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Abstract—The ability to automatically, on-demand, apply pat-
tern matching over streams of information to infer the occurrence
of events is an important fusion functionality. Existing event
detection approaches require explicit configuration of what events
to detect and what streams to use as input. This paper discusses
on-demand semantic event processing, and extends the semantic
information integration approach used in the stream processing
middleware framework DyKnow to incorporate this new feature.
By supporting on-demand semantic event processing, systems
can automatically configure what events to detect and what
streams to use as input for the event detection. This can also
include the detection of lower-level events as well as processing
of streams. The semantic stream query language C-SPARQL is
used to specify events, which can be seen as transformations
over streams. Since semantic streams consist of RDF triples, we
suggest a method to convert between RDF streams and DyKnow
streams. DyKnow is integrated in the Robot Operating System
(ROS) and used for example in collaborative unmanned aircraft
systems missions. 1

I. INTRODUCTION

Modern fusion systems are incremental in nature. The
information available is often in the form of sequences of time-
stamped values, streams, and it is necessary to react to events
in a timely manner. For the system to detect a high-level event
it is usually necessary to combine and fuse information from
diverse sources and on many different abstraction levels. This
needs to be done incrementally due to the vast amounts of
information that can be made available in a short time period.

The incremental reasoning over stream data is called stream
reasoning [1], [2]. Stream reasoning is necessary to support
important functionality such as situation awareness, execution
monitoring, and planning [3]. Stream reasoning can be used
to determine the truth value of logical formulas, or infer the
occurrence of high-level events from low-level information.
Event processing is a well-established research area with many
existing approaches to detecting events in streams [4], [5]. The
Semantic Web community is also working on stream reasoning
over streams of time-stamped RDF triples [6]–[9].

Using existing event processing approaches it is necessary to
specify exactly what events to detect and what inputs to use. In
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this work we present a solution to the problem of automatically
configuring a system on-demand to detect a given high-level
event. The solution is recursive in nature so that the detection
of one event may trigger the detection of other events as well
as other types of processing of streams. This allows the system
to declare its interest in an event without explicitly configuring
all the processing needed to detect instances of the event.

Consider for example a UAV monitoring its speed in order
to detect that it is flying too fast. Rather than subscribing
directly to a speed sensor providing fluctuating values, it is
much more convenient to declare an interest in occurrences of
a high-speed event. This event could for example be defined
as the average speed of the UAV over the last five seconds
exceeds a maximum speed threshold.

In this paper, we present an extension to our earlier work
on the semantic integration of streams and transformations
over streams to also include event processing. Our contribution
allows a system to automatically determine the necessary
information for detecting a particular event. This could include
the detection of other events that in turn require further
information to be collected. This functionality is very use-
ful both for autonomous systems and command and control
applications which need to detect important events and react
to them.

The remainder of this paper is organised as follows. In
Section II, previous work towards semantic matching and
DyKnow is covered. In Section III, we clarify what we
mean with the term ‘event’, and in Section IV a method is
proposed for the semantic integration of events. Finally, in
Section V we describe how semantic matching can be used to
support on-demand semantic event processing in the context
of C-SPARQL and DyKnow, before concluding the paper in
Section VI.

II. PREVIOUS WORK

One major problem for high-level symbolic reasoning with
low-level quantitative information is the difficulty associated
with mapping information in streams to symbols. One way of
achieving this mapping is by referring directly to the streams
containing the desired information. However, this approach
suffers from a number of draw-backs. When the number
of streams grows this approach scales poorly. Furthermore,
human error in the referencing of streams is a reasonable



concern, especially as the number of streams increases. The
effects of a broken or incorrect mapping can be severe.

To address these problems we have developed a semantic
matching approach using semantic web technologies [10]–
[12]. We use an ontology to specify a common vocabulary
with which both streams and available transformations over
streams are annotated. Given an ontological concept, semantic
matching returns a stream specification that can be used
to construct a stream containing the desired information.
A stream specification can be quite complex, involving the
filtering, merging and synchronisation of numerous streams,
as well as the performing of transformations on streams
in order to produce higher-level information. Streams can
therefore be semantically annotated by their creators and
found based on this annotation. Additionally, if no stream
containing the desired information can be found, the annotated
transformations can be used to automatically generate a new
stream containing the missing information. This functionality
has been integrated in the stream-based knowledge processing
middleware framework DyKnow [13]–[15].

DyKnow is tasked with handling and manipulating streams
and was designed as a tool for bridging the sense-reasoning
gap [16] that exists between crisp high-level symbolic knowl-
edge and the noisy and incomplete quantitative low-level data
originating for example from sensors. DyKnow has been inte-
grated in the Robot Operating System (ROS) [17] and used for
example in collaborative unmanned aircraft systems missions.
Its high-level architecture is shown in Fig 1. It shows the
three main components being the stream processing module,
the semantic integration module and the stream reasoning
module. The stream processing module contains functional-
ity for manipulating streams through filtering, merging or
synchronisation. It also contains a library of transformations
that can be performed on streams to generate new streams,
and it can instantiate these transformations when needed. The
semantic integration module maintains the DyKnow ontology
that describes a common language with which streams and
transformation can be semantically annotated. The stream
reasoning engine can evaluate metric temporal logic (MTL)
formulas over streams, where MTL is first-order logic ex-
tended with temporal operators. Because the focus in this
paper is on stream reasoning in the context of event processing,
this last module is outside the scope of this paper.

In previous work [10], we introduced semantic matching as
a way to find the relevant streams given a metric temporal logic
formula. Semantic matching was later extended to also handle
the case of indirectly-available streams [11], [12] by extend-
ing the semantic integration to also include transformations.
Streams and transformations are annotated with the concepts
in a common language represented by an ontology using the
Stream Semantics Language (SSL). The metric temporal logic
formulas use the common language to refer to features, objects
and sorts. Here a feature represents a property or relation for
which the value may change over time. These properties and
relations describe objects in the environment. An object can
for example be a UAV or a road. Finally, sorts are collections

Fig. 1: High-level overview of DyKnow

of objects based on some commonality, e.g. being a vehicle.
Ontologies allow us to specify hierarchies of concepts. We
can thus represent knowledge such as a UAV being a kind of
vehicle. The same is true for features. Aside from representing
hierarchies, an ontology can also be used to encode other static
knowledge. One example presented in previous work [11] is
the encoding of unit conversion information.

The extended semantic integration approach is in line with
recent work on semantic modeling of sensors [18], [19] and on
semantic annotation of observations for the Semantic Sensor
Web [20]–[22]. An interested approach is a publish/subscribe
model for a sensor network based on semantic matching [20].
The matching is done by creating an ontology for each sensor
based on its characteristics and an ontology for the requested
service. If the sensor and service ontologies align, then the
sensor provides relevant data for the service. This is a complex
approach which requires significant semantic modeling and
reasoning to match sensors to services. Our approach is
more direct and avoids most of the overhead. The presented
approach also bears some similarity to work by Whitehouse et
al. [23] as both use stream-based reasoning and are inspired
by semantic web services, and RoboEarth [24], which made
it possible for robots to share plans and models by utilising
semantic web technologies, making this knowledge available
on demand from a centralised server.

III. EVENT PROCESSING FOR STREAM REASONING

As has recently been pointed out by Ziafati et al. [25]:
“DyKnow does not support event-processing, dynamic sub-
scription and on-demand querying mechanisms presented in
our work.” This lack of explicit event processing support is
a potential shortcoming that we wish to address. When we
talk about events, there are many equally valid interpretations
we could use. Ziafati et al. [25] refer to an event as “a
sensory information item such as the robot’s location at a
time or the types and positions of objects recognised from a
picture.” An alternative and more general definition [26] states



that an event is “anything that happens, or is contemplated
as happening.” Considering that DyKnow allows for stream-
generating transformations over streams, does this constitute
event processing support? One may reasonably argue that
every piece of information being generated constitutes an
event, or take a more coarse approach to events. Clearly, it
is important to clarify what we mean when discussing events
in this paper. Our interpretation for the purpose of this paper
makes use of the implementation-independent stream space
concept.

Definition 1 (Stream): A stream is a sequence of samples
〈ta, tv, ~v〉, where ta denotes the time at which the sample
became available (available time), tv denotes the time for
which the sample is relevant (valid time), and ~v denotes the
values contained within the sample. A total ordering < is
assumed over the samples in a given stream for the available
time ta.

Definition 2 (Stream space): A stream space S ⊆ S∗ is a
collection of named streams, where S∗ denotes the set of all
possible named streams called the stream universe.

The execution of a stream processing system can be de-
scribed by a sequence of stream spaces St0 ⇒ St1 ⇒ . . . ⇒
Stn . Here St represents the streams at time-point t which
means that every sample in every stream in St must have an
available time ta ≤ t. In this paper, an event denotes a set
of stream space transition sequences. If one such transition
sequence occurs, the event is said to occur.

Definition 3 (Event): An event is described by a set of
stream space transition sequences, St0 ⇒ St1 ⇒ . . . ⇒ Stn

where ti < ti+1. If any transition sequence in the set occurs,
the event is said to occur.

An event occurrence is usually associated with additional
information that may for example relate to (some of the) values
that fulfilled a set of constraints or a pattern from which the
set of stream space transitions is derived. By performing event
checks at a specified interval, an event stream is generated for
event e by a stream generator. Every event instance in this
event stream represents the fact that the constraints for e are
fulfilled and thus e occurred. Such an event stream can then be
used for more complex events. The suggested definitions have
the desirable property of being able to model events according
to both event definitions described earlier by [25] and [26], so
we reject neither.

The set of stream space transition sequences gives a com-
plete description of the pattern or constraints describing an
event. However, this complete description is often hard or
even impossible to provide due to the size of the result-
ing corresponding set of stream space transition sequences.
Thankfully there exist many languages that let the user specify
these constraints succinctly, allowing us to specify these sets
of stream space transition sequences indirectly. Due to space
limitations we only consider a few of them.

A. Overview of C-SPARQL

Continuous SPARQL (C-SPARQL) [9], [27], [28] is an
extension of SPARQL [29] for RDF data streams as part

of the LarKC project [30]. It allows for aggregation over
windows, which is not supported by SPARQL. The authors
of C-SPARQL characterise stream reasoning as “logical rea-
soning in real time on gigantic and inevitably noisy data
streams in order to support the decision process of extremely
large numbers of concurrent users.” [2]. C-SPARQL facilitates
stream reasoning in this definition.

Due to its roots in SPARQL, C-SPARQL is closely tied
to ontologies. The RDF data streams used consist of time-
stamped RDF triples, i.e. (〈subji, predi, obji〉 , τi). It com-
bines these dynamic streams with static ontologies. The lan-
guage is popular in the semantic web community and has been
used for example with Twitter feeds.

B. Overview of EP-SPARQL in ETALIS

ETALIS [7] is an open source system that can efficiently
detect complex events over data streams. Its focus is on
semantic complex event processing. An event is defined as
“something that occurs, happens or changes the current state
of affairs.” Thus, in the context of ETALIS, both low-level
sensor information streams as well as high-level complex event
patterns can be considered events, which fits our own definition
for this paper.

ETALIS implements two languages. The ETALIS Language
for Events (ELE) is a language for constructing complex event
patterns. It supports a number of causal and temporal relations
between events and is used to define Prolog-style rules. The
second language is called Event Processing SPARQL (EP-
SPARQL) [8], which is an extension to SPARQL for the
purpose of handling streams in Semantic Web applications.

EP-SPARQL extends SPARQL by adding causal and tem-
poral expressivity. For example, it supports methods such
as getDURATION() which can be used to filter based
on the duration of an event pattern. This is not supported
by C-SPARQL. In contrast, C-SPARQL supports windows
and aggregation, which are not explicitly supported in EP-
SPARQL.

C. Overview of SASE

SASE [4], [5], [31], is a complex event processing language
designed for the context of RFID event streams. It was later
extended with the Kleene closure to SASE+ [32], [33]. Un-
like C-SPARQL and EP-SPARQL, SASE does not explicitly
support Semantic Web streams.

SASE was designed based on perceived shortcomings in
existing languages for stream processing. Some examples are
the handling of non-occurrence of events and support for
sliding windows. Like ETALIS, it considers event streams
for processing. An event in the context of SASE is defined
as “an instantaneous and atomic (i.e., happens completely or
not at all) occurrence of interest at a point in time.” SASE
supports causal relations, including those that consider the
non-occurrence of events. While SASE does not consider
Semantic Web technologies, it may be possible to provide
semantic annotations to relate symbols in SASE statements
to an ontology.



IV. SEMANTIC INTEGRATION OF EVENTS

While semantic integration techniques have in previous
work been considered for streams and transformations, this
is not the case for events. Semantically integrated events are
events for which the semantic description is known, be it ex-
plicitly through the actual definition of the event or implicitly
through the usage of a semantic annotation. Event processing
can be regarded as a kind of transformation over streams that
results in a stream describing event instances. It is already
possible to semantically integrate stream transformations [11]
by relating their input and output features to the ontology. This
makes it possible for a program to interpret what information
is necessary in order to perform a transformation, and what
the resulting information is. A similar approach can be used
for event processing.

In this section, we discuss the semantic integration of
events using the C-SPARQL language as an example. C-
SPARQL is of special interest due to its basis in semantic web
technologies. It allows us to both provide explicit and implicit
semantic meaning to event processors. Our goal is to provide a
general method for semantic integration that allows a program
to find the relevant information necessary for event processing,
which could be adopted for other languages as well. To this
end, we first discuss how to semantically annotate events using
C-SPARQL. This is then followed up by considering abstract
events, or event templates.

A. Semantic Annotation of Events

The semantic annotation of streams or transformations
makes it possible to use the common language defined by
an ontology when describing these streams or transformations.
This allows a system, given some semantic concept, to identify
which streams or transformations are semantically annotated
with this concept. This process is called semantic matching. In
order to expose events for the purpose of semantic matching,
we can provide a similar annotation using the ontology as a
common language. In the case of C-SPARQL this is especially
interesting because the semantic annotation is inherent to the
language itself.

Before discussing how to use semantic annotations for C-
SPARQL statements, we first take a look at ontologies. Recall
that we consider features, sorts and objects. In an ontology, we
can distinguish between concepts and individuals. Concepts
represent sorts whereas objects are represented by individu-
als. Unary features can be represented using properties for
individuals. Some of these properties, such as colour, can be
stored in the ontology as they remain relatively static. Others,
like speed, are represented by streams instead as they can
rapidly change as time passes. An example of a feature would
be speed, whereas a sort might be UAV and an object of
that sort might be uav1. In the DyKnow ontology, speed is
described with the URI http://www.ida.liu.se/dyknow/speed. For
the purpose of semantic annotations, however, we assume a
common namespace. Consequently the short-hand notation is
used instead of the URI.

Listing 1: Formal grammar for SSL
decl : stream decl | source decl | compunit decl ;
stream decl : ’ stream ’ NAME ’ con ta ins ’ f e a t u r e l i s t

for part? ;
source decl : ’ source ’ NAME ’ p rov ides ’ f i e ld fea ture ;
compunit decl : ’ compunit ’ NAME ’ t rans forms ’

f ie ld features ’ t o ’ f i e ld fea ture ;
f ie ld features : f i e ld fea ture (COMMA f ie ld fea ture )∗ ;
f i e ld fea ture : NAME COLON NAME u n i t l i s t ? ;
f e a t u r e l i s t : feature (COMMA feature )∗ ;
feature : NAME LP feature args RP EQ

NAME u n i t l i s t ? ;
feature args : feature arg (COMMA feature arg )∗ ;
feature arg : NAME al ias ? ;
for part : ’ f o r ’ ent i ty (COMMA ent i ty )∗ ;
ent i ty : sort | object ;
u n i t l i s t : ( OPEN unit (COMMA unit )∗ CLOSE )

| ’ no un i t ’ ;
unit : NAME power? ;
power : ( ’ + ’ | ’− ’ )? NUMBER ;
a l ias : ’ as ’ NAME ;
object : e n t i t y f u l l ;
sort : sort type e n t i t y f u l l ;
e n t i t y f u l l : NAME EQ NAME ;
sort type : ’ some ’ | ’ every ’ ;
NAME : ( ’ a ’ . . ’ z ’ | ’A ’ . . ’Z ’ | ’ 0 ’ . . ’ 9 ’ )+ ;
NUMBER : ( ’ 0 ’ . . ’ 9 ’ )+ ;

Listing 2: Example SSL statements for streams
stream s1 contains a l t i t u d e ( uav1 ) = a l t [ f t ]
stream s2 contains a l t i t u d e ( uav1 ) = a l t [ f t ] for uav1 = i d
stream s3 contains speed (UAV) = spd [ mi . h−1]

for every UAV = i d
stream s4 contains x y d i s t (UAV as arg1 , UAV as arg2 ) = d i s t

for every arg1 = id1 , arg2 = id2

We can semantically annotate streams and transformations
using the Semantic Specification Language (SSL) described in
[12]. SSL annotations describe the features contained within
streams using an ontology serving as a common language.
Similarly, transformations can be described by their input
and output features. The advantage of semantically annotating
streams is that it becomes possible to find streams based on
the features they contain. The grammar is shown in Listing 1,
followed by some examples in Listing 2.

The first example statement states that stream s1 contains
information on the altitude of object uav1 in the field named
‘alt’. This is different from the second statement, which states
that stream s2 contains the same information as stream s1 with
the difference that this is only the case when the field named
‘id’ has the value ‘uav1’. The last two statements make use
of sorts that are specified in the object ontology. Stream s3
contains information on the speed for all objects in sort UAV,
where the speed information is presented in the field named
‘spd’ for the UAV object referred to in the field named ‘id’. We
can see a similar construct in the semantic stream specification
for stream s4. However, here we encounter some ambiguity
as the sort UAV occurs twice. This is resolved by using an
alias, in this case ‘arg1’ and ‘arg2’. Note that the annotations
include units of measurement so that unit conversion can be
applied if necessary. They are represented as multiplications
of units of measurement associated with their powers.



The combination of the semantic matching procedure, on-
tology, and semantic annotations of streams form foundation
for automatically finding streams based on features of interest.
To integrate SASE as an event processing language, the next
step would be to provide a semantic annotation of the terms
used in that language. An alternative would be to assume every
term directly corresponds to a feature in the ontology. In the
case of C-SPARQL, most of this work is already done for
us. C-SPARQL is based on semantic web technologies, and
therefore considers RDF triples where the object, predicate
and subject are URIs. Consider the following example.

Listing 3: Example C-SPARQL statement
REGISTER STREAM HighSpeedEvent COMPUTE EVERY 1s AS
PREFIX dyknow : <h t t p : / / www. ida . l i u . se / dyknow/>
CONSTRUCT {?uav dyknow : a l t i t u d e ?avgSpeed}
FROM <h t t p : / / www. ida . l i u . se / dyknow / onto logy . rd f>
FROM STREAM <h t t p : / / www. ida . l i u . se / dyknow / s59 . t r d f>

[RANGE 5s STEP 1s ]
WHERE {

?uav a dyknow :UAV .
?uav dyknow : speed ?spd .

}
AGGREGATE {(?avgSpeed , AVG, {?spd} )

FILTER (?avgSpeed > 100)}

Listing 3 filters altitudes pertaining to UAV objects for
which the average speed over the provided window is a value
greater than 100. The result is a stream of RDF triples at
one-second intervals. From the statement itself, the desired
information can be inferred. The speed feature assumes as
its subject ?uav. From the statement it can also be inferred
that ?uav is intended to be of sort UAV. When the query is
executed the resulting stream consists of UAV objects and their
corresponding average speed over a five-second window.

When we analyse the C-SPARQL statement more carefully,
we can observe that the statement explicitly mentions the
URI of the stream of interest. In C-SPARQL the user has to
explicitly state which stream contains the relevant information.
This could potentially result in user errors and scales poorly
with higher numbers of streams. By using our semantic
matching this is done automatically. Indeed, the arguments for
the semantic annotation of streams hold for queries as well. For
a system to automatically be able to find the relevant streams
of information in order to execute this C-SPARQL query,
some kind of semantic annotation can be used. In the case
of C-SPARQL queries, the queries themselves refer directly
to ontological concepts and properties. The ability to find the
necessary streams based on this information inherent to C-
SPARQL queries removes the need to manually specify which
streams are of relevance.

Consider the following approaches. Given a stream process-
ing framework such as DyKnow where streams are annotated
with the features they describe, the naive approach would be
to let a C-SPARQL query engine subscribe to all streams.
The query engine would be able to filter the information it
needs in order to perform the query, albeit at a low throughput
due to the potentially massive amounts of irrelevant data. A
better approach would be to consider the feature annotations

of the stream identifiers in the current stream space. In the
case of Listing 3, we are only interested in the dyknow:speed
feature. The namespace dyknow: indicates that this is a feature
known in the DyKnow ontology, which specifies the common
language used to annotate streams in the DyKnow framework.
Features that do not have this namespace must therefore be
part of static ontologies rather than streams. By filtering based
on this annotation, DyKnow can then automatically create a
stream containing only speed feature information. An even
better approach, outside the scope of this paper, is to also
consider the predicate object. For example, in the above C-
SPARQL statement the feature speed references UAV objects
rather than all Thing objects. This would further enhance
performance.

The proposed method makes it possible to infer from a C-
SPARQL query the streams containing relevant information for
query execution. This takes away the need to explicitly specify
which streams are considered during this process. While it
is still possible to specify this information using the FROM
STREAM keywords, this is no longer required.

B. Event Templates

An event template can be regarded as an abstract or in-
complete event. In Listing 3, we saw a C-SPARQL statement
that generated an event instance every time a UAV had an
average speed value greater than 100 over the five-second
window. Once provided, the query is executed. In the case
of events, we are interested in storing event declarations for
on-demand execution. An example is provided in Listing 4.
Its intended meaning is as follows. If an object of the type
specified by the argument ?type has an average speed value
that is greater than the threshold for the provided window, then
the HighSpeedEvent has occurred and both the object and its
average speed are reported.

The idea behind event templates is that an event can be
customised while retaining a reusable component. In the
example provided, it does not matter what the type of ?o is
when it comes to determining whether the HighSpeedEvent
occurred. It is possible to request dyknow:HighSpeedEvent(?o,
dyknow:Thing, ”100”ˆˆxsd:integer) if we want to generate a
stream containing HighSpeedEvent instances over every sort.
An identical approach can be taken when considering predi-
cates. Since the event templates are described by the ontology,
they are part of the common language and can be referenced
as a result.

Listing 4: Example event template
PREFIX dyknow : <h t t p : / / www. ida . l i u . se / dyknow/>
REGISTER TEMPLATE dyknow : HighSpeedEvent (?o , ?type ,

? th resho ld ) COMPUTE EVERY 1s AS
CONSTRUCT {?o dyknow : speed ?avgSpeed}
FROM <h t t p : / / www. ida . l i u . se / dyknow / onto logy . rd f>
WHERE {

?o a ?type
?o dyknow : speed ?spd .

}
AGGREGATE {(?avgSpeed , AVG, {?spd} )

FILTER (?avgSpeed > ? th resho ld )}
WINDOW [RANGE 5s STEP 1s ]



Event templates for C-SPARQL can be regarded as abstract
queries from which well-formed C-SPARQL queries can be
derived. This is done by filling in the arguments provided
for an event template, preparing a stream containing relevant
information, and filling this into the query by using the FROM
STREAM keywords and utilising the WINDOW specification
from the event template. The resulting C-SPARQL query can
then be understood by a C-SPARQL engine.

The combination of the semantic integration of events with
the ability to describe event templates makes it possible for
a machine or human to request a stream of events according
to a previously stored event template. In the next section, we
discuss how this can be used for on-demand event processing.

V. ON-DEMAND EVENT PROCESSING

We have identified and suggested methods for the vari-
ous components that, when combined, support on-demand
semantic event processing. By supporting on-demand pro-
cessing in the context of event processing, a system is able
to automatically find and prepare the necessary data and
transformations to produce a desired event stream. The intent
was to provide methods general enough to be applicable to any
stream processing framework adhering to certain criteria. In
this section, we provide a case study specific to the DyKnow
framework in the context of the scenario mentioned in the
beginning of this paper.

A. Converting Between RDF Streams and Streams in DyKnow

There exists a disconnect between RDF streams and
streams in the context of DyKnow. Semantic streams are sup-
ported by C-SPARQL and contain time-stamped RDF triples,
i.e. (〈subji, predi, obji〉 , τi) for time-point τ . In contrast,
streams in DyKnow contain samples consisting of an available
time ta, a valid time tv , and a vector of values ~v, i.e. 〈ta, tv, ~v〉.
Whereas the semantic annotation of RDF streams is inherent
to the RDF triples in the stream, DyKnow streams can contain
any value and are optionally semantically annotated with the
features contained in the streams. Concretely, RDF streams are
semantically annotated on the sample level, whereas DyKnow
streams are semantically annotated on the stream level. This
leads to some interesting consequences.

In the case of RDF streams, the semantic annotation is
inherent to the RDF triples. This is efficient since it requires
no additional annotation. Streams in DyKnow do need this
additional annotation, but this allows for them to be described
at a stream level. For example, a stream in DyKnow can be
annotated to state that the stream contains the speed feature
for every UAV object. This is not possible for RDF streams
without adding a meta-level annotation. Additionally, we can
state that the speed feature in a stream in DyKnow assumes
km/h as its unit of measurement. In RDF triples this would
involve a fourth value, although this may be resolved by
adding new data types for every unit of measurement. One
advantage of RDF streams aside from the inherent semantic
annotation is that the stream may consist of various RDF
triples with different predicates without the need for changing

its semantic annotation. In DyKnow, this can be resolved
by keeping separate streams and synchronising them when
necessary.

Listing 5: Example SSL statements for streams, continued
stream s5 contains a l t i t u d e (UAV) = a l t f t ,

speed (UAV) = spd [ mi . h−1] for every UAV = i d
stream s6 contains a l t i t u d e ( uav1 ) = a l t f t ,

speed ( uav1 ) = spd [ mi . h−1] for uav1 = i d
stream s7 contains a l t i t u d e ( uav1 ) = a l t f t ,

speed ( uav1 ) = spd [ mi . h−1]

It is clear that there exists some overlap between RDF
streams and streams in DyKnow. It is indeed possible to
convert from streams in DyKnow to RDF streams by utilising
the semantic annotations, and vice-versa. As an example,
consider a stream s5 with a semantic annotation specified in
Listing 5. According to the semantic specification, this stream
describes the altitude and speed features for all UAV objects
in feet and miles per hour respectively. Streams s6 and s7
describe these features for a single UAV called uav1. The
difference between the two is that every sample in s7 contains
information on uav1 whereas this is only the case for samples
in s6 if their corresponding ‘id’ value is uav1.

In all of the above cases, the intended result consists of
triples with predicates dyknow:altitude and dyknow:speed. In
the case of stream s5, the subject for a sample is stored in the
‘id’ field. This refers to an object in the DyKnow ontology,
and can thus easily be converted to the appropriate URI. The
type information of a feature is desribed by the ontology using
the appropriate datatype property description. The time-points
associated with the output RDF triples are the available time
ta, and the value acting as object in an RDF triple is the value
contained within the stream in DyKnow. A resulting triple can
for example look like (〈obji, predi, subji〉 , τi), where obji is
dyknow:uav1, predi is dyknow:altitude or dyknow:speed, and
obji is ”100”ˆˆxsd:integer for τ = ta. A similar approach can
be taken for the case of stream s6 by only considering those
samples where ‘id’ is uav1. For stream s7 there is no explicit
mention of uav1 in any of the values, but uav1 is inferred
as object for the associated RDF triples through the semantic
annotation.

The decribed method converts streams in DyKnow to an
RDF stream that can be used by a C-SPARQL engine to
execute queries. Such a continuous query can produce result
tables or a new RDF stream [28]. In order to use this new
stream in the DyKnow framework, it needs to be converted to a
stream in the context of DyKnow. For example, consider again
the C-SPARQL query in Listing 3 where we were interested in
all UAV objects with an average speed of over 100. The result
of this query is an RDF stream containing RDF triples ?uav
dyknow:speed ?avgSpeed. In order to convert these triples to a
format used by streams in DyKnow, we can use the ‘id’ value
to refer to the RDF subject. A second value ‘speed’ can then
be assigned the RDF object ?avgSpeed. A similar approach
can be used when handling the case of tables produced by
C-SPARQL queries.



Fig. 2: C-SPARQL computational unit

With the proposed methods for converting between RDF
streams and streams in DyKnow it is now possible to use a C-
SPARQL engine to execute queries over information contained
by semantically annotated streams in DyKnow. The resulting
RDF streams can be converted to streams in the context of
DyKnow so they can be used elsewhere.

B. Integrating C-SPARQL with Event Templates

Recall that we can consider event processors to be a type
of stream generating transformations over streams. In the
context of DyKnow, these transformations can be instantiated
as computational units. If we consider a C-SPARQL engine to
be a computational unit within DyKnow, we can leverage its
ability to do event processing. The problem is then to integrate
the engine so that it can handle streams in this framework. Fig
2 shows a diagram describing the integration architecture.

In the diagram the computational unit is represented as the
light-coloured outer box with rounded edges. The arrows on
either side represent the input and output streams associated
with the computational unit. Both arrows are connected to thin
bars representing interfaces. These interfaces convert between
RDF streams and streams in the context of DyKnow using
the approach discussed earlier. Internal to the computational
unit there are arrows connecting the interfaces to the dark-
coloured inner box with rounded edges, representing a C-
SPARQL engine taking and producing data in the form of
RDF streams.

In order to generate event streams on demand, a user or
program first needs to request a desired event type. Given such
an event type, DyKnow will access its ontology to determine
whether it knows the desired event type. Recall that event
templates are associated with event concepts in the ontology
and that the templates are stored as a property of such a
concept. Therefore, in order for DyKnow to understand the
desired event, it needs to exist in its ontology.

If the desired event type is known, DyKnow can proceed
to fetch the event template from the ontology and convert it
to a C-SPARQL query by using the provided arguments, if
any. For example, a HighSpeedEvent(?o, ?type, ?threshold) can
be instantiated as HighSpeedEvent(dyknow:uav1, dyknow:UAV,
”100”ˆˆxsd:integer) iff dyknow:HighSpeedEvent exists in the
ontology. The resulting C-SPARQL query can then be used
to determine which streams contain the desired features nec-
essary for executing the query. Semantic matching is used to

find these streams, after which DyKnow’s stream processing
capabilities are used to synchronise them. A C-SPARQL
computational unit is subsequently instantiated and subscribes
to the desired streams. The conversion interfaces convert the
stream samples to RDF streams, which are used by the C-
SPARQL engine to execute the provided C-SPARQL query.
The results are then converted to a stream in the context of
DyKnow so that they can be used elsewhere.

C. Scenario Revisited

Recall the scenario where a UAV is interested in events of
type HighSpeedEvent concerning itself at a speed exceeding
100 km/h. It first checks its ontology to determine whether the
HighSpeedEvent concept exists. If so, it fetches the associated
event template from the ontology. The event template is repre-
sented with a arguments: HighSpeedEvent(?obj, ?type, ?thresh-
old). Because our UAV is interested in its own high speed
events with a threshold of 100, it can fill in these values as
HighSpeedEvent(dyknow:uav1, dyknow:UAV, ”100”ˆˆxsd:integer).
From the resulting C-SPARQL event template, DyKnow is
able to deduce that streams of relevance are those that contain
dyknow:speed information specific to object dyknow:uav1. It
uses its semantic matching functionality to find, leveraging
semantic annotations, some matching stream containing this
information. However, in this scenario it is unable to find
such a stream. Thankfully the semantic matching procedure is
able to find an alternative by constructing a new stream with
speed information for uav1 by using an existing coordinate
stream with coordinates of all UAV objects. It filters this
stream for coordinate information on uav1. It then instantiates
a computational unit from a transformation stored in its
library that transforms coordinate features to speed features.
The new coordinate stream is used as input for the newly
created computational unit, producing a speed stream called
dyknow reserved35 concerning uav1 as its output.

With the speed information now available, DyKnow uses
the C-SPARQL event template to construct a C-SPARQL
query, filling in stream dyknow reserved35 as input stream and
automatically assigning stream dyknow reserved36 as output
stream. This yields a valid C-SPARQL query. DyKnow then
instantiates a computational unit running a C-SPARQL engine.
It provides the C-SPARQL query to the computational unit,
which can then subscribe to stream dyknow reserved35 and
prepare to publish over stream dyknow reserved36. Every sam-
ple that arrives over stream dyknow reserved35 is converted to
RDF triples by the computational unit’s conversion interface.
The RDF triples produced by the C-SPARQL engine are
similarly converted to a format that can be handled by the
DyKnow stream dyknow reserved36.

The resulting event stream is used to send a sample every
time the pattern of uav1 exceeding a speed of 100 km/h is
detected. It can be used by other computational units within
DyKnow for further processing. Where in this relatively simple
scenario we used the on-demand functionality to find and
generate the necessary sensor streams and transformations,



the same can be done with event streams, as all streams are
conceptually the same.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an approach to on-demand
semantic event processing for stream reasoning. Given a
specification of a high-level event the approach will infer the
processing needed to detect instances of the event. To achieve
this the approach extends the semantic matching functionality
used in the DyKnow middleware to handle events. To illus-
trate the approach we use C-SPARQL as a concrete event
processing language. From a C-SPARQL event definition the
extended semantic matching functionality generates a stream
processing specification that DyKnow can execute. The result
of the stream processing is a stream of RDF triples over which
the C-SPARQL query can be evaluated.

This is an important functionality since it allows a system
to automatically produce high-level event streams by trans-
forming and fusing low-level information. The approach is
recursive in nature so requesting the detection of one event
may trigger the detection of other events as well as other types
of processing of streams. This allows the system to declare
its interest in an event without explicitly configuring all the
processing needed on the many different abstraction levels to
detect instances of the event.

The suggested approach is general and can be extended
to other event processing languages such as SASE and EP-
SPARQL. Another interesting area for future work is how to
utilise events as context for stream reasoning in for example
metric temporal logic, or use them for introspection by de-
tecting changes in the stream space when e.g. a new stream
becomes available.
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