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Abstract— Any autonomous system embedded in a dynamic
and changing environment must be able to create qualitative
knowledge and object structures representing aspects of its
environment on the fly from raw or preprocessed sensor data in
order to reason qualitatively about the environment and to supply
such state information to other nodes in the distributed network
in which it is embedded. These structures must be managed and
made accessible to deliberative and reactive functionalities whose
succesful operation is dependent on being situationally aware of
the changes in both the robotic agent’s embedding and internal
environments. DyKnow is a knowledge processing middleware
framework which provides a set of functionalities for contextually
creating, storing, accessing and processing such structures. The
framework is implemented and has been deployed as part of a
deliberative/reactive architecture for an autonomous unmanned
aerial vehicle. The architecture itself is distributed and uses real-
time CORBA as a communications infrastructure. We describe
the system and show how it can be used to create more abstract
entity and state representations of the world which can then be
used for situation awareness by an unmanned aerial vehicle in
achieving mission goals. We also show that the framework is a
working instantiation of many aspects of the revised JDL data
fusion model.1

I. INTRODUCTION

In the past several years, attempts have been made to
broaden the traditional definition of data fusion as state es-
timation via aggregation of multiple sensor streams.

One of the more successful proposals for providing a
framework and model for this broadened notion of data fusion
is the U.S. Joint Directors of Laboratories (JDL) data fusion
model [1] and its revisions [2], [3], [4].

The gap between models, such as the JDL data fusion
model, which describe a set of functions or processes which
should be components of a deployed system to the actual
instantiation of data fusion in a software architecture in this
broader sense is very much an open and unsolved problem. In
fact, it is the belief of the authors that architectural frameworks
which support data and information fusion in this broader
sense have to be prototyped, tested, analyzed in terms of
performance and iterated on, in order to eventually support all
the complex functionalities proposed in the JDL data fusion
model.

In this paper, we will describe an instantiation of parts
of such an architectural framework which we have designed,

1This work is supported in part by the Wallenberg Foundation, Sweden and
an NFFP03 research grant (COMPAS)

implemented, and tested in a prototype deliberative/reactive
software architecture for a deployed unmanned aerial vehicle
(UAV) [5], [6]. The name given to this architectural framework
which supports data fusion at many levels of abstraction is
DyKnow2. DyKnow is a knowledge processing middleware
framework used to support timely generation of state infor-
mation about entities in the environment in which the UAV
is embedded and entities internal to the UAV itself. The latter
is important for monitoring the execution of the autonomous
system itself.

The DyKnow system is platform independent in the sense
that the framework can be used in many different complex
systems. Consequently, we believe it is of general interest to
the data fusion community at large. One aspect of DyKnow
which is particularly interesting is the fact that it was designed
and prototyped independently of any knowledge about the
JDL data fusion model. The requirements for specification
were those necessary to reason about world state at very
high levels of abstraction and to be able to take advantage
of artificial intelligence techniques for qualitative situation
assessment and monitoring of the UAV and dynamic entities
in its embedded environment. It turns out that the resulting
prototype can be used when implementing the JDL data fusion
model and provides insight into many of the details that are
important in making such architectures a reality. For example,
such systems are not strictly hierarchical and often involve
complex interactions among the layers. This implies that it
is not feasible to specify and implement each level separately.
This perceived weakness in the JDL model was in fact pointed
out by Christensen in a recent panel debate concerning the JDL
model [7].

A. Structure of the Paper

The paper is structured as follows. In section II, an overview
of the important concepts used in the definition of the DyKnow
framework is given. In section III, we consider the DyKnow
framework in the context of the revised JDL data fusion
model. In section IV, we describe a UAV scenario involving
vehicle identification and tracking, where DyKnow has been
used to advantage. In section V, some work related to the
DyKnow framework is presented. In section VI, we conclude
and summarize the work.

2“DyKnow” is pronounced as “Dino” in “Dinosaur” and stands for Dynamic
Knowledge and Object Structure Processing.



II. DYKNOW

The main purpose of DyKnow is to provide generic and
well-structured software support for the processes involved
in generating object, state and event abstractions about the
external and internal environments of complex systems, such
as our experimental UAV system. Generation of objects, states
and events is done at many levels of abstraction beginning
with low level quantitative sensor data. The result is often
qualitative data structures which are grounded in the world and
can be interpreted as knowledge by the system. The resulting
structures are then used by various functionalities in the de-
liberative/reactive architecture for control, situation awareness
and assessment, monitoring, and planning to achieve mission
goals.

A. Knowledge Processing Middleware

Conceptually, DyKnow processes data streams generated
from different sources in a distributed architecture. These
streams may be viewed as representations of time-series data
and may start as continuous streams from sensors or sequences
of queries to databases. Eventually they will contribute to
definitions of more complex composite knowledge structures.
Knowledge producing processes combine such streams, by
abstracting, filtering and approximating as we move to higher
levels of abstraction. In this sense, the system supports con-
ventional data fusion processes, but also less conventional
qualitative processing techniques common in the area of arti-
ficial intelligence. The resulting streams are used by different
reactive and deliberative services which may also produce new
streams that can be further processed. A knowledge producing
process has different quality of service properties, such as
maximum delay, trade-off between data quality and delay, how
to calculate missing values and so on, which together define
the semantics of the chunk of knowledge created. The same
streams of data may be processed differently by different parts
of the system relative to the needs and constraints associated
with the tasks at hand.
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Fig. 1. An instantiation of the DyKnow knowledge processing middleware.

In Fig. 1 an example of a concrete instantiation of the
DyKnow framework that we use in our experimental UAV ar-
chitecture is shown. There are three virtual sensors, the image

processing subsystem, the camera platform and the helicopter
platform. We have a geographical information system (GIS)
which is a database that contains information about the geog-
raphy, such as road structures and buildings, of the region we
are flying in. The services include the reactive task procedures
which are components linking the deliberative services with
the camera and helicopter controllers, a chronicle recognition
engine for reasoning about scenarios, and a temporal logic
progression engine that can be used for execution monitoring
and other tasks based on the evaluation of temporal logic
formulas.

B. Ontology

Ontologically, we view the external and internal environ-
ment of the agent as consisting of physical and non-physical
entities, properties associated with these entities, and relations
between these entities. The properties and relations associated
with entities will be called features. Features may be static or
dynamic. Due to the potentially dynamic nature of a feature,
that is, its ability to change values through time, a fluent is
associated with each feature. A fluent is a function of time
whose range is the feature’s type. Some examples of features
are the velocity of an object, the road segment of a vehicle,
and the distance between two car objects.

C. Object Identifiers and Domains

An object identifier refers to a specific entity and provides a
handle to it. Example entities are “the colored blob”, “the car
being tracked” or “the entity observed by the camera”. The
same entity in the world may have several different identifiers
referring to it and a composite entity (consisting of a set
of entities) can be referred to with a single identifier. Three
examples of this are shown in Fig. 2. In the first example we
have two representations of the same entity, in this case blob1
and blob2 which could be blobs extracted from two different
pictures by the image processing system, that we may or may
not know refer to the same entity. In the second example we
have blob3 and car1 which represents two different aspects of
the same entity. An example of object identifiers referring to
a composite entity may occur when several object identifiers
refer to the same entity at different levels of abstraction, such
as the car entity referred to by car2 and the hood and wheel
entities referred to by hood and wheel.

Representation
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World

blob1 blob2 blob3 car1 car2 hood wheel

Fig. 2. Examples of relations between object identifiers and entities.

An agent will most often not know the exact relation
between object identifiers, whether they refer to the same



entities or not, because they are generated for different reasons
and often locally. In Section II-F we present some mechanisms
for relating them. The basic constraints placed on object
identifiers are that they are unique and only assigned to an
entity once (single assignment).

An object domain is a collection of object identifiers refer-
ring to entities with some common property, such as all red
entities, colored blobs found in images or qualitative structures
such as the set of cars identified in a mission. An object
identifier may belong to more than one domain and will
always belong to the domain “top”. Object domains permit
multiple inheritance and have a taxonomic flavor. The domains
an object identifier belongs to may change over time, since
new information provides new knowledge as to the status of
the entity. This makes it possible to create domains such as
“currently tracked entities” or “entities in regions of interest”.

D. Approximating Fluents

The fluents associated with features are the target of the
representation in DyKnow. A feature has exactly one fluent in
the world which is its true value over time. The actual fluent
will almost never be known due to uncertain and incomplete
information. Instead we have to create approximations of
the fluent. Therefore, the primitive unit of knowledge is the
fluent approximation. In DyKnow there are two representations
for approximated fluents, the fluent stream and the fluent
generator. The fluent stream is a set of observations of
a fluent or samples of an approximated fluent. The fluent
generator is a procedure which can compute an approximated
value of the fluent for any time-point. Since a fluent may be
approximated in many different ways each feature may have
many approximated fluents associated with it. The purpose of
DyKnow is to describe and represent these fluent generators
and fluent streams in such a way that they correspond to useful
approximations of fluents in the world.

There are two types of fluent approximations, primitive and
computed fluent approximations. A primitive fluent approxi-
mation acquires its values from an external source, such as a
sensor or human input, while a computed fluent approximation
is a function of other fluent approximations. To do the actual
computation a procedural element called a computational unit
is used. The computational unit is basically a function taking
a number of fluent approximations as input and generating a
new fluent approximation as output.

Since a fluent generator represents a total function from
time to value and a fluent stream only represents a set of
samples a fluent generator created from a fluent stream must
be able to estimate the value at any time-point whether or
not a sample exists at that time-point. Since this estimation
can be made in many different ways, depending on how the
samples are interpreted, it is possible to create many different
fluent generators from a single fluent stream. From each of
these fluent generators we can generate many different fluent
streams by sampling the fluent generator at different time-
points. How these transformations are done are described by
declarative policies. The fluent generator policy specifies a

transformation from a fluent stream to a fluent generator, and
the fluent stream policy specifies a transformation from a fluent
generator to a fluent stream. A fluent generator policy may be
viewed as the context in which the observations in a fluent
stream are interpreted. The resulting fluent approximation is
the meaning of the feature in that context.

We are primarily interested in distributed systems where the
sources of data often determine its properties such as quality
and latency. These and other characteristics such as access and
update constraints must be taken into account when generating
and using fluent approximations associated with specific data
sources. Locations are introduced as a means of indexing into
data sources which generate fluent approximations associated
with specific features. A feature may be associated with
several fluent approximations located in different places in the
architecture, but each fluent approximation must be hosted by
exactly one location. By representing these different places
with locations we make it possible to model and reason about
them.

E. States and Events

Two important concepts in many applications are states
and events. In DyKnow a state is a composite feature which
is a coherent representation of a collection of features. A
state synchronizes a set of fluent approximations, one for
each component feature, into a single fluent approximation for
the state. The value of the new fluent approximation, which
actually is a vector of values, can be regarded as a single value
for additional processing. The need for states is obvious if we
consider that we might have several sensors each providing
a part of the knowledge about an object, but whose fluent
approximations have different sample rates or varying delays.

A concrete example is that we have streams of positions
given in pixel coordinates and streams of camera states de-
scribing the position and orientation of the camera. In order
to find out what coordinate in the world a pixel position
corresponds to we need to synchronize these two streams. If
we have a position at time-point t we want to find a camera
state which is also valid at time-point t. In the simplest case
there exists such a sample, but in a more general (and realistic)
case we have to either find the “best” camera state in the
stream or estimate what the camera state was at time-point t
from the observed samples.

The problem of creating coherent states from data streams
is non-trivial and can be realized in many different ways.
In DyKnow the synchronization strategy is described by a
policy called the state policy. If the existing pre-defined
synchronization strategies are not adequate for an application
then a computational unit can be created and used as a general
mechanism for extracting states.

An event is intended to represent some form of change or
state transition. Events can either be primitive, e.g. a sample
received from a sensor can be seen as an event, or generated,
e.g. the event of the approximated fluent f reaching a peak in
its value. Generated events can either be extracted from fluent
approximations or computed from other events. In DyKnow it



is possible to define primitive events on approximated fluents,
mainly change events such as fluent approximation f changed
its value with more than 10% since the last change event.

DyKnow currently has support for two types of computed
events. The first is the evaluation of linear temporal logic
(LTL) formulas becoming true or false. The second is the
recognition of scenarios, called chronicles, composed of tem-
porally related events, expressed by a simple temporal con-
straint network. An LTL formula is evaluated on a state stream
containing all the features used by the LTL formula, so the
state extraction mechanism mentioned above is a prerequisite
for the LTL formula evaluation. The chronicle recognition
engine, on the other hand, takes events representing changes
in fluent approximations as input and produces other events
representing the detection of scenarios as output. These can
be used recursively in higher level structures representing
complex external activity such as vehicle behavior.

F. Objects, Classes and Identity

Grounding and anchoring internal representations of exter-
nal entities in the world is one of the great open problems
in robotics. Consequently, middleware systems for knowledge
processing must provide suitable support for the management
of representations and their relation to the external entities they
represent.

We require a mechanism for reasoning about the relation
between object identifiers, including finding those object iden-
tifiers which actually codesignate with the same entity in
the world. When two object identifiers are hypothesized as
referring to the same entity in the world, a link is created
between them. The collection of object identifiers referring to
the same entity in the world and the links between them is
called an object linkage structure. This represents the current
knowledge about the identity of the entity.

We have separated the object identity (i.e. which entity
in the world an object identifier refers to) from the object
state. Classes provides a mechanism for specifying certain
relationships between the two, by regulating the minimum
state required for certain classes of object identifiers. Links
provides the mechanism for describing relations between
object identifiers, i.e. to reason about the identity of object
identifiers.

The object linkage structure makes it possible to model each
aspect of an entity as a class and then provide the conditions
for when an instance of the class should be linked to an
instance of another class. For example, in the traffic domain we
model the blobs extracted by the image processing system as
separate object identifiers belonging to the class VisionObject
and objects in the world as object identifiers belonging to the
class WorldObject. We also provide a link type between these
classes in order to describe the conditions for when a vision
object should be hypothesized as being a world object. This
simplifies the modeling since each aspect can be modeled
separately, it also simplifies the classification, tracking and
anchoring of the objects.

To describe a collection of object identifiers representing
an aspect of an object, a class is used. A class describes what
fluent approximations all instances should have and includes
four constraints, the create, add, codesignate, and maintain
constraints, that regulate the membership of the class. If a
create constraint is satisfied then a new object identifier is
created and made an instance of the class. If the add constraint
for an object identifier is satisfied then it is considered an
instance of the class and it is added to the class domain.
A codesignation constraint encodes when two objects of the
class should be considered identical. The maintain constraint
describes the conditions that always should be satisfied for
all instances of a class. If the maintain constraint is violated
the object identifier is removed from the class. Constraints are
LTL formulas that only use the fluent approximations required
by the class and link definitions.

A link type represents the potential that objects from two
classes might represent the same entity. The link specifica-
tion contains three constraints, the establish, reestablish, and
maintain constraints. A link specification might also contain
fluent approximations representing specific properties that
result from the entities being linked together. If an establish
constraint, defined on objects from the linked-from class (a
link is directed), is satisfied then a new instance of the linked-
to class is created and a link instance is created between the
objects. An example of this is given in Fig. 3 if read from left
to right. The establish constraint represents the conditions for
assuming the existence of another, related, aspect of an entity.
For example, in our application we assume all vision objects
are related to a world object, therefore a new world object
is created if a vision object is not already linked to one. A
reestablish constraint encodes when two existing objects, one
from each class, should be linked together. An example of
this is given in Fig. 4 if read from left to right. When a link
instance is created a maintain constraint, which is a relation
between the two objects, is set up in order to monitor the
hypothesis that they are actually referring to the same entity
in the world. If it is violated then the link instance is removed
which is the case in Fig. 4 if read from right to left.

new vehicle
establish

new car
establish

known designation linkinferred designation

delete car

e1

obj1

e1

obj1 vehicle obj1 vehicle car

e1

delete vehicle

Fig. 3. An example of creating and deleting a linked object.

For a more detailed account of object linkage structures in
DyKnow, see [8].

G. Implementation

All of the concepts described above are implemented in
C++ using the TAO/ACE [9] CORBA implementation. The
DyKnow implementation provides two services. The Domain
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Fig. 4. An example of reestablishing a link and violating its maintain
constraint.

and Object Manager (DOM) and the Dynamic Object Repos-
itory (DOR). The DOM is a location that manages object
identifiers, domains, classes and objects. The DOR manages
fluent approximations, states and events.

III. JDL DATA FUSION MODEL

The JDL data fusion model is the most widely adopted
functional model for data fusion. It was developed in 1985
by the U.S. Joint Directors of Laboratories (JDL) Data Fusion
Group [1] with several recent revisions proposed [2], [3], [4].

The data fusion model originally divided the data fusion
problem into four different functional levels [1], later a level
0 [2] and a level 5 [3] was introduced. The levels 0-4 as
presented in [2] and level 5 as presented in [3] are shown in
Fig. 5.
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Fig. 5. Revised JDL data fusion model from [3].

In this section we will go through each of the levels and
describe how the implementation of its functionalities can be
supported by DyKnow. It is important to realize that DyKnow
does not solve the different fusion problems involved, but
rather provides a framework where different specialized fusion
algorithms can be integrated and applied in a data fusion
application.

A. Level 0 Sub-Object Assessment

On this level, fusion on the signal and sub-object level
should be made. Since the object identifiers can refer to any
entity, including sensors and entities which may be an object
on its own or not, we can represent and work on features
such as “signal from sensor S” and “property of blob found
by image processing system”. Fusion on this level would
be implemented by computational units. The purpose of the

computational units is to reduce the noise and uncertainty in
the fluent approximations in order for the higher layers to get
the best possible approximations to work with. The sub-object
features are used mostly at level 1 to create coherent object
states.

B. Level 1 Object Assessment

On this level, sub-object data should be fused into coherent
object states. In DyKnow there are mainly two functionalities
used, state aggregation and the creation of object linkage
structures. A state collects a set of sub-object features into a
state which can be used as a single value similar to the value
of a struct in C. Linkage structures are then used to reason
about the identity of objects and to classify existing objects.

In the linkage structure two special cases of data fusion
are handled. The first is the fusion of codesignated objects,
i.e. when two or more objects from the same class are
hypothesized as actually being the same entity, where the
knowledge related to each of these objects has to be fused
into a single object. There are two modes of doing this fusion;
it can either be done continuously, so that all the individual
object instances still exist, but their content is continually fused
into a new object, or it can be a one-shot fusion where all
knowledge at the moment of the codesignation is fused into a
single new object and the old objects are deleted.

The second special case is the fusion of several different
objects from different classes into a single object. This is
the case when an object is linked-to from more than one
object of different classes. For example, assume our robot
has both a sonar and a camera, each sensor provides sub-
object fluent approximations containing the sensor readings
related to entities in the world. If the entity sensed by the
sonar and the entity sensed by the camera are hypothesized
as being the same entity, the position according to the camera
fluent approximation and the position according to the sonar
fluent approximation must be merged into a single position
fluent approximation, representing the combined knowledge
about the entity. In DyKnow this would be done using a
computational unit which takes two fluent streams as input
one with camera positions and one with sonar positions
and using an appropriate algorithm computes a new fluent
approximation, the combined position in the world. The stream
will be generated as long as the hypothesis that the three
objects are the same is maintained.

In DyKnow fluent approximations from level 1 mainly
interact with level 2 by providing coherent object states for
computing and detecting situations. Level 3 is also very
important since it is responsible for checking the hypothetical
object linkage structures by continually checking the impact
of new observations on the current hypotheses. Since the com-
putations on this level can be time consuming, the interactions
with level 4 and level 5 are also important in order to maintain
a steady update of the most important fluent approximations
for the moment as decided by the system and the user.



C. Level 2 Situation Assessment

On this level, relations between objects fused together on
the previous levels should be detected as well as more complex
situations being represented and recognized. The detection of
events, both primitive and computed, are important tools to
model situations. Computed events can e.g. be temporal logic
formulas or chronicles describing temporal relations between
events. In this fashion different features are fused together
over time in order to extract more abstract situations that
are features in themselves. Collections of objects can also
be aggregated into states in order to synchronize them to a
coherent situation, just as collections of fluent approximations
can be collected into states.

Properties, relations, states and events are all represented by
fluent approximations in DyKnow. Sets of entities belonging
to concepts such as “the set of all cars that have been observed
to make reckless overtakes in the last 30 minutes” can be de-
scribed and maintained through the use of domains described
by classes. Classes function as classification procedures which
add all object identifiers which satisfy the associated add
constraint to the domain and keep them as members as long as
the maintain constraint is not violated. By belonging to a class
certain fluent approximations related to the object identifier are
guaranteed to exist and to have certain properties described by
the maintain constraint.

Apart from the input provided by fluent approximations at
level 1, the interactions of level 2 are mainly with level 3
where fluent approximations representing complex situations
can be used to maintain object linkage structures as well
as create new object identity hypotheses. For instance the
example given in [2] about the detection of a missing SA-
6 unit in a battery can be handled by a create constraint on
the SA-6 class triggered by the detection of an incomplete SA-
6 battery. Given a computed event that is detected when an
incomplete battery is found, this event could be used to trigger
the creation of a new SA-6 instance. In this case a monitor
could also be set up to make sure the complete SA-6 battery
is detected since all units have been found. This monitoring
would be handled by level 3 data fusion.

D. Level 3 Impact Assessment

On this level, objects and situations should be used to assess
the impact on the current actions and plans of the agent.
To assess the impact, different types of monitoring are done,
among others the execution monitoring of plans and behaviors
and the monitoring of object hypotheses. To implement these
monitors the different event detection mechanisms can be used.
Currently, we use LTL formulas to model the temporal aspects
of execution and hypothesis validation.

Level 3 interacts with both level 1 and level 2 since the
fluent approximations produced on those levels are the ones
used as input to impact assessment. The detection of violations
of monitored constraints will lead to changes at the lower
levels.

E. Level 4 Process Refinement

On the fourth level the system should adapt the data
acquisition and processing to support mission objectives. In
DyKnow this usually corresponds to changing what fluent
approximations and classes are currently being computed. This
is related to focus of attention problems where the most
important fluent approximations should be computed while
less important fluent approximations have to stand back in
times of high loads. To support focus of attention, fluent
approximations and class specifications can be added and
deleted at run-time.

Another tool used for refinement are the policies supplied
with the fluent approximations. By changing the policies of the
fluent approximations the load can be reduced. For example,
if the current policy for a fluent approximation of the position
given by the sonar sensor is to sample it 10 times a second and
the latency on the higher level approximations computed from
this is more than 100ms then the sample rate could be lowered
to e.g. 5 times a second until the load goes down again. It
is also possible to setup filters to remove certain samples or
events. For example, instead of receiving all samples, only
receive a sample when the value has changed with more than
10% compared to the last change. Changes in policies can
be made dynamically and can later be changed back to the
original policy.

Level 4 interacts with all the other levels since it controls
the context within which those are being computed as well as
controlling what is actually being computed.

F. Level 5 User Refinement

On the fifth level the system should determination who
queries information and who has access to information and
adapt data retrieved and displayed to support cognitive deci-
sion making and actions. In DyKnow this level is very similar
to the process refinement level. The main difference is that
a user instead of the system itself is controlling the quality
and amount of data being produced. Conceptually there is no
difference in DyKnow who controls the fluent approximations.
Users also have to possibility to input observations to fluent
streams and in that way provide expertise about the current
situation.

It is also possible to create special fluent approximations
which are only used to support the cognition of the user,
such as complex event descriptions or temporal logic formulas
expressing conditions that the user wants to monitor. For
example, instead of keeping track of a number of indicators
the user can express in a LTL formula the normal conditions
for all the indicators, i.e. that everything is in order. If this
formula becomes false then an alarm can be triggered that
forces the user to look at the individual indicators to find out
the source of the problem. We believe that the complex event
descriptions and temporal logics supported by DyKnow are
useful tools to describe high level views of a system which
are suited for a human operator.



IV. EXAMPLE SCENARIO

Picture the following scenario. An autonomous unmanned
aerial vehicle (UAV), in our case a helicopter, is given a
mission to identify and track vehicles with a particular sig-
nature in a region of a small city in order to monitor the
driving behavior of the vehicles. If the UAV finds vehicles with
reckless behavior it should gather information about these,
such as what other vehicles they are overtaking and where they
are going in crossings. The signature is provided in terms of
color and size (and possibly 3D shape). Assume that the UAV
has a 3D model of the region in addition to information about
building structures and the road system. These models can be
provided or may have been generated by the UAV itself.

One way for the UAV to achieve its task would be to
initiate a reactive task procedure (parent procedure) which
calls an image processing module with the vehicle signature as
a parameter. The image processing module will try to identify
colored blobs in the region of the right size, shape and color as
a first step. The fluent approximations of each new blob, such
as RGB values with uncertainty bounds, length and width in
pixels and position in the image, are associated with a vision
object (i.e. an object identifier which is an instance of the class
VisionObject). The image processing system will then try to
track these blobs. As long as the blob is tracked the same
vision object is updated. From the perspective of the UAV,
these objects are only cognized to the extent that they are
moving colored blobs of interest and the fluent approximations
should continue to be computed while tracking.

Now one can hypothesize, if the establish constraint of the
vision to world object link is satisfied, that the blob actually
represents an object in the world by creating a representation
of the blob in the world. New fluent approximations, such
as position in geographical coordinates, are associated with
the new world object. The geographic coordinates provide a
common frame of reference where positions over time and
from different objects can be compared. To represent that the
two objects represents two aspects of the same entity the
vision object is linked to the world object. Since the two
objects are related, the fluent approximations of the world
object will be computed from fluent approximations of the
linked-from vision object. When the vision object is linked
to a world object the entity is cognized at a more qualitative
level of abstraction, yet its description in terms of its linkage
structure contains both cognitive and pre-cognitive information
which must be continuously managed and processed due to
the interdependencies of the fluent approximations at various
levels. We have now moved from level 0 to level 1 in the data
fusion model.

Since links only represent hypotheses they are always sub-
ject to becoming invalid given additional observations. There-
fore the UAV agent continually has to verify the validity of
the links. This is done by associating maintenance constraints
with the links. If the constraint is violated then the link is
removed, but not the objects. A maintenance constraint could
compare the behavior of the objects with the normative and

predicted behavior of these types of objects. This monitoring
of hypotheses at level 3 in the data fusion model uses fluent
approximations computed at all the lower levels.

The next qualitative step in creating a linkage structure in
this scenario would be to check if the world object is on
or close to a road, as defined by a geographical information
system (GIS). In this case, it would be hypothesized that the
world object is an on-road object, i.e. an object moving along
roads with all the associated normative behavior. An on-road
object could contain more abstract and qualitative features
such as position in a road segment which would allow the
parent procedure to reason qualitatively about its position in
the world relative to the road, other vehicles on the road, and
building structures in the vicinity of the road. At this point,
as shown in Fig. 6, streams of data are being generated and
computed for many of the fluent approximations in the linked
object structures at many levels of abstraction as the helicopter
tracks the on-road objects.

FindRoadSegment

EstPosOnRoad

EstDirection

Colocate Derivate Derivatemean_y[vo1]

mean_x[vo1]
VisionObject vo1

ColocateObjectType o

Computational unitObject instance Fluent approximation Link instance

dir[oro1]

pos_on_road[oro1]

road_seg[oro1]

pos[wo1] vel[wo1] acc[wo1]

wo_oro_link

WorldObject wo1

OnRoadObject oro1

vo_wo_link

heli_state[heli]

camera_state[cam]

Fig. 6. The objects, link instances and fluent approximations after the world
object has been hypothesized as an on road object.

Using on-road objects, we can define situations describing
different traffic behaviors such as reckless driving, reckless
overtakes, normal overtakes and turning left and right in cross-
ings. All of these situations are described using chronicles,
which are represented by simple temporal constraint networks
where events are represented with nodes and temporal con-
straints are attached to edges between nodes. The chronicles
are recognized online by a chronicle recognition engine.

We can now define a class RecklessBehavior which has
�(reckless overtake(this) ∨ reckless driving(this)) as the
add constraint, which is satisfied if an on-road object
is observed doing a reckless overtake or driving reck-
lessly. A maintain constraint for this class could be,
��[0,1800](reckless overtake(this) ∨ reckless driving(this)),
which is violated if the object is not observed doing any
reckless driving within 30 minutes (the time-unit is seconds in
the formulas). By creating a fluent stream with all overtake,
turn left, and turn right events related to an object in the Reck-
lessBehavior domain using a set subscription, which creates
a single fluent stream containing samples from certain fluent
approximations for all objects in a given domain, the system is
able to produce the required information and successfully carry
out the mission. Fluent approximations are now maintained at
levels 0, 1, and 2 in the JDL model, and continually monitored



by fluent approximations at level 3.
All fluent approximations, classes, links, events and chroni-

cles are configured by a parent task procedure at the beginning
of the scenario. Thus if the situation changes the task proce-
dure has the option of modifying the specifications associated
with the task at hand. It is also possible to set up monitors
checking the current delays in computing different fluent
approximations in order to monitor the real-time behavior
of the system. If the latency goes above a certain threshold
the task procedure has the option of either removing fluent
approximations it deems as less important or changing policies
in such a way that the amount or quality of the data produced
is reduced. These are all examples of process refinement at
level 4 of the data fusion model. It is equally possible for a
user to monitor the development of the situation and manually
change the policies in order to influence the system in a desired
direction. This would be an example of level 5 user refinement.

V. RELATED WORK

The DyKnow framework is designed for a distributed, real-
time and embedded environment [10], [11] and is devel-
oped on top of an existing middleware platform, real-time
CORBA [12], using the real-time event channel [13] and the
notification [14] services.

Different aspects of the framework borrow and extend ideas
from a number of diverse research areas primarily related
to real-time, active, temporal, and time-series databases [15],
[16], [17], data stream management [18], [19], and knowledge
representation and reasoning [20].

One of the many differences between DyKnow and main-
stream database and data stream approaches is that we use a
data model based on the use of features and fluents which inte-
grates well between quantitative and qualitative constructions
of knowledge structures.

VI. CONCLUSIONS

We have presented a knowledge processing middleware
framework which provides support for many of the function-
alities specified in the revised versions of the JDL data fusion
model. DyKnow supports on-the-fly generation of different
aspects of an agent’s world model at different levels of ab-
straction. Contextual generation of world model is absolutely
essential in distributed contexts where contingencies contin-
ually arise which often restrict the amount of time a system
has for assessing situations and making timely decisions. It
is our belief that autonomous systems will have to have the
capability to determine where to access data, how much data
should be accessed and at what levels of abstraction it should
be modeled. We have provided initial evidence that such a
system can be designed and deployed.

We believe that DyKnow provides the necessary concepts
to integrate existing software and algorithms related to data
fusion and world modelling in general. The location provides
an interface to existing data and knowledge in databases,
sensors and other programs. The computational units encap-
sulate individual algorithms and computations on data and

knowledge while the fluent streams provide the means of
communication. To aid the interaction with high level services
DyKnow provides object, state, and event abstractions. The
system has been tested in a number of complex scenarios
involving our experimental UAV platform and has provided
great insight into what will be required for the realization
of advanced distributed data fusion services. Observe that the
focus here is not on individual data fusion techniques but the
infrastructure which permits use of many different data fusion
techniques in a unified framework.
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