)

Eq. 10-11 show a modified version of the fusion formula
which also incorporates weights Nj that work in the same
way as in the combining formula. However, when fusing two
or more local GP models they will in most cases represent
pieces of the same trajectory model and therefore model the
same number of trajectories, i.e. Nj = 1 for all j. Fig. 6 shows
combining and fusion of two Gaussian distributions, slices of
the predictive distribution of a GP.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Combine

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Fusion

Fig. 6. Combining and Fusion of two Gaussian distributions with N1 =
N2 = 1. The blue Gaussian distribution has mean 0 and variance 0.1. The
red Gaussian distribution has mean 1 and variance 0.3.

Applying the fusion formula to the predictive distribution of
multiple chained local GP models provides a straight forward
way to get a predictive distribution, although it might be
reasonable to reduce the influence of local models that are
not next to each other for computational reasons.

It is also possible to merge local models by providing
the fused predictive distribution to the sparse inverse GPR
(SiGPR) algorithm described in the next section.

C. Computational Complexity

The point-wise mean and variance of the aggregated model
are functions which are continuous in space and correspond
to the predictive mean function and predictive variance func-
tion of a GP distribution. The aggregated distribution of
the trajectory GP posterior distributions can be assumed to
be a posterior GP distribution with an unknown mean and
covariance function as well as unknown data points regressed
over. What is known is its predictive mean and variance
function.

If each trajectory is modeled by its own GP model then the
space and time complexity of the regression of the aggregated
model is amortized since we have a collection of locally
overlapping models. The time complexity of GP regression
for the aggregated model is O(TK3), where T is the number
of trajectories and K is the (maximum) number of data points
for any single trajectory. The time complexity of prediction has
also improved and is O(TK) for the mean and O(TK2) for
the variance. The space complexity is the same as for regular
GPR models.

The methods for trajectory model aggregation described in
this section have a space and time complexity which grows
linearly in the number of trajectories. Although this time
complexity is a huge improvement compared to simultaneous
Gaussian process regression of all data points, it can still
be prohibitive to perform predictions for very large data sets
with large numbers of trajectories or individual trajectories
consisting of dense observations. Also the memory complex-
ity can be prohibitive when storing all data points of all
trajectories observed. This problem arises in Big Data and
in online unsupervised applications with never ending flows
of information. An often desired characteristic in such online
unsupervised learning applications is to have a model that do
not grow memory-wise with additional data.

Hensman et al. [10] achieve this with the approximation
of using a set of representative inducing variables, smaller
than the total number of data points, which are solved for by
stochastic variational inference. The complexity for adding a
new data point online becomes O(K3) and O(MK3) for a
batch of M data points, where K is the number of inducing
variables. This allows the selection of K to be independent
of the total number of data points in the data set (N), and
thereby allows K to be much larger than for SPGP by Snelson
and Ghahramani [8] with time complexity O(NK2), where
N needs to be the entire data set while K is a smaller set of
pseudo-inputs (inducing variables). In the method by Hensman
et al. only the inducing variables are needed for prediction
and the complexity is reduced to O(K) and O(K2) for the
predictive mean and variance respectively.

We will in the following sections demonstrate how to
achieve similar time and memory complexities as Hensman et
al. but as an approximation to the trajectory model aggregation
by combining described above. We also use inducing data
points but we do not minimizing the KL divergence of a
lower bound of the log likelihood which they do. Our problem

formulation is that we have an aggregated (e.g. combined)
posterior distribution that we want to model by a single
posterior distribution of an unknown GP, using a limited set
of inducing data points. This is done by learning a parametric
model in the form of a GP and input data which together
produces a posterior distribution matching the wanted aggre-
gated posterior. Since we want to use a smaller set of inducing
variables than observed data points we compress a posterior
GP distribution by finding a GP and input data that produces a
approximately equivalent posterior distribution but using fewer
inputs.

V. SPARSE INVERSE GAUSSIAN PROCESS REGRESSION

In this section we present how to solve the inverse problem
to GP regression under certain limitations. More concretely,
the problem we solve is that given a measurable posterior
GP distribution with unknown data points and hyper param-
eters, recover a set of data points including their individual
observation noise and hyper parameters. The data points we
recover are called support points and we choose to let them
be distributed with uniform distance between each other in
the input domain (x) within a chosen range, see Fig. 7 for an
example.

Fig. 7. The evaluation of the predictive mean function and the predictive
variance function of a posterior GP distribution. The predictive mean is
shown as a blue line and the predictive variance is shown as a light red
95% confidence around the predictive mean. The evaluation points that are
distributed with uniform distance corresponding to x (the support points) is
shown in black and the evaluation points between them shown in red, with
the sampled mean shown as a circle and the sampled variance shown as the
height of the 95% confidence of the error bars. x consists of 10 support points
with a range of 0.0 to 1.0.

The uniform distance allows us to produce very good solu-
tions by only evaluating the known predictive mean function
and predictive variance function at and in the middle between
support points. The reason for this is the following. We first
notice that the predictive variance is independent of y and
therefore is only dependent on the hyper parameters θ0 and
θ1 of the kernel function (Eq. 2) together with the output
noise σ2

ε1...K . θ0 is a global constant that scales the predictive
variance and to a lesser extent scales the predictive mean. θ1
is a global length scale that is proportional to the influence
nearby input points have to a predicted point. It does not
affect the variance at the input points x since there the kernel

function is equal to θ0. θ1 does as a consequence affect the
variance more the further away it is from x ∈ x. With x
being distributed with uniform distance we then know that
the maximum influence of θ1 on the predictive variance will
be exactly in between each neighbor {xi, xj} ∈ x. σ2

εj is the
observation noise for yj at support point xj and contributes to
the predictive variance the most at xj and less further away
from xj . The posterior distribution is approximated because
we only use a limited number of inducing points and only
require the predictive mean to be the same at the inducing
input points x and in the middle between them. This works
well in practice because the predictive mean is smooth due to
the smooth prior on the GP due to the squared exponential
kernel function.

According to Eq. 5-6 it is necessary to know y, εσ , θ0
and θ1, which are assumed to be unknown, in order to
evaluate the predictive functions. However, we showed in the
previous section how a combined assumed predictive mean
and variance function can be evaluated without knowing hyper
parameters or regressed data points of the presumed GP
posterior distribution(s) equivalent to that of the combined
GP posterior distribution. More precisely, what we need is
to be able to evaluate a function representing the desired
mean and a function representing the desired variance of
the sought GP posterior distribution for some well chosen
argument values. This is what the aggregated trajectory models
from the previous section can provide.

The sparse inverse Gaussian process regression (SiGPR)
algorithm takes as input a vector of GP input values x =
{xk}Kk=1 and two vectors of mean respective variance values,
µtrue(xj) and σ2

true(xj) each with length M . The vector of
input values x is assumed to have values that are distributed
with uniform distance between each value. The mean and
variance vectors contain the desired mean and variance values
for the sought predictive GP distribution at each parameter
value in x and in the middle of each neighboring values
in x. Let this total vector of parameter values be called
xtotal = {xm}Mm=1 where M is 2K − 1.

We want to find the parameters in φ,

φ = {θ, y, εσ} = {θ0, θ1, y1, . . . , yK , σ2
ε1 , . . . , σ

2
εK}, (12)

which minimize the least squares error function

E(φ) = 1

2M

M∑
m=1

E2σ2(xm, φ) +
1

2K

K∑
k=1

E2µ(xk, φ) (13)

where
E2σ2(x, φ) = (σ2

est(x|φ)− σ2
true(x))

2, (14)

E2µ(x, φ) = (µest(x|φ)− µtrue(x))2. (15)

Here µest(x|φ) and σ2
est(x|φ) are the predictive mean and

predictive variance functions respectively of the GP posterior
distribution with support points {yk, σ2

εk
}Kk=1 that we are

solving for.
A solution is found using numerical optimization and the

problem is non-convex for the same reasons as for opti-
mization of the marginal likelihood function for regular GP

Fig. 8. The result of the SiGPR. The provided predictive mean is shown as a
blue line and the predictive variance is shown as a light red 95% confidence
interval around the predictive mean. The predictive mean of the estimated GP
posterior is shown as a red line and the predictive variance is shown as a light
blue 95% confidence interval around the predictive mean. Some of the support
points are shown as black circles and their corresponding input value is shown
as red circles placed on the posterior distribution. The range of the SiGPR is
between 0.0 and 1.0 and the error in this range is RMSEµ = 0.1168 and
RMSEstd = 0.0163.

training. The time complexity of the optimization hinges also
on the inversion of the matrix V in the evaluation of the
predictive mean and variance in Eq. 5-6 which potentially
changes at every optimization step. The time complexity is for
a naive implementation O(M +M2 +K3) = O(K3) where
the evaluation of the predictive mean contributes O(M), the
evaluation of the predictive variance contributes O(M2) and
the inversion of V contributes O(K3). The SiGPR of the GP
posterior from Fig. 7 is shown in Fig. 8.

VI. SPARSE GAUSSIAN PROCESS TRAJECTORY
REGRESSION

Using the combining formula and the SiGPR it is now
possible to do trajectory regression utilizing sparse Gaussian
processes for both batch and online learning. The number of
support points used in the SiGPR determines the trade-off
between low computational time and accurate approximation.
Since the support points are distributed with uniform distance
it is possible to use the Nyquist-Shannon sampling theorem
[18] to provide some guidance on the minimum number
of support points that should be used for representing the
predictive mean and variance functions of a posterior GP
distribution for a desired input range. This well known theorem
states that a function g can be fully reconstructed from samples
if g contains no frequencies higher than f hz and the sample
frequency is two times that frequency.

A. Batch Learning

For batch learning the data set is fully available and the
learning is done once. Let {Ti}Ni=1 be a set of trajectories each
consisting of sets of observed data points {xm, ym, σ2

εm}
M
m=1.

First each trajectory is modeled by GPR, with time complexity
O(NM3). Then the combined posterior GP distribution is
calculated using the combining formula and evaluated at the
inducing points in preparation for the SiGPR, with a total time

complexity of O(N(M+M2)). Finally the sparse inverse GP
regression is solved and the result is a GP model consisting
of K support points and two hyper parameters which together
produce the posterior GP distribution capturing the observed
trajectories in the data set. Inverse SPGR has a time complexity
of O(K3) and the total time complexity of batch learning is
O(NM3 +N(M +M2) +K3) = O(NM3 +K3).

B. Online Learning

For online learning the data set becomes incrementally
available over time. The GPR of a trajectory has time complex-
ity O(M3) in the number of data points M of the trajectory.
This needs to be done for each new observed trajectory as it
becomes available.

When the first trajectory has been modeled using GPs then
this constitutes the current model which is then refined with
every new observed trajectory. This is done by using the
combining formula of the current model and the GP model
of the new trajectory and then performing the SiGPR which
produces a new model which represents the previous model
and the new trajectory. The complexity for the evaluation of
the combining is O(M2 + K2) and O(K3) for the SiGPR,
where K is the number of support points. The total complexity
for each new activity is thereby O(M3 + K3) and for N
trajectories it is O(N(M3 +K3)).

The online learning has the disadvantage of the risk of error
accumulation with each SiGPR in comparison with the batch
learning, since SiGPR is an approximative algorithm. We have
therefore evaluated the error accumulation empirically in the
experiment section.

C. Complexity Discussion

By using sparse GPR methods[8][11][9][10] the time com-
plexity can be reduced to O(NMP 2+K3) for batch learning
and O(N(MP 2 + K3)) for online learning, where P is the
number of pseudo-inputs or inducing variables used. This is
very valuable in cases where the trajectories are very dense in
observed data points.

The time complexity for prediction is O(K) for the predic-
tive mean and O(K2) for the predictive variance. The memory
complexity for batch learning is O(NM) before learning
and O(K) afterwards, compressing NM data points into K
inducing variables or support points. The memory complexity
of the online learning algorithm on the other hand stays at
O(M+K) before learning and O(K) after learning each new
trajectory, in effect compressing M + K data points into K
support points.

The complexity of both batch and online trajectory learning
is comparable to the complexity achieved with the stochastic
variational inference approach [10] where they use inducing
variables that fulfill a similar purpose as our support points.
The complexity in their work and for our algorithm is linear
in the number of batches of data points (trajectories in our
case) which means that their and our number of induction
variables can be chosen to be large values independent of
the number of data points in the total data set. The memory

complexity is equally good between our methods, although
our approach requires more support points in practice than
they need inducing points since out support points are densely
distributed with uniform distance. The memory complexity of
our algorithm is O(K) in the number of support points which
means that it is independent of the number of trajectories and
of the total number of data points. The memory complexity
does not scale with higher dimensional trajectories, since a
trajectory is 1D intrinsically. For the case of a generalization
to random fields however our approach would scale O(KD)
where D is the dimension. To handle higher dimensions we
would be required to use inducing variables sparsely scattered
in a random manner in the input domain, which is possible
with the sparse GP approaches of Hensman et al. [10], Snelson
& Ghahramani [8] and others. This is however outside of the
scope of this paper since the focus is on trajectories.

VII. EXPERIMENTS

We have compared the batch and online versions of the
sparse Gaussian process trajectory regression algorithm on
a publicly available simulated traffic intersection data set
(CROSS) [15] used by others for evaluating trajectory pattern
learning and clustering. The data set contains 19 different tra-
jectory classes shown in Fig. 9. Each trajectory class contains
about 90-100 trajectories with between 1028 and 2040 data
points in total in each class.

Fig. 9. The CROSS data set with 19 classes in different colors.

Each trajectory class is first modeled using batch learning.
The resulting models are used as ground truth when testing the
online learning and analyzing the error propagation. Fig. 10
shows the average and median root mean square error (RMSE)
over all trajectory classes, both for the predictive mean and
the predictive variance of respective x and y coordinate axis.
The empirical evaluation using this data set shows a steady
reduction of the model error for each new trajectory added
and a convergence towards zero or some small constant.

Although the complexity for the online learning is slightly
higher than for the batch learning, an interesting property of
the online learning can be seen in Fig. 11. The computation
time shows a decreasing trend as a function of the number of
trajectories learned so far. This can be explained by the use of

0 20 40 60 80
0

2

4

6

8

Trajectories

R
M

S
E

 m
u

(x
−

ax
is

)

0 20 40 60 80
0

1

2

3

Trajectories

R
M

S
E

 s
td

 (
x−

ax
is

)

0 20 40 60 80
0

2

4

6

Trajectories

R
M

S
E

 m
u

(y
−

ax
is

)

0 20 40 60 80
0

1

2

3

Trajectories

R
M

S
E

 s
td

 (
y−

ax
is

)

Fig. 10. Absolute RMSE in pixels between the online learned model and
the ground truth combined model consisting of all observations. Average and
median over all 19 trajectory classes. Mean value in blue, median value in
black with plus symbols, 95% confidence in red.

weights in the combining formula, where the relative influence
of a new trajectory is decreasing as more and more trajectories
are learned. So unless the new trajectory deviates significantly
from the model the numerical optimization algorithm does not
have to take many steps to account for the change.

0 20 40 60 80

1

1.5

2

2.5

Trajectories

T
im

e
(x

−
ax

is
)

0 20 40 60 80

1

1.5

2

2.5

Trajectories

T
im

e
(y

−
ax

is
)

Fig. 11. Training time in seconds for each new trajectory, using 10 support
points and optimizing in matlab using lsqnonlin without analytical Jacobian.
Mean value in blue, median value in black with plus symbols, 95% confidence
in red.

The main source of error in the online learning is observed
to be close to the two edges in the input domain. This is
because the SiGPR does not take into consideration the GP
posterior distribution outside of the specified input range in
which the support points are placed. It might be possible to
reduce these errors by also taking the immediate outside of
the input range into account, but that is left for future work.

Examples of the learned trajectory class models can be
seen in Fig. 12, where the majority of models have sub-pixel
RMSE accuracy compared to the batch learned models and
the worst few have below 2 pixels RMSE compared to the
batch learning. The models capture the observed trajectories
very accurately and it is only at the ends some errors can be
noticed. For example the turning teal colored model in the
top-right corner might be a little bit too much to the left at
the top of the image.

All 19 models are shown in Fig. 13.

Fig. 12. Examples of the learned models in the CROSS data set. Models are
shown for 8 trajectory classes.

Fig. 13. All 19 trajectory classes and the learned GP models.

VIII. CONCLUSIONS

We have presented Gaussian process trajectory regression as
an accurate and flexible approach for modeling and learning
multiple trajectories using Gaussian processes. The approach
is based on a better way of combining Gaussian process
models of sets of trajectories than traditionally used and
solving an inverse Gaussian process regression problem. The
inverse GPR problem is to recover a set of data points
including their individual observation noise and the GP hyper
parameters, given a measurable posterior GP distribution with
unknown data points and unknown hyper parameters. The
presented method and accompanying approximation algorithm
have the same time and memory complexities as state of
the art of regular full and approximative GP regression. The
approximative algorithm has been demonstrated to converge
towards the ground truth by empirical evaluation. Besides
being more appropriate for trajectories, it also supports online
learning and sophisticated operations on trajectory models.
The operations include splitting and merging of trajectories
which is very useful in modeling and learning spatio-temporal
activities where trajectory models are considered discrete
objects [6]. We believe that the presented approach will be

the starting point for many interesting extensions, especially
in the direction of modeling and learning activities on multiple
abstraction levels.

ACKNOWLEDGMENT

This work is partially supported by grants from the National
Graduate School in Computer Science, Sweden (CUGS), the
Swedish Foundation for Strategic Research (SSF) project
CUAS, the Swedish Research Council (VR) Linnaeus Center
CADICS, ELLIIT Excellence Center at Linkoping-Lund for
Information Technology, and the Center for Industrial Infor-
mation Technology CENIIT.

APPENDIX

Here we derive the combining formula. We consider the case
where we have multiple Normal distributions which estimate
the same global population using different observations, and
we want to combine them into a single Normal distribution
using all available observations. We further consider the
population variance instead of the arithmetic variance since
we assume that there is always a variance value associated
with every sample (we do actually observe mean values
and variance values together in the application) and therefor
disregard the otherwise existing bias. The population mean
and population variance is given by Eq. 16,

µ =
1

N

N∑
k=1

xk, σ2 =
1

N

N∑
k=1

(xk − µ)2, (16)

where N is the total number of data points xk. By expanding
the paranthesis of the population variance we get an expression
relating the population variance, the squared population mean
and the squared sum of data points (Eq. 17-19).

σ2 =
1

N

N∑
k=1

(xk − µ)2 =
1

N

N∑
k=1

(x2k − 2xkµ+ µ2) (17)

=
1

N

N∑
k=1

x2k +−2µ
1

N

N∑
k=1

xk +
1

N

N∑
k=1

µ2 (18)

=
1

N

N∑
k=1

x2k +−2µµ+ µ2 =
1

N

N∑
k=1

x2k − µ2 (19)

This can be rewritten into an expression of the sum of squared
data points on one side (Eq. 20-21).

σ2 =
1

N

N∑
k=1

x2k − µ2 ⇔ 1

N

N∑
k=1

x2k = σ2 + µ2 (20)

⇔
N∑
k=1

x2k = N(σ2 + µ2) (21)

We now consider the expressions for the population mean
and population variance in Eq. 16-19 and divide respectively
expression into J partitions of data points with Nj data points
in each partition (Eq. 22-23).

µ =

∑J
j=1

∑Nj
k=1 xj,k∑J

j=1Nj
=

∑J
j=1Njµj∑J
j=1Nj

(22)

σ2 =

∑J
j=1

∑Nj
k=1 x

2
j,k∑J

j=1Nj
− µ2

J (23)

=

∑J
j=1Nj(σ

2
j + µ2

j)∑J
j=1Nj

− µ2 (24)

We can now substitute the sum of data points of each
partition for the mean of the j:th partition times the number
of data points in that partition, (Eq. 22). Likewise we can
substitute the sum of squared data points of each partition for
the expression we derived in Eq. 21, (Eq. 24). The derivation
is complete.

REFERENCES

[1] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT
Press, 2005.

[2] K. Kim, D. Lee, and I. Essa, “Gaussian process regression flow for
analysis of motion trajectories,” in Proc. ICCV, 2011.

[3] M. Smith, S. Reece, I. Rezek, I. Psorakis, and S. Roberts, “Maritime
abnormality detection using gaussian processes,” Knowledge and Infor-
mation Systems, pp. 1–26, 2013.

[4] J. Wang, D. Fleet, and A. Hertzmann, “Gaussian process dynamical
models for human motion.” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 30, no. 2, pp. 283–298, 2008.

[5] M. Schneider and W. Ertel, “Robot learning by demonstration with local
gaussian process regression.” in Proc. IROS, 2010.

[6] M. Tiger and F. Heintz, “Towards learning and classifying spatio-
temporal activities in a stream processing framework,” in Proc. of the
Starting AI Researcher Symposium (STAIRS), 2014.

[7] C. E. Rasmussen, “Gaussian processes for machine learning.” MIT
Press, 2006.

[8] E. Snelson and Z. Ghahramani, “Sparse gaussian processes using
pseudo-inputs.” in Proc. NIPS, 2005.

[9] A. Ranganathan, M.-H. Yang, and J. Ho, “Online sparse gaussian
process regression and its applications,” IEEE Transactions on Image
Processing, vol. 20, no. 2, pp. 391–404, Feb 2011.

[10] J. Hensman, N. Fusi, and N. D. Lawrence, “Gaussian processes for big
data,” in In Proc. UAI, 2013.

[11] E. Snelson and Z. Ghahramani, “Local and global sparse gaussian
process approximations.” in Proc. AISTATS, 2007.

[12] D. Nguyen-Tuong and J. Peters, “Local gaussian process regression for
real-time model-based robot control,” in In Proc. IROS, Sept 2008, pp.
380–385.

[13] B. T. Morris and M. M. Trivedi, “Understanding vehicular traffic
behavior from video: a survey of unsupervised approaches,” Journal
of Electronic Imaging, vol. 22, no. 4, pp. 041–113, 2013.

[14] N. Guillarme and X. Lerouvreur, “Unsupervised extraction of knowledge
from S-AIS data for maritime situational awareness.” in Proc. FUSION,
2013.

[15] B. Morris and M. Trivedi, “Trajectory learning for activity understand-
ing: Unsupervised, multilevel, and long-term adaptive approach,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 33,
no. 11, pp. 2287–2301, Nov 2011.

[16] P. Boyle and M. Frean, “Dependent gaussian processes,” in In Advances
in Neural Information Processing Systems 17. MIT Press, 2005, pp.
217–224.

[17] F. Gustafsson, Statistical Sensor Fusion. Studentlitteratur, 2010.
[18] H. Nyquist, “Certain topics in telegraph transmission theory,” American

Institute of Electrical Engineers, Transactions of the, vol. 47, no. 2, pp.
617–644, April 1928.

