
Fundamenta Informaticae 40 (1999) 1{14 1

IOS Press

Meta-Queries on Deductive Databases

Patrick Doherty�

Department of Computer and Information Science,

Link�oping University, S-581 83 Link�oping, Sweden,

e-mail:patdo@ida.liu.se

Jaros law Kachniarzy

Soft Computer Consultants,

34350 US 19N, Palm Harbor, FL 34684, USA,

e-mail:jk@softcomputer.com

Andrzej Sza lasz

Institute of Informatics,

Warsaw University,

ul. Banacha 2, 02-097 Warsaw, Poland,

e-mail:szalas@mimuw.edu.pl

Abstract. We introduce the notion of a meta-query on relational databases and a technique

which can be used to represent and solve a number of interesting problems from the area

of knowledge representation using logic. The technique is based on the use of quanti�er

elimination and may also be used to query relational databases using a declarative query

language called SHQL (Semi-Horn Query Language), introduced in [6]. SHQL is a fragment

of classical �rst-order predicate logic and allows us to de�ne a query without supplying its

explicit de�nition. All SHQL queries to the database can be processed in polynomial time

(both on the size of the input query and the size of the database). We demonstrate the use of

the technique in problem solving by structuring logical puzzles from the Knights and Knaves

�Supported in part by the Swedish Council for Engineering Sciences (TFR) and the Wallenberg Foundation.

Address for correspondence: Department of Computer and Information Science, Link�oping University, S-581 83

Link�oping, Sweden
yAddress for correspondence: Soft Computer Consultants, 34350 US 19N, Palm Harbor, FL 34684, USA
zSupported in part by the Wallenberg Foundation.

Address for correspondence: Institute of Informatics, Warsaw University, ul. Banacha 2, 02-097 Warsaw, Poland

2 P. Doherty, J. Kachniarz, A. Sza las / Meta Queries on Deductive Databases

domain as SHQL meta-queries on relational databases. We also provide additional examples

demonstrating the exibility of the technique. We conclude with a description of a newly

developed software tool, The Logic Engineer, which aids in the description of algorithms

using transformation and reduction techniques such as those applied in the meta-querying

approach.

Keywords: knowledge representation, query languages, relational databases

1. Introduction

The knowledge representation problem in arti�cial intelligence is based on �nding a suitable

representation for the problem set to be solved and on choosing a suitable formalism for sup-

porting the choice of representation and the reasoning required to solve problems in the set.

One particularly interesting domain of problems used to test the suitability of both representa-

tions and formalisms is the domain of logical puzzles. Logical puzzles are quite often deceptively

straightforward to state informally, yet prove to be quite di�cult to represent and solve for-

mally. Logical puzzles also provide an entertaining means of characterizing deep and subtle

issues in knowledge representation. For instance, the wise man puzzle and its variants have

been used by McCarthy [9] and others to study agents reasoning about the beliefs of other

agents. Smullyan [13] has collected a number of puzzles to study problems related to topics

such as self-reference and logical paradoxes. In particular, the solutions to a number of logical

puzzles presented by Smullyan, such as some of the knights and knaves problems, are dependent

on the generation of queries whose utterance contributes to the solution of the puzzles.

As an example, Smullyan [13], p. 85, describes one of the knights and knaves problems1 as

follows:

Suppose you are an inhabitant of the island of knights and knaves. You fall in

love with a girl there and wish to marry her. However, this girl has strange tastes;

for some odd reason she does not wish to marry a knight; she wants to marry only a

knave. But she wants a rich knave, not a poor one. (We assume for convenience that

everyone there is classi�ed as either rich or poor.) Suppose, in fact, that you are a

rich knave. You are allowed to make only one statement to her. Can you convince

her that you are a rich knave?

The solution to the problem is to generate a query that the rich knave should utter to the

princess.

In this article, we would like to propose a novel technique for representing and solving, not

only an interesting class of logical puzzles such as the one above, but other types of problems

as well. The technique is based on the notion of a meta-query applied to a relational database.

The idea is as follows. We �rst represent the problem to be solved as an indirect query Q(x) on

a relational database, where the database serves as a knowledge source or partial axiomatization

1On the island the knights and knaves inhabit, the knights always tell the truth and the knaves always lie.

P. Doherty, J. Kachniarz, A. Sza las / Meta Queries on Deductive Databases 3

of the problem domain. Associated with the indirect query Q(x) is an additional set of logical

constraints on Q(x) which are part of the meta-query �(Q). What makes �(Q) a meta-query is

the use of higher-order quanti�cation where �(Q) is pre�xed with 9Q. The meta-query 9Q:�(Q)

asks if there exists a query Q satisfying the logical constraints in �(Q) relative to the database.

The use of meta-queries deals with the representational aspect of the knowledge representa-

tion problem associated with this particular class of problems. What about the reasoning aspect

of the knowledge representation problem? Given a representation of the problem in terms of

a meta-query and a database, how do we reason about it in an e�cient manner? We show

that the query language SHQL, introduced in [6], can serve as an e�cient language to express

meta-queries. The technology developed not only provides an answer as to whether a query

exists (is consistent with the database of facts), but it also produces an explicit de�nition for

the query which can be used to compute an answer. Polynomial time complexity of both an-

swering whether a query exists and computing an answer to the query is guaranteed. In fact,

all polynomial time meta-queries are provably expressible as SHQL queries.

One of the strengths of the approach is that the representation of the problem is essentially

done using a fragment of 1st-order logic to construct the meta-query. The application of the

higher-order quanti�cation is in a sense done implicitly and can in fact be viewed as a query

optimization technique where the quanti�er is compiled away using a quanti�er elimination

algorithm. On the one hand, the knowledge engineer may think about and represent a problem

in terms of 1st-order logic, yet may use the power of 2nd-order logic to solve the problem

implicitly in a straightforward manner.

In the case of the logical puzzles domain, this becomes important. It is often the case

that, not only it is di�cult to formulate the proper query to solve a logical puzzle, it is also

di�cult to verify whether a query actually exists to solve the puzzle. In this case, the technique

we propose matches the special characteristics of the problem domain well. Queries may be

formulated implicitly and one can automatically generate and verify whether a legitimate query

exists relative to a particular database of facts.

Our approach is particularly interesting when compared to a number of other approaches

proposed to deal with logical puzzles. Ohlbach [11], in attempting to represent the knights and

knaves problem above, concludes that 1st-order logic is inadequate and that one must introduce

arti�cial constructions into a representation of the problem in order to force a solution. Miller

and Perlis [12] (also described in Thayse et al [14], pp. 46-50) pursue another route by intro-

ducing the use of indexicals in utterances and an axiomatization for utterance instances. Both

solutions are dependent on a form of rei�cation by terms, so that one may refer to utterances in

the 1st-order formalization. In addition, both approaches appeal to automated theorem-proving

techniques such as resolution.

Our approach avoids both the conceptual and computational complexity associated with

rei�cation and the use of resolution. Instead, we use an existential quanti�cation over the query

Q and polynomial time algorithms for computing the extension of Q. The body of a meta-query

is represented in a straightforward and direct manner using a fragment of 1st-order logic. As

4 P. Doherty, J. Kachniarz, A. Sza las / Meta Queries on Deductive Databases

in Miller and Perlis [12], we can also make a claim that our technique can be generalized to

solve, not only the speci�c logical puzzle mentioned above, but a class of logical puzzles and

other classes of problems. When comparing our approach with the use of other rule-based query

languages such as Datalog, we made a case for the advantages of SHQL over Datalog in Doherty

et al [6]. In this paper, we show that some of the logical puzzles that are beyond the scope of

Datalog are easily and naturally formulated as semi-Horn queries also introduced in Doherty et

al [6].

In the rest of the paper, we will proceed as follows. In Section 2, we provide an informal

description of the method. In Section 3, we demonstrate the proposed technique by formulating a

variant of the knights and knaves problem described above. In addition, we derive a general query

template for this particular class of problems. In Section 4, we provide the formal de�nitions for

the query language SHQL and associated theorems used to justify the technique. In Section 5, we

provide a number of additional examples where the technique is applied. Some of these examples

pertain to logical puzzles and others do not. In Section 6, we consider several approaches used

to implement the technique.

2. The Method

In this section we introduce the proposed method informally, but in more detail. The precise

de�nitions and theorems are provided in Section 4. The proposed representation and reasoning

technique allows us to ask whether there exists a desired query, satisfying certain conditions

de�ned by the user. The conditions are formulated in the classical predicate logic, restricted to

semi-Horn formulas. The query language based on semi-Horn formulas is abbreviated as SHQL

(semi-Horn Query Language). In fact we will show that in certain cases one can use expressivity

beyond the SHQL (see Theorem 4.3, Section 4).

SHQL is used as follows. Given the task of computing a de�nition of an intensional predicate

Q (or asking whether a tuple is an instance of Q) relative to a relational database B consisting of

the relations R1; : : : ; Rn, we �rst provide an implicit de�nition of Q in terms of a SHQL theory,

�(Q), which is essentially a conjunction of semi-Horn formulas using any of R1; : : : ; Rn, and Q.

The theory �(Q) is only constrained by the fact that it must be semi-Horn. All quanti�ers and

logical connectives are interpreted classically. The goal is to compute an explicit de�nition of Q

in PTIME which is interpreted as the result of the query �(Q).

The computation process can be described in two stages. In the �rst stage, we provide a

PTIME (in the size of the input query) compilation process which uses a quanti�er elimination

algorithm called the DLS algorithm [3]. An extension for �xpoint formulas is called the G-DLS

algorithm [4, 5]. The DLS algorithm takes as input a second-order formula and returns a logically

equivalent �rst-order formula, or terminates with failure, where failure does not always mean

there is not a reduction, but simply that the algorithm can not �nd one. The G-DLS algorithm

is a generalization of the DLS algorithm and returns logically equivalent �xpoint formulas for

a wider class of inputs. Both algorithms can be combined into one algorithm which we denote

P. Doherty, J. Kachniarz, A. Sza las / Meta Queries on Deductive Databases 5

by DLS� (see [5, 6]). Given the SHQL query, �(Q), we pre�x it with an existential quanti�er

and input the formula 9Q:�(Q) to DLS�. If the meta-query is �rst-order de�nable, then the

output will be a logically equivalent �rst-order formula expressing an explicit de�nition of Q.

The output is computed in PTIME and LOGSPACE (in the size of the database). If the meta-

query is not �rst-order de�nable, then the output will be a logically equivalent �xpoint formula

expressing an explicit de�nition of Q. In this case, output is computed in PTIME. Note that

this technique can be used for theories outside the semi-Horn class, but neither the complexity

results nor a successful reduction are guaranteed. For logical puzzles such as that described in

Section 1, the explicit de�nition of Q generated in the �rst stage is in fact the answer to the

puzzle.

In the second stage, we use the explicit de�nition of Q (output in the �rst stage) to compute

a suitable relation in the relational database that satis�es Q. Before computing the output

relation, we �rst check to see that such a relation exists relative to the database. Suppose

�(Q) is the original query, B the relational database and �0(Q) the output of DLS� given the

input 9Q:�(Q). We say that the query �(Q) is a coherent query relative to B if B j= �0(Q).

Assuming this is the case, we know that the output relation exists and can now compute the

answer. Both checking that the query is coherent (B j= �0(Q)) and computing the output

relation can be done e�ciently because calculating �xpoint queries and �xpoint satis�ability

checking over �nite domains are both in PTIME (see Immerman [8], Ebbinghaus-Flum [7]).

Note that although the combined problem of �nding out whether an implicit query �(Q) to

a database exists, checking that the query is coherent, and explicitly computing the answer is in

general NP-complete (in the size of the database), as was shown by Fagin (see e.g. Ebbinghaus-

Flum [7]), our method which applies quanti�er elimination techniques to semi-Horn theories

makes the problem solvable in polynomial time for this special case. The coherence condition

and explicit de�nition are also both polynomial in the size of the meta-query. Moreover, as it

easily follows from a result shown in [6], all polynomial time meta-queries can be expressed in

the language we deal with. Querying with SHQL is as natural as querying with classical logic

and the compilation step is completely transparent to the user.

It is worth emphasizing here that we distinguish between two types of formulas: the so-called

Ackermann-reducible formulas and semi-Horn formulas. In fact Ackermann-reducible formulas

are also semi-Horn formulas, but allow us to calculate the coherence condition and the de�nition

of a meta-query as a formula of the classical predicate logic. The more general case of semi-Horn

formulas results in �xpoint coherence conditions and de�nitions of queries.

3. An Introductory Example

In this section, we will use a variant of the knights and knaves problem described in Section 1 to

demonstrate how we can use the technique to generate an explicit query Q as a solution to the

problem. In addition, we describe a generic technique which allows us to solve similar problems

in a straightforward manner, including the original example in Section 1.

6 P. Doherty, J. Kachniarz, A. Sza las / Meta Queries on Deductive Databases

3.1. Knights, Knaves and Castle Roads

Consider the following example.

Example 3.1. Knights, Knaves and Castle Roads.

An island exists whose only inhabitants are knights and knaves. The knights on

the island always tell the truth, while the knaves always lie. There are two roads.

One of the roads leads to a castle and the other does not. An island visitor wants

to ask an inhabitant of the island which road is the right road (leads to the castle),

but the visitor does not know whether the person queried is a knight or a knave.

The solution to the puzzle is to �nd a query Q which indicates the right road no matter

who the visitor queries, truthful inhabitants (knights), or lying inhabitants (knaves). In the

following, assume that R(x) means that an inhabitant x claims that a road chosen by the visitor

is right (leads to the castle) and K(x) means that x is a knight. Since the island is only inhabited

by knights and knaves, :K(x) asserts that x is a knave. We are interested in whether there is

a query Q(x), which when asked to an inhabitant x, allows us to distinguish between the right

and wrong roads. If there is such a query then we should generate an explicit de�nition of the

query. Based on the information supplied in the puzzle, query Q(x) should satisfy the following

conditions �(Q):

8x[K(x) � (Q(x) � R(x))]^[:K(x) � (Q(x) � :R(x))]: (1)

�(Q) asserts that if a knight (who always gives true answers) is queried then the query should

be equivalent to asking whether the chosen road (pointed out by the visitor) is the right road,

otherwise the query should be equivalent to asking whether the chosen road is the wrong road

because the inhabitant queried is a knave (who always lies). Consequently, asking whether such

a query exists is expressed as the following second-order formula,

9Q8x[K(x) � (Q(x) � R(x))]^[:K(x) � (Q(x) � :R(x))]: (2)

(2) is equivalent to a semi-Horn query expressed by (1). Simple transformations (that can be

performed automatically) lead to the following Ackermann-reducible formula:

9Q8x[:K(x)_((:Q(x)_R(x))^(:R(x)_Q(x)))]^

[K(x)_((:Q(x)_:R(x))^(R(x)_Q(x)))];

which is equivalent to,

9Q8x[:K(x)_:Q(x)_R(x)]^[:K(x)_Q(x)_:R(x)]^

[K(x)_Q(x)_R(x)]^[K(x)_:Q(x)_:R(x)];

which is equivalent to,

9Q8x[Q(x)_(K(x) � R(x))]^[:Q(x)_(K(x) � :R(x))]:

P. Doherty, J. Kachniarz, A. Sza las / Meta Queries on Deductive Databases 7

As a result we generate the following explicit de�nition of Q(x):

Q(x) � (K(x) � R(x)): (3)

In addition, the coherence condition is always true. This simply means that the query is always

consistent and gives the right answer. Translating (3) to a natural language statement with x

replaced by the pronoun \you" referring to the inhabitant who was queried, and \me" referring

to the visitor who made the query, we would arrive at the following:

\Are you a knight if and only if the road chosen by me is the right road?"

or in other words:

\are you a knight and the road chosen by me is the right road or are you a knave

and the road chosen by me is the wrong road?".

It is easy to see that this utterance stated by the visitor will provide him with the necessary

information about the castle road regardless of the status of who he makes the utterance to.

For example, if the visitor chooses the road to the castle and queries a knight, the knight must

answer, yes (true), because he can not lie and he must evaluate the �rst disjunct in the query to

true. Consequently, the whole query is evaluated to true. In another case, if the visitor chooses

the road to the castle and queries a knave, the knave evaluates both disjuncts in the query to

false, but because he must lie, he must also answer yes (not false). The remaining two cases are

similar. ut

3.2. A Generic Approach to a Class of Knights and Knaves Puzzles

Given the example above, it is easily observable that if an inhabitant x of the island is asked

any question of the form R(x; �y), where y is a touple of variables, the question has to satisfy

the condition (1). This proves that such a query always exists (the coherence condition is true)

and the query is de�ned by (3). For example, suppose the visitor would like to know whether

an inhabitant is a knight (R(x; y) is K(x)), then the proper query would have the form,

Q(x) � (K(x) � K(x));

which is equivalent to true. This means that we simply ask the inhabitant about any tautology.

In fact, there is now a more powerful way to ask inhabitants questions if the visitor is allowed

two queries. First determine if the inhabitant is a knight or a knave and then ask any question.

The example in Section 1 can now be solved in two ways, either by setting up the meta-query

in the standard manner or by using the generic technique. In the �rst case the meta-query would

be,

9Q8x[:K(x) � (Q(x) � :R(x))]^[K(x) � :Q(x)];

where R(x) denotes x is rich, K(x) denotes x is a knight and in this case x denotes I because an

inhabitant will utter the statement to the princess. This meta-query is semi-Horn and reduces

to the following explicit de�nition for Q(x),

Q(x) � (:K(x)^:R(x)); (4)

8 P. Doherty, J. Kachniarz, A. Sza las / Meta Queries on Deductive Databases

with coherence condition true. The natural language translation and solution to the puzzle is

I am not a knight and I am not rich.

In the case where the generic technique is used (R(x; y) is :K(x)^R(x)), (3) would have the

form,

Q(x) � (K(x) � (:K(x)^R(x)));

which is equivalent to (4).

4. The Semi-Horn Query Language

In the following, we will de�ne the semi-Horn query language (SHQL) and then present the for-

mal justi�cations used as a basis for automatically generating coherence conditions and explicit

de�nitions for SHQL meta-queries. Note that the techniques described below can sometimes

be applied successfully to meta-queries more expressive than those constructed using semi-Horn

formulas.

4.1. Semi-Horn Formulas

We shall consider two types of formulas of the form

�1(Q)^�2(Q); (5)

where �2(Q) is any �rst-order formula negative w.r.t. Q. We call these two types Ackermann-

reducible formulas and semi-Horn formulas. They are de�ned as follows:

� Ackermann-reducible formulas (w.r.t. Q) are of the form (5) for which �1(Q) is a con-

junction of formulas of the form 8�x(Q(�t)_�), where � is an arbitrary Q-free �rst-order

formula

� semi-Horn formulas (w.r.t. Q) are of the form (5) for which �1(Q) is a conjunction of

formulas of the form 8�x(Q(�t)_�(:Q)), and � is an arbitrary �rst-order formula negative

w.r.t. Q.

The negative dual forms are obtained by substituting Q by :Q in the de�nitions, making � an

arbitrary �rst-order formula positive w.r.t. Q, and making �2(Q) negative w.r.t. Q. In this

case we are able to �nd the greatest solution for :Q, that is, a minimal solution for Q.

Ackermann-reducible formulas are also semi-Horn formulas. However, it is important to

isolate this class of formulas because these de�ne �rst-order expressible queries.

De�nition 4.1. By a declarative SHQL query we mean any implicit query expressed as a semi-

Horn formula. By a declarative query language SHQL we mean a �rst-order query language

augmented with declarative queries, assuming that the underlying signature contains a relation

that, on the semantic side, linearly orders domains of databases.

P. Doherty, J. Kachniarz, A. Sza las / Meta Queries on Deductive Databases 9

In what follows we concentrate on semi-Horn and Ackermann-reducible formulas. It is,

however, important to note that the method can be made more general by generating solutions

for arbitrary formulas �(Q) which although not semi-Horn, are reducible e.g. by the DLS�

algorithm described in [5].

Note that any conjunction of semi-Horn formulas w.r.t. Q can be transformed into the

following form (see e.g. [6]):

8�x[�(�x; zi; Q) � Q(�x)]^	(:Q); (6)

where 	(:Q) is an arbitrary �rst-order formula negative w.r.t. Q and �(�x; zi; Q) is positive

w.r.t. Q, or its dual,

8�x[�(�x; zi;:Q)) � :Q(�x)]^	(Q); (7)

where 	(Q) is an arbitrary �rst-order formula positive w.r.t. Q and �(�x; zi;:Q) is negative

w.r.t. Q.

4.2. Coherence Conditions and Explicit De�nitions

The following Theorems 4.1 and 4.2 of [6], based on Ackermann's lemma [2] and Nonnengart and

Sza las �xpoint theorem [10], provide us with both coherence conditions and explicit de�nitions

for SHQL queries.

Theorem 4.1.

For any formula �(Q) of the form (6):

� the explicit de�nition of Q is given by Q(�x) � �Q(�x):�(�x; zi; Q), and

� the coherence condition for �(Q) is 	(Q �Q(�x):�(�x; zi; Q)).

For any formula �(Q) of the form (7):

� the explicit de�nition of Q is given by Q(�x) � �Q(�x)::�(�x; zi;:Q), and

� the coherence condition for �(Q) is 	(Q �Q(�x)::�(�x; zi;:Q)). ut

As a consequence we have the following theorem.

Theorem 4.2.

For any formula �(Q) of the form (6), where � does not contain Q:

� the explicit de�nition of Q is given by Q(�x) � �(�x; zi), and

� the coherence condition for �(Q) is 	(Q �(�x; zi)).

For any formula �(Q) of the form (7), where � does not contain Q:

� the explicit de�nition of Q is given by Q(�x) � :�(�x; zi), and

� the coherence condition for �(Q) is 	(Q :�(�x; zi)). ut

Let us also introduce a new theorem (Theorem 4.3 below) which allows us to go beyond the

semi-Horn query language of [6] and avoid some superuous transformations of the formulas to

the forms considered before and allows us to deal with a more general case.

10 P. Doherty, J. Kachniarz, A. Sza las / Meta Queries on Deductive Databases

Theorem 4.3.

For any formula of the form: �(Q) � 8�x[�(�x; zi; Q) � Q(�x)]^	(:Q;Q), where 	(:Q;Q) is an

arbitrary �rst-order formula that may contain both negative and positive occurrences of Q and

�(�x; zi; Q) is positive w.r.t. Q:

� the explicit de�nition of the least Q is given by: Q(�x) � �Q(�x):�(�x; zi; Q) and of the

greatest Q is given by Q(�x) � �Q(�x):�(�x; zi; Q), and

� the coherence condition for �(Q) is 	(Q �Q(�x):�(�x; zi; Q)) (in the case of the least Q),

and 	(Q �Q(�x):�(�x; zi; Q)) (in the case of the greatest Q). ut

5. Examples

In this section, we introduce two additional examples unrelated to solving logical puzzles that

demonstrate other uses of the technique.

Example 5.1. This example is considered in [1](Example 15.3.1, p.386) and its characterization

using the technique in this paper uses �xpoint formulas.

\The example concerns a game with states a; b; :::. The game is between two

players. The possible moves of the games are held in a binary relation moves. A

tuple ha; bi in moves indicates that when in a state a, one can chose to move to state

b. A player loses if he or she is in a state from which there are no moves. The goal

is to compute the set of winning states (i.e., the set of states such that there exists a

winning strategy for a player in this state). These are obtained as the extension of

a unary predicate win."

Let M(x; y) and W (x) denote the predicates moves and win, respectively. The solution

proposed in [1] is formulated using the following nonstrati�able program de�nition:

W (x) M(x; y);:W (y);

which states that x is a winning state if there is a move from x to a state y, \for which the

opposing player loses". Unfortunately, :W (y) means that there is not a winning strategy from

y, not that \a player loses starting from y" as is assumed in [1]. Moreover, a three-valued

semantics associated with datalog with negation is used to compute the answers.

Let us formulate the solution correctly and show that negation can be interpreted as classical

negation and that datalog can be replaced by the use of formulas in classical logic. In order to

show that we will ask whether there is a query that allows us to calculate W , i.e. whether there

is a W satisfying the following conditions:

1. 8x[(9yM(x; y)^8z:M(y; z)) � W (x)], i.e. from x there is a move to y from which the

opposing player has no move;

2. 8x[(9yM(x; y)^8z(M(y; z) �W (z))) �W (x)], i.e. from x there is a move to y from which

all choices of the opposing player lead to a state where the other player (the player that

moved from x to y) has a winning strategy.

P. Doherty, J. Kachniarz, A. Sza las / Meta Queries on Deductive Databases 11

Combining (1) and (2) and using both in a meta-query for W results in the following second-order

formula:

9W8x[W (x)_8y:M(x; y)_9zM(y; z)]^[W (x)_8y:M(x; y)_9zM(y; z)^:W (z)];

which can easily be reduced to the semi-Horn formula form in (6),

9W8x[W (x)_8y:M(x; y)_9zM(y; z)^9z0M(y; z0)^:W (z0)]:

According to 4:1 such a query always exists (the coherence condition is true) and its de�nition

is given by,

W (x) � �W (x):[9yM(x; y)^(8z:M(y; z)_8z0:M(y; z0)_W (z0))]:

The computation algorithm is straightforward. In the �rst step,

W (1)(x) � 9yM(x; y)^8z:M(y; z);

mark as winning all states for which there is a move to another state but from that state there

is not any move. In the next steps,

W (n)(x) � 9yM(x; y)^(8z:M(y; z)_8z0:M(y; z0)_W (n�1)(z0))];

mark as winning all states from which there is a move to another state from which there is not

any move, or all moves lead to a state already identi�ed as a winning one. ut

The folowing example shows the usefulness of Theorem 4.3.

Example 5.2. The example of applying semi-Horn queries in a Clinical Information System.

Let us consider a Clinical Information System storing, among others, patient demographic

data (including parent-child relationship) as well as diagnosed disease cases. Let the relation

P (x; y) mean that x is a parent of y and D(x) mean that patient x fell ill with a certain disease

d. The researcher may want to ask a query: \Is there any data in the database con�rming the

hypothesis that the disease d is hereditary?". He wants to compute a relation A(x; y) containing

all cases when both ancestor x and descendant y had the same illness d.

The query A(x; y) has to satisfy the following conditions:

1. 8x[D(x) � 9zA(z; x)^D(z)], i.e. if x had the disease, there is an ancestor of x who also

had this disease;

2. 8x8y[A(x; y) � P (x; y)_9zP (z; y)^A(x; z)], i.e. x is an ancestor of y if and only if x is y's

parent or there is x's descendant z, who is a parent of y;

3. 8x8y[A(x; y) � :A(y; x)], i.e. if x is an ancestor of y, x cannot be a descendant of y;

12 P. Doherty, J. Kachniarz, A. Sza las / Meta Queries on Deductive Databases

The equivalent second order formula has the form:

9A8x8y[A(x; y) � P (x; y)_9zP (z; y)^A(x; z)]^

[D(x) � 9zA(z; x)^D(z)]^[A(x; y) � :A(y; x)]:

According to Theorem 4.3, the explicit de�nition of A(x; y) is given by:

A(x; y) � �A(x; y):[P (x; y)_9zP (z; y)^A(x; z)]

and the coherence condition, after simple transformations, has the form:

8x8y9t19t2(:�A(t1; t2):[P (t1; t2)_9zP (z; t2)^A(t1; z)]^(t1 = x^t2 = y_t1 = y^t2 = x))

^8x(:D(x)_9y�A(y; x):[P (y; x)_9zP (z; x)^A(y; z)]^D(y)):

ut

6. Implementation

6.1. Logic Engineer

There are many formula reduction algorithms, including some that eliminate second-order quan-

ti�ers such as the DLS algorithm [3, 6] used in this paper2. In theory, many of these algorithms

can be applied without any computer aid, but in practice many of the reductions require com-

plex and robust transformations. We learned this ourselves through the experience developing

the DLS algorithm. Since a great deal of research related to the practical use of logic requires

algorithms with extensive use of formula transformations and reductions, there is a need for a

practical toolkit for logic engineers that would include a library of de�nable rules (known a priori

tautologies) and reduction algorithms that would support the transformation of input formulas

into a desired form. This form could range from anything as straightforward as DNF or CNF

to sophisticated quanti�er elimination algorithms.

An important feature of any such toolkit should be the ability to incrementally re�ne exist-

ing transformation and reduction techniques in a modular manner in addition to adding new

techniques. The DLS algorithm is a case in point. The restriction of the answering technique

to semi-Horn formulas in Doherty et al. [6] resulted from the fact that there are very simple

formulas which are not semi-Horn and which result in NP-complete answering algorithms. On

the other hand, as research progresses, one can discover new theorems and algorithms optimizing

certain transformations of formulas into semi-Horn forms (as is done in Theorem 4.3). In this

respect, hard-coding transformations of formulas into the DLS algorithm is not su�cient when

one expects re�nement of such algorithms by adding new transformation rules leading to more

compact results, for example.

2An on-line implementation of the DLS algorithm can be accessed via

http://www.ida.liu.se/labs/kplab/project/dls/.

P. Doherty, J. Kachniarz, A. Sza las / Meta Queries on Deductive Databases 13

The Logic Engineer, which is part of a larger educational project called the Computer

Aided Logic Engineering Project, is intended to meet these expectations and requirements. It is

being developed as a teaching and research aid where the user can easily de�ne transformation

rules and algorithms and observe their behavior in terms of the rules. It also provides the ability

to verify that algorithms are correct and properly described. The Logic Engineer is packaged as

a GUI application written in Java and may be run on any platform compatible with Java VM

1.1. All examples from this paper have been calculated using this system.3

6.2. Transformation Rules and Algorithm

The knowledge used by the Logic Engineer is represented as a collection of rules representing

known tautologies which can be used in formula transformations. A sample rule may have the

form:

DEFINE RULENOT (a OR b)
| {z }

patternformula

EQUIVNOT a AND NOT b
| {z }

equivalentformula

The number of rules required for a particular problem or algorithm depends on the complex-

ity of the problem or algorithm. For example, simple algorithms like transformation to CNF

(conjunctive normal form) can be de�ned using ten rules, while complex algorithms such as the

DLS algorithm require about �fty.

The transformation algorithm used in the Logic Engineer de�nes a sequence of transforma-

tions leading to a desired form of an output formula. The language used to describe algorithms,

called HDL, is declarative and domain-oriented. The coded algorithm is very similar in form

to human readable descriptions published in articles. It consists of a sequence of statements of

the form: \while the formula is still changing, apply these rules"; \if the formula has a certain

form apply these rules, otherwise use these other rules"; \apply these rules to any subformula

matching the given criteria", etc. Although the Logic Engineer simpli�es the implementation

of reduction and transformation algorithms, it is still not trivial to provide the declarative rule-

based representation of the algorithm even when the algorithm is already published. Quite often,

authors of algorithms skip the \trivial" parts of the algorithm, where these parts are usually the

most complex for the computer. Less complex algorithms like CNF can be coded in about 50

lines, whereas complex algorithms such as the DLS algorithm require roughly 350 lines.

References

[1] Abiteboul, S., Hull, R., Vianu, V. (1996) Foundations of Databases, Addison-Wesley Pub.

Co.

[2] Ackermann, W. (1935) Untersuchungen �uber das Eliminationsproblem der mathematischen

Logik, Mathematische Annalen, 110, 390-413.

3More information about the Logic Engineer may be found at http://zls.mimuw.edu.pl/�szalas/cale/. It

will be made available for use in Spring of 2000.

14 P. Doherty, J. Kachniarz, A. Sza las / Meta Queries on Deductive Databases

[3] Doherty, P., Lukaszewicz, W., Sza las, A. (1997) Computing Circumscription Revisited. A

Reduction Algorithm, Journal of Automated Reasoning, 18, 3, 297{336 .

[4] Doherty, P., Lukaszewicz, W., Sza las, A. (1996) A Reduction Result for Circumscribed

Semi-Horn Formulas, Fundamenta Informaticae, 28, 3-4, 261{272.

[5] Doherty, P., Lukaszewicz, W., Sza las, A. (1998) General Domain Circumscription and its

E�ective Reductions, Fundamenta Informaticae, 36, 1, 23{55

[6] Doherty, P., Lukaszewicz, W., Sza las, A. (1999) Declarative PTIME Queries for Relational

Databases using Quanti�er Elimination, Journal of Logic and Computation, 9, 739-761.

[7] Ebbinghaus, H.-D., Flum, J. (1995) Finite Model Theory, Springer-Verlag.

[8] Immerman, N. (1986) Relational Queries Computable in Polynomial Time, Information and

Control, 68, 86-104.

[9] McCarthy, M., Sato, M., Hayashi, T., Igarashi, S. (1978) On the Model Theory of Knowl-

edge, Stanford Arti�cial Intelligence Laboratory, Memo AIM-312, Stanford University.

[10] Nonnengart, A., Sza las, A. (1998) A Fixpoint Approach to Second-Order Quanti�er Elim-

ination with Applications to Correspondence Theory, in: Logic at Work. Essays Dedicated

to the Memory of Helena Rasiowa, E. Or lowska (ed.), Physica Verlag, 89-108.

[11] Ohlbach, H. J. (1984) Predicate Logic Hacker Tricks, Journal of Automated Reasoning 1,

pp,435-440.

[12] Miller, M., Perlis, D. (1987) Proving Self-Utterances, Journal of Automated Reasoning (3)3,

329-338.

[13] Smullyan, R. (1978) What is the Name of This Book?, Prentice Hall, Englewood Cli�s, New

Jersey.

[14] Thayse, A. (ed.) (1989) From Modal Logic to Deductive Databases - Introducing a Logic

Based Approach to Arti�cial Intelligence, John Wiley & Sons.

