
DyKnow Federations: Distributing and Merging
Information Among UAVs

Fredrik Heintz and Patrick Doherty
Dept. of Computer and Information Science

Linköping University, 581 83 Linköping, Sweden
{frehe, patdo}@ida.liu.se

Abstract—As unmanned aerial vehicle (UAV) applications be-
come more complex and versatile there is an increasing need to
allow multiple UAVs to cooperate to solve problems which are
beyond the capability of each individual UAV. To provide more
complete and accurate information about the environment we
present a DyKnow federation framework for information integra-
tion in multi-node networks of UAVs. A federation is created and
maintained using a multiagent delegation framework and allows
UAVs to share local information as well as process information
from other UAVs as if it were local using the DyKnow knowledge
processing middleware framework. The work is presented in the
context of a multi UAV traffic monitoring scenario.1

Keywords: distributed fusion, integrated autonomous sys-
tems, multiagent systems.

In many unmanned aerial vehicle (UAV) applications it
is not enough to only have one UAV executing a mission.
Sometimes no single UAV has the capability or information
to perform all the required tasks and in many cases it is more
efficient to use multiple UAVs to complete a mission. There-
fore it would be beneficial for groups of UAVs to accomplish
complex missions in a cooperative manner. Since the UAVs
have their own limited field of view and sphere of influence
they must share and merge information among themselves
to cooperatively complete missions. The information could
include plans, observations and partial world models.

Conventional approaches to merging and fusing informa-
tion have focused on collecting information from distributed
sources and processing them at a central location. Our goal
is to allow each node to be autonomous and to do as much
processing as possible locally and cooperating when necessary.
This will make the processing more decentralized and remove
the dependence on a central node with global information.
This goal can be divided into three separate subproblems:

1) How to find and share information among nodes,
2) how to merge information from multiple sources and
3) how to cooperate and divide the sharing and merging

among multiple nodes.
As part of our ongoing research in UAV technologies we

have developed a stream-based knowledge processing mid-
dleware framework called DyKnow which provides design
and software support for developing applications integrating
sensing and deliberation [1], [2]. We believe that DyKnow

1This work is partially supported by grants from the Swedish Aeronautics
Research Council (NFFP4-S4203) and the Swedish Foundation for Strategic
Research (SSF) Strategic Research Center MOVIII.

provides an appropriate basis for a framework for integrating
information among UAVs by sharing and merging high level
information. We have previously [3] shown how DyKnow can
be used to implement most of the JDL Data Fusion Model,
which is the de facto standard functional fusion model [4]–
[6]. This shows that DyKnow has the necessary functionality
to support fusing and merging information. The focus of this
paper is therefore to show how DyKnow can be extended to
support finding and sharing information among UAVs.

The rest of the paper is structured as follows. Section I de-
scribes a multi platform traffic monitoring scenario and some
specific use cases where distributing and merging information
is required. Section II describes the knowledge processing
middleware framework DyKnow which will be used as the
starting point for the information integration infrastructure.
Section III describes the distributing infrastructure where Dy-
Know instances from participating platforms are collected into
a DyKnow federation. The federation is created and controlled
using a FIPA compliant multiagent delegation framework.
Section IV concludes the paper with a summary.

I. A MULTI UAV TRAFFIC MONITORING SCENARIO

Assume that two or more UAVs are given the task to monitor
an urban area for traffic violations. Each UAV is equipped
with the appropriate sensors and reasoning mechanisms for
detecting traffic violations. This means that each UAV could
monitor and detect traffic violations by itself. We have previ-
ously presented how this can be done using DyKnow [7].

To increase the size of the monitored area and to monitor
several different potential traffic violations at the same time,
several UAVs can be used. Even a simple approach to coopera-
tion like dividing the area between the UAVs introduces issues
related to sharing and merging information. For example, to
decide how to divide the area different characteristics of the
UAVs could be used, such as their speed, flying altitude,
sensors and available fuel. If one UAV is responsible for
dividing the area it will need to collect this information from
all platforms.

Another issue is the possibility of a traffic violation begin-
ning in one area and ending in another. This means that neither
of the UAVs will see the whole event. To handle this situation
the UAVs need to cooperate and share information in such
a way that they can detect the traffic violation together. One
approach is to let the UAV that detected the beginning of the



potential violation request the appropriate information from
the UAV in the next area. This information would have to be
seen as a stream since it is not a single piece of information but
rather an evolving description of the development of a complex
situation. Merging such a stream with local information would
allow the first UAV to detect the traffic violation even if it takes
place in two different regions.

This traffic monitoring scenario is an instance of a class
of scenarios where multiple platforms must cooperate to
complete complex missions. To succeed they need to collect,
share and merge information. A solution which handles the
issues introduced in this scenario will also provide a solution
for many other interesting scenarios. For example, instead of
having homogeneous platforms covering different parts of an
area there could be heterogeneous platforms with comple-
menting sensors each providing different types of information.
Another example is to increase the accuracy in the monitoring
by having several homogeneous or heterogeneous platforms
covering the same area. It is also possible to replace traffic
monitoring with scanning an area for injured people to do a
rescue mission or to look for troops and military equipment
to do a military surveillance mission. The traffic monitoring
instance is chosen because we could fly it today with our
current platforms and testing facilities.

II. DYKNOW

DyKnow is a middleware framework for describing, im-
plementing and interacting with stream-based knowledge pro-
cessing applications [1], [2]. Processing of streams is done at
many levels of abstraction starting with low level quantitative
sensor data and often resulting in qualitative data structures
which are grounded in the world and can be interpreted as
knowledge by an agent. For the result to allow an agent to
react in time to changes in the environment, the processing
must be done in a timely manner.

Conceptually, knowledge processing middleware processes
streams generated by different components in a distributed
system. These streams may be viewed as time-series and may
start as streams of observations from sensors or sequences of
queries to databases. Eventually, they will contribute to more
refined, composite streams. Processes combine such streams
by computing, synchronizing, filtering and approximating to
derive higher level abstractions. Each process is associated
with quality of service properties such as maximum delay and
strategies for calculating missing values, which together define
the properties of the information derived by the process.

It is important to realize that knowledge is not static, but
is a continually evolving collection of structures which are
updated as new information becomes available from sensors
and other sources. Therefore, the emphasis is on the contin-
uous and ongoing knowledge derivation process, which can
be monitored and influenced at runtime. The same streams of
information may be processed differently by different parts of
the architecture by tailoring knowledge processes relative to
the needs and constraints associated with the tasks at hand.
This allows DyKnow to support easy integration of existing

sensors, databases, reasoning engines and other knowledge
processing services.

A. DyKnow Applications

A DyKnow application consists of a set of knowledge
processes processing streams. A knowledge process may take
streams as input and provides one or more stream generators
which can be subscribed to. Each subscription creates a dis-
tinct asynchronous stream with its own constraints according
to a declarative policy. These constraints can for example spec-
ify how to approximate missing values, that certain samples
are filtered out or that the stream should contain samples added
with a regular sample period. Each stream is associated with
one or more labels that can be used to refer to it.

A knowledge process with no inputs is called a primitive
knowledge process and it can be seen as an interface to an
external information source, such as a sensor or a database.
Knowledge processes with inputs are called dependent knowl-
edge processes. To model the processing of a dependent
knowledge process a computational unit is introduced. A
computational unit is used by a dependent knowledge process
to process the data from the input streams and to create a
new fluent generator. A computational unit can encapsulate
any computation on one or more streams. Examples of com-
putational units are filters, such as Kalman filters, and other
sensor processing and fusion algorithms.

The DyKnow application used for the traffic monitoring
scenario consists of four primitive processes, the image pro-
cessing system, the helicopter and camera state estimations and
a geographical information system (GIS). The output of the
image processing system is a stream of blobs, fused from color
and thermal images, estimating the states of potential vehicles.
A set of computational units further process the stream of
blobs together with information about the road network from
the GIS, generating streams of car state estimations and
qualitative spatial relations between cars. Figure 1 provides
an overview of the incremental processing for the traffic
monitoring scenario.

B. Anchoring

An important issue in many applications, including traffic
monitoring, is to classify objects and to reason about the
identity of an object. One type of reasoning is to connect data
from sensors with symbolic representations of objects and to
maintain the connection over time. This is called anchoring
[8]. An example is to determine if an object being tracked
by a UAV is actually a car, that is, to anchor a symbolic
representation of a car to a stream of estimations extracted by
an image processing system. Our approach is based on using
temporal logic to describe the normative behavior of different
types of objects and, based on the behavior of an observed
object, hypothesizing its type [7], [9]. For example, in our
traffic monitoring domain the object being tracked is assumed
to be a physical object in the world, called a world object.
Then, if the position of this world object is consistently on a
road, it can be hypothesized to be an on road object, i.e. an



Chronicle 

RecognitionRecognition

Qualitative spatial relations

Qualitative Spatial 

Reasoning

Car objects

Anchoring
Temporal Logic 

Progression

Geographical 

Information System

Car objects

Road 

objects
Formula events

Formula states

Image 

Vision objects

Formula events

Color camera Image 

Processing

Camera state

Color camera

IR camera

Helicopter State 

Estimation

Camera State 

Estimation

Helicopter

state

IMU GPS Pan-tilt unit

Figure 1. An overview of how the incremental processing required for the
traffic surveillance task could be organized.

object moving within the road system. By further monitoring
the behavior and other characteristics such as speed and size
of an on road object it could be hypothesized whether it is a
car, a truck, a motorcycle, or another type of vehicle.

C. Scenario Recognition

Another important functionality is to describe and recognize
complex events and scenarios. To describe a complex event in
DyKnow a formal representation called a chronicle is used
[10]. A chronicle is a description of a generic scenario whose
instances we would like to recognize. A chronicle corresponds
to a simple temporal network [11] where the nodes are events
and the edges are metric temporal constraints between event
occurrences. In this context, an event is defined as a change
in the value of a property or relation.

The chronicle recognition engine we use takes a stream
of time-stamped event occurrences and detects all chronicle
instances in the stream in a tractable and efficient manner.
This is possible since chronicles correspond to simple temporal
networks and there exists polynomial algorithms for checking
their consistency. An instance is detected if the stream contains
a set of event occurrences which satisfy all the constraints in
a chronicle model. Recognized instances of a chronicle can be
used as events in another chronicle, thereby enabling recursive
chronicles.

The chronicles the traffic monitoring application use prim-
itive events which capture the structure of the road network,
qualitative information about cars such as which road segment
they are on and qualitative spatial relations between cars such
as beside and behind. These events are computed from the
streams of estimated car states by computational units.

III. DISTRIBUTING INFORMATION USING DYKNOW

From the point of view of DyKnow multiple nodes could be
viewed as a single system, since it is designed for a distributed
environment and does not differentiate between streams based
on where they are hosted. At the same time there are a
number of opportunities for improving the support provided
by DyKnow.

For example, DyKnow assumes there is a global speci-
fication with unique names of computational units, stream
generators and streams. In a distributed system without global
control it is non-trivial but doable to support unique names,
for example, by relying on a common naming schema or
a common service for creating new names. When having a
global specification it would also become much harder to
implement the different nodes independently. When a new
node is added its specification must be merged with the
current global specification and when a node is removed the
specification must be subtracted. Keeping the specification
updated would require a lot of communication and processing.

Another issue is that internal structures and representations
used by one node should not necessarily be public to all other
nodes. Most of each local specification will be irrelevant to
other nodes and some should even be kept secret. By only
sending the relevant information the communication overhead
is reduced and the robustness is increased since the system
does not require stable communication all the time.

Therefore an extension of DyKnow is preferred where each
node can be developed and used independently and then
connected on demand. When nodes are connected parts of
their local DyKnow specifications is shared among them.

A. Design Requirements

When designing a framework for distributing information
among multiple nodes there are several important issues that
need to be considered.

First, how to discover and broker information among a
group of agents. Such a mechanism should be able both to
find an agent who either has or can produce a particular piece
of information and to announce to interested agents when a
particular piece of information is available. The mechanism
should also allow for an efficient transfer of information
between nodes.

Second, how to refer to a piece of information when
communicating with other agents, i.e. how to handle naming
issues. One solution is to agree on a common ontology among
the agents. This ontology is required to be able to refer to
particular pieces of information. In the simplest case it could
be assumed that all agents share a common static ontology. In
a more general case only a small common ontology could be
assumed which is then extended on an on-demand basis.

Third, how to negotiate with other agents to make them gen-
erate desired information. In the simplest form this mechanism
would request the production of a piece of information from
an agent. In the general case an agent could refuse to perform
the request due to limited resources or other commitments.
There might also be several agents that could produce the



same information but with different quality. In this case an
agent would have to reason about the different options and
negotiate with the agents to find an agent who is willing to
produce the information with good enough quality.

To make these requirements more explicit three different use
cases are presented. Together they cover most of the function-
ality required for the multi platform monitoring scenario. It is
important to note that the DyKnow federation framework does
not solve all of the problems, instead it provides an integrated
framework with basic support for solving these problems.

1) Explicit Ask and Tell to Divide the Monitoring Area: To
divide an area to be monitored among a group of UAVs they
need to negotiate. A simple approach would be to appoint
one of them the leader. This leader has then to find out
which UAVs are available and collect information about them.
The information could for example be available sensors and
maximum speed and flying altitude. Using this information
the leader can partition the area among the UAVs and inform
them about their responsibilities.

This use case gives an example where a node needs to find
which other nodes are available, ask for specific pieces of
information from each of the nodes, compute the result and
then inform the other UAVs about the result.

2) Continuous Information Streaming and Merging to De-
tect Traffic Violations: When monitoring a traffic violation
occurring in two areas covered by different UAVs there will
be an interval where none of the UAVs have a complete picture
of the situation. This means that each UAV only has a limited
view and therefore has to cooperate with each other in order
to cover the situation.

A concrete use case is when a UAV has detected the
beginning of a potential traffic violation involving two cars
and one of the cars leaves the view field of the first UAV and
enters the view field of the second UAV. Now, the first UAV
has to continuously get relevant updates from the second UAV
about the car it can no longer see.

The information provided by the second UAV could be on
many different abstraction levels. A high level in this case
could be to send a stream of car states with the best current
estimation of the car. Using these car states and the car states it
produces itself about the other car, the first UAV can merge the
information in order to monitor the potential traffic violation.
It is important to notice that this is an ongoing activity where
each new car state should be transmitted to the first UAV to
be merged which each car state it produces locally.

An alternative approach is to merge the information on a
lower level. Instead of letting the second UAV produce car
states it could send over more primitive information. The
lowest possible level would be to send over the raw sensor
data, such as images. This will in most cases not be appropriate
since there is a limited bandwidth and, in the general case, the
other UAV might not have the capability to process the sensor
data.

To find an appropriate abstraction level of the communi-
cation many factors must be taken into account. The most
important ones are the processing capability of the involved

DyKnow Federation

communication

direct

DyKnow Instance
Platform 1

DyKnow Instance
Platform 2

Figure 2. A high level overview of a DyKnow federation.

platforms, the available bandwidth and the current load on the
involved platforms. In general we believe that the higher the
abstraction level the less information needs to be transmitted
and the easier it is to merge it with the existing information.

3) Temporary Loss of Communication during Information
Streaming: To communicate among platforms some form of
radio based communication will most likely be used. Unfortu-
nately these communication channels are not always available
and reliable. A common use case is that the communication
is interrupted for a few seconds or even minutes due to
interference or radio shadow. This introduces three challenges.
First, the sender must detect the temporary loss and buffer the
data that would have been sent until the connection is restored.
Second, it must detect when the connection has been restored
so that the buffered data can be transmitted. Third, the receiver
must be able to handle that the information it is waiting for is
delayed for potentially several minutes. It also has to handle
the potentially large burst of delayed data when it becomes
available again.

B. DyKnow Federation Overview

To fulfill the requirements we propose to connect nodes
having local DyKnow applications in a DyKnow federation,
like federated databases [12], [13]. The federation is used to
find other DyKnow applications which can provide a particular
piece of information and to ask queries about information
available at other nodes. To support efficient continuous
streaming of information between nodes we propose to create
direct communication channels between pairs of nodes. These
channels are set up through the federation framework but are
then under the control of the participating nodes. A high level
overview of a DyKnow federation is shown in Figure 2.

The DyKnow federation framework uses an existing del-
egation framework [14], where each DyKnow application,
from now on called a DyKnow instance, becomes a service.
A DyKnow federation is managed through speech act-based
interactions between these services.

C. The Delegation Framework

To support cooperative goal achievement among a group
of agents a delegation framework has been developed [14]. It
provides a formal approach to describing and reasoning about
what it means for an agent to delegate an objective, which can
be either a goal or a plan, to another agent. The concept of
delegation allows for studying not only cooperation but also
mixed-initiative problem-solving and adjustable autonomy.



By delegating a partially specified objective the delegee is
given the autonomy to complete the specification itself. By
making the objective more specific the autonomy is limited. If
the delegated objective is completely specified then the agent
has no autonomy. By allowing agents and human operators to
partially specify an objective mixed-initiative is supported.

An agent is a complex entity providing a set of services. A
service is a particular task that can be done by an agent. Agents
communicate with each other using the standardized agent
communication language FIPA ACL [15], which is based on
speech acts. Each agent is FIPA compliant and is implemented
using the Java agent development framework JADE [16].

Each UAV platform has a delegation framework layer con-
sisting of a set of agents communicating using FIPA ACL and
a legacy layer implementing platform specific functionalities.
The interface between the two layers is the Gateway Agent,
which provides a FIPA ACL interface to the platform specific
legacy system. In our UAV platform, which is implemented
using CORBA, this involves invoking methods on different
CORBA objects.

All communication between a platform and agents external
to the platform goes through a single agent called the Interface
Agent. The Interface Agent provides a single entry point to
the platform which makes it possible to keep track of all
communication, authenticate incoming messages and perform
access control to the platform.

To find services in the delegation framework a Director
Facilitator (DF) is used. It is a database of all the services
provided by the different platforms.

D. DyKnow Federation Components

A DyKnow federation consists of three components: Dy-
Know agents, export proxies and import proxies. A DyKnow
agent is a agent which makes a local DyKnow instance
available as a service. The export and import proxies are used
to mediate streams through direct communication between
two DyKnow instances. Apart from these DyKnow federation
specific components, the framework also uses the interface
and gateway agents from the delegation framework. The JADE
agents communicate using the FIPA ACL while two DyKnow
instances can communicate directly through the export and
import proxies after setting up a subscription. An overview of
the components is given in Figure 3.

To make a DyKnow instance available to other platforms it
must be integrated in the delegation framework. This is done
in three steps:

1) by implementing a DyKnow agent which provides the
dyknow service,

2) by extending the interface agent to provide the dyknow
service and

3) by extending the gateway agent which mediates between
FIPA ACL messages and the DyKnow implementation
on the platform to handle DyKnow related messages.

One important issue is how to refer to information among
platforms. A DyKnow instance will contain a set of labels
referring to streams. The easiest approach would be to use

DA IA IA

GA

DA

GA

DyKnow
Instance

DyKnow
Instanceim

p
o

rt
p

ro
xy

p
ro

xy
ex

p
o

rt

im
p

o
rt

p
ro

xy

p
ro

xy
ex

p
o

rt

FIPA ACL

communication

direct

Platform 1

DyKnow Federation

Platform 2

JADE

CORBA

JADE

CORBA

Figure 3. An overview of the components of a DyKnow federation. A DA
is a DyKnow agent, an IA is an interface agent and a GA is a gateway agent.

these labels directly. One problem with this approach is that
the delegation framework layer then must know what labels
each of the other platforms have in their local DyKnow
instances. This is not a major issue if all platforms are built
by the same people, but in a more general setting this would
not be feasible. A more feasible approach is to agree on
a set of labels with a certain meaning among a group of
agents called semantic labels. These semantic labels can then
be translated by each agent to local DyKnow labels using
whatever procedure necessary. This is a first step towards
introducing a common ontology of information among a group
of agents. The benefits are that each group of agent can use
their own set of semantic labels, with a meaning they have
agreed upon, and that the labels in the local DyKnow instances
are isolated from each other.

1) DyKnow Agent: The interface agent will forward re-
quests to the dyknow service to the DyKnow agent, which is
then responsible for fulfilling the request by using the gateway
agent to access the local DyKnow instance. The following
requests can be made to a DyKnow agent:

1) Request a stream satisfying a policy, which makes the
DyKnow instance produce a stream according to the
policy, if possible, and export it;

2) request a stream corresponding to a semantic label,
which translates the semantic label to a label, looks it up
in the local DyKnow instance and exports the matching
stream if it exists;

3) request the latest value, the value at a time-point or a
trajectory between two time-points for a semantic label,
which translates the semantic label to a label and looks it
up in the local DyKnow instance and returns all answers
from all matching streams; and

4) ask for all semantic labels that satisfy a formula written
in the FIPA content language SL [17].

The first two requests will set up export proxies exporting the
requested stream and then inform the requester about how to
access the stream from the proxy. The next request will return
the requested value directly. The last request will result in an
inform message about available semantic labels matching the
formula.



Each request can be either local or global. If the request
is local only the DyKnow instance directly accessible to the
DyKnow agent will be queried. If the request is global then
all other platforms will be queried as well. This is done by the
DyKnow agent asking the Director Facilitator about all agents
providing the dyknow service and forwarding the request to
each of them. It will then aggregate the result and send it to
the original requester.

It is also possible to inform a DyKnow agent about some
information. A FIPA ACL inform message contains the se-
mantic label of the information and the value. The DyKnow
agent returns whether the information was accepted by the
local DyKnow instance or not.

2) Export Proxy: An export proxy is a component used by a
platform to export one or more streams. To export a stream an
internal subscription is made by the proxy which then makes
the stream available to other platforms in an implementation
specific way.

3) Import Proxy: An import proxy is a component used
by a platform to import one or more streams. Each imported
stream will be provide as a stream generator in the local
DyKnow instance, like any other stream generator. How the
stream is imported is an implementation detail which must be
coordinated with the export proxy. Different pairs of proxies
can use different methods to communicate.

E. DyKnow Federation Functionalities

1) Adding and Removing Nodes: To add a node the inter-
face agent of that node has to register its dyknow service in the
Director Facilitator. When this is done the node is available.
To leave a DyKnow federation it is enough to unregister the
dyknow service. This does not necessarily close all ongoing
streams to or from the node since the proxies talk directly with
each other when the streaming has been set up.

2) Asking for Explicit Information: If a platform needs a
particular piece of information, knows its semantic label and
knows which platform can provide the information then a
request is sent to the interface agent of that platform with
the semantic label as the argument. The information will then
be sent back via a FIPA propose message from its DyKnow
agent handling the request. Using this method a platform could
ask for the latest value of a stream, the value at a particular
time-point or the trajectory of values between two time-points.

If a platform only knows the semantic label of the informa-
tion, but not which platform is hosting the information, then
it has to make a global request instead of a local. This will
cause the DyKnow agent to query all platforms providing a
dyknow service for the semantic label. This could give any
number of answers. If the platform gets more than one answer
then it has to either select one of the values or merge them
together.

To implement the first use case, explicitly asking for infor-
mation about platforms, this functionality would be used. The
leader UAV would make a global request for the current value
of the semantic labels max speed, fuel and so on.

3) Explicit Sharing of Information: If a platform knows
who would need a particular piece of information then it could
explicitly communicate it to that platform. This is done by
looking up the dyknow service in the DF and sending an
inform message to the interface agent found. The interface
agent will forward the message to the DyKnow agent which
may or may not accept the information.

To continue the first use case, this functionality would
be used by the leader to either make a local inform to
each platform about its region or a global inform about all
assignments of regions.

4) Streaming Information: Setting up a stream from one
platform to another is different from requesting a particular
piece of information directly. Instead of sending something
back, the agent receiving the request will set up an export
proxy which will start streaming the information to the import
proxy of the sending agents. How this is done is implementa-
tion dependent.

When proxies are set up the platform that made the request
can access the stream as if it was a local stream generator
through the import proxy. The import proxy could be viewed
as a sensor which providing information.

This would be the main functionality required to implement
the second use case, to provide continuous information about
tracked vehicles from one UAV to another. The UAV receiving
the stream would then have to fuse this stream with its own
stream of car estimations in order to do the qualitative spatial
reasoning and chronicle recognition.

5) Finding Information: To find a DyKnow instance which
has the capability to create a stream according to a specific
policy the dyknow service is used. If more than one platform
can provide the dyknow service then the platform has to
choose which one it would like to use. It could also choose to
use more than one of them in order to provide redundancy. By
merging the result from these different sources it could also
increase the accuracy.

If a platform does not know the semantic label of the
information it can make a request for all semantic labels which
match an SL formula. SL is a first order content language
developed by FIPA and used by JADE. To be able to write SL
formulas an ontology must be created for the DyKnow federa-
tion. This is done within the JADE framework by providing a
concept for each semantic label. For example, if the ontology
contains the concepts Car, Color and OnRoad, formulas
using these can be written. To find all semantic labels of blue
cars on road 7 the formula (all ?x (and (Car ?x)
(Color ?x blue) (OnRoad ?x road7))) could be
used. It is then up to each DyKnow agent to interpret the
formula and find all matching semantic labels. If a platform
would like to know if any other platform has found the same
car it is tracking then it could use this functionality to find
potential matches.

6) Managing Unreliable Communication: One important
issue is the need to handle communication which is not
stable. By not being stable we mean that two nodes might
lose communication between each other. The proxies have the



responsibility for managing the communication. How this is
implemented will depend on the method used to communicate
between two proxies.

a) Missing Information: If the communication channel
is unreliable some standard form of resend protocol will have
to be set up between the proxies.

b) Reordering Information: If the communication be-
tween two proxies may reorder the information and the sub-
scription policy on the import side requires ordered informa-
tion then this must be handled by the import proxy. It can be
done by buffering and reordering the data at the expense of a
higher latency.

c) Temporary Loss of Communication: The export proxy
will have to keep track of the status of the communication
channel and if there is a temporary loss then it must buffer
the data. When the channel is restored the data should be
transmitted. An option is to inform an export proxy that data
is only useful if it is not older than t seconds. This means the
export proxy can shed old data.

d) Permanent Loss of Communication: If a permanent
loss of communication is detected then the exporting platform
will inform the importing platform about this using the JADE
framework if possible. A permanent loss could also be caused
by a platform leaving the DyKnow federation. In this case
there should be a time-out and if no communication with the
other platform has been possible within this time-period then
it is removed from the federation and all streams closed.

IV. SUMMARY

A DyKnow federation framework for information integra-
tion in a distributed multi-node network of UAVs has been
presented. This type of framework is required to develop
complex multiagent systems where agents have to cooperate
to solve problems which are beyond the capability of any
individual agent. The framework allows agents to share and
merge information to provide more complete and accurate
information about the environment.

The starting point is the stream-based knowledge processing
middleware framework DyKnow. DyKnow contextually pro-
cesses streams on many different levels of abstraction, from
low level sensor streams to qualitative streams that can be
interpreted as knowledge by an agent, integrating sensing and
reasoning. This flexible stream-based processing is well suited
for applications which require situation awareness since it
allows for timely and continuous processing of information.

To support sharing of information in a multiagent system
an extension of DyKnow is made by integrating it with a
FIPA compliant delegation framework. The extension allows
an agent to share parts of its local DyKnow instance with
other agents in a DyKnow federation. The basic interaction
and sharing is made on an agent level using the standardized
FIPA ACL agent communication language. To increase the
efficiency, direct communication is supported for continuous
streaming of information between nodes. In either case the
federation is used to find information and to set up the
distribution.

Distributing and merging of information among multiple
agents has been widely studied in many respects. This work
does not extend any single of these approaches, but rather
provides a complete integrated system for doing knowledge
processing both on the agent level and the multiagent level.
The contribution is how the versatile and useful knowledge
processing middleware framework DyKnow can be extended
to cover an even larger set of issues and allow it to integrate
not only sensing and reasoning on a single platform, but
also sharing and merging of information among multiple
platforms. This paper provides the motivation, requirements
and initial design of such an integrated framework which is
being implemented and tested on our existing UAV platforms.

The next step is to allow the platforms to reason about the
information that could be produced and investigate how to
collaborate in order to accomplish complex missions.

In summary we believe that the DyKnow federation frame-
work provides appropriate support for dynamically sharing and
merging information in a distributed network of platforms.
Since the federation approach is very general and it builds
on a formal delegation framework it should be applicable to
a wide range of very complex multi platform scenarios.

REFERENCES

[1] F. Heintz and P. Doherty, “DyKnow: An approach to middleware
for knowledge processing,” Journal of Intelligent and Fuzzy Systems,
vol. 15, no. 1, pp. 3–13, nov 2004.

[2] ——, “A knowledge processing middleware framework and its relation
to the JDL data fusion model,” Journal of Intelligent and Fuzzy Systems,
vol. 17, no. 4, pp. 335–351, 2006.

[3] ——, “A knowledge processing middleware framework and its relation
to the jdl data fusion model,” in Proceedings of the Eighth International
Conference on Information Fusion (Fusion’05), E. Blasch, Ed. ISIF,
IEEE, AES, july 2005.

[4] F. White, “A model for data fusion,” in Proc. of 1st National Symposium
for Sensor Fusion, vol. 2, 1988.

[5] A. Steinberg and C. Bowman, “Revisions to the JDL data fusion model,”
in Handbook of Multisensor Data Fusion. CRC Press LLC, 2001.

[6] J. Llinas, C. Bowman, G. Rogova, A. Steinberg, E. Waltz, and F. White,
“Revisions and extensions to the JDL data fusion model II,” in Proc. of
the 7th Int. Conf. on Information Fusion, 2004.

[7] F. Heintz, P. Rudol, and P. Doherty, “From images to traffic behavior -
a uav tracking and monitoring application,” in Proceedings of the Tenth
International Conference on Information Fusion, 2007.

[8] S. Coradeschi and A. Saffiotti, “An introduction to the anchoring
problem,” Robotics and Autonomous Systems, vol. 43, no. 2-3, 2003.

[9] F. Heintz and P. Doherty, “Managing dynamic object structures using
hypothesis generation and validation,” in Proceedings of the AAAI
Workshop on Anchoring Symbols to Sensor Data, 2004.

[10] M. Ghallab, “On chronicles: Representation, on-line recognition and
learning,” in Proc. KR, 1996.

[11] R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint networks,”
Artificial Intelligence, vol. 49, pp. 61–95, 1991.

[12] D. Heimbigner and D. Mcleod, “A federated architecture for information
management,” ACM Trans. Inf. Syst., vol. 3, no. 3, pp. 253–278, 1985.

[13] A. P. Sheth and J. A. Larson, “Federated database systems for managing
distributed, heterogeneous, and autonomous databases,” ACM Comput.
Surv., vol. 22, no. 3, pp. 183–236, 1990.

[14] P. Doherty and J.-J. C. Meyer, “Towards a delegation framework for
aerial robotic mission scenarios,” in CIA, 2007, pp. 5–26.

[15] FIPA, “Foundation for intelligent physical agents (FIPA) ACL message
structure specification,” http://www.fipa.org/.

[16] D. G. by Fabio Luigi Bellifemine, Giovanni Caire, Developing Multi-
Agent Systems with JADE, 1st ed. Wiley, Mars 2007.

[17] FIPA, “Foundation for intelligent physical agents SL content language
specification,” http://www.fipa.org/.


