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Abstract. In this paper, we propose a framework that provides softwareagents
with the ability to askapproximatequestions to each other in the context of het-
erogeneous ontologies. The framework combines the use of logic-based tech-
niques with ideas from rough set theory. Initial queries by an agent are trans-
formed into approximate queries using weakest sufficient and strongest necessary
conditions on the query and are interpreted as lower and upper approximations
on the query. Once the base communication ability is provided, the framework is
extended to situations where there is not only a mismatch between agent ontolo-
gies, but the agents have varying ability to perceive their environments. These
limitations on perceptive capability are formalized usingthe idea of tolerance
spaces.

1 Introduction

With the inception of the World-Wide Web (WWW), a distributed information infras-
tructure has been set up containing a vast repository of information resources. This
infrastructure is designed primarily for human use, with little support for the deploy-
ment of software agents which can take advantage of these information resources to
assist humans in accomplishing a number of different information processing and gath-
ering tasks. The next stage in the evolution of the the WWW is to enhance the current
infrastructure with support for explicit, machine accessible descriptions of informa-
tion content on the Web. These machine accessible descriptions of information content
should be usable and understandable by machines, in particular software agents. Tim
Berners-Lee has used the termSemantic Web– a web of data that can be processed
directly or indirectly by machines[3], to describe this next phase in the evolution of the
Web.

The meaning or semantics of diverse information content hasto be accessible to soft-
ware agents for use and reasoning if sophisticated knowledge intensive tasks are to be
automated in the Web context. Most importantly, just as humans cooperate and commu-
nicate in a common language and conceptual space in order to achieve complex tasks,
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so will software agents, both with other software agents andwith humans. There is a
great deal of research activity in this area, particularly in providing the necessary tools
to support communication among agents and construction anduse of sharedontologies.

Webster’s dictionary definesontologyas,

“the branch of metaphysics dealing with the nature of being or reality”.

In artificial intelligence, more specifically knowledge representation, the term is used
somewhat more pragmatically to describe how we choose to “slice up” reality and rep-
resent these choices in representational structures used for reasoning about agent en-
vironments at various levels of abstraction. One common wayof “slicing” or concep-
tualizing is to specify a base set of individuals, properties, relations and dependencies
between them. This choice is particularly amenable to a straightforward use of logic as
a representational tool.

In knowledge engineering circles, the term “ontology” has taken on a related but some-
what different meaning as explicit computational structures which “provide a machine-
processible semantics of information sources that can be communicated between differ-
ent agents (software and human)”[9]. Ontologies are used tofacilitate the construction
of domain models and to provide the vocabulary and relationsused in this process.
Gruber [11] provides the following definition:

“An ontology is a formal, explicit specification of a shared conceptualization.”

The intention is that ontologies should facilitate the use of knowledge sharing and reuse
among software agents and humans alike.

Just as the Web is currently a heterogeneous collection of information sources, it is
reasonable to assume that the future semantic web will include a collection of hetero-
geneous domain-specific ontologies, sometimes with semantic or syntactic overlap and
sometimes not. One particularly relevant issue demanding attention is how two or more
software agents can communicate in a cooperative task when there is a mismatch be-
tween the particular ontologies each has access to. This is adifficult problem which
demands a number of different solutions since the nature of the types of mismatch in
ontologies will vary within both the syntactic and semanticspectrum.

A number of different approaches to resolving the problem ofcommunication in the
context of heterogeneous ontologies have been proposed in the literature. Bailin and
Truszkowski [2] provide a useful classification along the following lines, each with
their own strengths and weaknesses:

– Standardization of ontologies– Develop standard ontologies for specific domains
and acquire agreement upon them.

– Aggregation of ontologies– Develop broader ontologies that include the multi-
plicity of smaller ontologies and provide the expert in one field with access to the
vocabulary and definitions of the related fields.

– Integration of ontologies– Use a variety of alignment techniques and supplement
the original ontologies with mappings that link corresponding or related concepts.
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– Mediation between ontologies– Originally proposed in the context of heteroge-
neous databases, mediators are pieces of software that translate between different
schemata (ontologies). A request for information arrives at a mediator in terms of
one or more ontologies; the mediator translates this into anappropriate request us-
ing the ontologies at the information source; the output is then translated back into
an ontological form understandable by the sender of the request.

In this paper, we will propose a number of logic-based techniques combined with ideas
from rough set theory that can provide software agents with the ability to askapproxi-
matequestions to each other in the context of heterogeneous ontologies. The techniques
assume that some integration of existing ontologies has been provided. The idea of a
mediator is implicit in the approach but is transparent to the communicating agents
since each agent has its own mediator which only generates queries another agent can
answer given a particular context.

Once the base communication ability is provided, we will extend the idea to situa-
tions where there is not only a mismatch between agent ontologies, but the agents have
varying ability to perceive their environments. Even though they may have concepts in
common, their ability to perceive individuals as having specific properties or relations
will be distinct. The question then is how this affects the questions that can be asked and
the replies that can be generated by agents with perception functions limited to varying
degrees.

Figure 1 provides a useful schematic of the basic problem andthe assumptions made in
the problem specification.
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Fig. 1. Problem specification.
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Assume agentAg1 has a local ontology consisting of concepts/relations inR̄′ and S̄
and that concepts/relations in̄R′ have previously been aligned with those inR̄, a subset
from a global ontology repository assumed accessible to theagent community in ques-
tion. In addition,Ag1’s knowledge base contains a mapping theory which represents
dependencies between various concepts/relations inR̄ andS̄. These are assumed to be
logical formulas in a fragment of first-order logic representing some sufficient and nec-
essary conditions for concepts/relations inR̄ andS̄. Ag1’s database can contain rough
set approximations of concepts/relations inR̄′, R̄ andS̄.

Assume similarly, that agentAg2 has a local ontology consisting of concepts/relations
in R̄′′ andQ̄ and that concepts/relations in̄R′′ have previously been aligned with those
in R̄, the same subset thatAg1 has alignedR′ with. In addition,Ag2’s knowledge
base contains a mapping theory which represents dependencies between various con-
cepts/relations in̄R andQ̄ representing some sufficient and necessary conditions for
concepts/relations in̄R andQ̄.Ag2’s database can contain rough set approximations of
concepts/relations in̄R′′, R̄ andQ̄.

From an external perspective, agentsAg1 andAg2 have concepts/relations in̄R in com-
mon and therefore a common language to communicate, but at the same time,Ag1 has
the additional concepts/relations̄S disjoint fromAg2, andAg2 has the additional con-
cepts/relations̄Q disjoint fromAg1. When reasoning about the world and in asking
questions to other agents, it is only natural thatAg1 would like to use concepts from
R̄′, R̄ and S̄. In a similar manner,Ag2 would like to use concepts from̄R′′, R̄ and
Q̄. Since we assume alignment of both̄R′ andR̄′′ with R̄, and that both agents know
they haveR̄ in common, the communication issue reduces to that between the two
sub-languages using vocabulariesR̄, S̄ andR̄,Q̄.

Suppose agentAg1 wants to ask agentAg2 a question inAg1’s own language. We
will assume that any first-order or fixpoint formula using concepts/relations from̄R, S̄
can be used to represent the question. To do this,Ag1 will supply the queryα to its
mediation function in addition to its mapping theoryT (R̄, S̄). The mediation function
will return a new approximate query consisting of

– the weakest sufficient condition ofα under theoryT (R̄, S̄) in the sub-language
consisting of concepts/relations from̄R and

– the strongest necessary condition ofα under theoryT (R̄, S̄) in the sub-language
consisting of concepts/relations from̄R.

Both these formulas can be understood by agentAg2 because they are formulated using
concepts/relations thatAg2 can understand and that can be used to query its rough
relational database for a reply toAg1. More importantly, it can be formally shown that
agentAg1 can not ask a question more informative, under the assumptions we have
made.

In the remainder of the paper, we will provide the details forthis communicative func-
tionality for software agents in the context of heterogeneous ontologies/schemata. We
do this by first introducing rough set theory, weakest sufficient and strongest necessary
conditions, and the connection to approximate queries. We then extend the results by
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introducing tolerance spaces. Tolerance spaces formalizelimitations on an agent’s per-
ceptive capabilities. Such limitations influence the strength of the queries and replies
generated by these agents. Some of these ideas were originally presented separately
in [6] and [7]. This paper combines and extends the two.

2 Rough Sets

The methodology we propose in this paper uses a number of ideas associated with rough
set theory which was introduced by Pawlak (see, e.g., [16]).In many AI applications
one faces the problem of representing and processing incomplete, imprecise, and ap-
proximate data. Many of these applications require the use of approximate reasoning
techniques. The assumption that objects can be observed only through the information
available about them leads to the view that knowledge about objects in themselves, is
insufficient for characterizing sets or relations precisely. We thus assume that any im-
precise concept is replaced by a pair of precise concepts called the lower and the upper
approximation of the imprecise concept, where

– the lower approximation consists of all objects which with certainty belong to the
concept

– the upper approximation consists of all objects for which itis possible that they
belong to the concept

– the complement of the upper approximation consists of all objects which with cer-
tainty do not belong to the concept

– the difference between the upper and the lower approximation constitutes a bound-
ary region of an imprecise concept, i.e. the set of elements for which it is unknown
whether they belong to the concept.

More precisely, by a rough setZ we shall understand a pairZ = 〈X,Y 〉, whereX ⊆ Y .
The setX is interpreted as thelower approximationof Z andY as theupper approxi-
mationof Z. We also use the notationZ+ andZ⊕ to denoteX andY , respectively. By
Z− we denote the complement ofZ⊕. Theboundary regionof Z, defined asZ⊕−Z+,
is denoted byZ±.

By a rough querywe shall understand it as a pair〈Q′, Q′′〉, whereQ′ andQ′′ are
formulas of a given logic such that for any underlying database3 D, D |= Q′ → Q′′.
By 〈Q′, Q′′〉D we denote the result of evaluating the query〈Q′, Q′′〉 in the databaseD.
In essence, a rough query provides an upper and lower approximation on the original
crisp query.

3 Strongest Necessary and Weakest Sufficient Conditions

The strongest necessary and weakest sufficient conditions,as understood in this paper
and defined below, have been introduced in [13] and further developed in [6].

3 We deal with relational databases where queries are formulated as first-order or fixpoint for-
mulas (for textbooks on this approach see, e.g., [1, 8, 12]).
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Definition 3.1. By a necessary condition of a formulaα on the set of relation symbols
P under theoryT we shall understand any formulaφ containing only symbols inP such
thatT |= α → φ. It is thestrongest necessary condition, denoted bySNC(α;T ;P ) if,
additionally, for any necessary conditionψ ofα onP underT , T |= φ→ ψ holds.

Definition 3.2. By a sufficient condition of a formulaα on the set of relation symbols
P under theoryT we shall understand any formulaφ containing only symbols inP
such thatT |= φ→ α. It is theweakest sufficient condition, denoted byWSC(α;T ;P )
if, additionally, for any sufficient conditionψ ofα onP underT , T |= ψ → φ holds.

The setP in Definitions 3.1 and 3.2 is referred to as thetarget language.

The following lemma has been proven in [6].

Lemma 3.3. For any formulaα, any set of relation symbolsP and theoryT such that
the set of free variables ofT is disjoint with the set of free variables ofα:

– the strongest necessary conditionSNC(α;T ;P ) is defined by∃Φ̄.[T ∧ α],
– the weakest sufficient conditionWSC(α;T ;P ) is defined by∀Φ̄.[T → α],

whereΦ̄ consists of all relation symbols appearing inT andα but not inP .

The above characterizations are second-order. However, for a large class of formulas,
one can obtain logically equivalent first-order formulas (see, e.g., [4, 10]) or fixpoint
formulas (see, e.g., [14, 15]) by applying techniques for eliminating second-order quan-
tifiers, Below we quote the result of [15] (Theorem 3.4), which allows one to eliminate
second-order quantifiers for formulas of a certain form.

Let e, t be any expressions ands any subexpression ofe. By e(s := t) we shall mean
the expression obtained frome by substituting each occurrence ofs by t. Let α(x̄)
be a formula with free variables̄x. Then byα(x̄)[ā] we shall mean the application of
α(x̄) to arguments̄a. In what followslfpΦ.α(Φ) andgfpΦ.α(Φ) denote the least and
greatest fixpoint operators, respectively. A formulaα is positive(respectivelynegative)
wrt relation symbolΦ if it appears inα under an even (respectively odd) number of
negations only.4

Theorem 3.4. Assume that all occurrences of the predicate variableΦ in the formulaβ
bind only variables and that formulaα is positive w.r.t.Φ.

– if β is negative w.r.t.Φ then

∃Φ∀ȳ [α(Φ) → Φ(ȳ)] ∧ [β(¬Φ)] ≡ β[Φ(t̄) := lfpΦ(ȳ).α(Φ)[t̄]] (1)

4 It is assumed here that all implications of the formp → q are substituted by¬p ∨ q and all
equivalences of the formp ≡ q are substituted by(¬p ∨ q) ∧ (¬q ∨ p).
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– if β is positive w.r.t.Φ then

∃Φ∀ȳ[Φ(ȳ) → α(Φ)] ∧ [β(Φ)] ≡ β[Φ(t̄) := gfpΦ(ȳ).α(Φ)[t̄]]. (2)

The resulting formula provided by Theorem 3.4 is a fixpoint formula. If the input for-
mula is non-recursive wrt relations that are to be eliminated, then the resulting formula
is a first-order formula5. The input formula can also be a conjunction of the form (1) or
a conjunction of formulas of the form (2) since those conjunctions can be transformed
equivalently to a form required in Theorem 3.4.

4 Agent Communication with Heterogeneous Ontologies

The original proposal for developing a communicative functionality for agents in the
context of heterogeneous ontologies/schemata was initiated in [6]. In this case, only
strongest necessary conditions replaced the original query and no appeal was made to
approximate queries or rough set database. Let us now further develop the idea by using
the proposal described in Section 1.

In this case, we assume an agentAg1 wants to ask a questionQ to an agentAg2. Agent
Ag1 can use any of the terms in̄R, S̄, where the terms in̄S are unknown to agentAg2,
while both have the terms in̄R in common. LetT (R̄, S̄) be a mapping theory in agent
Ag1’s knowledge base describing some relationships betweenR̄ andS̄. It is then natural
for agentAg1 to use its mediation function to first compute the weakest sufficient condi-
tion WSC(Q;T (R̄, S̄); R̄) and the strongest necessary conditionSNC(Q;T (R̄, S̄); R̄),
with the target language restricted to the common agent vocabularyR̄ and then to re-
place the original query by the computed conditions.

The new query is generally not as precise as the original one,but is the best that can be
asked. Namely,

– the weakest sufficient condition provides one with tuples satisfying the query with
certainty

– the strongest necessary condition provides one with tuplesthat might satisfy the
query

– the complement of the strongest necessary condition provides one with tuples that
with certainty do not satisfy the query.

Observe that the difference between the strongest necessary and the weakest sufficient
conditions contains tuples for which it is unknown whether they do or do not satisfy the
query.

5 In such a case fixpoint operators appearing on the righthand sides of formulas (1) and (2) are
simply to be removed.
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In summary, instead of asking the original queryQ which can be an arbitrary first-order
or fixpoint formula, agentAg1 will ask a pair of queries

〈WSC(Q;T (R̄, S̄); R̄), SNC(Q;T (R̄, S̄); R̄)〉

which represent the the lower and upper approximation ofQ. The following example
illustrates the idea.

Example 4.1.Consider a situation where a ground operator (agentAgG) is communi-
cating with a UAV6 (agentAgV ), which is flying over a road segment. AssumeAgV

can provide information about the following rough relations,R̄, and thatAgV has these
in common withAgG:

– V (x, y) – there is a visible connection between objectsx andy
– S(x, y) – the distance between objectsx andy is small
– E(x, y) – objectsx andy have equal speed
– C(x, z) – objectx has colorz.

We can assume that the concepts “visible connection”, “small distance” and “color”
were acquired via machine learning techniques with sample data generated from video
logs provided by a UAV on previous flights while flying over similar road systems with
traffic.

Assume also that agentAgG has a vocabulary consisting of̄R, in addition to other
relationsS̄, not known byAgV . S̄ also includes a relationCon(x, y), denoting that
objectsx andy are connected. Suppose thatAgG knows the following facts aboutCon
which are included inAgG’s knowledge base:

∀x, y.[V (x, y) → Con(x, y)] (3)

∀x, y.[Con(x, y) → (S(x, y) ∧ E(x, y))] (4)

and that (3) and (4) are consistent (checking the consistency of such formulas with the
contents ofAgG’s database can be done efficiently - see [5]).

SupposeAgG wants to askAgV for information about all connected brown objects
currently perceived byAgV . This can be represented as the following query,

Con(x, y) ∧ C(x, b) ∧ C(y, b), (5)

whereb stands forbrown.

SinceAgV can not understand queries with the termCon,AgG has to reformulate query
(5) using only terms inR̄ which are also understood byAgV . The most informative
query it can then ask is:

〈WSC((5); (3) ∧ (4); {V, S,E,C}), SNC((5); (3) ∧ (4); {V, S,E,C})〉. (6)

6 Unmanned Aerial Vehicle.
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By applying Lemma 3.3 and Theorem 3.4 one obtains7 the following equivalent formu-
lation of (6):

〈V (x, y) ∧ C(x, b) ∧ C(y, b), (7)

S(x, y) ∧ E(x, y) ∧ C(x, b) ∧C(y, b)〉. (8)

Observe that objects perceived byAgV satisfying (7) belong to the lower approximation
of the set of objects satisfying the original query (5) and objects perceived byAgV

satisfying (8) belong to the upper approximation of the set of objects satisfying the
original query (5). Thus:

– all objects satisfying formula (7) satisfy the original query (5)
– all objects not satisfying formula (8) do not satisfy the original query (5)
– on the basis of the available information and the capabilities ofAgV , it remains

unknown toAgG whether objects satisfying formula((8) ∧ ¬(7)) do or do not
satisfy the original query (5).

Suppose Table 1 represents the actual situation on the road segment as sensed byAgV ,
whereb, dr, r stand for “brown”, “dark red” and “red”, respectively. Table 1 represents

Object V S E C

1 2 2, 5 2, 5 b
2 1 1, 3, 41, 3, 4 b
3 - 2 2 b
4 - 2 2 r
5 - 1 1 dr

Table 1.Actual situation on the road segment considered in Example 4.1.

these relations by indicating, for each perceived object, with which entities a given re-
lation holds. For example, the first row indicates thatV (1, 2), S(1, 2), S(1, 5),E(1, 2),
E(1, 5) andC(1, b) hold.

Query (6), approximating the original query (5), computed over the database shown in
Table 1, results in the following

〈{〈1, 2〉, 〈2, 1〉}, {〈1, 2〉, 〈2, 1〉, 〈2, 3〉, 〈3, 2〉}〉,

which will be returned as an answer toAgG’s original query. In consequence,AgG will
know that tuples〈1, 2〉, 〈2, 1〉 satisfy the query (5), tuples〈2, 3〉, 〈3, 2〉 might satisfy the
query and, for example, the tuple〈1, 5〉 does not satisfy the query (in fact, object 5 is
not brown).

7 These steps can be computed automatically.
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5 Tolerance Spaces

Tolerance spaces have been introduced in [7]. Technically,they allow us to partition a
universe of individuals into indiscernibility or tolerance classes based on a parameter-
ized tolerance relation. They provide a basis for dealing with the inaccuracy of agent
perception capabilities.

Definition 5.1. By atolerance functionon a setU we mean any functionτ : U×U −→
[0, 1] such that for allx, y ∈ U ,

τ(x, x) = 1 and τ(x, y) = τ(y, x).

Definition 5.2. For p ∈ [0, 1] by a tolerance relation to a degree at leastp based onτ ,
we mean the relationτp given by

τp def
= {〈x, y〉 | τ(x, y) ≥ p}.

The relationτp is also called theparameterized tolerance relation.

In what follows,τp(x, y) is used to denote the characteristic function for the relation
τp. For a tupleū = 〈u1, . . . , uk〉 of elements of the domain, byτp(ū) we denote the
tuple of neighborhoods〈τp(u1), . . . , τ

p(uk)〉.

A parameterized tolerance relation is used to construct tolerance neighborhoods for
individuals.

Definition 5.3. By aneighborhood function wrtτp we mean a function given by

nτp

(u)
def
= {u′ ∈ U | τp(u, u′) holds}.

By aneighborhood ofu wrt τp we mean the valuenτp

(u).

The concept of tolerance spaces plays a fundamental role in our approach.

Definition 5.4. A tolerance spaceis defined as the tupleTS = 〈U, τ, p〉, consisting of

– a nonempty setU , called thedomainof TS
– a tolerance functionτ
– a tolerance parameterp ∈ [0, 1].

Consider a tolerance spaceTS = 〈U, τ, p〉, and a relational database with universeU .8

When an agent does not perceive a difference between similar(wrt a given tolerance
function) objects, it instead perceives a difference between neighborhoods of elements
rather than with elements themselves. In this case, a granulation of a database can be
generated based on neighborhoods of individuals, as definedbelow.

8 Here we focus on relational databases only. The extension toarbitrary relational structures is
presented in [7].
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Definition 5.5. LetM = 〈U, {rj}j∈J 〉 be a relational database andTS = 〈U, τ, p〉 be
a tolerance space. By agranulation ofM wrt TS, we mean the structure

MTS = 〈UTS , {rTS
j }j∈J〉

in which:

– UTS def
= {nτp

(u) : u ∈ U} is the set of all neighborhoods of elements inU
– for j ∈ J , if rj is ak-ary relation, thenrTS

j ⊆ UTS × . . .× UTS

︸ ︷︷ ︸

k times

is defined by

rTS
j (nτp

(x1), . . . , n
τp

(xk))
def
≡ nτp

(rj(x1, . . . , xk))
def
≡

∃.x′1, . . . ,∃x
′
k.[x

′
1 ∈ nτp

(x1) ∧ . . . ∧ x′k ∈ nτp

(xk) ∧ rj(x′1, . . . , x
′
k)].

For any formulaα, byαTS we understand it to be the formulaα in which any reference
to a relation symbol, sayR, is replaced byRTS .

Object V S E C

{1} {2} {2}, {5} {2}, {5} {b, dr}
{2} {1} {1}, {3}, {4} {1}, {3}, {4} {b, dr}
{3} - {2} {2} {b, dr}
{4} - {2} {2} {r}
{5} - {1} {1} {b, dr}

Table 2.Granulation of the relational database in Example 5.6, Table 1 wrt the perception capa-
bilities of agentAgV .

Example 5.6.Consider the granulation of the relational database used inExample 4.1
(see Table 1) wrt the tolerance spaceTSV = 〈U, τV , pV 〉, whereτpV

V identifies equal
elements and additionallydr with b. The resulting granulation is presented in Table 2.
Observe that the arguments to relations are now neighborhoods induced by the associ-
ated tolerance space. Note that several tolerance spaces could be associated with each
type of data in a table if desired.

6 Agent Communication with Heterogeneous Perceptive
Capabilities

Consider a multi-agent application in a complex environment such as the Web where
software agents reside, or a natural disaster in an urban area where physical robots re-
side. Each agent will generally have its own view of its environment due to a number of
factors such as the use of different sensor suites, knowledge structures, reasoning pro-
cesses, etc. Agents may also have different understandingsof the underlying concepts
which are used in their respective representational structures and will measure objects
and phenomena with different accuracy. How then can agents with different knowledge
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structures and perceptive accuracies understand each other and effect meaningful com-
munication and how can this be modeled? In this section, bothtolerance spaces and
upper and lower approximations on agent concepts and relations are used to define a
means for agents to communicate when different sensor capabilities and different levels
of accuracy in knowledge structures are assumed.

In Section 4, we showed how agents could communicate with each other in the context
of heterogeneous ontologies. In this section, we will extend the approach by assuming
that agents also have different perceptive capabilities. This will be done by associating
with each agent, one or more tolerance spaces representing perceptive limitations. The
net result will be that answers to queries will be represented in terms of neighborhoods
of individuals, where the agent will be unable to determine which of the individuals in
a neighborhood have been perceived. Initial work with theseideas may be found in [7].

We begin with a general definition of atolerance agentalso provided in [7].

Definition 6.1. By atolerance agentwe shall understand any pair〈Ag, TS〉, whereAg
is an agent andTS is a tolerance space.

Here we do not define what an agent is specifically, as the framework we propose is
independent of the particular details. The assumption is that theAg part of a toler-
ance agent consists of common functionalities normally associated with agents such as
planners, reactive and other methods, knowledge bases or structures, etc. The knowl-
edge bases or structures are also assumed to have a relational component consisting
of approximate relations which are derived and viewed through the agents limited sen-
sor capabilities. When the agent introspects and queries its own knowledge base these
limited perceptive capabilities should be reflected in any answer to a query.

Let us start with the simpler case when communicating tolerance agents have the same
perception capabilities, i.e., the same tolerance spaces.

Definition 6.2. Let TS = 〈U, τ, p〉 be a tolerance space,TA1 = 〈Ag1, TS〉, TA2 =
〈Ag2, TS〉 be tolerance agents and letQ = 〈Q1, Q2〉 be a rough query asked byTA1

and answered byTA2. Let M = 〈U, {rj}j∈J 〉 be a relational database. Then the
meaning ofQ wrt TS andM is defined as〈QTS

1 , QTS
2 〉M .

Remark 6.3.It is important to note that formulasQTS
1 andQTS

2 in Definition 6.2 refer
to neighborhoods. Thus neighborhoods are to be encoded in databases as first-class
citizens. It can easily be done since the number of neighborhoods is not greater than the
number of elements of the underlying domain,9 thus any neighborhood can be encoded
by an element chosen from the neighborhoods. However, in what follows, for the clarity
of presentation we use neighborhoods themselves rather than their encodings.

Example 6.4.Consider a tolerance agent〈AgV , TSV 〉, whereAgV is as described in
Example 4.1 and the tolerance spaceTSV is as provided in Example 5.6 (i.e.,AgV does

9 In fact, it usually is much less than the number of elements ofthe domain.
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not recognize the difference between colorsdr andb). According to Definition 6.2, the
approximation (wrtTSV ) of the query (5), given by〈(7), (8)〉, is expressed by

〈V TSV (x, y) ∧ CTSV (x, {b, dr}) ∧ CTSV (y, {b, dr}), (9)

STSV (x, y) ∧ ETSV (x, y) ∧CTSV (x, {b, dr}) ∧ CTSV (y, {b, dr})〉. (10)

Using the granulations ofV TSV , STSV , ETSV andCTSV wrt TSV , from Table 2,
〈(9), (10)〉 evaluates to:

〈{〈{1}, {2}〉, 〈{2}, {1}〉},

{〈{1}, {2}〉, 〈{2}, {1}〉, 〈{2}, {3}〉, 〈{3}, {2}〉, 〈{1}, {5}〉, 〈{5}, {1}〉}〉.

Suppose that two tolerance agents have different perceptive capabilities and conse-
quently different tolerance spaces. It will then be necessary to define the meaning of
queries and answers relative to the two tolerance agents. Aspreviously advocated, a
tolerance agent, when asked about a relation, answers by using the approximations of
the relation wrt its tolerance space. On the other hand, the agent that asked the query
has to understand the answer provided by the other agent wrt to its own tolerance space.

The dialog between two agents, sayTA1 (query agent) andTA2 (answer agent), will
then conform to the following schema:

1. TA1 asks a question ofTA2 using a rough queryQ = 〈Q1, Q2〉
2. TA2 computes the answer approximating it according to its tolerance space and

returns as an answer the approximationsQA = 〈QTA2

1 , QTA2

2 〉
3. TA1 receivesQA as input and interprets it according to its own tolerance space.

The resulting interpretation provides the answer to the query, as understood byTA1

and taking into account the perceptive limitations of both agents.

This schema will only work properly under the assumption of acommon vocabulary
which has also been assumed in previous sections. The definitions describing this inter-
action now follow.

Definition 6.5. LetTS1 = 〈U, τ1, p1〉, TS2 = 〈U, τ2, p2〉 be tolerance spaces defined
over the same domainU and letR be a relation. Then the lower and upper approxima-
tions ofRTS2 wrt TS1 are defined as

RTS2

TS
+

1

def
= {nτ

p1
1 (ū) : RTS2(nτ2

p2

(ū)) andnτ
p2
2 (ū) ⊆ nτ

p1
1 (ū)}

RTS2

TS
⊕

1

def
= {nτ

p1
1 (ū) : RTS2(nτ2

p2

(ū)) andnτ
p1
1 (ū) ∩ nτ

p2
2 (ū) 6= ∅}.

Remark 6.6.The intuition behind Definition 6.5 is that neighborhoods correspond to
disjunctions. Namely, if an agent returns a neighborhood asa result, it means that due
to limitations in its perception capabilities, it cannot distinguish between values in the
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neighborhood and, in consequence, it cannot verify which ofthe values from the neigh-
borhood is actually perceived. For example, if the neighborhood is{brown, red}, it
means that a perceived object isbrown or red.

In consequence, the accepted notion of satisfiability reflects the intuitions of modal
possibility.

Definition 6.7. LetTA1 = 〈Ag1, TS1〉, TA2 = 〈Ag2, TS2〉 be tolerance agents with
tolerance spaces as defined in Definition 6.5. Let〈Q1, Q2〉 be a rough query, which
is asked byTA1 and answered byTA2. Then themeaning of the queryis given by
approximations〈QTS2

1 TS
+

1

, QTS2

2 TS
⊕

1

〉.

Example 6.8.Consider the tolerance agents〈AgV , TSV 〉 and〈AgG, TSG〉 where:

– AgV andTSV are as described in Examples 4.1 and 6.4
– TSG = 〈U, τG, pG〉 such thatτpG

G identifies equal elements and additionallydr

with r.

SupposeAgG wants to askAgV for information about the colors of connected objects.
A suitable query expressed in the language ofAgG is:

∃x, y.[Con(x, y) ∧ C(x, z1) ∧C(y, z2)]. (11)

SinceCon is not inAgV ’s vocabulary, agentAgG has to approximate query (11) in a
manner similar to that done in Section 4

〈WSC((11); (3) ∧ (4); {V, S,E,C}), SNC((11); (3) ∧ (4); {V, S,E,C})〉. (12)

By applying Lemma 3.3 and Theorem 3.4,AgG will obtain the following equivalent
formulation of (12):

〈∃x, y.[V (x, y) ∧ C(x, z1) ∧ C(y, z2)],

∃x, y.[S(x, y) ∧ E(x, y) ∧C(x, z1) ∧ C(y, z2)]〉.

Using Definition 6.7, agentAgV will then evaluate this rough query in the context of
its perception capabilities, i.e., according to the database granulation given in Table 2.
The answer returned byAgV ,QA = 〈QTSV

1 , QTSV

2 〉 is,

〈∃x, y.[V TSV (x, y) ∧ CTSV (x, z1) ∧C
TSV (y, z2)],

∃x, y.[STSV (x, y) ∧ ETSV (x, y) ∧ CTSV (x, z1) ∧ C
TSV (y, z2)]〉.

ThusAgV will return the following answer toAgG:

〈{〈{b, dr}, {b, dr}〉}, (13)

{〈{b, dr}, {b, dr}〉, 〈{b, dr}, {r}〉, 〈{r}, {b, dr}〉}〉. (14)

AgG will then compute the final answer by interpreting (13)-(14)relative to its tol-
erance space using Definition 6.7 and the database granulation shown in Table 3. The
final answer,〈QTSV

1 TS
+

G
, QTSV

2 TS
⊕

G
〉, is

〈∅, {〈{b}, {b}〉, 〈{b}, {r, dr}〉, 〈{r, dr}, {b}〉, 〈{r, dr}, {r, dr}〉}〉.
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Object V S E C

{1} {2} {2}, {5} {2}, {5} {b}
{2} {1} {1}, {3}, {4} {1}, {3}, {4} {b}
{3} - {2} {2} {b}
{4} - {2} {2} {r, dr}
{5} - {1} {1} {r, dr}

Table 3. Granulation of the relational database given in Table 1 wrt perception capabilities of
agentAgG as defined in Example 6.8.
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