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Abstract

Validation and verification in machine learning is an open problem which becomes in-
creasingly important as its applications becomes more critical. Amongst the applications
are autonomous vehicles and medical diagnostics. These systems all needs to be validated
before being put into use or else the consequences might be fatal.

This master’s thesis focuses on improving both learning and validating machine learn-
ing models in cases where data can either be generated or collected based on a chosen
position. This can for example be taking and labeling photos at the position or running
some simulation which generates data from the chosen positions.

The approach is twofold. The first part concerns modeling the relationship between
any fixed-size set of positions and some real valued performance measure. The second
part involves calculating such a performance measure by estimating the performance over
a region of positions.

The result is two different algorithms, both variations of Bayesian optimization. The
first algorithm models the relationship between a set of points and some performance
measure while also optimizing the function and thus finding the set of points which yields
the highest performance. The second algorithm uses Bayesian optimization to approxi-
mate the integral of performance over the region of interest. The resulting algorithms are
validated in two different simulated environments.

The resulting algorithms are applicable not only to machine learning but can also be
used to optimize any function which takes a set of positions and returns a value, but are
more suitable when the function is expensive to evaluate.
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M Supervised machine learning model
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input-output pairs, where each data point is (x, y) ∈ D ⊂ X × Y , where x ∈ X
and y ∈ Y .

Dtrain Subset of D used for training
Dtest Subset of D used for testing
fgen Data generating function which maps from Euclidean free space Xfree to D
Xfree Set of all possible inputs to fgen

Xfree N-ary Cartesian power Xfree =XN
free, meaning that each element in Xfree is a N -

tuple where each element lies in Xfree. Used to represent configurations where
multiple objects are placed, where each element in the N -tuple represents the
position of an object.
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1 Introduction

Machine learning is on the rise and there is a wide range of possible applications. One of the
main areas in machine learning is supervised learning. The core idea is to make predictions
using previously collected data. The data consists of pairs (x, y) and the idea is to analyze these
examples in order to predict y given a new x. A model is chosen based on some assumptions
about the data. Most models have several parameters to allow it to fit to several types of
data distributions. The model parameters are updated to fit the data, with a process called
training. The resulting model can then be used to make predictions.

Having trained the model, we want to know how well it works. Previously the model has
only seen one set of data and it is possible that the model has only memorized what values of
x corresponds to what values for y. This means it cannot make a prediction once it encounters
a new value which it has never seen before. This is called overfitting, meaning that the model
has overfitted to the training data. Conversely, if the model works well for new data points it
has generalized outside the training data set.

Traditionally data sets are divided up into several parts in order to use separate sets of
data for training and for evaluating how well the approach generalizes. These sets are called
training sets and test sets, respectively. However, what happens if the test set is very similar
to the training data set? This would result in the measure of generalization being poor and
not giving any information about the actual performance of the model. Consequently, having
a good training set and test set is essential for supervised machine learning.

1.1 Motivation

For some problems it is possible to collect or to generate data from a specific spatial position.
This can be taking a set of photos while standing at the position and labeling them, measuring
the signal strength at the position or running a simulation which simulates some property at
the position. The process of collecting or generating data is viewed as a function which takes
a position pi and generates one or several data points (xi, yi).

For a single data point (x, y), loss is defined as the distance between y and the models
prediction y∗. Having low loss means that the model is able to make a good prediction and
high loss means that the prediction is poor. There are many different distance functions
available and consequently many different loss functions, but which one is being used is not
important in this context.
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1.2. Aim

It is possible to apply this data generating function to the problem of supervised learning
by using it to generate training and test data sets. In the case of generating test data, it is
possible to associate the positions from which the data is generated and the loss for that data
point. This means that the concept of generality can be rephrased as having low loss in a
certain area of interest. For example, the area of interest might be a certain area where the
model is going to be used, such as a certain building or city block.

A training data set can be generated by selecting a set of points c = {p1, p2, ..., pn} and
passing them to the data generating function. After the model has been trained on the data it
can be tested, either using the data generating function described above or using some other
method. The total loss in the area of interest depends on the choice of c, meaning that it is
desirable to find the set of points c such that the lowest possible total loss over the area of
interest is achieved.

These two applications are special cases of two different types of more general problems.
The first application, iteratively selecting points to get as good as possible estimate of the
total model loss, is a special case of iteratively selecting points for estimating any function
or integral of such function. The second application, selecting a set of points from which to
generate training data, can be generalized to finding a set of points which maximizes function
which returns a real number.

The solutions to these general problems can be applied to a wide range of problems. In
this master’s thesis two problems in this category are defined, modelled and solved using a
common notation and method. The first of the two problems is the problem of placing a set
of LIDAR sensors in a building and the second is placing a set of wireless access points when
setting up a wireless network. Both are cases of placing a set of objects in a physical space
and measuring how good the placement is according to some measure. In the case of LIDAR
sensors, we want to maximize the total coverage of the LIDAR sensors. Similarly, in the case
of placing wireless access points, we want to maximize the total signal strength in the building.

1.2 Aim

This thesis has two main purposes. The first is to model functions which maps from sets
of points in Euclidean space to real numbers. The second is to estimate integrals with as
few function evaluations as possible. The overarching aim is to model the relationship be-
tween model performance and the choice of training data in the context of supervised machine
learning, where training and test data can be generated from a specific spatial location.

1.3 Research questions

1. How can Bayesian optimization be extended to allow optimization of a function over
sets?

2. How can Bayesian optimization be adapted to sample-efficiently estimate the integral of
a function over a closed domain?

3. How can a fixed-size training data set be chosen for a supervised machine learning model?
The fixed-size training data set is a finite subset of all possible data and is generated by
some method as a function of a spatial location. It is chosen such that the supervised
model’s performance is maximized, according to some given performance measure. The
set of all possible data might be, and most often is, infinite in size.

4. How can the total loss over a closed Euclidean space be estimated to measure the gen-
erality of a supervised machine learning model?

2



1.4. Delimitations

1.4 Delimitations

While the two applications of Gaussian processes and Bayesian optimization has many po-
tential use-cases, this report focuses on cases where the input space is some kind of closed
Euclidean space. More specifically, the elements of the sets are elements from some Euclidean
space and the function which is approximated. The output space is also assumed to be rea-
sonably smooth, meaning that points that are close in the input space should also have similar
values in the output space.

1.5 Contributions

The contributions of this master’s thesis can be divided into two separate categories: describ-
ing and defining classes of problems and proposing extensions to the Bayesian optimization
algorithm to allow it to be applied to these classes of problems.

This thesis describes a class of stochastic set optimization problems, where a set needs to be
chosen such that a function is maximized, while also estimating the function and minimizing
the total number of function evaluations. To the authors knowledge, this class of problems
has not been studied in this setting before. The class is also extended to include the cases
where the function cannot be evaluated directly, but rather is an integral which first has to be
estimated.

This thesis adapts a pre-existing method for creating permutation invariant kernels to
create a kernel which is suitable for describing the distance between two sets. By using this
kernel it is possible to apply Bayesian optimization to solve the first class of problems, i.e.
stochastic set optimization. This thesis introduces a new acquisition function which allows
Bayesian optimization to be used for estimating of functions rather than optimizing them.
Finally, the Bayesian optimization for function estimation is combined with the Bayesian
optimization for stochastic set optimization, resulting in a method for solving the second class
of problems.

This work resulted in a publication in the proceedings of the Swedish AI Society [2].

1.6 Outline

The next chapter, problem description, outlines and further describes the problem which
this thesis aims to solve. After that, the theory chapter describes the relevant theory. This
is followed by the method chapter, which describes and adapts the theory and proposes a
method for solving the problem. This chapter also describes a few different experiments done
to validate parts of the proposed method. The result chapter then presents the result of these
experiments. The last two chapters, discussion and conclusion, aims to answer the research
questions by analyzing the results.
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2 Problem description

There are a few problems which can be solved using the methods proposed in this master’s
thesis. The purpose of this chapter is to explain what these are and how they relate.

2.1 Camera/LIDAR placement

Consider the problem of placing cameras when installing a camera surveillance system. In
order to surveil the building it is important to observe as much of the building as possible.
Assume that the budget is predetermined, meaning that you can only use a fixed number of
cameras. How should these cameras be placed to observe as much of the building as possible?

Another similar problem is if you want to create a 3D model of a building when you have
a floor plan. In that case you have some sort of a scanner which can be placed on the floor.
How can you use the floor plan to minimize the total number of scans and thus save time?

The purpose of this section is to describe and define the problem of placing either a set of
cameras or a set of LIDAR sensors in a building. The aim is to place the cameras or LIDAR
sensors such that they observe as much of the building as possible. The general layout of the
building is known, typically obtained from a floor plan or previous scan. This means that the
sensors should be placed such that their line of sight does not overlap, since there is no point
in scanning the same wall twice or having two sensors surveil the same part of a room.

It is assumed that all cameras or LIDAR sensors have 360 degrees field-of-view, meaning
that the orientation of the camera/sensor is irrelevant. It is also assumed that there is no length
limit of how far either a camera or a LIDAR sensor can see, or at least that the building is small
enough. There are differences between the two sensor types, but in this thesis the problem of
placing them is reduces to the same problem.

For the sake of simplicity, the building can be assumed to be divisible into two parts. The
first part of the building, Xfree, is either free floor or roof, meaning wherever it is possible
to place cameras or LIDAR sensors. The second part of the building, Xwanted, are things we
can observe, i.e. not floor but either walls or other obstacles. This second part is what we
want to observe as much of as possible. As an example figure 2.1 shows a map of a building,
where black cells are walls and white are floor. The buildings discussed in this master thesis
are discrete, meaning that they consist of several small squares which are referred to as cells
throughout the report.
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2.2. Wireless access point placement for maximum coverage

Figure 2.1: Example of building. The map is divided into square cells, black cells are the ones
we want to observe and the white cells are where it is possible to place cameras or LIDAR
sensors.

Whilst it is possible to place one camera at the time and keep placing cameras outside the
view of the previously placed cameras until all cameras are placed, this greedy approach is
unlikely to produce an optimal solution. Therefore, the cameras should all be placed at once.
The rest of the section aims to explain this problem with the common mathematical notation
which will be used throughout the report.

The two previously explained parts of the building can be seen as the free space Xfree,
which is where cameras or LIDAR sensors can be placed, and the observable space Xwanted,
which we want to observe as much of as possible. Both these two can be viewed as sets of
positions in Euclidean space.

For each placement p ∈ Xfree of either a camera or a LIDAR sensor, the subset of all
observable cells which are observable from a position p can be written as a function:

fobserve(p) =Xobserved ⊆Xwanted. (2.1)

Given that either N cameras or LIDAR sensors are to be placed, the set of all possible
configurations can be defined as the N -ary Cartesian power of the Xfree set:

Xfree =XN
free =Xfree ×Xfree ×⋯ ×Xfree

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N

, (2.2)

meaning that each element in Xfree is a set of N points where each point lies in Xfree.
As positions can only be observed once, the total set of all observed cells Fobserve for

configuration c ∈ Xfree can be written as a union of all the individual sensor observations

Fobserve(c) = ⋃
p∈c

fobserve(p). (2.3)

If all positions are equally important to observe, the placement problem can be described
as finding the element c∗ ∈ Xfree such that the total number of observed cells is maximized

c∗ = argmax
c∈Xfree

= ∣F (c)∣. (2.4)

2.2 Wireless access point placement for maximum coverage

Consider the problem of placing a finite set of wireless access points to provide good wireless
connectivity in an entire building When connecting a device to a wireless network the most
important factor is the distance to the access point. The signal strength also decreases when-
ever it passes through solid objects such as walls. A device can generally only connect to one

5



2.3. Training data selection problem

access point at the time, meaning that there is no point of having more than one access point
per room as the device will typically connect to the access point which has the highest signal
strength.

A few assumptions are made. Firstly, the general layout of the building is known. More
precisely the set of all possible positions to place access points Xfree and the set of all possible
positions where wireless connectivity is wanted, Xwanted, is known. Secondly, the total number
of access points N is fixed and known from the beginning. Finally, all wireless access points are
assumed to provide the same signal strength and at the same distance. The last assumption
is not a necessary for the proposed method to work, but simplifies the notation.

Given that N access points are to be placed, the set of all configurations Xfree can be
defined as in equation 2.2. After having placed the access points according to a configuration
c ∈ Xfree it is possible to measure the signal strength in a position x ∈ Xwanted. This can be
formalized as writing the signal strength as a function of both the configuration c and the
measurement position x: s(p, c) = maxx∈c s(p, x), where s(p, x) is signal strength at the point
p given by access point at the point x. The reason for the max function is that the device is
assumed to only connect to the access point to which it has the highest signal strength.

The total signal strength in the entire building can then be written as:

S(c) = ∫
Xwanted

s(x, c)dx, (2.5)

where c ∈ Xfree.
The problem of finding the best placement for the set of access points can then be formalized

as finding the c∗ which maximizes the total signal strength, which can be written as

c∗ = argmax
c∈Xfree

S(c)

= argmax
c∈Xfree

∫
Xwanted

s(x, c)dx.
(2.6)

2.3 Training data selection problem

Consider the problem of selecting data for a model where a data generating function fgen ∶
Xfree → D is provided together with a finite test data set Dtest. The data generating function
fgen is a general construct, which takes a point in some Euclidean space Xfree and returns a
data point (x, y) ∈ D. It might for example consist of having a robot collect data somewhere
and then having an operator label the data. It could also be projecting a prelabeled point-cloud
onto a 2D image, creating a labeled image as well as a RGB image as described by Järemo
Lawin et al. [15]. Another alternative is running some sort of realistic simulator to generate
similar training data consisting of labeled images as well as RGB images, e.g. CARLA [8].

The goal is to use the model M to model the relationship between the input space X and
the output space Y . The model is trained using training data consisting of pairs of (x, y), where
x ∈X and y ∈ Y . How the model is trained is not important here, but the data is analyzed in
some way and the model is updated. Once the model has been trained, the prediction function
f ∶X ×M↦ Y can be used to make predictions using the model parameters.

The data generating function fgen is used to create the data sets used for training the
model. It takes a position p ∈ Xfree and returns one or more data points (x, y), where x ∈ X
and y ∈ Y . A set of training data Dtrain can be generated by choosing a set of points, in other
words a configuration. Finally, each point p in the configuration c is passed to the function
fgen:

Dtrain = {(x, y) ∈ D∣(x, y) = fgen(p), p ∈ c}. (2.7)

In order to evaluate the performance of the model the test data set Dtest is used, it consists
of set of corresponding data points (x, y), where x ∈ X and y ∈ Y . Using the test data set it
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is possible to define the loss function for the model and the data set

L(M,Dtest) =
1

∣Dtest∣
∑

(x,y)∈Dtest

ℓ(y, f(x,M)), (2.8)

where ℓ(., .) is any point-wise loss function, e.g. the mean square error ℓmse(y, ŷ) = ∣∣y − ŷ∣∣22
where ∣∣ . . . ∣∣2 is the ℓ2 norm. The loss function is low whenever the model performs well and
high when the model performs poorly.

Now, the problem can be formalized as finding a configuration c = {pi}i∈(0,N), where pi ∈
Xfree such that the resulting model M has a low loss L. More precisely

c∗ = argmin
c∈Xfree

L(M,Dtest)

= argmin
c∈Xfree

1

∣Dtest∣
∑

(x,y)∈Dtest

ℓ(y, f(x,M)),
(2.9)

where M has been trained on the training data set Dtrain generated from c as described in
equation 2.7. Another important thing to note is that the training data set has to be different
from the test data set Dtest to avoid overestimating how well the model M has generalized.

2.4 Loss estimation

The aim of evaluating a model is to determine how well the model generalizes outside the
training data set. This performance is often measured using a set of data points Dtest, a test
data set. The evaluation set is a subset of all possible data D. This leads us to the problem
with this approach, the loss for a subset of all possibly data does not necessarily represent
the loss for all possible data. This section defines the problem of estimating the loss over the
entire set of possible data, but limits it to the case where data can be generated by a data
generating function which takes points from a closed Euclidean space as input.

Given that the model is trained on some data set Dtrain the total loss over the set of all
possible data pairs D is defined as:

L(Dtrain) = ∑
(x,y)∈D

ℓ(y, f(x,M)), (2.10)

where ℓ(., .) is some point-wise loss function. Unfortunately, in most cases the set of all possible
data is not available, making evaluating the sum impossible.

Usually loss is estimated using a finite test subset Dtest ⊂ D, which results in a mean loss
estimate:

Lestimate(Dtrain,Dtest) =
1

∣Dtest∣
∑

(x,y)∈Dtest

ℓ(y, f(x,M)). (2.11)

The accuracy of this estimate depends on how well the test subset Dtest is able to represent
all possible data pair D. As the loss is a mean of several point-wise losses, it will not converge
to the actual total loss but rather be proportional to the actual loss. As mentioned in the
previous section, the accuracy is also affected by the similarity between the test data set and
the training data set. If the two sets are similar, but disimilar to the rest of D the estimated loss
will not be representative of the total loss L. This is because we want to measure generality,
the model will often perform well on the training set but we want the model to perform well
on all possible data.

Another approach can be used if the previously discussed data generating function fgen is
available. Remember, the data generating function fgen takes a point in some closed Euclidean
space Xfree and returns a data point (x, y), where x ∈X and y ∈ Y . Using the data generating
function fgen it is possible to rewrite equation 2.10:

L(Dtrain) = ∫
Xfree

ℓ(y, f(x,M))dp, where (x, y) = fgen(p). (2.12)
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However, this integral might still be impractical to use as the function fgen might not be
integratable and the set Xfree might have holes in it as shown in figure 2.1. It is possible to
extract the function which maps from a point p to the point-wise loss in that point:

ℓ(p, f(.,M)) = ℓ(y, f(x,M)), where (x, y) = fgen(p). (2.13)

The total loss can then be written:

L(Dtrain) = ∫
Xfree

ℓ(p, f(.,M))dp. (2.14)

It is possible to approximate the function ℓ and thus approximate the overall loss function
L. Assuming that the data generating function is reasonably smooth, the function should
produce two similar data points when given two points which lies close in Euclidean space.
This smoothness can be used by the model which approximates ℓ.

The problem of loss estimation can then be formalized as finding a set of points which
minimizes both the uncertainty about the approximation of ℓ and its integral over Xfree.

2.5 Putting it all together

The camera/LIDAR placement, the wireless access point placement and the training data
selection problem all have a few common traits. All three deals with spatial data, where the
problem is to select a set of points all lying in some free space Xfree. The performance is
measured differently. The aim in camera/LIDAR placement case is to maximize the total
number of observed cells, in the access point placement it is to maximize the total signal
strength and in the training data selection problem it is to minimize loss.

In some cases the performance can only be evaluated point-wise and then the total loss has
to be estimated before it can be taken into account.

The aim of this master’s thesis is to find a common solution to these problems by modeling
the relationship between a set of Euclidean points and some performance measure, without
taking the details of the underlying problem into account, and to either maximize or minimize
the performance measure. It is assumed in all three cases that the free space Xfree is a closed
Euclidean space and that the performance measure is smooth over this space.

2.6 Related work

There are several areas which relate to this master’s thesis, the aim of this section is to give a
brief overview of what these are and how they relate to this work.

Next best view

The next best view problem is defined as finding the best way to place a sensor using previous
measurements with the goal of observing as much as possible of a scene or object. The problem
occurs in the context of 3D reconstruction where a 3D model is being created of an object using
as few measurements of the object as possible [5]. It also occurs in instances of autonomous
exploration where an agent is tasked with exploring an area and has to choose where to explore
next [3]. In both cases the problem occurs as part of an iterative process where one point is
placed and information is gathered at each iteration. The problem is to use the information
gathered so far to choose where to place the sensor, the aim being to maximize the total
amount of information gathered.

In this master’s thesis one of the problems under consideration is placing a set of sensors
such that they observe as much of possible of the environment. More specifically, the problem
is to find a set of points such that they minimize some loss function, e.g. total amount of
unknown, or to maximize some performance measure, e.g. total wireless coverage.
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In the case where only one sensor is to be placed the two problems, i.e. the next best
view and the sensor placing problem, becomes quite similar. The aims are different however,
given some previous observations the aim in the case of the next best view problem is to find
a new point which maximizes the total amount of new information. The aim of this master’s
thesis is to use the previous observations to pick a point which maximizes the total amount of
information observable from that single point, it does not matter whether the information is
new or not.

Another connection is the case of the next best view problem but where there is previous
knowledge about the scene available. In that case it is possible to use the proposed method to
select the best views using simulation and the previous knowledge. The previous knowledge
can for example be a model of area/volume of the scene coming from previous observations or
a floor plan. This has three major advantages. Firstly, the planning can be done before the
exploration starts. This means that the planning can be done on a separate location where
more computational resources are available and thus saving time. The robot itself can also be
made smaller and lighter as it does not require the computational power to calculate the next
best view on board, which also can save time. Secondly, it is possible to observe more with
fewer observations as several different configurations can be tested in simulation and the total
amount of overlap of the views can be minimized. Lastly, the plan can also be executed in
parallel if several robots are available.

In summary the two problems are similar, but the problem in this thesis deals with several
points at once and the aim is to find a set of points which optimizes some function rather than
dealing with one point at a time and iteratively building a model of some physical object.

AutoML

Automatic machine learning (AutoML) is a field of research which focuses on finding ways
to automate several aspects of machine learning, with the end goal of making the process
entirely automatic. The long term aim is to enable users to use machine learning without any
knowledge of machine learning, by allowing the user to simply provide data and letting an
automated system do the rest [14]. There are several problems which the field deals with, such
as preprocessing the data, hyperparameter optimization, model selection and even architecture
selection for neural networks.

One of the first AutoML-systems is the Auto-WEKA [14], it uses Bayesian optimization to
solve the problem of combined algorithm selection and hyperparameter optimization problem
(CASH) [25]. The latest version allows the user to tune both hyperparameters whilst also
doing model selection with the press of a single button [18]. This is done while keeping both
the training and evaluation data fixed.

The Auto-WEKA system itself is based on Sequential Model-Based Optimization for Gen-
eral Algorithm Configuration (SMAC) [29]. SMAC is a form of Bayesian optimization which
uses random forest regression to model the relationship between an algorithm coupled with
its parameters and its performance. The usage of random forests allows the optimization over
algorithm configurations, consisting of both categorical and real values.

Google’s AI research team are also working on AutoML but are primarily interested jointly
selecting neural network architectures and their weights [6].

One focus of this master’s thesis report is generating data for an already chosen model,
while keeping the model and its hyperparameters fixed. This data generation can either be
generating data automatically, e.g. with simulation or generating subsets from already existing
data sets, or to guide manual data gathering. AutoML focuses more on where data has already
been gathered and how to preprocess data, choose a model and tune the hyperparameters. The
method proposed in this work might be seen as a step for generating the data which can later
be used for AutoML. It might even be possible to jointly generate data and select the model,
but that is outside the scope of this master’s thesis.
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Another focus of this master’s thesis is to use the data generating function to better evaluate
models. This evaluation of models might be useful in AutoML to better guide the model
selection process as it makes it possible to reason about the model’s performance in an entire
area of interest.

Sensor networks

Sensor networks is a field of research dedicated to placing a large number of small sensors
in real-world environments [1]. The sensors themselves are ideally inexpensive to make and
dispensable, making it possible to have many sensors distributed in an environment. The
applications of such sensor networks are vast, ranging from measuring seismic on active vol-
canoes [28], potato farming [19] and even to aerospace engineering [9].

Once the sensors have been deployed, a decentralized wireless ad hoc network will be setup
in order to send the information towards the receiver. This means that each sensor will only
communicate directly to other nodes which are physically close. The individual sensors can
then use less power to transmit their measurements compared to if all sensors were transmitting
directly to the receiver. The network is also dynamic such that if a sensor node fails or becomes
unavailable for some reason, the network is able to reconfigure with little if any data loss.

In some cases it is possible to know the environment in which the sensors should be placed,
e.g. in the case of placing sensors on an active volcano [28]. In that case the placement of
sensors is similar to both the problem of placing wireless access points and the problem of
placing camera/LIDAR sensors. It relates to both problems since there is a trade-off between
how much of the environment the sensors are able to observe and how well it is able to transfer
this information to the other nodes in the network.

In other cases, it is more energy efficient to use an autonomous vehicle to collect and relay
the data. For example in underwater sensor networks, an autonomous underwater vehicle
(AUV) might be used to collect the data from the sensor network and relay it back to a buoy
at the water surface [12]. Another example is where an unmanned aerial vehicle is used to
collect data from a set of ground nodes, as discussed in [29]. In both these cases, the problem
of selecting what positions the unmanned vehicles should go to in order to reach as many of
the nodes as possible can be treated similarly to the problem of placing wireless access points
described earlier in this chapter.

Stochastic optimization over sets

There has been other works treating the problem of stochastic optimization over sets. The
most recent, as far as the author could find, also uses Gaussian processes and a variant of
Bayesian optimization to place weather sensors [11]. The authors of this paper uses a custom
variant of the Earth mover’s distance to compare different sets. The Earth mover’s distance
is a distance function between discrete probability distributions [23]. It can be intuitively
understood by thinking about the two distributions as two dirt piles. The Earth mover’s is
then the least amount of dirt one has to move around in the first pile to make it look like the
second.

This work was found late in the project and thus the distance they used is not included or
compared to the other distance functions proposed in this report. However, the distance itself
is the solution for a linear program, which means that it might be costly to evaluate. The
number of operations required for calculating the Earth mover’s distance is O(n3) [11], while
the two proposed distance functions in this master’s thesis have the complexity O(n2) and
O((n!)2) respectively. This places the Earth mover’s distance right between the two proposed
distance functions, at least in terms of complexity.
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3 Theory

This chapter aims to both solidify what supervised machine learning is in the context of this
master’s thesis and define the Gaussian process and the Bayesian optimization algorithm.

3.1 Supervised machine learning

The aim of supervised machine learning is to find some function f between a domain X and a
domain Y by analyzing preexisting examples, also called training data, consisting of pairs of
(x, y), where x ∈ X and y ∈ Y . The domain X is the input space of f and the domain Y the
output space.

A classic example is the case of linear regression, where both the input and output space
consists of all real numbers R. We might have a few examples [(0,5), (1,8), (5,20)], where the
first element of every pair is the value in the input domain and the second value is the value in
the output domain. A reasonable model for this training data set is y = f(x) = kx +m, where
y ∈ Y , x ∈ X and both k and m are free variables. In this case the aim of supervised machine
learning is to find k and m such that the model is able to predict the y given a value of x.

While this example is solvable by applying some basic algebra, not all problems are this
easily solvable. For example, there might not be a single model that perfectly models the data
or the data might contain noise from measurement errors. In these cases the concept of loss
is used to explain how well the model performs in a point x ∈ X. The point-wise loss can be
described as a function which takes two arguments, the first being the truth y ∈ Y and the
second being the model’s the predicted value ŷ = f(x,M). An example of a loss function is
the mean square error:

ℓmse(y, ŷ) = ∣∣y − ŷ∣∣22, (3.1)

where ∣∣ . . . ∣∣2 is the ℓ2 norm.
The training data set can be viewed as a subset of the set of all possible data D. For many

methods it is not advisable to use the same set of data for training and for evaluating the loss
function. This is because these methods might overfit to the training data, meaning that they
only perform well on the training data and poorly on the rest of the data points in D. In these
cases a separate finite subset of D called a test set Dtest is used to more accurately measure
the general loss over D. Using a test set the total loss for a training data set Dtrain is defined
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as a sum:
L(Dtrain) = ∑

(x,y)∈Dtest

ℓ(y, f(x,M)), (3.2)

where M is trained on the training data set.
In other cases a data generating function is available, making it possible to acquire new

subsets of D. While in some cases it is possible to use the entire set of D as both training
and test data, it might be practically impossible due to the set being large or even infinite in
size. However, in these cases it is still possible to use the data generating function to create
representative subsets of D to use for training and testing.

3.2 Gaussian processes

Consider the problem of regression, where the aim is to predict y for a given x. The observations
of y are noisy, more precisely y = f(x) + ϵ, where ϵ ∼ N (0, σ2

n) is some measurement noise.
By placing a Gaussian process prior on the function f , it is possible to model the distribution
over the function itself, as described by Rasmussen and Williams [22].

The Gaussian process is defined as:

f ∼ GP(m(.), k(., .)), (3.3)

where m(.) is the mean function of the process and k(., .) is the kernel function.
For a set of points X∗ of interest the distribution of the function values f(X∗) = f∗ is:

f∗ ∼ N (µ(X∗),K(X∗,X∗)), (3.4)

which can be sampled and each sample will correspond to a possible function.
If some points X have known function values y, it is possible to incorporate these in the

model and get the conditional distribution:

f∗∣X,y,X∗ ∼ N (f̄∗, cov(f∗)), where
f̄∗ =K(X∗,X)[K(X,X) + σ2

nI]−1y
cov(f∗) =K(X∗,X∗) −K(X∗,X)[K(X,X) + σ2

nI]−1K(X,X∗)
(3.5)

where X∗ can be any point or set of points of interest. In the case where X∗ is a single point,
its corresponding y-value will be distributed according to Gaussian distribution. Similarly, for
a set of points the output will be distributed according to a multivariate Gaussian distribution.

The kernel describes how much two points influence each other. A common kernel is the
square exponential kernel (SE) and it is defined as [10]

kSE(x,x′) = σ2
f exp(−

∣∣x − x′∣∣22
2ℓ2

), (3.6)

where ℓ is the lengthscale and σf is the output variance, both being free parameters.
There are a few free variables to a Gaussian process, the measurement noise variance σ2

n

as well as the kernel parameters. It is possible to set priors on all parameters and to do
predictions by sampling the priors and then evaluating the posterior.

Another alternative is to minimize the negative marginal log likelihood, as described by
Rasmussen and Williams [22]:

− log p(y∣X) = −1
2
yT (K + σ2

nI)−1y −
1

2
log ∣K + σ2

nI ∣ −
n

2
log 2π. (3.7)

This is done by minimizing the equation above for a set of known data (X, y) by varying the
values for the free variables.
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Sparse Gaussian processes
Applying Gaussian processes to larger datasets is infeasible since it scales poorly. The kernel
matrix K has dimensions n × n, where n is the number of data points. This results in the
storage of matrix growing with complexity O(n2) and the inverse of the matrix requiring
O(n3) operations.

This can be approximated using a sparse Gaussian process which uses a set of inducing
points Xm. The points Xm can be viewed as the set of m points in the input space which
best represents the data overall, where m typically is much smaller than n. Note that this is
not necessarily a subset of the total training data, but can be any points in input space. This
approximation reduces the time complexity for predictions to O(nm2), enabling the usage of
larger data sets at the cost of some precision.

Titsias introduces an approach to jointly learn the position of a set of inducing points and
the hyperparameters of the Gaussian process [26]. He selects the points by minimizing the
Kullback-Leibler distance between the sparse Gaussian process and the Gaussian process by
maximizing the variational lower bound of the true log marginal likelihood.

After having chosen the points, the predictive distribution for the resulting sparse Gaussian
process has the form:

p(y∗∣y) = N(y∗∣mq
y(x∗), kqy(x∗, x∗) + σ2), (3.8)

where:
mq

y(x) =KxmK−1mmσ−2KmmΣKmny

kqy(x,x′) = k(x,x′) −KxmK−1mmKmx′ +KxmΣKmx′

Σ = (Kmm + σ−2KmnKnm)−1.
(3.9)

Forcing vector element order invariance
If the order of the elements of the input vector does not matter, a special kernel can be
constructed to model this explicitly. This allows points to be close if one of their permutations
are close, even though they might be far away according to a regular kernel, for example the
squared exponential kernel. A method of constructing such a kernel is described by Duvenaud
in his PhD thesis [10]:

kexact(x,x′) = ∑
g∈G
∑
g′∈G

k(g(x), g′(x′)), (3.10)

where G is a set of functions, where each function changes the order of the elements of x in
some way. All permutations which are equivalent should be represented by individual functions
in G. For example, if the order of the first two elements does not matter the set would be
G = {g1, g2}, where:

g1({x1, x2, ...}) = {x2, x1, ...}
g2({x1, x2, ...}) = {x1, x2, ...}.

(3.11)

In general if we have a set of point [x1, x2, ..., xn] whose order should be made independent
we need to include every permutation of the set of points in G. Therefore, the size of the set
G grows factorially with the size of the set of points, more precisely ∣G∣ = n!.

3.3 Bayesian optimization

Bayesian optimization is a method for optimizing a function with as few function evaluations
as possible [24]. It is useful when the function to be optimized is expensive to evaluate,
either time-consuming or costly. Internally it uses a Gaussian process as a surrogate function
to model the function which is being optimized. At each iteration one point of the actual
function is evaluated and added to the Gaussian process.
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What point to evaluate at each iteration is determined by an acquisition function. The
acquisition function only depends on predictions made by the Gaussian process, meaning it
is relatively inexpensive to evaluate since it does not need to evaluate the expensive function
which the Gaussian process surrogate model. It also determines the trade-off between explo-
ration and exploitation. Exploration being selecting points in mostly unknown areas, meaning
areas with high variance, in order to learn more about the general trends and, ultimately, to
find good areas for exploitation. Conversely, exploitation means evaluating points close to
areas known previously as good, where the variance is lower and the mean is higher.

The Bayesian optimization algorithm is described step by step in algorithm 1.

Algorithm 1 Bayesian Optimization
Input: Function to be maximized f ; max iteration N ; function input space X; acquisition

function α
Result: Best estimate x∗ of the highest function value

1: for i← 1, N do
2: GP ← Gaussian Process regression with data ⟨xi, yi⟩i−1j=1
3: Select xi ∈ argmaxx∈X α(x,GP)
4: yi ← f(xi)
5: end for
6: return x∗ ← argmaxxi∈{x1,...,xN} yi

One commonly used acquisition function is the expected improvement (EI) and it is defined
as [16]:

E[I(x)] = E[max(fmin − Y,0)], (3.12)

where fmin is the lowest encountered value so far. The improvement I(x) =max(fmin−Y,0) is
zero for values which are higher than fmin and positive for values which are lower, indicating
an improvement. Note that this definition holds whenever a function is being minimized and
that improvement can be defined similarly when the function is being maximized. Remember,
if using a Gaussian process the predictive distribution for a single point x∗ is a Gaussian
distribution: f∗∣X,y, x∗ ∼ N(µ(x), σ2(x)). When expressing the expected improvement when
using a Gaussian process as a surrogate function, the lowest mean prediction f∗min is used
instead of fmin. The expected improvement then has the following closed form:

E[I(x)] = (f∗min − µ(x))Φ(
f∗min − µ(x)

σ(x)
) + σ(x)φ(f

∗
min − µ(x)
σ(x)

) , (3.13)

where φ(x) = 1√
2π

e−
1
2x

2 is the standard normal density function and Φ the standard normal
cumulative distribution function.

Another acquisition function is based on confidence bounds and was first introduced as
lower confidence bound (LCB) by Cox and John [7]. However, it is most commonly referred
to upper confidence bound (UCB) and is written[4]:

UCB(x) = µ(x) + κσ(x), (3.14)

where µ(x) and σ(x) is the predicted mean and predicted standard deviation at point x,
and κ is a tuning parameters which allows for controlling the trade-off between exploration
and exploitation. High values for κ means more exploration, as points with high predicted
standard deviation are prioritized and lower values means more exploitation, as points with
high predicted mean are prioritized.
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4 Method

This chapter has two main purposes. The first is to explain the proposed method for finding a
solution for sensor placement, wireless access point placement and data selection. The second
is to explain how the method is tested and validated.

4.1 Relationship between set of Euclidean points and performance

This section formalizes a method for maximizing some performance measure by selecting a set
of points from a closed Euclidean space. The idea is to first extend the Gaussian process model
to sets of points and then to use the extended Gaussian process to do Bayesian optimization.

Extending the Gaussian process to a set of points
A Gaussian Process is most commonly used to model the relationship between a single point
x and some value y. It is possible to extend the Gaussian Process to model the relationship
between a set of points of fixed size by concatenating all the points into one large point. If
the set has n elements and every point is a point in the domain D with cardinality c the set
of points is written Dn×c. When concatenated, a set of points can be written as a single point
in Dnc.

Also, the order of the points in a set does not matter and thus a kernel invariant to the
order of the points can be constructed. This is achieved by defining the set G as follows:

g(x1, x2, x3, . . . , xn) = (x1, x2, x3, . . . , xn)
g(x1, x2, x3, . . . , xn) = (x1, x3, x2, . . . , xn)
g(x1, x2, x3, . . . , xn) = (x2, x1, x3, . . . , xn)
g(x1, x2, x3, . . . , xn) = (x2, x3, x1, . . . , xn)
g(x1, x2, x3, . . . , xn) = (x3, x1, x2, . . . , xn)
g(x1, x2, x3, . . . , xn) = (x3, x2, x1, . . . , xn)

⋮

and then expanding each point xi to a set of elements {xi,1, xi,2, . . . , xi,c}. That way, the
kernel becomes invariant to the order of the points but not to the order of the elements in the
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individual points. The number of elements in G is n!, meaning that its size only depends on the
total number of points n and is not affected by the cardinality c of the individual points. Unless
otherwise specified the underlying kernel, the one being summed, is the squared exponential
kernel.

Approximating the permutation invariant kernel
The size of G grows fast as the number of points increases. Recall the formula for the exact
permutation invariant kernel, described in equation 3.10. As the resulting exact permutation
invariant kernel is calculated by summing over the set G twice, the total number of sums is
(n!)2.

It is possible to make an approximation by only including pair-wise permutations:

kapprox(x,x′) =∑
i

∑
j

K(xi, xj). (4.1)

This results in a kernel consisting of a sum of n2 kernels, where n is the number of points in
the set. Another approximation is the sum of the previous kernel and the standard squared
exponential kernel:

ksum(x,x′) = kSE(x,x′) + kapprox(x,x′). (4.2)
The creation and evaluation of both these kernels have the complexityO(n2), while the original
permutation invariant kernel has the complexity O((n!)2).

Applying the new kernel
Recall the previous definition of Xfree as the entire configuration space where each element is a
set consisting of position for each LIDAR sensor, camera, access point etc. Using the invariant
kernel or its approximation it is possible to do Bayesian optimization with Xfree as the input
space and the wanted performance measure as the output space. This is described further in
algorithm 2.

Algorithm 2 Bayesian set optimization
Input: Performance measure function f ; max iterations N ; set of all configurations Xfree;

acquisition function α
Result: Best configuration c∗ for sufficiently large N

1: for i← 1, . . . ,N do
2: ci ← argmaxc∈Xfree

α(c,GP)
3: GP ← Gaussian process regression with data ⟨ci, f(ci)⟩i−1j=1 using the permutation in-

variant kernels or one of its approximations
4: end for
5: return c∗ ← argmaxci∈{c1,...,cN} f(ci)

This algorithm can also be further extended to do data selection where data is generated
from a data generating function fgen. Instead of evaluating a single function, such as total
signal strength or measuring the total observed area, the chosen set is used as input to the
data generating function fgen which output in turn is used as training data for a supervised
machine learning model. The loss function is assumed to be known, e.g. when evaluating the
model on a known representative test set. The resulting algorithm is shown in algorithm 3.

4.2 Approximating the loss surface and its integral

The aim of this section is to estimate the total loss over the entire free space Xfree. There
are two problems which needs to be resolved. Firstly, the integral is difficult to calculate
analytically. Secondly, the loss function itself is expensive to calculate.
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Algorithm 3 Bayesian set optimization for data selection
Input: Model to be optimizedM; known loss function L; data generating function fgen; max

iteration N ; set of all configurations Xfree; acquisition function α
Result: Best training set c∗ for training the model

1: for i← 1, . . . ,N do
2: Select ci ∈ argmaxc∈Xfree

α(c,GP)
3: Generate data set Xi ← {(x, y), where (x, y)← fgen(p)}p∈ci
4: f(.,M)← retrain the model on data set Xi

5: Evaluate the model Li ← L(M)
6: GP ← Gaussian process regression with data ⟨cj , Lj⟩i−1j=1 using the permutation invariant

kernels or one of its approximations
7: end for
8: return c∗ ← argmaxci∈{c1,...,cN} f(ci)

Remember the total loss is the integral over ℓ(., f(.,M)):

L(f(.,M)) = ∫
Xfree

ℓ(p, f(x,M))dp. (4.3)

This integral is difficult to calculate, as free space might have holes in it or consist of several
rooms. It can be rewritten by splitting the free space into several smaller areas which can be
more easily integrated:

L(f(.,M)) = ∑
a∈Xfree

∫
a
ℓ(p, f(x,M))dp. (4.4)

However, the analytical integral of a Gaussian process is non-trivial and thus saved for future
work. Instead the loss function is approximated by a Riemann sum [21] by splitting Xfree into
several small regions ∆k:

L(f(.,M)) ≈∑
k

ℓ(pk)a(∆k), (4.5)

where a(∆k) denotes the area or volume of the region ∆k and pk is a point in the region ∆k.
In the case where Xfree is discrete and has non-infinite size, it does not need to be ap-

proximated. Rather, the loss can be calculated per discrete element and summed together:

L(f(.,M)) = ∑
p∈Xfree

ℓ(p, f(.,M)). (4.6)

In both cases, the loss function is still expensive to evaluate since it is defined in terms of
the data generator function fgen:

ℓ(p, f(.,M)) = ℓ(y, f(x,M)), where (x, y) = fgen(p). (4.7)

The function can be estimated by placing a GP prior on it.
In order to minimize the total number of function evaluations, a new acquisition function for

Bayesian optimization is proposed. Bayesian optimization is designed for finding a maximum
of a given function while also reducing the number of function evaluations. The maximum
is not of interest here, but rather minimizing the uncertainty about the loss function and
the resulting integral. Recall the UCB acquisition function from equation 3.14, which has an
explicit trade-off between exploration and exploitation κ. By setting the value very high, the
function will prioritize points with high uncertainty and thus minimize the uncertainty of the
function estimation. For sufficiently large value of κ the acquisition function will only depend
on the predicted standard deviation in the point. Thus, the pure exploration acquisition
function is defined as:

αPE(x) = σ(x), (4.8)
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4.3. Data selection with approximated loss surfaces

where σ(x) is the predicted standard deviation in the point x.
Using such an acquisition function the regular Bayesian optimization algorithm can be used

to estimate the loss function, resulting in the approximation denoted ℓ̂. Note that a regular
squared exponential kernel is sufficient here, as only one point needs to be chosen at the time.

Once the loss function has been estimated, the integral can be calculated as described in
equation 4.5 but with the predicted mean µℓ̂ instead of ℓ:

L(f(.,M)) ≈∑
k

µℓ̂(pk)a(∆k), (4.9)

The Gaussian process predictive distribution for a single point p is a regular normal dis-
tribution, ℓ̂(p) ∼ N (µℓ̂(p), σ

2
ℓ̂
(p)). This means that the sum from the case where Xfree is

assumed to be discrete, equation 4.6, can be rewritten:

L(f(.,M)) ≈∑
k

ℓ̂,where ℓ̂ ∼ N (µℓ̂(pk), σ
2
ℓ̂
(pk))

∼ N (µ,σ2),where µ = ∑
p∈Xfree

µℓ̂(p) and σ2 = ∑
p∈Xfree

σ2
ℓ̂
(p).

(4.10)

As a summary, the proposed method for approximating performance surfaces and their
integrals is shown in algorithm 4 for the continuous case and in algorithm 5 for the discrete
case.

Algorithm 4 Loss approximation algorithm for continuous Xfree

Input: Model to be evaluated M; point-wise loss function ℓ; max iteration N ; free space
Xfree; acquisition function α

Result: Approximation of total loss L̂
1: for i← 1, . . . ,N do
2: Select x ∈ argmaxx∈Xfree

αPE(x,GP)
3: GP ← Gaussian process regression with data ⟨xj , ℓ(xj)⟩i−1j=1
4: end for
5: return L̂ ← ∑k µℓ̂(pk)a(∆k), where µℓ̂ is the predicted mean from the Gaussian process
GP.

Algorithm 5 Loss approximation algorithm for discrete Xfree

Input: Model to be evaluated M; point-wise loss function ℓ; max iteration N ; free space
Xfree; acquisition function α

Result: Normal distribution describing estimate of total loss L̂
1: for i← 1, . . . ,N do
2: Select x ∈ argmaxx∈Xfree

αPE(x,GP)
3: GP ← Gaussian process regression with data ⟨xj , ℓ(xj)⟩i−1j=1
4: end for
5: return N (µ,σ2),where µ = ∑p∈Xfree µℓ̂(p) and σ2 = ∑p∈Xfree σ

2
ℓ̂
(p), where µℓ̂(.) and σ2

ℓ̂
(.)

is the predicted mean and variance for the Gaussian process GP.

4.3 Data selection with approximated loss surfaces

By bringing the two previous sections together, it is possible to do data selection when only
the point-wise loss function ℓ is available. The result is shown in algorithm 6. The idea is to
use the Bayesian optimization for data selection algorithm as a basis and to replace the loss
evaluation with the loss evaluation approximation described in the previous section.

18



4.4. Implementation

Algorithm 6 Bayesian set optimization for data selection with estimated loss surface
Input: Model to be optimized M; point-wise loss function ℓ; data generating function fgen;

max iteration N , set of all configurations Xfree; free space Xfree; acquisition function α
Result: Best training set c∗ for training the model

1: for i← 1, . . . ,N do
2: Select ci ∈ argmaxc∈Xfree

α(c,GP)
3: Generate data set Xi ← {(x, y), where (x, y)← fgen(p)}p∈ci
4: f(.,M)← retrain the model of the data set Xi

5: L̂i ← estimate total loss with f(.,M) over Xfree according to algorithm 4 or 5 depending
on whether Xfree is continuous or discrete

6: GP ← Gaussian process regression with data ⟨cj , L̂j⟩i−1j=1
7: end for
8: return c∗ ← argminci∈{c1,...,cN} L̂i

4.4 Implementation

The aim of this part of the method is to explain the properties of the two implemented
simulators as well as describing what frameworks were used during the master’s thesis project.

Ray casting
A small 2D ray casting simulator was implemented for testing the case of LIDAR sensor
placement. It takes a set of 2D points and performs ray casting in a simulated environment
and for every point in the set it will try to draw a line from the point and to every yet
unobserved cell in the scene. For every line, the first occupied cell it intersects will be marked
as observed if has not yet been observed. This means that once an occupied cell has been
intersected, everything about the cell is known and it there is no need to scan it again. The
result from the ray casting is a 2D grid with the same size as the map, containing a true
value if the cell was observed and false otherwise. Figure 4.1 shows what cells the rays passes
through for two different configurations.

The ray casting can be seen as a function f ∶ R2×n → Br×c, where n is the number of 2D
points, B is the set of {true, false} and r, c are the number of discretized rows and columns of
the simulated environment.

The loss for a set of points can be defined as:

L(X) = (#observable cells) − (#observed cells), (4.11)

where X ∈ R2×n is a set of 2D points.
Two different maps were used for experiments with the ray casting simulator. Both are

represented using black and white images, where black pixels represents observable cells (can
be considered walls) and white are unobservable cells (empty space). The first is a simpler
and smaller apartment and the second is a larger and more complex house, both can be seen
in figure 4.2.

If we use a single point and place it on every possible location and evaluate the function,
we get a map of how many cells can be observed from every position. This can be seen in
figure 4.3 for the apartment and in figure 4.4 for the larger, more complex building.

Wireless access point placement
Another simulator was implemented for evaluating the application of Bayesian optimization
to wireless access point placement. The simulator is similar to the ray casting simulator, both
use the same maps and is built on discrete underlying grids. In this simulator, a set of access
points are to be placed in the environment.
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Figure 4.1: Visualization of the ray casting simulator for the two different buildings. The
positions of the respective LIDAR sensors are shown with a dot. The free cells are colored
by the rays which passes through them, the colors are the same as the dot of the sensor from
which the rays originate.
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4.4. Implementation

Figure 4.2: The two environment used in ray casting, the smaller simpler apartment on the
left and the larger and more complex house on the right. Black cells are occupied and white
cells are free. Rays will only collide with the black occupied cells.
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Figure 4.3: Total number of observable cells for each possible position, brighter color represents
a higher value. A higher value corresponds to more observable cells being visible and thus lower
loss.

The signal strength between a measurement point p and an access point x, both lying in
Xfree, is defined as:

spairwise(p, x) =
1

∣∣x − p∣∣22 + 1
∗ 0.75(#walls), (4.12)

where #walls is the number of occupied cells the signal passes through if going in a straight
line between p and x. An example of this function is shown in figure 4.5.

As described in the problem description, a device can typically only connect to one access
point at the time. This means that once a set of access points have been placed, the signal
strength can be evaluated in a point p is defined as:

s(p, c) =max
x∈c

spairwise(p, x). (4.13)

Figure 4.6 shows an example where the signal strength have been measured after two access
points have been placed, one at (250,1000) and one at (2000,900), in the larger building.

If the total signal strength were to be maximized directly, it might be optimal to place
several access points in the larger room since it might give high signal strength in that region
and poor signal strength in the rest of the building. Keeping this in mind, the loss function is
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Figure 4.4: Total number of observable cells for each possible position, brighter color represents
a higher value. A higher value corresponds to more observable cells being visible and thus lower
loss.
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Figure 4.5: Example of signal strength function. Three walls have been placed and their
positions are denoted by dashed vertical lines.

22



4.4. Implementation

0 500 1000 1500 2000

0

200

400

600

800

1000

1200

1400 0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.6: Example of signal strength in the case of wireless access point placement. Brighter
color corresponds to higher signal strength and darker to lower.

defined as the square of the inverted signal:

L(p, c) = 1

(s(p, c) + 1)2
. (4.14)

This loss function is low in points where the signal is high and high wherever the signal strength
is low. The square penalizes low signal strengths by making the small values even smaller and
thus promoting having decent performance everywhere rather than good signal strength in
some regions while having no coverage in others. The addition of one is to avoid division by
zero if the signal is zero. Figure 4.7 shows this loss for the same access point configuration as
shown previously.

If wireless coverage is assumed to be equally important in all of the free space Xfree, the
total loss for a configuration c is:

L(c) = ∑
x∈Xfree

L(x, c). (4.15)

Note that since the simulator is grid-based a sum is sufficient, if the simulator used a continuous
coordinate system Xfree would be continuous and an integral would be used instead of a sum.

Gaussian processes and Bayesian optimization
All Gaussian processes are implemented using GPflow, a Python package which allows for
the construction, optimization and evaluation of Gaussian processes [20]. As a basis for the
Bayesian optimization the package GPflowOpt [17] is used.

Both the exact and approximated permutation invariant kernel was implemented as ker-
nels for the GPflow package. The pure-exploration acquisition function was implemented as
an acquisition function for the GPflowOpt package. All figures were generated using Mat-
plotlib [13].
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Figure 4.7: Example of loss in the case of wireless access point placement. Brighter color
corresponds to higher loss and darker to lower.

4.5 Experiments

This section describes the two experiments used to validate the proposed methods. The first
experiment compares the different kernel options by running both simulators and varying the
number of points placed. The second approximates the loss surface of the wireless access point
placement simulator and its integral.

Evaluating and comparing kernels
The aim of this experiment is to evaluate the different choices for kernel functions when
modeling the function from a set of points to a value using a Gaussian process. The kernels
of interest are:

• Squared exponential kernel, equation 3.6

• Exact permutation kernel, equation 3.10

• Approximated permutation kernel, equation 4.1

• Approximated permutation kernel plus regular squared exponential kernel, equation 4.2

The size of the set of points used as input to the ray casting simulator is varied in order to see
how different kernels scale. Algorithm 2, the Bayesian set optimization algorithm, is used to
find the optimal placement for the points for every combination of kernel and set size, running
for 20 iterations for each combination. The expected improvement acquisition function was
used for picking the next set at each iteration.

The experiments ran for two different loss functions; one for each simulator. See equation
4.11 and equation 4.15 for the ray casting and wireless access point placement loss functions.
For the ray casting loss function the smaller map was used and for the wireless access point
placement loss function the larger map was used.
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4.5. Experiments

Evaluating pure exploration for loss surface estimation
The aim of this experiment is to approximate loss surface of the final configuration from the
wireless access point placement problem. Algorithm 5, loss approximation for discrete Xfree, is
used for estimating the loss surface and its integral, resulting in the estimate ℓ̂(.) and its sum
L̂ ∼ N (µ,σ2). The configuration used is the best configuration with 5 access points placed
from the previous experiment. The algorithm ran for 500 iterations, meaning it evaluated the
true loss function 500 times. The loss surface is compared to the ground truth by calculating
the cell-wise mean absolute error:

e(p) = ∣ℓ(p) − µℓ̂(p)∣
2. (4.16)

The sum is also compared to the sum of the ground truth loss surface.
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5 Result

The aim of this chapter is to show the result of the experiments proposed in the later part of
the method chapter. Each section corresponds to one experiment.

5.1 Evaluating and comparing kernels

Figure 5.1 shows the loss on the Y-axis and the number of placed LIDAR sensors on the X-axis,
with one line for each kernel choice. Similarly, figure 5.3 also shows the loss on the Y-axis and
the number of placed wireless access points on the X-axis.

The time taken for the entire Bayesian optimization, including running the simulator once
for each of the 20 iterations, is shown in figures 5.2 and 5.4 for the ray casting and wireless
access point placement experiment respectively. Due to time constraints, runs with the exact
permutation invariant kernel was limited to 6 points.

5.2 Evaluating pure exploration for loss estimation

Figure 5.5 shows the estimated loss surface, where the blue dots mark where the ground truth
has been observed. The true loss surface is shown in figure 5.6. Figure 5.7 shows the cell-wise
absolute error. The predicted total loss L̂ = N (µ = 1362460, σ = 2664.6), while the true total
loss L = 1352958. The probability density function of predicted distribution is compared to
the true total truth in figure 5.8.
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Figure 5.1: Comparison of the different kernel alternatives for using Bayesian optimization to
place LIDAR sensors in the simulated apartment-sized environment. Each line corresponds to
a different kernel. The Y-axis shows the loss, that is the total number of non-observed cells,
for the resulting configuration and the X-axis is the total number of LIDAR sensors.
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Figure 5.2: Comparison of the different kernel alternatives for using Bayesian optimization to
place LIDAR sensors in the simulated apartment-sized environment. Each line corresponds to
a different kernel. The Y-axis is total number of seconds required for running the algorithm
and the X-axis is the total number of LIDAR sensors.
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Figure 5.3: Comparison of the different kernel alternatives for using Bayesian optimization to
place wireless access points in the simulated house-sized environment. Each line corresponds
to a different kernel. The Y-axis shows the loss for the resulting configuration and the X-axis
is the total number of LIDAR sensors.
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Figure 5.4: Comparison of the different kernel alternatives for using Bayesian optimization to
place wireless access points in the simulated house-sized environment. Each line corresponds
to a different kernel. The Y-axis is total number of seconds required for running the algorithm
and the X-axis is the total number of LIDAR sensors.
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Figure 5.5: Estimated loss surface. The blue dots are where the algorithm has chosen to
observe the underlying loss surface.

0 500 1000 1500 2000

0

200

400

600

800

1000

1200

1400

Figure 5.6: Ground truth loss surface. The white dots show where wireless access points have
been placed.
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Figure 5.7: Cell-wise absolute error comparing the estimate and the ground truth loss surface.
The blue dots are where the algorithm has chosen to observe the underlying loss surface.
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Figure 5.8: Predicted total loss shown as normal distribution. True total loss is shown as
dashed line.
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6 Discussion

The aim of this chapter is to discuss the method and result, as well as reflect on the impact
of the work in a larger context.

6.1 Result

The discussion of the result is split into two parts, one for each experiment.

Evaluating and comparing kernels
There is no notable difference between the kernels in terms of performance, the main difference
lies in the total time needed for running the Bayesian optimization algorithm. The time
required for running the algorithm using the exact permutation invariant kernel grows fast as
the number of points in the configuration set increases. This is expected, as the time complexity
is O((n!)2). The rapid growth makes the kernel infeasible for real-world applications when
more than six points needs to be chosen or placed.

It does not seem to be much of a difference between using a permutation invariant kernel
and a regular squared exponential kernel. The cause might be some implementation errors.
However, it is unlikely that the kernels would perform roughly as well as the squared ex-
ponential kernel but not requiring the same amount of time. Another reason might be the
complexity of the loss functions optimized, or rather the lack of complexity in the two loss
functions tested. There might be a larger difference in performance if the kernels were applied
to a real-world experiment with far more points.

The sum of the approximated permutation invariant kernel and the squared exponential
kernel performed faster than just using the approximated permutation invariant kernel. This
is an interesting result since the time-complexities are the same for the two and that the sum
kernel contains more calculations to create the kernel. The reason for this could be that the
sum might have smoother gradients, which makes it possible to find the maximum of the
acquisition function in less time.
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6.2. Method

Evaluating pure exploration for loss estimation
The resulting total loss mean prediction is quite close to the true total loss, but the certainty
measure is off as the actual total loss lies far outside the predicted distribution.

The main problem with the result is the number of points placed outside of the free space
Xfree, as seen in figure 5.5. This comes from a limitation in GPflow framework where the input
space can only be chosen to be simple ranges where the environment used in the simulator is
more complex. Loss is defined as 0 for points not in Xfree, which results in low loss “bleeding”
in from the walls. More specifically, this results in lower loss along walls when compared to
the ground truth loss surface, shown in figure 5.6, and ultimately results in a high cell-wise
absolute error along walls and in corners, shown in figure 5.7. This also results in many points
being placed inside the walls, because there is a large change in loss moving from a position
inside a wall and a position inside Xfree.

The actual loss lies far outside of normal distribution of the predicted total loss, as shown
in figure 5.8. This indicates that the estimate is overly confident. The overconfidence in the
estimate might have been caused by the points being placed outside of the free space Xfree
as well, since the loss for points inside walls does not vary at all, the predicted variance is
zero in these areas. This in itself is not a problem, but points with zero predicted variance
might influence points in Xfree which are close to walls and might cause overconfidence in the
predicted mean there.

A possible solution to this would be to use a sampling based approach to maximizing
the acquisition function, which would allow for picking only points which lie in Xfree. First
sample a large number of positions from Xfree, evaluate the acquisition function in these points
and select the point with the largest acquisition value as the next point for the Bayesian
optimization algorithm. The downside here would be that the number of positions sampled
from Xfree will affect the quality of the choice of evaluation point and the number would need
to be tuned on a case-by-case basis.

Once the issue has been fixed, the method will work better with fewer iterations needed,
because less function evaluations will be wasted on in-wall evaluations. It is not clear whether
this will solve the overconfidence of the distribution, but it is hard to tell without first fixing
the issue of evaluating outside of Xfree.

6.2 Method

In this section several aspects of the method will be discussed.

Frameworks
The GPflow framework is a useful tool for testing different kernels and coupled with GPflowOpt
it is possible to do Bayesian optimization. However, there are a few drawbacks using this
solution.

As of writing the report, the Bayesian optimization library is several versions behind GPflow
and using it requires manually installing a prerelease version in order to get compatibility. This
version might contain unknown bugs, but no major bugs were observed during the master’s
thesis project.

Moreover, it is difficult to get insight into some parts of the Bayesian optimization al-
gorithm. By default the algorithm can be run for fixed number of iterations using a single
method call. If the intermediate result is of interest the method can be called with the iter-
ations argument set to 1 and calling the method once for each wanted iteration. Whenever
a new point is added to the underlying Gaussian process, the parameters of the kernel is re-
optimized in order to fit the data as well as possible. There is no way to access the result of
this optimization to know how many iterations it took. These issues makes debugging difficult
and time consuming.
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6.2. Method

The main bottleneck when using Gaussian processes with the permutation invariant kernel
is memory usage. It is possible that this is due to the number of kernels required in the sum
to create the exact permutation invariant kernel. The reason for the high memory usage is
that this sum is implemented in the TensorFlow computation graph directly, resulting in an
enormous graph. While the graph might be useful for automatically calculating the gradi-
ents when optimizing the parameters of kernel, it might be possible to save time by simply
calculating the sum directly without using a computation graph and then use a gradient-free
optimization algorithm.

Bayesian optimization
In this master’s thesis, a regular kernel is used when the exact and approximate permutation
invariant kernels are constructed and when using Bayesian optimization for estimating loss-
surfaces. While there are many different kernel choices available for Gaussian processes, the
squared exponential kernel was the only kernel tested. This to reduce the number of parameters
in the experiments and to save time. Note that both the exact and approximate permutation
invariant kernel can use any underlying kernel and that its performance might vary depending
on that choice. Evaluating which kernels are more or less useful for different applications is
left for future work.

Similarly, there are many choices for acquisition functions when using Bayesian optimiza-
tion. Due to time constraints the only acquisition function tested was the expected improve-
ment kernel, with exception of the pure exploration kernel tested for loss surface estimation.

A possible alternative to the pure exploration acquisition function would be one which
uses the expected reduction in uncertainty of the loss surface. Remember, the idea of the
pure exploration acquisition function is to use the Bayesian optimization algorithm to only
pick points where the predicted variance is high and thus reduce the overall uncertainty. If
using an acquisitions function which uses the expected reduction in uncertainty, this behavior
would be more explicitly defined and perhaps perform better. This new acquisition function
can be further extended by taking into account that the estimated loss function is later used
for calculating a Riemann sum. The acquisition function can then be the estimated total
reduction in the local area where the Riemann sum is calculated.

The use of a permutation invariant kernel can be used in scenarios with non-homogeneous
sensors, where different sensors have different capabilities, by encoding the sets into G sepa-
rately. For example, if we want to place 5 sensors with one type of coverage and 5 sensors with
a different type of coverage, in that case a possible configuration will consist of 5 positions for
the first type of sensor and 3 positions of the second type of sensor. The set G will then contain
all permutations of the first 5 elements as well as all permutations of the last 3 elements, but
keep the order between the two different sensor types. This might be useful if one has access
to a couple of cameras with wide angle lenses and a few with a more narrow field of view.

Simulation
There are both advantages and disadvantages to using a simplified simulation compared to
real-world experiments. While the simulators are simplified in comparison to doing real-world
experiments of the problem of camera/LIDAR placement and the problem of placing wireless
access points, there are a few important properties that hold for both the simulation and the
real-world experiments.

Firstly, the order of the points does not matter. Secondly, placing two points close to each
other will generally not result in better performance since the improvement given by the two
points will overlap.

Lastly, the space is believed to be similarly smooth in both cases. In the data selection
case it should be reasonable to assume that the total amount of information obtainable from
a certain position is somewhat correlated with the total area of uniquely observable walls.
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There are also some advantages to using a simulated environment. It takes less time and
resources to place points in a simulated environment than either placing sensors or training a
machine learning model. Not only does this allow for faster debugging but it also allows for
testing different problem sizes and seeing how the proposed method scales.

Ideally the method would be tested on both a simulated environment, preferably early in the
project to iron out bugs and to validate the method, and in real-world experiments, further
validating both the method and result from the simulations. However, due to unforeseen
problems with setting up the real-world experiments causing delays, this was not possible
within the scope of this master’s thesis.

Note that the formulas for the wireless access point placement simulator are not based
on a real physical model, but rather a well educated guess about signals from wireless access
points. While the formulas depend on the intuition, the proposed loss function should still
be applicable to any function which operates on a set and returns either a loss or some other
performance measure.

Moreover, the aim of the wireless access point placement simulator is for it to have a more
complex loss function which can only be evaluated point wise. The performance measure
for the wireless access point placement problem depends both on the position xm where the
measurement is taken and the configuration c. Since it is a simulation it is possible to evaluate
the loss function exactly as well as sampling for a position xm. This allows testing and
validating the performance/loss surface estimation separately from the Bayesian optimization
applied to sets of positions.

6.3 Supervised learning

The original intent of this project was to apply this proposed method to supervised machine
learning. The idea was to use the framework UnrealCV, which contains simulated environments
suitable for training and evaluating computer vision systems. The framework would be used as
the data generating function, taking a coordinate in 3D space and generating a training data
pair of a 2D image and a semantically segmented image. The goal was to train a convolutional
neural network to predict the semantically segmented image from the RGB image. The training
set for the convolutional neural network would be chosen using the Bayesian set optimization
algorithm, using the loss estimation algorithm to estimate the loss over the entire space of
possible coordinates.

Unfortunately the framework has many issues. Without going into too much detail, as
this is slightly out of scope, the problems took several weeks of time to resolve, each problem
revealing new issues. This ultimately resulted in the idea being abandoned due to the last
issue being so time consuming it was outside of the time limit of this master’s thesis project.
Therefore, the proposed algorithm is tested part by part and not applied to supervised machine
learning. In the future a more suitable framework might be available, making it possible to
test and evaluate the proposed algorithms fully.

However, it is still possible to discuss the proposed algorithm since its parts were evaluated.
It is possible to approximate the total loss over a closed space containing all possible training
data by using a Gaussian process with a custom pure-exploration kernel and simple numerical
integration. Using either the permutation invariant kernel or the proposed approximation, it
is possible to select a set of points which minimizes or maximizes a function. This function
can be loss or some other performance measure, as shown in the method and result chapter.

While the report does not test this directly, it shows that it is possible to use a loss function
to select a subset of possibly infinite training data. Therefore, since the proposed algorithms
consists of combining both these parts it should be feasible to use the full algorithm to generate
a representative training data set Dtrain which yields low overall loss in the whole free space
Xfree.
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6.4. The work in a wider context

6.4 The work in a wider context

While this master’s thesis mostly concerns simulated data there are a couple of ways it relates
to a wider context.

The method proposed and evaluated in this master’s thesis is computationally heavy and
thus affects the environment by using electricity and, by extension, natural resources. Some
experiments in this master’s thesis require either the full use of a GPU or a CPU, both drawing
around 100 to 200 watts, for several hours or even days. However, as this is a general method
with many possible applications it is possible that the method might be used in the future
to make some improvement which ultimately results in a net gain for the environment. For
example, if this method in some way, either directly or indirectly, enables machine learning to
make autonomous taxi services a reality it might reduce the total number of cars in the world.

The methods proposed in this report can be used for placing surveillance cameras in an Or-
wellian society. However, while the proposed methods might be used to improve the placement
of the cameras and maximize the total coverage with fewer cameras, the methods themselves
are not bad. Rather, as with many types of technology and research, it depends on the wielder
whether it is used for good or bad. Currently an estimated 53.6% of the worlds population
have access to internet [27]. A positive example of where the methods proposed in this report
can be used for good is by helping bring internet to the last 46.4% of the population. This
could be achieved be applying the proposed methods to placing internet infrastructure, e.g.
wireless base stations, more efficiently.
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7 Conclusion

The two main research questions have been partially answered and discussed in the previous
chapter. In summary, the proposed pure exploration based algorithm has been shown to work
for exploring, estimating and ultimately integrating a complex loss function. Furthermore, the
proposed Bayesian set optimization algorithm has been shown to work for selecting a set of
points in order to minimize a complex loss function. The loss function in both these cases is
not the one originally intended which was based on a supervised machine learning use case,
but rather a simulated environment with similar characteristics. With a few adjustments, the
proposed methods should be suitable for applications on the originally intended use case of
supervised machine learning.

The approach of applying Bayesian optimization to sets rather than individual points is
general and should be applicable to problems outside the scope of this master’s thesis. Pure
exploration for Bayesian optimization is also a general method, which can be used to estimate
functions when the maximum of the function is not of interest but rather the function itself.

Future work could focus on improving the acquisition function for the continuous loss
surface estimation, by taking into account that the estimated surface will be used in a Riemann
sum. It could also look into ways to better approximate the permutation invariant kernel.
Finally, applying the proposed method for selecting data in a supervised machine learning
setting is perhaps the most interesting potential future work related to this master’s thesis.
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