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Abstract

The tactical systems and operational environment of modern fighter aircraft are becoming
increasingly complex. Creating a realistic and relevant environment for pilot training using
only live aircraft is difficult, impractical and highly expensive. The Live, Virtual and Con-
structive (LVC) simulation paradigm aims to address this challenge. LVC simulation means
linking real aircraft, ground-based systems and soldiers (Live), manned simulators (Virtual)
and computer controlled synthetic entities (Constructive). Constructive simulation enables
realization of complex scenarios with a large number of autonomous friendly, hostile and
neutral entities, which interact with each other as well as manned simulators and real sys-
tems. This reduces the need for personnel to act as role-players through operation of e.g. live
or virtual aircraft, thus lowering the cost of training. Constructive simulation also makes it
possible to improve the availability of training by embedding simulation capabilities in live
aircraft, making it possible to train anywhere, anytime. In this paper we discuss how machine
learning techniques can be used to automate the process of constructing advanced, adaptive
behavior models for constructive simulations, to improve the autonomy of future training
systems. We conduct a number of initial experiments, and show that reinforcement learning,
in particular multi-agent and multi-objective deep reinforcement learning, allows synthetic
pilots to learn to cooperate and prioritize among conflicting objectives in air combat scen-
arios. Though the results are promising, we conclude that further algorithm development is
necessary to fully master the complex domain of air combat simulation.

Keywords: Pilot Training, Embedded Training, LVC Simulation, Artificial Intelligence,
Autonomy, Sub-system and System Technology, Aircraft and Spacecraft System Analysis

1 Introduction

The tactical systems and operational environment of modern
fighter aircraft are becoming increasingly complex. As a con-
sequence, conducting training using only live, manned plat-
forms is becoming increasingly difficult. Live training is re-
lated to high costs, and air space regulations as well safety
restrictions place limitations on the type of training scenarios
that can be realized. The logistics related to live training may
also lead to poor availability of training. As the possibilities to
do live training decrease, simulation-based training becomes
more and more important.

In an ongoing project within the Swedish National Aero-
nautical Research Program 7 (NFFP7), we are studying how
the next-generation pilot training systems should be designed
to meet future training needs. In our research we are in-
vestigating how machine learning techniques can be used
to construct advanced behavior models for synthetic, intel-
ligent agents. The goal is to develop efficient methods to
generate a wide range of intelligent, adaptive computer con-

trolled allies and adversaries that can create realistic situ-
ations adapted for training of fighter pilots. We have iden-
tified two subfields of particular interest: Multi-Agent Rein-
forcement Learning (MARL) and Multi-Objective Reinforce-
ment Learning (MORL) [1, 2]. MARL allows agents to learn
how to achieve their goals in mixed cooperative and compet-
itive multi-agent scenarios, such as an air combat scenario,
while MORL allows agents to learn how to prioritize among
multiple conflicting objectives, e.g. tactical mission goals, re-
source consumption and safety.

In this paper we discuss how these techniques can help ad-
dress the challenges related to constructing high quality train-
ing simulations. We first give an overview of simulation-
based training, and highlight aspects that motivate our work.
We then present a proposed architecture for an intelligent,
synthetic trainer, and machine learning techniques that could
be used to implement it. Finally, we evaluate the approach
in a number of experiments, with promising results, and give
directions for future work.
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2 Simulation-Based Training
Simulation-based training is an efficient way of training oper-
ators in complex, high-risk tasks. Scenarios with great variety
can be realized at a low cost, without risk of injury. In our
work, we model a typical training process for a simulation-
based training system as illustrated in fig. 1. First, simulation
contents are created to meet identified training needs. In the
domain of air combat this could include vehicle models, be-
havior models for the synthetic operators of these vehicles,
and definitions of the scenarios that they operate in. Then,
in a training session, a briefing is conducted to present and
discuss training objectives and scenario contents, followed by
the actual execution of the scenario. Afterwards, trainee per-
formance is evaluated in a debriefing. Over time, training
needs are updated based on the learning progress of trainees,
as well as input from the organization that they belong, e.g.
due to changes in operational missions.
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Briefing Execution Debriefing

External Input Feedback

Figure 1: Training process.

User roles associated with the training process are illustrated
in fig. 2. The Training Audience are those that we want to
train, in the case of air combat training fighter pilots. The
training environment is provided by a set of Training Pro-
viders. The Instructor is responsible for the pedagogical con-
tents of a training session, and is supported by role-players
and operators to provide it. Role-players participate in the
training scenario, but they themselves do not receive training.
Operators work behind the scenes of the training scenario, e.g.
controlling simulation software, such as manual control of
Computer Generated Forces (CGF), to make sure that the sim-
ulated scenario progresses in the right direction. In practice,
one single person could act in several roles. For instance, due
to limited resources, one person could act as instructor role-
player and operator. This typically results in a high workload,
and the desired training scenarios may not be achievable. It is
desirable to reduce the need for training providers, to improve
training efficiency as well as effectiveness.
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Training Providers

Operator

Simulator Users
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Figure 2: Users of simulation-based training systems.

2.1 Live, Virtual and Constructive Simulation

Computer simulations can be used to augment training in live
systems. One approach is to replace some of the live train-
ing with training in simulators, e.g. using ground-based flight
simulators instead of training in live aircraft. Another ap-
proach is to embed simulation capabilities in live systems,
e.g. capabilities for generation of synthetic opponents in a
fighter aircraft. It has been estimated that embedded train-
ing can improve training effectiveness of live training by 30%
at the same cost [3]. In the Live, Virtual and Constructive
simulation paradigm, the goal is to take things one step fur-
ther, by seamlessly integrating live systems, manned simulat-
ors and computerized simulations in a distributed simulation.
The three categories of simulations are defined as [4]:

• Live: Simulations involving real people operating real
systems

• Virtual: Simulations involving real people operating
simulated systems

• Constructive: Simulations involving simulated people
operating simulated systems (possibly stimulated by real
people)

In the domain of air combat simulation the goal is to integ-
rate real aircraft, ground-based systems and soldiers (Live),
manned simulators (Virtual) and computer controlled entit-
ies (Constructive). Such a simulation platform is valuable for
training [5,6]. An example of an LVC simulation network for
air combat training is illustrated in fig. 3.
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Figure 3: An LVC distributed simulation.

Constructive simulation enables realization of complex scen-
arios with a large number of autonomous friendly, hostile
and neutral entities, which interact with each other as well as
manned simulators and real systems. However, building real-
istic behavior models for CGF is a significant challenge [7–9],
and consequently support from scenario operators, and pos-
sibly human role-players, is still required in many training
scenarios. With improved behavior models, training systems
with a higher level of autonomy could be built, and adapt-
ive training (AT) with contents tailored to the current learning
needs of individual trainees could be provided [10].



3 An Intelligent, Synthetic Trainer
To make pilot training more efficient and effective, we would
like to increase the autonomy of air combat training sys-
tems, and minimize the dependence on human training pro-
viders. For this purpose, we propose to construct an intel-
ligent, synthetic trainer, which can learn to understand the
learning needs of trainees, and then act accordingly to provide
the best possible training, as well as support for evaluation
of trainees. The synthetic trainer should be able to represent
allies as well as adversaries in a training scenario. We are
investigating how machine learning could be used to create
such an agent. A proposed architecture is shown in fig. 4.
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Figure 4: Architecture of a Synthetic Trainer.

The agent interacts with an environment, populated by human
trainees as well as other, synthetic agents, who participate in
an air combat training scenario. Users’ training needs must be
considered by a synthetic agent when acting in this scenario,
and thus affect the goals of the agent, as well as preferences
regarding how the agent should try to achieve those goals.
In current training systems user needs are typically handled
manually by an instructor, e.g. when constructing simulation
contents or conducting training sessions, but we would like to
automate this process, by using machine learning to model the
training needs, progress and proficiency of the trainee. These
models could be constructed between training sessions, based
on recordings, or online during the execution of a training ses-
sions, based on the observations of the agent. They can then
be used to automatically adapt the contents and characteristics
of the training scenario.

The agent’s observations of the world are used as input to a
world model, which will create the higher level perception of
the agent. Such models can be used to predict the winner of a
game given a certain state, as well as the skills, beliefs, long
term goals and immediate actions of agents [11–17]. Parts
of the model could be constructed by hand, based on do-
main knowledge, but we are primarily investigating learning
approaches, such as Supervised Deep Learning or Unsuper-
vised Learning [18, 19]. Since data from real or simulated air
battles, with aircraft operated by human pilots, are not readily
available, the intention is to use synthetic data for training of
machine learning models.

The decision system has capabilities for learning policies suit-
able for training of trainees. These policies should consider
the goals of the agent in the simulated air combat scenario, as

well as the learning objectives of the trainees. As mentioned,
limited data is available from human pilots. Instead we have
identified reinforcement learning as a promising technique for
implementing this system, since it allows an agent to learn
based on interaction with a simulation. Feedback regarding
the agent’s learning progress is then provided by a reward
system. Reinforcement learning is discussed further in the
following sections.

3.1 Reinforcement Learning

Reinforcement learning is a machine learning paradigm,
which aims to allow synthetic agents to learn how to achieve
their goals by interacting with their environment [20]. In
recent years the technique has had great success in training
agents to solve games, such as Go and StarCraft [11, 12, 21–
23], as well as complex control tasks [24–26].

Reinforcement learning problems are modelled as Markov
Decision Processes (MDP). An MDP is a tuple (S,A,T,R,γ),
specifying:

• S: The finite set of states of the process

• A: The finite set of actions of the process

• T : The transition dynamics of the process

• R: The reward function of the process

• γ: The discount factor indicating the importance of im-
mediate and future rewards respectively
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Figure 5: Markov Decision Process.

As illustrated in in fig. 5, in each time step the agent selects
an action, observes the resulting new state of the environment,
and receives a reward. The objective of the agent is to max-
imize its future expected return:

Vπ(s) = E[Rt |s0 = s] = E[
∞

∑
t=0

γ
trt |s0 = s] (1)

The state value function Vπ(s) specifies the value of being in
state s and then following policy π . Similarly, the value of
being in state s and taking action a, and then following policy
π is given by the state-action value function:

Qπ(s,a) = E[
∞

∑
t=0

γ
trt |s0 = s,a0 = a] (2)



One popular algorithm for reinforcement learning is Q-
learning [27], which seeks to estimate the state-action value
function Q(s,a). This algorithm was extended to handle com-
plex, continuous state spaces in the Deep Q-Networks al-
gorithm [28], which uses deep neural networks to represent
the agent’s policy.

3.2 Multi-Agent Reinforcement Learning

In most air combat scenarios, pilots do not act on their own,
but instead must cooperate with allies to achieve their goals,
while competing with enemies. To train teams of agents,
multi-agent reinforcement learning can be used. The single
agent MDP can be extended to include multiple agents in so
called Stochastic Games (SG), where multiple agents interact
with the environment, and the environment state as well as
the rewards of individual agents are determined by the joint
actions of all agents [1]. Stochastic games can be charac-
terized as fully cooperative when all agents have the same
goal, and fully competitive when agents have opposite goals.
Stochastic games that are neither fully cooperative nor fully
competitive are called mixed games. A special case of co-
operative stochastic games is the Decentralized Partially Ob-
servable Markov Decision Process (Dec-POMDP) [29,30]. A
Dec-POMDP is a tuple (S,{Ai},T,R,{Ωi},O,γ), specifying:

• S: The finite set of states of the process

• Ai: The finite set of actions of agent i

• T : The transition dynamics of the process

• R: The reward function of the process

• Ωi: The finite set of observations of agent i

• O: The finite set of conditional observation probabilities

• γ: The discount factor indicating the importance of im-
mediate and future rewards respectively
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Figure 6: Decentralized Partially Observable Markov De-
cision Process.

Agents in the Dec-POMD, illustrated in fig. 6, can only ob-
serve parts of the environment state, since e.g. internal states
of other agents may be hidden. In an air combat scenario ob-
servability could be affected by e.g. performance of sensors

and data links, which could also be affected by electronic war-
fare. In the illustrated Dec-POMDP, agents must try to co-
ordinate their actions to maximize a shared reward. In other
settings agents could have individual rewards, e.g. due to dif-
ferent priorities among members in a team, or due to a com-
petitive scenario.

Multi-agent learning presents many challenges, such as co-
ordination among agents and multi-agent credit assignment
(i.e. determining a single agent’s contribution to the success
of a team of agents). As several agents learn concurrently, the
environment may also become non-stationary from a single
agent’s point of view. The Multi-Agent Deep Deterministic
Policy Gradient algorithm (MADDPG) [31] uses a central-
ized Q function to guide updates of decentralized policies.
The algorithm supports continuous action spaces and mixed
cooperative-competitive scenarios, and is thus suitable for ap-
plications in the air combat domain.

Multi-agent reinforcement learning can also be used as a
framework for creating hierarchical policies for single entit-
ies in a simulation [32, 33], by placing agents in a hierarchy
where higher-level agents try to reach abstract goals by issu-
ing commands to lower level agents, with increasingly react-
ive behavior.

3.3 Multi-Objective Reinforcement Learning

Multi-objective reinforcement learning can be used to learn
policies for problems where multiple, possible conflicting ob-
jectives must be considered [2]. Typical air combat scenarios
fit this description, since they require that the participating pi-
lots prioritize among objectives such as targets to attack, as-
sets to protect, safety and resource consumption. In training
scenarios, synthetic agents could also consider the learning
objective of trainees, e.g. by adapting their behavior to fit the
proficiency of the trainee. In multi-objective reinforcement
learning the single-objective MDP is extended to a Multi-
Objective Markov Decision Process (MOMDP). An MOMDP
provides a vector-valued reward function, with each element
representing the reward for one of the objectives. The user
utililty of the vector-valued return of an MOMDP is given by
using a scalarization function, which converts the vector to a
scalar. One option is to use the weighted sum of all values:

V π
w (s) = f (Vπ(s),w) =

n

∑
n=1

vπ
i (s)wi (3)

One approach for solving an MOMDP is to use scalariza-
tion directly on the vector-valued reward signal, to convert
the MOMDP to an MDP for a set of preferences, and then
use single-objective methods to find a set of policies [34, 35].
Then, at execution time, the user can select a suitable policy.
By using a stochastic mixture of policies over time for epis-
odic tasks, i.e. selecting one of several policies by random be-
fore the start of an episode, further parts of the solution space
can be covered [36]. In our previous work, we proposed an
approach for training a single, tunable neural network policy
to prioritize among a set of objectives at execution time, by
conditioning the network on user preferences [37].



4 Experiments
To evaluate the potential of machine learning, in particular
multi-agent reinforcement learning and multi-objective rein-
forcement learning, as a tool for building CGF behavior mod-
els, we conduct a number of experiments. As simulation plat-
form we use the tactical environment simulation software that
is part of the Saab Gripen Flight Training Simulators. All
simulation results are averaged over five runs with different
random seeds.

4.1 Coordination of a Tactical Air Unit

We first study how multi-agent reinforcement learning can be
used to coordinate the actions of agents that are members of
the same Tactical Air Unit (TAU). For this purpose, we use
the MADDPG algorithm. We also use environments that are
similar to those used in the original paper [31], but imple-
mented in our high-fidelity simulation engine. The increased
complexity of the state space, as well as the increased number
of time steps per simulated episode, add additional difficulty.
We investigate how the algorithm performs in this setting, for
different types of action spaces. The policy is represented
by a multilayer perceptron (MLP), with 2 hidden layers, each
with 64 neurons and the ReLU activation function. We use a
learning rate of α = 10−2, a discount factor of γ = 0.95, and
train using the Adam optimizer.

4.1.1 Coordinated Defense

In this scenario there are three high-value assets that should
be protected by three learning agents. The assets are attacked
by three enemy agents, which are controlled by handcrafted
behavior models, implemented with Behavior Trees [38]. If a
defending agent comes within 5 km of an attacking agent, the
attacker will retreat to its home base, and then attack again.
To protect all three high-value assets, the learning agents must
learn to split up and escort one enemy each from the protec-
ted area. The defending agents are initialized with random
positions and headings, while the attacking agents are initial-
ized at random positions along their planned attack routes.
The spawn area of blue aircraft and attack directions of red
aircraft are shown in fig. 7.

The observation space of each agent is the relative position
of all other agents, in a body-fixed coordinate system, for the
last 4 time steps in the episode. We study three types of ac-
tion spaces. The first two are continuous action spaces, which
allow an agent to fly forward, or turn left or right with a load
factor of 2-4 g. One of these action spaces also allows an
agent to set its internal state as a three element, real-valued
and normalized vector, which is then distributed to the other
agents in the team in each time step. Previous work has shown
that this type of mechanism can allow agents to develop a lan-
guage for coordination of their actions [31]. The third action
space is a hierarchical approach, with discrete actions that let
the agent select a target and assign it as goal for a lower level
controller. For the first two types of action spaces, the agent
is executed at 1 s intervals, with episodes lasting for 600 time
steps, while for the third type it selects actions at 10 s inter-
vals, with episodes lasting for 60 time steps. To promote co-

Figure 7: Rectangular spawn area of blue aircraft, and red
arrows indicating attack directions of red aircraft towards
high-value assets in green.

operation, the learning agents receive a shared reward defined
as:

rt =−
3

∑
i=1

min(‖pai − pd1‖,‖pai − pd2‖,‖pai − pd3‖) (4)

where pai refers to the position of attacker i and pdk refers to
the position of defender k.

The training progress for the low-level action spaces over 90k
episodes is presented in fig. 8, and the training progress for
the high-level action space over 30k episodes is presented in
fig. 9. Agents that are hard-coded to always attack the same
enemy are used as baselines, and their scores averaged over
1000 simulated episodes are also presented in the figures. The
hard-coded baseline is strong, but not optimal, since it does
not consider the initial positions of agents. To perform com-
paratively well, the learning agents must learn to coordinate
their actions. Two of the agent types can coordinate based on
only observations, while one of the agent types has the benefit
of an explicit communication mechanism, provided that it can
learn a protocol for coordination.

We can see that the low-level, silent controller makes fast ini-
tial improvement, but then reaches a plateau. This is because
the agents must first learn to move as a team towards the pro-
tected area, before being able to learn the benefits and means
of cooperation. The learning progress during the second stage
of learning is quite slow, and varies among different runs, as
can be seen by the increase in variance. The high-level con-
troller, on the other hand, quickly converges to policies that
perform close to the baseline. The high-level action space
automatically moves the agents towards the protected area, so
that agents can start learning cooperation strategies from the
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Figure 8: Mean and standard deviation for the training pro-
gress of coordinated defense with a low-level action space,
for silent and communicating agents.
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Figure 9: Mean and standard deviation for the training pro-
gress of coordinated defense with a high-level action space.

start. The low-level, communicating controller displays faster
improvement, and also finds a policy that generates slightly
more reward than the policy of silent agents. This indicates
that explicit communication mechanisms can be valuable for
efficient cooperation in air combat scenarios.

4.1.2 Coordinated Attack

In this scenario there are three targets that should be attacked
by three learning agents. To carry out the task efficiently, the
agents must learn to split up and attack one target each. The
agents are initialized with random positions and headings in
an area to the south, while the targets are initialized in random
positions in a larger area to the north. The spawn areas of
aircraft and targets are shown in fig. 10.

The observation space of each agent is the relative position of
all other agents, as well as the targets, in a body-fixed coordin-
ate system, for the last 4 time steps in the episode. We study
the same two types of action spaces used by silent agents in
4.1.1. For the low-level action space, episodes last for 500
time steps, while for the high-level action space, episodes last
for 50 time steps. To promote cooperation, the learning agents
receive a shared reward defined as:

Figure 10: Rectangular spawn areas of aircraft and targets
in blue and green respectively.

rt =−
3

∑
i=1

min(‖pti − pa1‖,‖pti − pa2‖,‖pti − pa3‖) (5)

where pti refers to the position of target i and pak refers to the
position of attacker k.

The agents are trained for 60k episodes. The training pro-
gress for the low-level action space is presented in fig. 11, and
the training progress for the high-level action space is presen-
ted in fig. 12. Agents that are hard-coded to always attack
the same target are used as baselines, and their scores aver-
aged over 1000 simulated episodes are also presented in the
figures. The hard-coded baseline is strong, but not optimal,
since it does not consider the initial positions of agents. To
perform comparatively well, the learning agents must learn to
coordinate their actions based on only observations.
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Figure 11: Mean and standard deviation for the training pro-
gress of coordinated attack with a low-level action space.
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Figure 12: Mean and standard deviation for the training pro-
gress of coordinated attack with a high-level action space.

We can see that the low-level controller quickly converges
to a sub-optimal policy, and then does not improve during
the rest of training. Possibly further training episodes could
eventually lead to an improvement of the policy. The high-
level controller makes quite fast progress, but not as fast as
in the experiment presented in 4.1.1. The learning also seems
less stable. While some of the trained agents learn policies
as good as the baseline, others struggle a bit in some epis-
odes. This is possibly because in this scenario targets may
spawn quite close to each other, which makes it difficult for
the learning agents to cooperate based on observations alone.

To further study the performance of the low-level controller,
and its dependence on the starting positions of agents, we con-
duct an additional experiment, where the aircraft are spawned
in the green area in fig. 10. The training progress for this ex-
periment over 60k episodes, with episodes lasting 300 time
steps, is presented in fig. 13. We can see that the agent
performs better for this scenario, since aircraft start closer to
the targets, which simplifies the task of learning coordination
among agents.
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Figure 13: Mean and standard deviation for the training pro-
gress of coordinated attack with a low-level action space,
when aircraft spawn close to the targets.

4.2 Risk Aware Attack

We now proceed to investigate how multi-objective reinforce-
ment learning can be used to allow agents to learn how to
prioritize among multiple conflicting objectives. We use two
approaches: The outer-loop approach, where the MOMDP is
converted to multiple single-objective MDPs, which are then
solved with single-objective methods to produce a set of fixed
policies [35], and our own approach using a single neural net-
work conditioned on the objective priorities [37], which pro-
duces a tunable policy. We then compare the performance of
the two approaches. In these experiments we use DQN as the
core learning algorithm, as in the referenced papers. As previ-
ously mentioned, we use a high-fidelity simulation engine for
the experiments, in contrast to the simple, low-dimensional
gridworld environments studied in previous work. The policy
is represented by an MLP, with 1 hidden layer with 64 neur-
ons and the ReLU activation function. We use a learning rate
of α = 10−4, a discount factor of γ = 1.00, a replay-buffer
with 106 samples, and train using the Adam optimizer and
prioritized experience replay [39].

In the studied scenario, the synthetic pilot must reach a tar-
get location in an attack mission, while avoiding enemy air
defense systems. The agent must prioritize between time and
safety when selecting a route. For simplicity, we place one air
defense system between the agent’s start position and the tar-
get. The agent always starts in the same position, with initial
heading towards the target. The scenario is illustrated in fig.
16.

The observation space of the agent is the relative heading
and distance to the center of the threat area, and the relative
heading and distance to the target, for the last 8 time steps in
the episode. Since DQN does not handle continuous actions,
we must discretize the input to the controllers of the aircraft
model. Thus, we define the agent’s actions space as forward
motion or right or left turns with a load factor of 2-4 g in dis-
crete steps of 1 g. The agent selects actions at 1 s intervals.
Each training episode is a maximum of 400 time steps long.
The episode ends if the agent reaches the target. The reward
vector of the MOMDP is defined as:

rt = [rgoal(t),rtime(t),rad(t)] (6)

dg(t) = ‖pg(t)− pa(t)‖ (7)

dad(t) = ‖pad(t)− pa(t)‖ (8)

rgoal(t) = dg(t−1)−dg(t) (9)

rtime(t) =−0.5 (10)

rad(t) =

{
−
( 1

10 (Rad−dad(t))
)2

if dad(t)≤ Rad ;
0 if dad(t)> Rad ;

(11)



where rgoal(t) refers to the reward for the objective of mov-
ing towards the target, rtime(t) refers to the reward for the
objective of reaching the target fast, and rad(t) refers to the
reward for the objective of staying out of range of the air de-
fense system. pa(t), pg(t) and pad(t) are the positions of
the agent, goal and air defense system, dg(t) and dad(t) are
the distances from the agent to the goal and air defense sys-
tem, and Rad = 20 km is the range of the air defense sys-
tem. To scalarize the vector-valued reward of the MOMDP
we define the parameterized vector of priorities among ob-
jectives pθ = [1,θ ,θ − 1], with θ ∈ [0,1]. We then calculate
a scalar reward as:

rt = rt ·p (12)

For the tunable agent we sample θ from a uniform distribution
of [0.75,1.00] before each episode, and use it as input to the
agent. We train fixed policy agents for 10M time steps, while
tunable policy agents are trained for 30M time steps. The
training progress for fixed policy agents is presented in fig.
14, for θ ∈ {0.75,0.85,0.95}, and the training progress for
tunable agents is presented in fig. 15.
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Figure 14: Training progress for a set of fixed policies with
different priorities among objectives.

We can see that training is somewhat unstable, with spikes
of high variance. The cause may be that small changes in
policy have great effect on the accumulated reward, or that
it is difficult for the agent to learn the characteristics of the
reward function. It is also possible that the low frequency of
the controller or the discretization of the action space has a
negative effect on performance.

Three routes learned for different priorities, corresponding to
high, medium and low risk exposure, are illustrated in fig. 16,
for fixed policies and a tunable policy. The displayed routes
are for single runs, not averaged over several runs or agents,
since agents may choose to go on either side of the center of
the threat area. The routes displayed for the tunable policy
are from one trained agent. We can see that the tunable policy
results in tighter routes around the center of the threat area,
compared to those generated by the set of fixed policies. Find-
ing an optimal route with the given reward system requires a
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Figure 15: Training progress for single, tunable policy.

bit of tuning, and more exploration would have been required
to achieve improved performance.

high-f
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high-t
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Figure 16: Learned routes to the target area with high, me-
dium and low risk exposure, for fixed (f) and tunable (t)
policies.

The mean and standard deviation for the rewards accumulated
by fixed and tunable policies are presented in fig. 17. We
can see that the tunable policies produce competitive results
for θ = 0.95 and θ = 0.85, but perform worse for θ = 0.75.
The poor result is caused by one of the five trained agents,
which fails to reach the goal for this configuration, which in
turn heavily affects its accumulated reward. This also leads to
high standard deviation for this case.

By extending multi-objective learning to more complex scen-
arios, with more objectives that must be prioritized, agents
with diverse characteristics can be constructed. This can
make training more interesting and stimulating, and by adjust-
ing agents’ objective preferences training contents can also be
adapted to the training needs of specific trainees.
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Figure 17: Mean and standard deviation for accumulated re-
wards for fixed and tunable policies.

5 Related Work
Over the years, there have been several attempts at using ma-
chine learning techniques for building behavior models for
computer generated forces. Some approaches that have been
studied are evolutionary algorithms [40–42], neural networks
[43–46] and dynamic scripting [47–49], a technique origin-
ally developed for computer games. Still, the studied tech-
niques have not been mature enough to include in commercial
CGF software [9].

With the renewed interest in machine learning, sparked by
e.g. AlphaGo [11,21], there have been approaches using deep
reinforcement learning [50–52]. However, we are not aware
of any work that studies the recent advancements in multi-
agent or multi-objective deep reinforcement learning in the
context of air combat simulation.

6 Conclusions
In this paper we discussed the future of air combat train-
ing, and suggested an approach for building an intelligent,
synthetic trainer for fighter pilots, using machine learning
techniques. We also presented results of initial experi-
ments, which indicate that state-of-the-art algorithms can al-
low agents to learn team coordination as well as prioritization
among conflicting objectives in simple air combat scenarios.
However, we also note some challenges posed by the com-
plexity of the air combat domain. Learning high-level tactical
behavior using a low-level action space may not be the best
approach. As the complexity of scenarios grows, it will be-
come more difficult for the agent to learn efficient policies. It
may get stuck in a local optimum, or perhaps not learn any
reasonable policy at all. We believe that a hierarchical ap-
proach to reinforcement learning, where the problem is de-
composed into a number of sub-tasks handled by a hierarchy
of agents, can help tackle this problem, as indicated by the
results in 4.1.1 and 4.1.2.

In future work we would like to continue to study more com-
plex scenarios, which more closely resemble those used in
operational training systems, to facilitate experiments with
manned simulators and studies of human-agent interaction.

We would then like to extend our study of multi-agent learn-
ing to include adversarial learning, where teams of agents
compete against each-other. We would also like to com-
bine multi-agent and multi-objective learning in an integrated
architecture, using a hierarchical approach to reinforcement
learning, in combination with learned models for predicting
other agents’ characteristics, goals and actions, to support de-
cision making. Finally, we would like to study intelligent ex-
ploration schemes and other ways to achieve sample efficient
learning in complex state and action spaces.
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