
Aerospace Technology Congress, 8-9 October 2019, Stockholm, Sweden
Swedish Society of Aeronautics and Astronautics (FTF)

Multi-Agent Multi-Objective Deep Reinforcement Learning
for Efficient and Effective Pilot Training

Johan Källström* and Fredrik Heintz**

*Saab AB and Department of Computer Science, Linköping University, Linköping, Sweden
**Department of Computer Science, Linköping University, Linköping, Sweden

E-mail: Johan.Kallstrom@liu.se, Fredrik.Heintz@liu.se

Abstract

The tactical systems and operational environment of modern fighter aircraft are becoming
increasingly complex. Creating a realistic and relevant environment for pilot training using
only live aircraft is difficult, impractical and highly expensive. The Live, Virtual and Con-
structive (LVC) simulation paradigm aims to address this challenge. LVC simulation means
linking real aircraft, ground-based systems and soldiers (Live), manned simulators (Virtual)
and computer controlled synthetic entities (Constructive). Constructive simulation enables
realization of complex scenarios with a large number of autonomous friendly, hostile and
neutral entities, which interact with each other as well as manned simulators and real sys-
tems. This reduces the need for personnel to act as role-players through operation of e.g. live
or virtual aircraft, thus lowering the cost of training. Constructive simulation also makes it
possible to improve the availability of training by embedding simulation capabilities in live
aircraft, making it possible to train anywhere, anytime. In this paper we discuss how machine
learning techniques can be used to automate the process of constructing advanced, adaptive
behavior models for constructive simulations, to improve the autonomy of future training
systems. We conduct a number of initial experiments, and show that reinforcement learning,
in particular multi-agent and multi-objective deep reinforcement learning, allows synthetic
pilots to learn to cooperate and prioritize among conflicting objectives in air combat scen-
arios. Though the results are promising, we conclude that further algorithm development is
necessary to fully master the complex domain of air combat simulation.

Keywords: Pilot Training, Embedded Training, LVC Simulation, Artificial Intelligence,
Autonomy, Sub-system and System Technology, Aircraft and Spacecraft System Analysis

1 Introduction

The tactical systems and operational environment of modern
fighter aircraft are becoming increasingly complex. As a con-
sequence, conducting training using only live, manned plat-
forms is becoming increasingly difficult. Live training is re-
lated to high costs, and air space regulations as well safety
restrictions place limitations on the type of training scenarios
that can be realized. The logistics related to live training may
also lead to poor availability of training. As the possibilities to
do live training decrease, simulation-based training becomes
more and more important.

In an ongoing project within the Swedish National Aero-
nautical Research Program 7 (NFFP7), we are studying how
the next-generation pilot training systems should be designed
to meet future training needs. In our research we are in-
vestigating how machine learning techniques can be used
to construct advanced behavior models for synthetic, intel-
ligent agents. The goal is to develop efficient methods to
generate a wide range of intelligent, adaptive computer con-

trolled allies and adversaries that can create realistic situ-
ations adapted for training of fighter pilots. We have iden-
tified two subfields of particular interest: Multi-Agent Rein-
forcement Learning (MARL) and Multi-Objective Reinforce-
ment Learning (MORL) [1, 2]. MARL allows agents to learn
how to achieve their goals in mixed cooperative and compet-
itive multi-agent scenarios, such as an air combat scenario,
while MORL allows agents to learn how to prioritize among
multiple conflicting objectives, e.g. tactical mission goals, re-
source consumption and safety.

In this paper we discuss how these techniques can help ad-
dress the challenges related to constructing high quality train-
ing simulations. We first give an overview of simulation-
based training, and highlight aspects that motivate our work.
We then present a proposed architecture for an intelligent,
synthetic trainer, and machine learning techniques that could
be used to implement it. Finally, we evaluate the approach
in a number of experiments, with promising results, and give
directions for future work.

mailto:Johan.Kallstrom@liu.se; Fredrik.Heintz@liu.se

2 Simulation-Based Training
Simulation-based training is an efficient way of training oper-
ators in complex, high-risk tasks. Scenarios with great variety
can be realized at a low cost, without risk of injury. In our
work, we model a typical training process for a simulation-
based training system as illustrated in fig. 1. First, simulation
contents are created to meet identified training needs. In the
domain of air combat this could include vehicle models, be-
havior models for the synthetic operators of these vehicles,
and definitions of the scenarios that they operate in. Then,
in a training session, a briefing is conducted to present and
discuss training objectives and scenario contents, followed by
the actual execution of the scenario. Afterwards, trainee per-
formance is evaluated in a debriefing. Over time, training
needs are updated based on the learning progress of trainees,
as well as input from the organization that they belong, e.g.
due to changes in operational missions.

Content Creation

Training Session

Briefing Execution Debriefing

External Input Feedback

Figure 1: Training process.

User roles associated with the training process are illustrated
in fig. 2. The Training Audience are those that we want to
train, in the case of air combat training fighter pilots. The
training environment is provided by a set of Training Pro-
viders. The Instructor is responsible for the pedagogical con-
tents of a training session, and is supported by role-players
and operators to provide it. Role-players participate in the
training scenario, but they themselves do not receive training.
Operators work behind the scenes of the training scenario, e.g.
controlling simulation software, such as manual control of
Computer Generated Forces (CGF), to make sure that the sim-
ulated scenario progresses in the right direction. In practice,
one single person could act in several roles. For instance, due
to limited resources, one person could act as instructor role-
player and operator. This typically results in a high workload,
and the desired training scenarios may not be achievable. It is
desirable to reduce the need for training providers, to improve
training efficiency as well as effectiveness.

Training Audience Instructor Role-Players

Training Providers

Operator

Simulator Users

_ __ _ _ _ _ _

Figure 2: Users of simulation-based training systems.

2.1 Live, Virtual and Constructive Simulation

Computer simulations can be used to augment training in live
systems. One approach is to replace some of the live train-
ing with training in simulators, e.g. using ground-based flight
simulators instead of training in live aircraft. Another ap-
proach is to embed simulation capabilities in live systems,
e.g. capabilities for generation of synthetic opponents in a
fighter aircraft. It has been estimated that embedded train-
ing can improve training effectiveness of live training by 30%
at the same cost [3]. In the Live, Virtual and Constructive
simulation paradigm, the goal is to take things one step fur-
ther, by seamlessly integrating live systems, manned simulat-
ors and computerized simulations in a distributed simulation.
The three categories of simulations are defined as [4]:

• Live: Simulations involving real people operating real
systems

• Virtual: Simulations involving real people operating
simulated systems

• Constructive: Simulations involving simulated people
operating simulated systems (possibly stimulated by real
people)

In the domain of air combat simulation the goal is to integ-
rate real aircraft, ground-based systems and soldiers (Live),
manned simulators (Virtual) and computer controlled entit-
ies (Constructive). Such a simulation platform is valuable for
training [5,6]. An example of an LVC simulation network for
air combat training is illustrated in fig. 3.

Live Blue Team

Ground
Station

Virtual Red A/C-Sim Virtual Blue A/C-Sim

Constructive Simulations

Simulation Network

Gateway

Datalink &
Voice COM

Synthetic Red Aircraft

Synthetic
Blue Aircraft

Figure 3: An LVC distributed simulation.

Constructive simulation enables realization of complex scen-
arios with a large number of autonomous friendly, hostile
and neutral entities, which interact with each other as well as
manned simulators and real systems. However, building real-
istic behavior models for CGF is a significant challenge [7–9],
and consequently support from scenario operators, and pos-
sibly human role-players, is still required in many training
scenarios. With improved behavior models, training systems
with a higher level of autonomy could be built, and adapt-
ive training (AT) with contents tailored to the current learning
needs of individual trainees could be provided [10].

3 An Intelligent, Synthetic Trainer
To make pilot training more efficient and effective, we would
like to increase the autonomy of air combat training sys-
tems, and minimize the dependence on human training pro-
viders. For this purpose, we propose to construct an intel-
ligent, synthetic trainer, which can learn to understand the
learning needs of trainees, and then act accordingly to provide
the best possible training, as well as support for evaluation
of trainees. The synthetic trainer should be able to represent
allies as well as adversaries in a training scenario. We are
investigating how machine learning could be used to create
such an agent. A proposed architecture is shown in fig. 4.

Synthetic Trainer

Reward
System

Decision System

Environment Action

Observation

Reward

Preferences

World Model

User Needs

Perception

Scenario
Adaption

Recording Profiling External Input

DB

Figure 4: Architecture of a Synthetic Trainer.

The agent interacts with an environment, populated by human
trainees as well as other, synthetic agents, who participate in
an air combat training scenario. Users’ training needs must be
considered by a synthetic agent when acting in this scenario,
and thus affect the goals of the agent, as well as preferences
regarding how the agent should try to achieve those goals.
In current training systems user needs are typically handled
manually by an instructor, e.g. when constructing simulation
contents or conducting training sessions, but we would like to
automate this process, by using machine learning to model the
training needs, progress and proficiency of the trainee. These
models could be constructed between training sessions, based
on recordings, or online during the execution of a training ses-
sions, based on the observations of the agent. They can then
be used to automatically adapt the contents and characteristics
of the training scenario.

The agent’s observations of the world are used as input to a
world model, which will create the higher level perception of
the agent. Such models can be used to predict the winner of a
game given a certain state, as well as the skills, beliefs, long
term goals and immediate actions of agents [11–17]. Parts
of the model could be constructed by hand, based on do-
main knowledge, but we are primarily investigating learning
approaches, such as Supervised Deep Learning or Unsuper-
vised Learning [18, 19]. Since data from real or simulated air
battles, with aircraft operated by human pilots, are not readily
available, the intention is to use synthetic data for training of
machine learning models.

The decision system has capabilities for learning policies suit-
able for training of trainees. These policies should consider
the goals of the agent in the simulated air combat scenario, as

well as the learning objectives of the trainees. As mentioned,
limited data is available from human pilots. Instead we have
identified reinforcement learning as a promising technique for
implementing this system, since it allows an agent to learn
based on interaction with a simulation. Feedback regarding
the agent’s learning progress is then provided by a reward
system. Reinforcement learning is discussed further in the
following sections.

3.1 Reinforcement Learning

Reinforcement learning is a machine learning paradigm,
which aims to allow synthetic agents to learn how to achieve
their goals by interacting with their environment [20]. In
recent years the technique has had great success in training
agents to solve games, such as Go and StarCraft [11, 12, 21–
23], as well as complex control tasks [24–26].

Reinforcement learning problems are modelled as Markov
Decision Processes (MDP). An MDP is a tuple (S,A,T,R,γ),
specifying:

• S: The finite set of states of the process

• A: The finite set of actions of the process

• T : The transition dynamics of the process

• R: The reward function of the process

• γ: The discount factor indicating the importance of im-
mediate and future rewards respectively

EnvironmentAgent
at

st , rt st+1 , rt+1

Figure 5: Markov Decision Process.

As illustrated in in fig. 5, in each time step the agent selects
an action, observes the resulting new state of the environment,
and receives a reward. The objective of the agent is to max-
imize its future expected return:

Vπ(s) = E[Rt |s0 = s] = E[
∞

∑
t=0

γ
trt |s0 = s] (1)

The state value function Vπ(s) specifies the value of being in
state s and then following policy π . Similarly, the value of
being in state s and taking action a, and then following policy
π is given by the state-action value function:

Qπ(s,a) = E[
∞

∑
t=0

γ
trt |s0 = s,a0 = a] (2)

One popular algorithm for reinforcement learning is Q-
learning [27], which seeks to estimate the state-action value
function Q(s,a). This algorithm was extended to handle com-
plex, continuous state spaces in the Deep Q-Networks al-
gorithm [28], which uses deep neural networks to represent
the agent’s policy.

3.2 Multi-Agent Reinforcement Learning

In most air combat scenarios, pilots do not act on their own,
but instead must cooperate with allies to achieve their goals,
while competing with enemies. To train teams of agents,
multi-agent reinforcement learning can be used. The single
agent MDP can be extended to include multiple agents in so
called Stochastic Games (SG), where multiple agents interact
with the environment, and the environment state as well as
the rewards of individual agents are determined by the joint
actions of all agents [1]. Stochastic games can be charac-
terized as fully cooperative when all agents have the same
goal, and fully competitive when agents have opposite goals.
Stochastic games that are neither fully cooperative nor fully
competitive are called mixed games. A special case of co-
operative stochastic games is the Decentralized Partially Ob-
servable Markov Decision Process (Dec-POMDP) [29,30]. A
Dec-POMDP is a tuple (S,{Ai},T,R,{Ωi},O,γ), specifying:

• S: The finite set of states of the process

• Ai: The finite set of actions of agent i

• T : The transition dynamics of the process

• R: The reward function of the process

• Ωi: The finite set of observations of agent i

• O: The finite set of conditional observation probabilities

• γ: The discount factor indicating the importance of im-
mediate and future rewards respectively

Environment

Agent
1

a1,t

o1,t , rt o1,t+1 , rt+1

Agent
N

aN,t

oN,t , rt oN,t+1 , rt+1

…

Figure 6: Decentralized Partially Observable Markov De-
cision Process.

Agents in the Dec-POMD, illustrated in fig. 6, can only ob-
serve parts of the environment state, since e.g. internal states
of other agents may be hidden. In an air combat scenario ob-
servability could be affected by e.g. performance of sensors

and data links, which could also be affected by electronic war-
fare. In the illustrated Dec-POMDP, agents must try to co-
ordinate their actions to maximize a shared reward. In other
settings agents could have individual rewards, e.g. due to dif-
ferent priorities among members in a team, or due to a com-
petitive scenario.

Multi-agent learning presents many challenges, such as co-
ordination among agents and multi-agent credit assignment
(i.e. determining a single agent’s contribution to the success
of a team of agents). As several agents learn concurrently, the
environment may also become non-stationary from a single
agent’s point of view. The Multi-Agent Deep Deterministic
Policy Gradient algorithm (MADDPG) [31] uses a central-
ized Q function to guide updates of decentralized policies.
The algorithm supports continuous action spaces and mixed
cooperative-competitive scenarios, and is thus suitable for ap-
plications in the air combat domain.

Multi-agent reinforcement learning can also be used as a
framework for creating hierarchical policies for single entit-
ies in a simulation [32, 33], by placing agents in a hierarchy
where higher-level agents try to reach abstract goals by issu-
ing commands to lower level agents, with increasingly react-
ive behavior.

3.3 Multi-Objective Reinforcement Learning

Multi-objective reinforcement learning can be used to learn
policies for problems where multiple, possible conflicting ob-
jectives must be considered [2]. Typical air combat scenarios
fit this description, since they require that the participating pi-
lots prioritize among objectives such as targets to attack, as-
sets to protect, safety and resource consumption. In training
scenarios, synthetic agents could also consider the learning
objective of trainees, e.g. by adapting their behavior to fit the
proficiency of the trainee. In multi-objective reinforcement
learning the single-objective MDP is extended to a Multi-
Objective Markov Decision Process (MOMDP). An MOMDP
provides a vector-valued reward function, with each element
representing the reward for one of the objectives. The user
utililty of the vector-valued return of an MOMDP is given by
using a scalarization function, which converts the vector to a
scalar. One option is to use the weighted sum of all values:

V π
w (s) = f (Vπ(s),w) =

n

∑
n=1

vπ
i (s)wi (3)

One approach for solving an MOMDP is to use scalariza-
tion directly on the vector-valued reward signal, to convert
the MOMDP to an MDP for a set of preferences, and then
use single-objective methods to find a set of policies [34, 35].
Then, at execution time, the user can select a suitable policy.
By using a stochastic mixture of policies over time for epis-
odic tasks, i.e. selecting one of several policies by random be-
fore the start of an episode, further parts of the solution space
can be covered [36]. In our previous work, we proposed an
approach for training a single, tunable neural network policy
to prioritize among a set of objectives at execution time, by
conditioning the network on user preferences [37].

4 Experiments
To evaluate the potential of machine learning, in particular
multi-agent reinforcement learning and multi-objective rein-
forcement learning, as a tool for building CGF behavior mod-
els, we conduct a number of experiments. As simulation plat-
form we use the tactical environment simulation software that
is part of the Saab Gripen Flight Training Simulators. All
simulation results are averaged over five runs with different
random seeds.

4.1 Coordination of a Tactical Air Unit

We first study how multi-agent reinforcement learning can be
used to coordinate the actions of agents that are members of
the same Tactical Air Unit (TAU). For this purpose, we use
the MADDPG algorithm. We also use environments that are
similar to those used in the original paper [31], but imple-
mented in our high-fidelity simulation engine. The increased
complexity of the state space, as well as the increased number
of time steps per simulated episode, add additional difficulty.
We investigate how the algorithm performs in this setting, for
different types of action spaces. The policy is represented
by a multilayer perceptron (MLP), with 2 hidden layers, each
with 64 neurons and the ReLU activation function. We use a
learning rate of α = 10−2, a discount factor of γ = 0.95, and
train using the Adam optimizer.

4.1.1 Coordinated Defense

In this scenario there are three high-value assets that should
be protected by three learning agents. The assets are attacked
by three enemy agents, which are controlled by handcrafted
behavior models, implemented with Behavior Trees [38]. If a
defending agent comes within 5 km of an attacking agent, the
attacker will retreat to its home base, and then attack again.
To protect all three high-value assets, the learning agents must
learn to split up and escort one enemy each from the protec-
ted area. The defending agents are initialized with random
positions and headings, while the attacking agents are initial-
ized at random positions along their planned attack routes.
The spawn area of blue aircraft and attack directions of red
aircraft are shown in fig. 7.

The observation space of each agent is the relative position
of all other agents, in a body-fixed coordinate system, for the
last 4 time steps in the episode. We study three types of ac-
tion spaces. The first two are continuous action spaces, which
allow an agent to fly forward, or turn left or right with a load
factor of 2-4 g. One of these action spaces also allows an
agent to set its internal state as a three element, real-valued
and normalized vector, which is then distributed to the other
agents in the team in each time step. Previous work has shown
that this type of mechanism can allow agents to develop a lan-
guage for coordination of their actions [31]. The third action
space is a hierarchical approach, with discrete actions that let
the agent select a target and assign it as goal for a lower level
controller. For the first two types of action spaces, the agent
is executed at 1 s intervals, with episodes lasting for 600 time
steps, while for the third type it selects actions at 10 s inter-
vals, with episodes lasting for 60 time steps. To promote co-

Figure 7: Rectangular spawn area of blue aircraft, and red
arrows indicating attack directions of red aircraft towards
high-value assets in green.

operation, the learning agents receive a shared reward defined
as:

rt =−
3

∑
i=1

min(‖pai − pd1‖,‖pai − pd2‖,‖pai − pd3‖) (4)

where pai refers to the position of attacker i and pdk refers to
the position of defender k.

The training progress for the low-level action spaces over 90k
episodes is presented in fig. 8, and the training progress for
the high-level action space over 30k episodes is presented in
fig. 9. Agents that are hard-coded to always attack the same
enemy are used as baselines, and their scores averaged over
1000 simulated episodes are also presented in the figures. The
hard-coded baseline is strong, but not optimal, since it does
not consider the initial positions of agents. To perform com-
paratively well, the learning agents must learn to coordinate
their actions. Two of the agent types can coordinate based on
only observations, while one of the agent types has the benefit
of an explicit communication mechanism, provided that it can
learn a protocol for coordination.

We can see that the low-level, silent controller makes fast ini-
tial improvement, but then reaches a plateau. This is because
the agents must first learn to move as a team towards the pro-
tected area, before being able to learn the benefits and means
of cooperation. The learning progress during the second stage
of learning is quite slow, and varies among different runs, as
can be seen by the increase in variance. The high-level con-
troller, on the other hand, quickly converges to policies that
perform close to the baseline. The high-level action space
automatically moves the agents towards the protected area, so
that agents can start learning cooperation strategies from the

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
episodes

600000

500000

400000

300000

200000

m
ea

n
10

00
 e

pi
so

de
 re

wa
rd

Learning, Silent Agent
Learning, Communicating Agent
Baseline

Figure 8: Mean and standard deviation for the training pro-
gress of coordinated defense with a low-level action space,
for silent and communicating agents.

0 5000 10000 15000 20000 25000 30000
episodes

30000

27500

25000

22500

20000

17500

15000

m
ea

n
10

00
 e

pi
so

de
 re

wa
rd

Learning Agent
Baseline

Figure 9: Mean and standard deviation for the training pro-
gress of coordinated defense with a high-level action space.

start. The low-level, communicating controller displays faster
improvement, and also finds a policy that generates slightly
more reward than the policy of silent agents. This indicates
that explicit communication mechanisms can be valuable for
efficient cooperation in air combat scenarios.

4.1.2 Coordinated Attack

In this scenario there are three targets that should be attacked
by three learning agents. To carry out the task efficiently, the
agents must learn to split up and attack one target each. The
agents are initialized with random positions and headings in
an area to the south, while the targets are initialized in random
positions in a larger area to the north. The spawn areas of
aircraft and targets are shown in fig. 10.

The observation space of each agent is the relative position of
all other agents, as well as the targets, in a body-fixed coordin-
ate system, for the last 4 time steps in the episode. We study
the same two types of action spaces used by silent agents in
4.1.1. For the low-level action space, episodes last for 500
time steps, while for the high-level action space, episodes last
for 50 time steps. To promote cooperation, the learning agents
receive a shared reward defined as:

Figure 10: Rectangular spawn areas of aircraft and targets
in blue and green respectively.

rt =−
3

∑
i=1

min(‖pti − pa1‖,‖pti − pa2‖,‖pti − pa3‖) (5)

where pti refers to the position of target i and pak refers to the
position of attacker k.

The agents are trained for 60k episodes. The training pro-
gress for the low-level action space is presented in fig. 11, and
the training progress for the high-level action space is presen-
ted in fig. 12. Agents that are hard-coded to always attack
the same target are used as baselines, and their scores aver-
aged over 1000 simulated episodes are also presented in the
figures. The hard-coded baseline is strong, but not optimal,
since it does not consider the initial positions of agents. To
perform comparatively well, the learning agents must learn to
coordinate their actions based on only observations.

0 10000 20000 30000 40000 50000 60000
episodes

600000

500000

400000

300000

200000

m
ea

n
10

00
 e

pi
so

de
 re

wa
rd

Learning Agent
Baseline

Figure 11: Mean and standard deviation for the training pro-
gress of coordinated attack with a low-level action space.

0 10000 20000 30000 40000 50000 60000
episodes

19000

18000

17000

16000

15000

m
ea

n
10

00
 e

pi
so

de
 re

wa
rd

Learning Agent
Baseline

Figure 12: Mean and standard deviation for the training pro-
gress of coordinated attack with a high-level action space.

We can see that the low-level controller quickly converges
to a sub-optimal policy, and then does not improve during
the rest of training. Possibly further training episodes could
eventually lead to an improvement of the policy. The high-
level controller makes quite fast progress, but not as fast as
in the experiment presented in 4.1.1. The learning also seems
less stable. While some of the trained agents learn policies
as good as the baseline, others struggle a bit in some epis-
odes. This is possibly because in this scenario targets may
spawn quite close to each other, which makes it difficult for
the learning agents to cooperate based on observations alone.

To further study the performance of the low-level controller,
and its dependence on the starting positions of agents, we con-
duct an additional experiment, where the aircraft are spawned
in the green area in fig. 10. The training progress for this ex-
periment over 60k episodes, with episodes lasting 300 time
steps, is presented in fig. 13. We can see that the agent
performs better for this scenario, since aircraft start closer to
the targets, which simplifies the task of learning coordination
among agents.

0 10000 20000 30000 40000 50000 60000
episodes

200000

175000

150000

125000

100000

75000

50000

m
ea

n
10

00
 e

pi
so

de
 re

wa
rd

Learning Agent
Baseline

Figure 13: Mean and standard deviation for the training pro-
gress of coordinated attack with a low-level action space,
when aircraft spawn close to the targets.

4.2 Risk Aware Attack

We now proceed to investigate how multi-objective reinforce-
ment learning can be used to allow agents to learn how to
prioritize among multiple conflicting objectives. We use two
approaches: The outer-loop approach, where the MOMDP is
converted to multiple single-objective MDPs, which are then
solved with single-objective methods to produce a set of fixed
policies [35], and our own approach using a single neural net-
work conditioned on the objective priorities [37], which pro-
duces a tunable policy. We then compare the performance of
the two approaches. In these experiments we use DQN as the
core learning algorithm, as in the referenced papers. As previ-
ously mentioned, we use a high-fidelity simulation engine for
the experiments, in contrast to the simple, low-dimensional
gridworld environments studied in previous work. The policy
is represented by an MLP, with 1 hidden layer with 64 neur-
ons and the ReLU activation function. We use a learning rate
of α = 10−4, a discount factor of γ = 1.00, a replay-buffer
with 106 samples, and train using the Adam optimizer and
prioritized experience replay [39].

In the studied scenario, the synthetic pilot must reach a tar-
get location in an attack mission, while avoiding enemy air
defense systems. The agent must prioritize between time and
safety when selecting a route. For simplicity, we place one air
defense system between the agent’s start position and the tar-
get. The agent always starts in the same position, with initial
heading towards the target. The scenario is illustrated in fig.
16.

The observation space of the agent is the relative heading
and distance to the center of the threat area, and the relative
heading and distance to the target, for the last 8 time steps in
the episode. Since DQN does not handle continuous actions,
we must discretize the input to the controllers of the aircraft
model. Thus, we define the agent’s actions space as forward
motion or right or left turns with a load factor of 2-4 g in dis-
crete steps of 1 g. The agent selects actions at 1 s intervals.
Each training episode is a maximum of 400 time steps long.
The episode ends if the agent reaches the target. The reward
vector of the MOMDP is defined as:

rt = [rgoal(t),rtime(t),rad(t)] (6)

dg(t) = ‖pg(t)− pa(t)‖ (7)

dad(t) = ‖pad(t)− pa(t)‖ (8)

rgoal(t) = dg(t−1)−dg(t) (9)

rtime(t) =−0.5 (10)

rad(t) =

{
−
(1

10 (Rad−dad(t))
)2

if dad(t)≤ Rad ;
0 if dad(t)> Rad ;

(11)

where rgoal(t) refers to the reward for the objective of mov-
ing towards the target, rtime(t) refers to the reward for the
objective of reaching the target fast, and rad(t) refers to the
reward for the objective of staying out of range of the air de-
fense system. pa(t), pg(t) and pad(t) are the positions of
the agent, goal and air defense system, dg(t) and dad(t) are
the distances from the agent to the goal and air defense sys-
tem, and Rad = 20 km is the range of the air defense sys-
tem. To scalarize the vector-valued reward of the MOMDP
we define the parameterized vector of priorities among ob-
jectives pθ = [1,θ ,θ − 1], with θ ∈ [0,1]. We then calculate
a scalar reward as:

rt = rt ·p (12)

For the tunable agent we sample θ from a uniform distribution
of [0.75,1.00] before each episode, and use it as input to the
agent. We train fixed policy agents for 10M time steps, while
tunable policy agents are trained for 30M time steps. The
training progress for fixed policy agents is presented in fig.
14, for θ ∈ {0.75,0.85,0.95}, and the training progress for
tunable agents is presented in fig. 15.

0 5000 10000 15000 20000 25000 30000
episodes

250

225

200

175

150

125

100

75

m
ea

n
10

0
ep

iso
de

 re
wa

rd

= 0.95
= 0.85
= 0.75

Figure 14: Training progress for a set of fixed policies with
different priorities among objectives.

We can see that training is somewhat unstable, with spikes
of high variance. The cause may be that small changes in
policy have great effect on the accumulated reward, or that
it is difficult for the agent to learn the characteristics of the
reward function. It is also possible that the low frequency of
the controller or the discretization of the action space has a
negative effect on performance.

Three routes learned for different priorities, corresponding to
high, medium and low risk exposure, are illustrated in fig. 16,
for fixed policies and a tunable policy. The displayed routes
are for single runs, not averaged over several runs or agents,
since agents may choose to go on either side of the center of
the threat area. The routes displayed for the tunable policy
are from one trained agent. We can see that the tunable policy
results in tighter routes around the center of the threat area,
compared to those generated by the set of fixed policies. Find-
ing an optimal route with the given reward system requires a

0 20000 40000 60000 80000 100000
episodes

220

200

180

160

140

120

100

80

60

m
ea

n
10

0
ep

iso
de

 re
wa

rd

Tunable Agent

Figure 15: Training progress for single, tunable policy.

bit of tuning, and more exploration would have been required
to achieve improved performance.

high-f
medium-f
low-f
high-t
medium-t
low-t

Figure 16: Learned routes to the target area with high, me-
dium and low risk exposure, for fixed (f) and tunable (t)
policies.

The mean and standard deviation for the rewards accumulated
by fixed and tunable policies are presented in fig. 17. We
can see that the tunable policies produce competitive results
for θ = 0.95 and θ = 0.85, but perform worse for θ = 0.75.
The poor result is caused by one of the five trained agents,
which fails to reach the goal for this configuration, which in
turn heavily affects its accumulated reward. This also leads to
high standard deviation for this case.

By extending multi-objective learning to more complex scen-
arios, with more objectives that must be prioritized, agents
with diverse characteristics can be constructed. This can
make training more interesting and stimulating, and by adjust-
ing agents’ objective preferences training contents can also be
adapted to the training needs of specific trainees.

= 0.95 = 0.85 = 0.75
120

100

80

60

40

20

0

Av
er

ag
e

Re
wa

rd

Fixed Policy
Tunable Policy

Figure 17: Mean and standard deviation for accumulated re-
wards for fixed and tunable policies.

5 Related Work
Over the years, there have been several attempts at using ma-
chine learning techniques for building behavior models for
computer generated forces. Some approaches that have been
studied are evolutionary algorithms [40–42], neural networks
[43–46] and dynamic scripting [47–49], a technique origin-
ally developed for computer games. Still, the studied tech-
niques have not been mature enough to include in commercial
CGF software [9].

With the renewed interest in machine learning, sparked by
e.g. AlphaGo [11,21], there have been approaches using deep
reinforcement learning [50–52]. However, we are not aware
of any work that studies the recent advancements in multi-
agent or multi-objective deep reinforcement learning in the
context of air combat simulation.

6 Conclusions
In this paper we discussed the future of air combat train-
ing, and suggested an approach for building an intelligent,
synthetic trainer for fighter pilots, using machine learning
techniques. We also presented results of initial experi-
ments, which indicate that state-of-the-art algorithms can al-
low agents to learn team coordination as well as prioritization
among conflicting objectives in simple air combat scenarios.
However, we also note some challenges posed by the com-
plexity of the air combat domain. Learning high-level tactical
behavior using a low-level action space may not be the best
approach. As the complexity of scenarios grows, it will be-
come more difficult for the agent to learn efficient policies. It
may get stuck in a local optimum, or perhaps not learn any
reasonable policy at all. We believe that a hierarchical ap-
proach to reinforcement learning, where the problem is de-
composed into a number of sub-tasks handled by a hierarchy
of agents, can help tackle this problem, as indicated by the
results in 4.1.1 and 4.1.2.

In future work we would like to continue to study more com-
plex scenarios, which more closely resemble those used in
operational training systems, to facilitate experiments with
manned simulators and studies of human-agent interaction.

We would then like to extend our study of multi-agent learn-
ing to include adversarial learning, where teams of agents
compete against each-other. We would also like to com-
bine multi-agent and multi-objective learning in an integrated
architecture, using a hierarchical approach to reinforcement
learning, in combination with learned models for predicting
other agents’ characteristics, goals and actions, to support de-
cision making. Finally, we would like to study intelligent ex-
ploration schemes and other ways to achieve sample efficient
learning in complex state and action spaces.

Acknowledgements
This work was partially supported by the Swedish Gov-
ernmental Agency for Innovation Systems (NFFP7/2017-
04885), and the Wallenberg Artificial Intelligence, Autonom-
ous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation.

References
[1] Lucian Bu, Robert Babu, Bart De Schutter, et al. A com-

prehensive survey of multiagent reinforcement learn-
ing. IEEE Transactions on Systems, Man, and Cybernet-
ics, Part C (Applications and Reviews), 38(2):156–172,
2008.

[2] Diederik M Roijers, Peter Vamplew, Shimon Whiteson,
and Richard Dazeley. A survey of multi-objective se-
quential decision-making. Journal of Artificial Intelli-
gence Research, 48:67–113, 2013.

[3] JJ Roessingh and GG Verhaaf. Training effectiveness
of embedded training in a (multi-) fighter environment.
Technical report, NATIONAL AEROSPACE LAB AM-
STERDAM (NETHERLANDS), 2009.

[4] Ernest H Page and Roger Smith. Introduction to milit-
ary training simulation: a guide for discrete event simu-
lationists. In 1998 Winter Simulation Conference. Pro-
ceedings (Cat. No. 98CH36274), volume 1, pages 53–
60. IEEE, 1998.

[5] Amy E Henninger, Dannie Cutts, Margaret Loper,
Robert Lutz, Robert Richbourg, Randy Saunders, and
Steve Swenson. Live virtual constructive architecture
roadmap (lvcar) final report. Institute for Defense Ana-
lysis, 2008.

[6] Douglas D Hodson and Raymond R Hill. The art and
science of live, virtual, and constructive simulation for
test and analysis. The Journal of Defense Modeling and
Simulation, 11(2):77–89, 2014.

[7] Jack Thorpe. Trends in modeling, simulation, &
gaming: Personal observations about the past thirty
years and speculation about the next ten. In Interser-
vice/Industry training, simulation, and education con-
ference (I/ITSEC), 2010.

[8] TW van den Berg, NM de Reus, and JM Voogd. LVC Ar-
chitecture study. Simulation Interoperability Standards
Organization (SISO), 2011.

[9] Armon Toubman, Gerald Poppinga, Jan Joris Roess-
ingh, Ming Hou, Linus Luotsinen, Rikke Amilde
Løvlid, Christophe Meyer, Roel Rijken, and M Turc-
anık. Modeling cgf behavior with machine learning
techniques: Requirements and future directions. In
Proceedings of the 2015 Interservice/Industry Training,
Simulation, and Education Conference, pages 2637–
2647, 2015.

[10] Christopher Best and Benjamin Rice FLTLT. Sci-
ence and technology enablers of live virtual constructive
training in the air domain. Air & Space Power Journal,
32(4):59–73, 2018.

[11] David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Veda Panneer-
shelvam, Marc Lanctot, et al. Mastering the game of
go with deep neural networks and tree search. nature,
529(7587):484, 2016.

[12] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko
Georgiev, Alexander Sasha Vezhnevets, Michelle Yeo,
Alireza Makhzani, Heinrich Küttler, John Agapiou,
Julian Schrittwieser, et al. Starcraft ii: A new
challenge for reinforcement learning. arXiv preprint
arXiv:1708.04782, 2017.

[13] Tetske Avontuur, Pieter Spronck, and Menno
Van Zaanen. Player skill modeling in starcraft ii.
In Ninth Artificial Intelligence and Interactive Digital
Entertainment Conference, 2013.

[14] Niels Justesen and Sebastian Risi. Learning macroman-
agement in starcraft from replays using deep learning. In
2017 IEEE Conference on Computational Intelligence
and Games (CIG), pages 162–169. IEEE, 2017.

[15] Sid Reddy, Anca Dragan, and Sergey Levine. Where do
you think you’re going?: Inferring beliefs about dynam-
ics from behavior. In Advances in Neural Information
Processing Systems, pages 1454–1465, 2018.

[16] Neil C Rabinowitz, Frank Perbet, H Francis Song, Chiy-
uan Zhang, SM Eslami, and Matthew Botvinick. Ma-
chine theory of mind. arXiv preprint arXiv:1802.07740,
2018.

[17] Roberta Raileanu, Emily Denton, Arthur Szlam, and
Rob Fergus. Modeling others using oneself in
multi-agent reinforcement learning. arXiv preprint
arXiv:1802.09640, 2018.

[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep learning. MIT press, 2016.

[19] Kevin P Murphy. Machine learning: a probabilistic per-
spective. MIT press, 2012.

[20] Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT press, 2018.

[21] David Silver, Julian Schrittwieser, Karen Simonyan,
Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas
Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.
Mastering the game of go without human knowledge.
Nature, 550(7676):354, 2017.

[22] Tabish Rashid, Mikayel Samvelyan, Chris-
tian Schroeder Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Qmix: Monotonic value func-
tion factorisation for deep multi-agent reinforcement
learning. In International Conference on Machine
Learning, pages 4292–4301, 2018.

[23] Jakob N Foerster, Gregory Farquhar, Triantafyllos
Afouras, Nantas Nardelli, and Shimon Whiteson. Coun-
terfactual multi-agent policy gradients. In Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

[24] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,
and Daan Wierstra. Continuous control with deep rein-
forcement learning. arXiv preprint arXiv:1509.02971,
2015.

[25] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optim-
ization algorithms. arXiv preprint arXiv:1707.06347,
2017.

[26] Martin Riedmiller, Roland Hafner, Thomas Lampe, Mi-
chael Neunert, Jonas Degrave, Tom Wiele, Vlad Mnih,
Nicolas Heess, and Jost Tobias Springenberg. Learning
by playing solving sparse reward tasks from scratch. In
International Conference on Machine Learning, pages
4341–4350, 2018.

[27] Christopher JCH Watkins and Peter Dayan. Q-learning.
Machine learning, 8(3-4):279–292, 1992.

[28] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep re-
inforcement learning. Nature, 518(7540):529, 2015.

[29] Daniel S Bernstein, Robert Givan, Neil Immerman, and
Shlomo Zilberstein. The complexity of decentralized
control of markov decision processes. Mathematics of
operations research, 27(4):819–840, 2002.

[30] Christopher Amato, Girish Chowdhary, Alborz Gerami-
fard, N Kemal Üre, and Mykel J Kochenderfer. Decent-
ralized control of partially observable markov decision
processes. In 52nd IEEE Conference on Decision and
Control, pages 2398–2405. IEEE, 2013.

[31] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb,
OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environ-
ments. In Advances in Neural Information Processing
Systems, pages 6379–6390, 2017.

[32] Peter Dayan and Geoffrey E Hinton. Feudal reinforce-
ment learning. In Advances in neural information pro-
cessing systems, pages 271–278, 1993.

[33] Alexander Sasha Vezhnevets, Simon Osindero, Tom
Schaul, Nicolas Heess, Max Jaderberg, David Silver,
and Koray Kavukcuoglu. Feudal networks for hierarch-
ical reinforcement learning. In Proceedings of the 34th
International Conference on Machine Learning-Volume
70, pages 3540–3549. JMLR. org, 2017.

[34] Kristof Van Moffaert, Madalina M Drugan, and Ann
Nowé. Scalarized multi-objective reinforcement learn-
ing: Novel design techniques. In 2013 IEEE Symposium
on Adaptive Dynamic Programming and Reinforcement
Learning (ADPRL), pages 191–199. IEEE, 2013.

[35] Hossam Mossalam, Yannis M Assael, Diederik M
Roijers, and Shimon Whiteson. Multi-objective deep re-
inforcement learning. arXiv preprint arXiv:1610.02707,
2016.

[36] Peter Vamplew, Richard Dazeley, Ewan Barker, and
Andrei Kelarev. Constructing stochastic mixture
policies for episodic multiobjective reinforcement learn-
ing tasks. In Australasian Joint Conference on Artificial
Intelligence, pages 340–349. Springer, 2009.

[37] Johan Källström and Fredrik Heintz. Tunable dynam-
ics in agent-based simulation using multi-objective re-
inforcement learning. In Adaptive and Learning Agents
(ALA) workshop at AAMAS, 2019.

[38] Michele Colledanchise and Petter Ögren. Behavior
Trees in Robotics and Al: An Introduction. CRC Press,
2018.

[39] Tom Schaul, John Quan, Ioannis Antonoglou, and David
Silver. Prioritized experience replay. arXiv preprint
arXiv:1511.05952, 2015.

[40] Sandeep Mulgund, Karen Harper, Kalmanje Krishnak-
umar, and Greg Zacharias. Air combat tactics optim-
ization using stochastic genetic algorithms. In SMC’98
Conference Proceedings. 1998 IEEE International Con-
ference on Systems, Man, and Cybernetics (Cat. No.
98CH36218), volume 4, pages 3136–3141. IEEE, 1998.

[41] Magdalena D Bugajska, Alan C Schultz, J Gregory
Trafton, Shaun Gittens, and Farilee Mintz. Building
adaptive computer-generated forces: The effect of in-
creasing task reactivity on human and machine con-
trol abilities. Technical report, NAVAL RESEARCH
LAB WASHINGTON DC CENTER FOR APPLIED
RESEARCH IN ARTIFICIAL INTELLIGENCE, 2001.

[42] Jian Yao, Qiwang Huang, and Weiping Wang. Adapt-
ive human behavior modeling for air combat simulation.
In 2015 IEEE/ACM 19th International Symposium on
Distributed Simulation and Real Time Applications (DS-
RT), pages 100–103. IEEE, 2015.

[43] Ervin Y Rodin and S Massoud Amin. Maneuver predic-
tion in air combat via artificial neural networks. Com-
puters & mathematics with applications, 24(3):95–112,
1992.

[44] Amy E Henninger, Avelino J Gonzalez, Michael Geor-
giopoulos, and Ronald F DeMara. Modeling semi-
automated forces with neural networks: Performance
improvement through a modular approach. In The Ninth
Conference on Computer Generated Forces and Beha-
vioral Representation Proceedings, 2000.

[45] Teck-Hou Teng, Ah-Hwee Tan, Yuan-Sin Tan, and Ad-
rian Yeo. Self-organizing neural networks for learning
air combat maneuvers. In The 2012 International Joint
Conference on Neural Networks (IJCNN), pages 1–8.
IEEE, 2012.

[46] Teck-Hou Teng, Ah-Hwee Tan, and Loo-Nin Teow.
Adaptive computer-generated forces for simulator-
based training. Expert Systems with Applications,
40(18):7341–7353, 2013.

[47] Armon Toubman, Jan Joris Roessingh, Pieter Spronck,
Aske Plaat, and Jaap Van Den Herik. Dynamic scripting
with team coordination in air combat simulation. In In-
ternational Conference on Industrial, Engineering and
Other Applications of Applied Intelligent Systems, pages
440–449. Springer, 2014.

[48] Armon Toubman, Jan Joris Roessingh, Pieter Spronck,
Aske Plaat, and Jaap van den Herik. Transfer learning
of air combat behavior. In 2015 IEEE 14th Interna-
tional Conference on Machine Learning and Applica-
tions (ICMLA), pages 226–231. IEEE, 2015.

[49] Armon Toubman, Jan Joris Roessingh, Pieter Spronck,
Aske Plaat, and Jaap van den Herik. Rapid adaptation
of air combat behaviour. In Proceedings of the Twenty-
second European Conference on Artificial Intelligence,
pages 1791–1796. IOS Press, 2016.

[50] Roel Rijken and Armon Toubman. The future of
autonomous air combat behavior. In 2016 IEEE Inter-
national Conference on Systems, Man, and Cybernetics
(SMC), pages 3089–3094. IEEE, 2016.

[51] Babak Toghiani-Rizi, Farzad Kamrani, Linus J
Luotsinen, and Linus Gisslén. Evaluating deep rein-
forcement learning for computer generated forces in
ground combat simulation. In 2017 IEEE International
Conference on Systems, Man, and Cybernetics (SMC),
pages 3433–3438. IEEE, 2017.

[52] Bogdan Vlahov, Eric Squires, Laura Strickland, and
Charles Pippin. On developing a uav pursuit-evasion
policy using reinforcement learning. In 2018 17th IEEE
International Conference on Machine Learning and Ap-
plications (ICMLA), pages 859–864. IEEE, 2018.

	Introduction
	Simulation-Based Training
	Live, Virtual and Constructive Simulation

	An Intelligent, Synthetic Trainer
	Reinforcement Learning
	Multi-Agent Reinforcement Learning
	Multi-Objective Reinforcement Learning

	Experiments
	Coordination of a Tactical Air Unit
	Coordinated Defense
	Coordinated Attack

	Risk Aware Attack

	Related Work
	Conclusions

