
Fundamenta Informaticae XX (2003) 1–19 1

IOS Press

Towards a Framework for Approximate Ontologies

Patrick Doherty∗

Michał Grabowski†

Witold Łukaszewicz‡

Andrzej Szałas‡

Abstract. Currently, there is a great deal of interest in developing tools for the generation and use
of ontologies on the WWW. These knowledge structures are considered essential to the success of
the semantic web, the next phase in the evolution of the WWW. Much recent work with ontolo-
gies assumes that the concepts used as building blocks are crisp as opposed to approximate. It is a
premise of this paper that approximate concepts and ontologies will become increasingly more im-
portant as the semantic web becomes a reality. We propose a framework for specifying, generating
and using approximate ontologies. More specifically, (1) a formal framework for defining approxi-
mate concepts, ontologies and operations on approximate concepts and ontologies is presented. The
framework is based on intuitions from rough set theory; (2)algorithms for automatically generating
approximate ontologies from traditional crisp ontologies or from large data sets together with addi-
tional knowledge is presented. The knowledge will generally be related to similarity measurements
between individual objects in the data sets, or constraints of a logical nature which rule out particular
constellations of concepts and dependencies in generated ontologies.

The techniques for generating approximate ontologies are parameterizable. The paper provides spe-
cific instantiations and examples.

Keywords: approximate concept, approximate reasoning, approximation space, category, concept,
approximate concept, approximate ontology, ontology, tolerance space, tolerance-based ontology

∗Department of Computer and Information Science, Linköping University, S-581 83 Linköping, Sweden, e-mail:

patdo@ida.liu.se. Supported by the Wallenberg Foundation.
†The College of Economics and Computer Science, Olsztyn, Poland e-mail: mich@mimuw.edu.pl. Supported by the
Wallenberg Foundation.
‡The College of Economics and Computer Science, Olsztyn, Poland, and Department of Computer and Information Science,
Linköping University, S-581 83 Linköping, Sweden, e-mail: witlu@ida.liu.se, andsz@ida.liu.se. Supported by
the Wallenberg Foundation and KBN grant 8 T11C 00919.

2 P. Doherty, M. Grabowski, W. Łukaszewicz, A. Szałas / Approximate Ontologies

1. Introduction

With the inception of the World-Wide Web (WWW), a distributed information infrastructure has been
set up containing a vast repository of information resources. This infrastructure is designed primarily for
human use, with little support for the deployment of software agents which can take advantage of these
information resources to assist humans in accomplishing various information processing and gathering
tasks. The next stage in the evolution of the the WWW is to enhance the current infrastructure with
support for explicit, machine accessible descriptions of information content on the Web. These machine
accessible descriptions of information content should be usable and understandable by machines, in
particular software agents. Tim Berners-Lee has used the term Semantic Web – a web of data that can be
processed directly or indirectly by machines[1], to describe this next phase in the evolution of the Web.

The meaning or semantics of diverse information content has to be accessible to software agents for use
and reasoning if sophisticated knowledge intensive tasks are to be automated in the Web context. Most
importantly, just as humans cooperate and communicate in a common language and conceptual space
in order to achieve complex tasks, so will software agents, both with other software agents and with
humans. There is a great deal of research activity in this area, particularly in providing the necessary
tools to support communication among agents and construction and use of shared ontologies.

Webster’s dictionary defines ontology as,

“the branch of metaphysics dealing with the nature of being or reality”.

In artificial intelligence, more specifically the sub-discipline of knowledge representation, the term is
used somewhat more pragmatically to describe how we choose to “slice up” reality and represent these
choices in representational structures used for reasoning about agent environments at various levels of
abstraction. One common way of “slicing” or conceptualizing is to specify a base set of individuals,
properties, relations and dependencies between them. This choice is particularly amenable to the use of
logic as a representational tool.

In knowledge engineering circles, the term “ontology” has taken on a related but somewhat different
meaning as explicit computational structures which “provide a machine-processible semantics of infor-
mation sources that can be communicated between different agents (software and human)”[5]. Ontolo-
gies are used to facilitate the construction of domain models and to provide the vocabulary and relations
used in this process. Gruber [6] provides the following definition:

“An ontology is a formal, explicit specification of a shared conceptualization.”

The intention is that ontologies should facilitate the use of knowledge sharing and reuse among software
agents and humans alike.

Just as the Web is currently a heterogeneous collection of information sources, it is reasonable to as-
sume that the future semantic web will include a collection of heterogeneous domain-specific ontologies,
sometimes with semantic or syntactic overlap and sometimes not. It is likely that many concepts used
in ontologies, be they local or global, will be difficult to define other than approximately. In fact, the
process of defining ontologies will often need to be automated and tools will be required to automati-
cally generate ontologies based, for instance, on an initial universe of objects or individuals and some
knowledge about them. One example of knowledge might be information about the similarity between

P. Doherty, M. Grabowski, W. Łukaszewicz, A. Szałas / Approximate Ontologies 3

individuals. From this one would try to induce natural categories through various techniques, including
those proposed in this paper.

Even though there are differing views as to what ontologies are, or how they may be appropriately
represented, there are some common conceptual denominators. What is common to the approaches is
that they are based on “concepts” (sometimes called “categories”) and the relations “to be more general”
or “to be more specific” between concepts. Those relations form a hierarchy of concepts (ontology) in a
form of a tree, lattice or an acyclic graph.

Concepts are usually assumed to be precise (crisp), but as stated previously, we believe that approximate
concepts and ontologies will be necessary. In fact, approximate ontologies provide an ideal basis for
dealing with some very difficult, but necessary operations on ontologies such as merging, comparing, or
incrementally modifying ontologies.

The purpose of this paper is to propose a framework for defining and automatically generating approx-
imate ontologies from traditional crisp ontologies or from large amounts of data with knowledge about
similarities between individual data points. More specifically,

• a formal framework for defining approximate concepts, ontologies and operations on approximate
concepts and ontologies will be proposed. The framework is based on intuitions from rough set
theory;

• algorithms for automatically generating approximate ontologies from large data sets together with
additional knowledge will be proposed. The knowledge will generally be related to similarity
measurements between individual objects in the data sets, or constraints of a logical nature which
rule out particular constellations of concepts and dependencies in generated ontologies.

Before describing the structure of the paper, some intuitions about rough sets would be useful. Rough sets
were first introduced by Pawlak [14]. The basic idea centers around the notion of indiscernability among
individuals in a domain of discourse. Suppose a particular domain of discourse is given in addition
to some knowledge which allows one to partially discern different individuals from each other based
on that knowledge. The domain of discourse can then be partitioned into equivalence classes, where
individuals in the same equivalence class are indiscernible from each other for all practical purposes due
to the limited knowledge provided to discern among individuals. Now, suppose one is given a set X
in the domain of discourse. From the partition on individuals based on indiscernability, one can define
a lower and upper approximation of X in terms of the equivalence classes in the partition. The lower
approximation consists of the union of those equivalence classes which are a subset of X. The upper
approximation is the union of those equivalence classes which are not disjoint with X. In this manner,
rough sets can be defined in terms of their upper and lower approximations. This is the kernel idea from
which we will proceed.

In section 2, approximation spaces are introduced. These provide a generalization of the idea of rough
set by permitting more general types of grouping or partitioning of the domain of discourse, not nec-
essarily in terms of indiscernability. Using approximation spaces, upper and lower approximations on
sets in the domain of discourse are defined. These sets are called approximate sets. An approximate
concept is simply an approximate set. In section 3, approximate ontologies are defined along with the
definition of a most specific approximate concept and a most general approximate concept relative to
a specific approximate concept. A refinement of an approximate ontology to one that is strict is then

4 P. Doherty, M. Grabowski, W. Łukaszewicz, A. Szałas / Approximate Ontologies

introduced. Given a strict ontology and an individual, it is then possible to uniquely identify the most
specific approximate concept to which the individual belongs and an algorithm is presented which does
this. These sections provide a basis for a formal framework for approximate ontologies.

Section 5 introduces two means of generating approximate ontologies from existing data. In the first, an
approximate ontology can be generated from a crisp set-based ontology together with an approximation
space. This is interesting because it allows one to approximate already existing ontologies based on
additional information about similarity or discernibility among individuals. In the second approach, no
additional structure is assumed on the original domain of discourse other than that of an approximation
space. From a raw data set and approximation space, one can generate an approximate ontology.

Section 7 considers a specific type of approximation space called a tolerance space which represents
similarity criteria for generating neighborhoods among individuals in a domain of discourse. Special
types of approximate ontologies called tolerance-based ontologies are defined and algorithms to gen-
erate them from information systems are presented. This is a particularly interesting approach since it
creates a bridge to research on categorization and techniques for generating categories found in the ma-
chine learning and cognitive psychology literature where similarity among individuals and prototypes is
essential. For example, in the machine learning literature, concepts are often discovered using a tech-
nique called clustering. Clusters are sets of objects close to each other wrt some distance measure,
assuming there is no continuity between objects in clusters and objects outside of clusters. This idea has
been discussed in the context of description logics in [9], however in a much more restricted context than
that considered in our paper.

2. Approximation Spaces and Approximate Sets

Throughout the paper we use 2U to denote the set of all subsets of a domain U , and � to denote the set
of reals.

Approximation spaces are frequently considered in the literature (see, e.g., [2, 4, 12, 16, 17]).

Definition 2.1. By an approximation space we understand a tuple AS = 〈U, I, ν〉, where:
• U is a nonempty set of objects, called a domain

• I : U −→ 2U is an uncertainty function

• ν : 2U × 2U −→ � is an inclusion function with � restricted to the interval [0, 1].
The intuitive meaning of I(u) is the set of objects “similar” to u, in some sense. The inclusion function
ν(U1, U2) provides a degree of inclusion of U1 in U2.

Approximation spaces are used as a basis for defining the lower and upper approximations of a set (see,
e.g., [2, 17]).

Definition 2.2. Let AS = 〈U, I, ν〉 be an approximation space and let S ⊆ U . The lower and upper
approximation of S wrt AS, denoted respectively by SAS+ and SAS⊕ , are defined by

SAS+ = {u ∈ U : ν(I(u), S) = 1}
SAS⊕ = {u ∈ U : ν(I(u), S) > 0}.

P. Doherty, M. Grabowski, W. Łukaszewicz, A. Szałas / Approximate Ontologies 5

The intuitive meaning of SAS+ and SAS⊕ is the following, where uncertainty and inclusion of an ap-
proximation space AS is taken into account:

• the lower approximation SAS+ of S consists of elements that are surely in S

• the upper approximation SAS⊕ of S consists of elements that might be in S.

In consequence, the complement of the upper approximation of a set, −SAS⊕ , consists of elements that
are surely not in S.

Definition 2.3. Let AS = 〈U, I, ν〉 be an approximation space. By an approximate set over AS we
mean any pair of the form 〈SAS+, SAS⊕〉, where S ⊆ U . By a crisp set (or a set, for brevity1) we mean
any approximate set 〈SAS+, SAS⊕〉 such that SAS+ = SAS⊕ .

Definition 2.4. Let AS = 〈U, I, ν〉 be an approximation space. Let S = 〈S1, S2〉 and T = 〈T1, T2〉 be
approximate sets over AS. We say that S is included in T , denoted by S � T , if ν(S1, T1) = 1 and
ν(S2, T2) = 1.

For the sake of simplicity, we often restrict ourselves to standard approximation spaces defined as fol-
lows.

Definition 2.5. We shall say that the approximation space AS = 〈U, I, ν〉 is standard iff its domain U is
finite and its inclusion function is the standard inclusion function, defined for any S, T ⊆ U as follows:

ν(S, T) def=

| S ∩ T |
| S | when S 	= ∅

1 when S = ∅.

Since the inclusion function ν is always known in the case of standard approximation spaces, such spaces
are denoted by 〈U, I〉 rather than by 〈U, I, ν〉. Observe that for any standard approximation space 〈U, I〉
and for any S, T ⊆ U ,

ν(S, T) = 1 iff S ⊆ T

Thus, in the case of standard approximation spaces, we have the following alternative characterization
of � and approximations.

Proposition 2.1. If AS = 〈U, I〉 is a standard approximation space, then

1. 〈S1, S2〉 � 〈T1, T2〉 iff S1 ⊆ T1 and S2 ⊆ T2

2. SAS+ = {u ∈ U : I(u) ⊆ S} and SAS⊕ = {u ∈ U : I(u) ∩ S 	= ∅}.

Unless stated otherwise, we will use standard approximation spaces throughout the paper.

1It is easily observed that the notion of a crisp set coincides with the notion of a set in the classical sense.

6 P. Doherty, M. Grabowski, W. Łukaszewicz, A. Szałas / Approximate Ontologies

3. Concepts and Approximate Concepts

Let us first discuss the representation of concepts. In the machine learning literature, a concept is often
represented as a set of examples. Examples are marked positive, negative or unknown, meaning that they
are, are not, or it is unknown whether, they belong to a particular concept, respectively.

Throughout the paper we concentrate on concept representations defined only using examples marked
positively and we generate ontologies based on positive knowledge. The techniques we propose gen-
erate additional concepts given initial sets of positive examples and additional knowledge about these
examples. For example, if the set of examples consists of animals, we might be interested in discovering
concepts such as “dogs”, ”cats”, “birds” “mammals”, etc., together with relationships between them,
which include ”to be more specific than” and “to be more general than”. Some of the newly generated
concepts will be disjoint, while some are generalizations or specializations of other concepts. The same
methodology can be applied to negative knowledge, but this addition will not be considered in this paper.

Typically, sets of examples are not provided explicitly, but rather through the use of representations
from which membership functions can be efficiently computed. In what follows we will only assume
membership functions for particular sets of objects that can be generated using tractable algorithms.

Definition 3.1. Let AS = 〈U, I, ν〉 be an approximation space. By an approximate concept over AS
we understand any approximate set 〈SAS+, SAS⊕〉 over AS.2 By a (crisp) concept we understand any
crisp set over AS. By bottom and top concepts over U , denoted by BOTTOM and TOP, we understand
the (crisp) concepts 〈∅, ∅〉 and 〈UAS+, U〉, respectively.3
If C,D are approximate concepts such that C � D then we say that C is more specific than D (is a
specialization of D) and that D is more general than C (is a generalization of C).

Example 3.1. Consider the standard approximation space AS = 〈{or, r, dr, y, g, gr}, I〉, where:
• elements of the domain stand for colors “orange red”, “red”, “dark red”, “yellow”, “gold” and
“goldenrod”, respectively

• I(or) = {or, r}, I(r) = {or, r, dr}, I(dr) = {r, dr}, I(y) = {y, g}, I(g) = I(gr) = {g, gr}.
Sets {or, r, dr}, {g, gr} and {y, g, gr} are crisp concepts, since:

{or, r, dr} = {or, r, dr}AS+ = {or, r, dr}AS⊕ ,

{g, gr} = {g, gr}AS+ = {g, gr}AS⊕

{y, g, gr} = {y, g, gr}AS+ = {y, g, gr}AS⊕ .

The pair 〈{dr}, {or, r, dr}〉 is an approximate concept, since
{dr} = {r, dr}AS+ and {or, r, dr} = {r, dr}AS⊕ .

The pair 〈{dr}, {or, dr}〉 is not an approximate concept since, in this case, {or, dr} is not an upper
approximation of any set.

2It is assumed of course, that there is an S ⊆ U where SAS+ is the lower approximation of S and SAS⊕ is the upper
approximation of S. See the example 3.1 below.
3Note that 〈∅, ∅〉 and 〈UAS+ , U〉 are approximate concepts, since 〈∅, ∅〉 = 〈∅AS+ , ∅AS⊕〉 and 〈UAS+ , U〉 = 〈UAS+ , UAS⊕〉.

P. Doherty, M. Grabowski, W. Łukaszewicz, A. Szałas / Approximate Ontologies 7

Remark 3.1. Observe that crisp concepts can be identified with crisp sets. In the rest of the paper, crisp
concepts are then denoted as single sets rather than pairs of sets.

4. Approximate Ontologies

Let us start with a definition for an approximate ontology.

Definition 4.1. Let AS = 〈U, I, ν〉 be an approximation space. By an approximate ontology over AS
we understand the tuple OAS = 〈U, C,�〉, where C is a set of approximate concepts over AS such that
(at least) BOTTOM, TOP ∈ C. By a crisp ontology over U we mean any approximate ontology consisting
of crisp concepts only.

If AS is a standard approximation space then an approximate ontology over AS is called the standard
approximate ontology.

Example 4.1. In the examples below we assume an approximation space AS = 〈U, I, ν〉 is given.

1. OAS = 〈U, C,�〉, where C = {〈SAS+ , SAS⊕〉 | S ⊆ U} is the set of all approximate concepts
over AS, is an approximate ontology.

2. OAS = 〈U, C,�〉, where

C = {〈SAS+, SAS⊕〉 | S ⊆ U and Th(SAS+ , SAS⊕) holds} ∪ {BOTTOM, TOP}

is the set of all approximate concepts over AS satisfying a given consistent first-order theory
Th(SAS+ , SAS⊕), is an approximate ontology.

3. OAS =
〈
U, 2U,�〉

, where 2U is the set of all crisp concepts over U , is a crisp ontology.

Remark 4.1. Background knowledge, such as that expressed in the form of logical theories, is often
useful as a means of restricting ontologies, e.g., for filtering out noisy or uninteresting data or concepts.

For example, in a particular application one may not be interested in “small and heavy” objects, and
would require that every concept S satisfies the logical constraint4

∀x ∈ SAS+[smallAS+(x) → ¬heavyAS⊕(x)].

If one would like to exclude concepts where both “young” and “old” persons appear, concepts might be
required to satisfy the formula

¬{∃x ∈ SAS⊕∃y ∈ SAS⊕[oldAS+(x)∧youngAS+(y)]}.

In practical applications, one usually creates ontologies based on particular types of background knowl-
edge or constraints related to the domain of interest. There are many uses of such knowledge such as:

4Observe that “small”, “heavy”, “old” and “young” are concepts as well, thus in the logical language we refer to their lower
and upper approximations with the usual intuitive meaning. E.g., smallAS+(x) states that it is certain that x is small and
smallAS⊕(x) states that it might be the case that that x is small.

8 P. Doherty, M. Grabowski, W. Łukaszewicz, A. Szałas / Approximate Ontologies

• providing criteria for accepting or removing certain objects from data sets used in building ontolo-
gies (e.g., for preprocessing, filtering out noisy data, etc.)

• logical constraints represented as particular theories which concepts should satisfy. Examples were
shown above

• providing a definition of similarity between objects that can be used to define concepts approxi-
mately as we will see shortly

• providing one with measures of the usefulness of concepts, which can then be used as a filter on
sets of concepts, retaining only those that satisfy the filter’s conditions.

Definition 4.2. Let AS = 〈U, I, ν〉 be an approximation space. For any approximate ontology OAS =
〈U, C,�〉 and an approximate set E over AS,

• by the most specific approximate concept in OAS including E, denoted by MSCOAS
(E), we un-

derstand the smallest wrt � approximate concept including E, i.e., E � MSCOAS
(E) and for any

approximate concept E′ such that E � E′ we have that MSCOAS
(E) � E′

• by the most general approximate concept in OAS included in E, denoted by MGCOAS
(E), we

understand the greatest wrt � approximate concept included in E, i.e., MGCOAS
(E) � E and for

any approximate concept E′ such that E′ � E we have that E′ � MSCOAS
(E).

Frequently we are interested in ontologies, where for any two concepts the respective lower and upper
approximations of those concepts are disjoint, or one concept is a generalization/specialization of the
other concept.

Definition 4.3. Let AS = 〈U, I, ν〉 be an approximation space. By a strict approximate ontology over
AS we understand an approximate ontology OAS = 〈U, C,�〉 such that for any C,D ∈ C the following
condition holds:

CAS+ ∩ DAS⊕ 	= ∅ implies C � D or D � C (1)

Strict ontologies provide us with a simple and intuitive method for classifying objects as belonging to
particular concepts. Assume that OAS = 〈U, C,�〉 is a strict approximate ontology. In order to find an
approximate concept to which an object e ∈ U belongs, it is sufficient to find the most specific concept
〈S, T 〉 ∈ C such that e ∈ S. If such a concept exists, e can be classified as belonging to 〈S, T 〉 as well as
to any generalization of 〈S, T 〉.
Given an approximate ontology OAS , one can construct a “canonical” strict ontology which reflects the
contents of the original ontology as closely as possible. Intuitively, one can consider an ontology to
consist of agents, where each agent is responsible for delivering information about the contents of a
single concept in the ontology. Given e ∈ U each agent answers whether e belongs to the lower or upper
approximations of the concept it is responsible for. If there is no violation of (1), then e is uniquely
classified to a concept, otherwise it can be classified to the upper approximation of concepts serviced by
“conflicting” agents.

The following algorithm generates the strict canonical ontology determined by a given approximate
ontology.

P. Doherty, M. Grabowski, W. Łukaszewicz, A. Szałas / Approximate Ontologies 9

Algorithm 4.1.

– Input:
- an approximation space AS = 〈U, I, ν〉
- an ontology OAS = 〈U, C,�〉

– Output: the canonical approximate ontology O′
AS = 〈U, C′,�〉 determined by OAS

– Algorithm:
1. C′ := C
2. for every e ∈ U do
begin

S := {〈DAS+,DAS⊕〉 ∈ C | e ∈ DAS⊕};
if there are 〈DAS+,DAS⊕〉 ,

〈
D′

AS+,D
′
AS⊕

〉 ∈ S such that
e ∈ DAS+

and 〈DAS+,DAS⊕〉 	� 〈
D′

AS+,D
′
AS⊕

〉
and

〈
D′

AS+,D
′
AS⊕

〉 	� 〈DAS+,DAS⊕〉
then C′ := (C′ − S) ∪

{
MGCO′

AS
(〈DAS+ − {e},DAS⊕〉) | 〈DAS+ ,DAS⊕〉 ∈ S

}

end.

This algorithm can be implemented to run in time O
(| U | ∗ | C |).

Observe that in the last line of the algorithm, tuples of the form MGCO′
AS

(〈DAS+ − {e},DAS⊕〉) are
added to C′. This follows from the fact that approximate concepts are approximate sets, i.e., have to be
obtained by means of approximation operations, as defined in Definitions 2.1 and 2.3.

(BOTTOM)

(TOP)

〈[20 000, 30 000], [15 000, 30 000]〉
(sonic sounds)(infrasounds)

〈[0, 20], [0, 40]〉 〈[40, 15 000], [20, 20 000]〉
(ultrasounds)

[0, 30 000]

[]

Figure 1. Approximate ontology considered in Example 4.2.

Example 4.2. Consider the audio frequency domain. It is a continuous domain, but hearing boundaries
give rise to three discrete categories: infra-sounds (frequency below 20Hz), sonic sounds (frequency
within the interval [20Hz, 20 000Hz]) and ultra sounds (frequency over 20 000Hz). It is also known
that it is more likely for adults that the frequency of sonic sounds is in the interval [40Hz, 15 000Hz].

10 P. Doherty, M. Grabowski, W. Łukaszewicz, A. Szałas / Approximate Ontologies

(BOTTOM)

(TOP)

〈(20 000, 30 000], [15 000, 30 000]〉
(sonic sounds)(infrasounds)

〈[0, 20), [0, 40]〉 〈(40, 15 000), [20, 20 000]〉
(ultrasounds)

[0, 30 000]

[]

Figure 2. Strict approximate ontology obtained from ontology shown in Figure 1.

Assume AS = 〈U, I〉 is a standard approximation space, where U consists of integers in the interval
[0, 30 000] and for any u ∈ U , I(u) = {u}. It is then the case that on the basis of the available data, one
could generate an ontology like the one shown in Figure 1, which is not strict. Algorithm 4.1 transforms
this ontology into its strict counterpart as shown in Figure 2.

5. Generating Approximate Ontologies

A number of problems arise when one attempts to generate approximate ontologies for a given domain
with a given data set as input. The following problems are two of the more pressing:

• the number of approximate concepts generated may be large (exponential in the size of the domain
of objects)

• in general, many of the approximate concepts generated are artificial, as they may contain totally
unrelated objects.

There are a number of ways to alleviate these problems. In the following, we show two methods for
generating approximate ontologies:

1. the first method (see Section 5.1) transforms a given crisp ontology into a strict approximate on-
tology.

2. the second method (see Section 5.2) generates approximate ontologies only using raw data as the
initial input.

5.1. Generating Approximate Ontologies from Set-Based Ontologies

Definition 5.1. By a set-based ontology we understand any tuple of the form 〈U, C,�〉, where C ⊆ 2U

is a set of subsets of U such that ∅, U ∈ C, and � is the classical set-theoretical inclusion.

P. Doherty, M. Grabowski, W. Łukaszewicz, A. Szałas / Approximate Ontologies 11

Let 〈U, C,⊆〉 be a set-based ontology. These are the most common types of ontologies and many can be
found and downloaded from the Internet. Suppose an agent (human or software) has additional knowl-
edge about similarities between objects in the base domain for the ontology. In addition, assume that this
information is provided by an approximation space AS = 〈U, I, ν〉. Such similarity constraints are very
useful in many application domains. For instance, in robotics domains, certain limitations may be present
in the types of sensors and cameras used. For example, the colors red and orange may be indiscernible.
If other concepts in a given ontology are dependent on this concept distinction, they will make no sense
to the robot and its reasoning capabilities will be improperly modeled.

One way to deal with this problem is to provide an approximation space which represents the indis-
cernability of red and orange and use this to transform a set-based ontology into a (strict) approximate
ontology. Namely, it suffices to consider the approximate ontology, where classical sets are replaced
respectively by their approximations, i.e., the approximate ontology

OAS = 〈U, {〈SAS+, SAS⊕〉 | S ∈ C},�〉 .

One can then turnOAS into its corresponding strict approximate ontology simply by using Algorithm 4.1.

5.2. Generating Approximate Ontologies from Data

In section 5.1, we started with a great deal of structure, a set-based ontology, before generating an
approximation to it. Quite often, one begins with much less structure, raw data sets for instance, and
some additional knowledge about similarity between the objects in the raw data set. As before, we will
represent this information as an approximation space and use it to generate an approximate ontology.

Let AS = 〈U, I, ν〉 be an approximation space. The process of generating an approximate ontology
using only a data set and AS as input is based on the following ideas:

• in the first step, base concepts have to be generated. There may be many ways to do this, but
we assume some method suitable for the application domain and type of data is chosen.5 For the
purpose of this paper, we will use a relatively straightforward means for generating base concepts.
Given AS, we consider the set, {I(u) | u ∈ U} as including all base concepts. These are concepts
representing neighborhood sets for each individual based on some similarity notion;

• the base concepts generated in the previous step will serve as a basis for generating more general
concepts. Namely, in the next level of the hierarchy we consider I′(u′), for u′ ∈ 2U , i.e., a concept
of concepts similar to the concept u′ and so on. This idea can be applied recursively generating
additional levels in the hierarchy of concepts.

In order to do this construction recursively, power approximation spaces are introduced.

Definition 5.2. Let AS = 〈U, I, ν〉 be an approximation space. By the power approximation space over
AS we understand approximation space 2AS def=

〈
2U , I ′, ν ′〉, where:

5Among them very intuitive would be to generate base concepts as clusters (see [11]) or as cliques in a “similarity graph”

G = 〈U, E〉, where E
def
= {〈u, u′〉 ∈ U | u′ ∈ I(u) or u ∈ I(u′)}. However, generating cliques is, in general, not tractable.

12 P. Doherty, M. Grabowski, W. Łukaszewicz, A. Szałas / Approximate Ontologies

• I ′(S) def= {T ∈ 2U | ν(S, T) > 0}

• ν ′(S, T) def=

| {s ∈ S | ∃t ∈ T [s ∈ I(t)]} |
| S | when S 	= ∅

1 when S = ∅.

We also require the following definition of a flat representation of any finite family of sets of higher-order
types.

Definition 5.3. Let U be a finite set, let P0(U) def= U and let for any natural number n, Pn+1(U) def=
2Pn(U). A flat representation of a finite set X ∈ Pn(U), denoted by flat(X), is defined inductively:

flat(X) def=

{u} for X = u ∈ P0(U)⋃
Y ∈X

flat(Y) for X ∈ Pn with n > 1.

For example, flat
({ {{4}} ,

{{3}, {4, 5}}
})

= {3, 4, 5}.
The following algorithm will generate an approximate ontology from an approximation space, where the
domain of individuals in the approximation space is viewed as the initial raw data set.

Algorithm 5.1.

– Input: an approximation space AS = 〈U, I, ν〉
– Output: a set-based ontology O = 〈U, C,⊆〉
– Algorithm:
1. C := {I(u) | u ∈ U};

i := 0;ASi := AS; Ci := C;
2. while new concepts are added to C do
begin

ASi+1 := 2ASi ; Ci+1 := ∅;
for all u ∈ Ci do
begin

C := C ∪ flat(Ii+1(u));
Ci+1 := Ci+1 ∪ Ii+1(u)

end;
i := i + 1;

end;
3. C := C ∪ {∅, U}.

Now, using the method described in Section 5.1, transform the set-based ontology O obtained using
algorithm 5.1 into the (strict) corresponding approximate ontology OAS .

P. Doherty, M. Grabowski, W. Łukaszewicz, A. Szałas / Approximate Ontologies 13

Remark 5.1. It is not yet known whether Algorithm 5.1 is tractable.6 In the examples we have consid-
ered so far, the algorithm has a polynomial time complexity. A similar situation applies to the use of
tolerance spaces used in section 8.1, to generate approximate ontologies. However, in that case we are
able to show some sufficient conditions which guarantee tractability.

∅

{or, r} {r, dr} {y, g} {g, gr}

{or, r, dr} {y, g, gr}

{or, r, dr, y, g, gr}

Figure 3. Set-based ontology obtained in Example 5.1.

∅

〈{or}, {or, r, dr}〉 〈{dr}, {or, r, dr}〉 〈{y}, {y, g, gr}〉 〈{g, gr}, {g, gr}〉

〈{or, r, dr}, {or, r, dr}〉 〈{y, g, gr}, {y, g, gr}〉

〈{or, r, dr, y, g, gr}, {or, r, dr, y, g, gr}〉

Figure 4. Approximate ontology obtained from set-based ontology shown in Figure 3.

Example 5.1. Let AS be the approximation space considered in Example 3.1. After the first step of
Algorithm 5.1, C =

{{or, r}, {or, r, dr}, {r, dr}, {y, g}, {g, gr}}. In the while loop (second step) we
first consider the power approximation space AS1 =

〈
2U , I1

〉
, where:

I1({or, r}) = I1({or, r, dr}) = I1({r, dr}) =
{{or, r}, {or, r, dr}, {r, dr}}

I1({y, g}) = I1({g, gr}) =
{{y, g}, {g, gr}} .

Of course, flat
({{or, r}, {or, r, dr}, {r, dr}})

= {or, r, dr} and flat
({{y, g}, {g, gr}})

= {y, g, gr}.
Thus, after the first iteration, C =

{{or, r}, {or, r, dr}, {r, dr}, {y, g}, {g, gr}, {y, g, gr}}. The second
iteration does not add anything new, so, after the third step, the set-based ontology which is output
contains concepts C =

{∅, {or, r}, {or, r, dr}, {r, dr}, {y, g}, {g, gr}, {y, g, gr}, {or, r, dr, y, g, gr}} .
Figure 3 shows this ontology and Figures 4, 5 show the corresponding approximate ontology and strict
approximate ontology.
6Of course, statement ASi+1 := 2ASi appearing in Algorithm 5.1 does not require to represent explicitly the whole power
approximation space 2ASi .

14 P. Doherty, M. Grabowski, W. Łukaszewicz, A. Szałas / Approximate Ontologies

∅

〈∅, {or, r, dr}〉 〈{y}, {y, g, gr}〉 〈∅, {g, gr}〉

〈{or, r, dr}, {or, r, dr}〉 〈{y, g, gr}, {y, g, gr}〉

〈{or, r, dr, y, g, gr}, {or, r, dr, y, g, gr}〉

Figure 5. Strict approximate ontology obtained from set-based ontology shown in Figure 4.

6. Tolerance Spaces

There is an important and very useful specialization of approximate ontologies where approximations
are based on a definition of similarity induced by the use of tolerance spaces.

The following definitions were provided in [3].

Definition 6.1. By a tolerance function on a set U we mean any function τ : U ×U −→ [0, 1] such that
for all x, y ∈ U , τ(x, x) = 1 and τ(x, y) = τ(y, x).

Definition 6.2. A tolerance space is defined as the tuple TS = 〈U, τ, p〉, which consists of
• a nonempty set U , called the domain of TS;

• a tolerance function τ

• a tolerance threshold p ∈ [0, 1].

Tolerance spaces are used to construct tolerance neighborhoods for individuals.

Definition 6.3. Let TS = 〈U, τ, p〉 be a tolerance space. By a neighborhood function wrt TS we mean
a function given by

nTS(u) def= {u′ ∈ U | τ(u, u′) ≥ p holds}.
By a neighborhood of u wrt TS we mean the value nTS(u).

Observe that any tolerance space can be considered an approximation space. One of many possible
definitions follows.

Definition 6.4. Let TS = 〈U, τ, p〉 be a tolerance space. By an approximation space induced by TS

we understand the standard approximation space ASTS = 〈U, IAS〉, where for any u ∈ U , IAS(u) def=
nTS(u). The lower and upper approximations of a set S wrt TS, STS+ and STS⊕ , are defined according
to Definition 2.2, i.e.,

STS+ = {u ∈ U : nTS(u) ⊆ S}
STS⊕ = {u ∈ U : nTS(u) ∩ S 	= ∅}.

P. Doherty, M. Grabowski, W. Łukaszewicz, A. Szałas / Approximate Ontologies 15

Observe also that any pair of the form 〈STS+, STS⊕〉 is an approximate set in the sense of Definition 2.3.
In the cognitive science literature (see, e.g., [8]), some types of categorical perception are hypothesized
to occur when

“there is a quantitative discontinuity in discriminability at the category boundaries of a phys-
ical continuum, as measured by a peak in discriminative acuity at the transition region for
the identification of members of adjacent categories.”

Perception and categorization can then often be seen as a transformation of continuous quantitative struc-
ture into a discrete qualitative one. The following example shows how tolerance spaces can contribute to
model such situations as well as illustrate the use of tolerance spaces and approximations.

7. Tolerance-Based Ontologies

Based on Definition 6.4, tolerance concepts and tolerance-based ontologies can be defined as approxi-
mation concepts and approximate ontologies over an approximation space induced by a given tolerance
space. However, explicit definitions are provided below since tolerance spaces offer such a useful repre-
sentation of similarity.

Definition 7.1. Let TS = 〈U, τ, p〉 be a tolerance space. By a tolerance concept over TS we understand
any pair 〈STS+, STS⊕〉, where S ⊆ U .

It is easily observed that tolerance concepts are approximate concepts.

Definition 7.2. Let TS = 〈U, τ, p〉 be a tolerance space. By a tolerance-based ontology wrt TS, denoted
by OTS , we understand this to be any approximate ontology, where approximate concepts are required
to be tolerance concepts.

8. Generating Tolerance-Based Ontologies

8.1. Generating Tolerance-Based Ontologies from Data

In this section we provide a method for generating ontologies from raw data, polynomial in the size of
the domain, and which is also based on tolerance spaces.

In order to construct tolerance-based ontologies, we require a definition of power tolerance spaces which
will be provided below. It should be emphasized that there is no “canonical” definition of this notion,
suitable for all application domains. The definitions given below are chosen because of their simplicity
and the fact that their properties allow for the tractable construction of tolerance-based ontologies.

Definition 8.1. Let TS = 〈U, τ, p〉 be a tolerance space and let U1, U2 ⊆ U . By the inclusion function
induced by TS we mean the function given by

νTS(U1, U2)
def=

|{u1 ∈ U1 | ∃u2 ∈ U2[u1 ∈ nTS(u2)]}|
|U1| if U1 	= ∅

1 otherwise.

16 P. Doherty, M. Grabowski, W. Łukaszewicz, A. Szałas / Approximate Ontologies

Definition 8.2. Let TS = 〈U, τ, p〉 be a tolerance space. By a power tolerance space induced by TS we
mean 2TS =

〈
2U , τ, s

〉
, where

• for U1, U2 ∈ 2U , τ(U1, U2)
def= min {νTS(U1, U2), νTS(U2, U1)}

• s ∈ [0, 1] is a tolerance parameter.

Compared to the method described in Section 5, tolerance spaces are easier to tune due to the explicit
tolerance threshold allowing one to identify or discriminate given (sets of) objects.

If neighborhoods I(u) used in Algorithm 5.1 are defined to be nTS(u) then tractability is not guaranteed
(see Remark 5.1). However we have the following sufficient condition which guarantees tractability:

if the I(u) used in Algorithm 5.1 are defined to be the minimal sets X wrt inclusion such
that u ∈ X and X = XTS+ , where TS is a power tolerance space of a suitable order, then
the time complexity of the resulting algorithm is polynomial wrt the size of the underlying
domain of objects.7

8.2. Generating Tolerance-Based Ontologies from Information Systems

Let us now assume that the set of objects which will be used to generate ontologies is given by means of
an information system defined as follows.

Definition 8.3. An information system is any pair A = 〈U,A〉, where U is a non-empty finite set of
objects, called the universe, and A is a non-empty finite set of functions, called attributes, such that
a : U → Ua for every a ∈ A. The set Ua is called the value set of a.

Information systems are often represented as tables with the first column containing objects and the
remaining columns, separated by vertical double lines, containing values of attributes. Such tables are
called information tables.

In this section, we will assume that tolerance spaces on objects appearing in information systems are
provided. One method of obtaining such tolerance spaces would be to provide tolerance spaces on each
attribute domain and combine them into a single tolerance space.

Below we will illustrate this approach, using the following definition.8 Note that the definition of toler-
ance on tuples is heavily application-dependent. We use this particular definition in order to instantiate
the approach and show that even such a simple definition results in interesting ontologies.

Definition 8.4. Let A = 〈U,A〉 be an information system and let TSa1 = 〈Ua1 , τa1 , pa1〉 , . . ., TSak
=

〈Uak
, τak

, pak
〉 be tolerance spaces for all attributes a1, . . . , ak ∈ A. By a tolerance space on A induced

by TSa1, . . . , TSak
we mean the tolerance space

TSA
TSa1 ...TSak

= 〈Ua1 × . . . × Uak
, τ, q〉 ,

where
7Observe that in the case of tolerance spaces, ifX = XTS+ and Y = YTS+ and X �= Y then X ∩ Y = ∅. This assures that
in each iteration of the algorithm the number of concepts added, decreases.
8Based on the definition of tolerance spaces on tuples, given in [3].

P. Doherty, M. Grabowski, W. Łukaszewicz, A. Szałas / Approximate Ontologies 17

object income history employment security

o1 4 5 5 4

o2 2 2 1 2

o3 5 4 5 4

o4 2 3 3 4

o5 2 3 2 3

Table 1. Information table containing row data for Example 8.1.

• τ(〈u1, . . . , uk〉 , 〈u′
1, . . . , u

′
k〉)

def=

|{ui : 1 ≤ i ≤ k and ui ∈ nTSi(u
′
i)}|

k
if k 	= 0

1 otherwise.

• q ∈ [0, 1] is a tolerance parameter.

Remark 8.1. In the cognitive science literature, (see, e.g., [8, 10]) one often distinguishes between two
different kinds of categories (concepts):

• “all-or-none” categories, where members share a common set of features (attributes) and a corre-
sponding rule defines these as necessary and sufficient conditions for membership

• “graded” categories, where membership is a matter of a similarity degree.
Observe that the approach based on tolerance spaces allows us to deal with both cases uniformly. Namely,
assume a certain set of features (attributes of an information system) is not to be considered as a basis for
membership in an “all-or-none” category. One simply needs to define a tolerance space for each of these
attribute’s value sets where all values in the respective sets are similar to each other. In this manner, the
attributes in question become irrelevant in the discernibility process.

Example 8.1. Consider the information system A given in Table 1, containing information about bank
clients requiring a new loan. All attributes are evaluated on the scale 1, . . . , 5, with 1 indicating the worst
and 5 the best grade. Let

TS
def= TSincome = TShistory = TSemployemnt = TSsecurity = 〈{1, 2, 3, 4, 5}, τ1 , 0.7〉

be the same tolerance space for all attributes, where for x, y ∈ {1, . . . , 5},

τ1(x, y) def= 1 − | x − y |
4

.

Consider the tolerance space on A induced by TS,9

TSA
TS =

〈{1, 2, 3, 4, 5}4 , τ, q
〉
,

9In fact, the tolerance space in question is induced by TSincome, TShistory, TSemployemnt, TSsecurity, but we simplify the
notation here.

18 P. Doherty, M. Grabowski, W. Łukaszewicz, A. Szałas / Approximate Ontologies

〈∅, ∅〉

〈{o1, o3}, {o1, o3}〉

BOTTOM

strong
〈{o2}, {o2, o4, o5}〉

weak
〈{o4}, {o2, o4, o5}〉

rather weak

〈{o2, o4, o5}, {o2, o4, o5}〉
weak/rather weak

〈{o1, o2, o3, o4, o5}, {o1, o2, o3, o4, o5}〉
TOP

Figure 6. Approximate ontology considered in Example 8.1.

where τ is defined as in Definition 8.4 and we take q = 0.75. Then:10

n(o1) = n(o3) = {o1, o3}, n(o2) = {o2, o5}, n(o4) = {o4, o5}, n(o5) = {o2, o4, o5}.

Assuming tolerance thresholds in all power tolerance spaces equal to 1.0, one obtains the following set
of concepts of the generated set-based ontology:

{∅, {o1, o3}, {o2, o5}, {o4, o5}, {o2, o4, o5}, {o1, o2, o3, o4, o5}
}

,

which gives rise to the following approximate ontology (see also Figure 6, where we also provide intuitive
labels, such as “weak”, “rather weak”, “strong”, which explain the results):

{ 〈∅, ∅〉 , 〈{o1, o3}, {o1, o3}〉 , 〈{o2}, {o2, o4, o5}〉 , 〈{o4}, {o2, o4, o5}〉 ,

〈{o2, o4, o5}, {o2, o4, o5}〉 , 〈{o1, o2, o3, o4, o5}, {o1, o2, o3, o4, o5}〉} .

Observe that the above ontology is strict.

9. Conclusions

In this paper, we presented a formal framework for defining approximate concepts, ontologies and op-
erations on approximate concepts and ontologies. The framework is based on intuitions from rough set
theory, but generalizes the notion of indiscernability used in rough set theory by using approximation
spaces and a specialization of them called tolerance spaces. Algorithms for automatically generating
approximate ontologies from traditional crisp ontologies or from large data sets together with additional
knowledge was also presented. The knowledge was generally related to similarity measurements be-
tween individual objects in the data sets and is represented by approximation or tolerance spaces, in

10Below n(x) abbreviates nTSA
T S

(x).

P. Doherty, M. Grabowski, W. Łukaszewicz, A. Szałas / Approximate Ontologies 19

addition to constraints of a logical nature which rule out particular constellations of concepts and de-
pendencies in generated ontologies. Approximate concepts and ontologies provide a rich generalization
of their crisp counterparts and are appropriate for many applications, including perception, knowledge
structuring, practical reasoning, classifier construction and robotics. The general techniques presented
here for generating approximate ontologies on the basis of raw data are parameterizable. We are con-
vinced that there are many additional instantiations of the techniques specific to different application
domains. Consequently, additional experimentation and empirical evaluation of the approach presented
is desirable and this is work that will be pursued in the future.

References

[1] Berners-Lee, T.: Weaving the Web, HarperBusiness, 2000.

[2] Catteano, G.: Abstract Approximation Spaces for Rough Theories, [15], 1998.

[3] Doherty, P., Łukaszewicz, W., Szałas, A.: Tolerance spaces and approximative representational structures,
Proceedings 26th German Conference on Artificial Intelligence (A. Günter, R. Kruse, B. Neumann, Eds.),
2821, Springer-Verlag, 2003.

[4] Duentsch, I., Gediga, G.: Uncertainty Measures of Rough Set Prediction, Artificial Intelligence, 106, 1998,
77–107.

[5] Fensel, D.: Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce, Springer-
Verlag, 2001.

[6] Gruber, T. R.: A Translation Approach to Portable Ontology Specifications, Knowledge Acquisition, 5, 1993,
199–220.

[7] Harnad, S., Ed.: Categorical Perception: The Grundwork of Cognition, Cambridge University Press, 1987.

[8] Harnad, S.: Psychophysical and cognitive aspects of categorical perception: A critical overview, [7], 1987.

[9] Lutz, C., Wolter, F., Zakharyaschev, M.: A tableau algorithm for reasoning about concepts and similarity,
Proceedings of the 12th International Conference on Automated Reasoning with Analytic Tableaux and Re-
lated Methods TABLEAUX 2003, LNAI, Springer Verlag, 2003.

[10] Medin, D., Barsalou, L.: Categorization Processes in Category Structure, [7], 1987.

[11] Mitchell, T.: Machine Learning, Mc Graw-Hill, Portland, 1997.

[12] Pal, S., Peters, J., Polkowski, L., Skowron, A.: Rough-Neural Computing: An Introduction, [13], 2003.

[13] Pal, S., Polkowski, L., Skowron, A., Eds.: Rough-Neuro Computing: Techniques for Computing with Words,
Cognitive Technologies, Springer–Verlag, 2003.

[14] Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Dor-
drecht, 1991.

[15] Polkowski, L., Skowron, A., Eds.: Rough Sets in Knowledge Discovery 1: Methodology and Applications,
vol. 17 of Studies in Fuzziness and Soft Computing, Physica-Verlag, Heidelberg, 1998.

[16] Skowron, A., Stepaniuk, J.: Generalized approximation spaces, Soft Computing: Rough Sets, Fuzzy Logic,
Neural Networks, Uncertainty Management, Knowledge Discovery (T. Lin, A. Wildberger, Eds.), 1995.

[17] Skowron, A., Stepaniuk, J.: Tolerance Approximation Spaces, Fundamenta Informaticae, 27, 1996, 245–
253.

