
Linköpings universitet
SE–581 83 Linköping

+46 13 28 10 00 , www.liu.se

Linköping University | Department of Computer Science
Master thesis, 30 ECTS | Datateknik

2017 | LIU-IDA/LITH-EX-A--17/022--SE

Tuning of machine learning
algorithms for automatic bug
assignment

Daniel Artchounin

Supervisor : Cyrille Berger
Examiner : Ola Leifler

http://www.liu.se

Upphovsrätt

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under 25 år
från publiceringsdatum under förutsättning att inga extraordinära omständigheter uppstår.
Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka
kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för
undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta
tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För
att garantera äktheten, säkerheten och tillgängligheten finns lösningar av teknisk och admin-
istrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i
den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt
samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sam-
manhang som är kränkande för upphovsmannenslitterära eller konstnärliga anseende eller
egenart. För ytterligare information om Linköping University Electronic Press se förlagets
hemsida http://www.ep.liu.se/.

Copyright

The publishers will keep this document online on the Internet – or its possible replacement
– for a period of 25 years starting from the date of publication barring exceptional circum-
stances. The online availability of the document implies permanent permission for anyone to
read, to download, or to print out single copies for his/hers own use and to use it unchanged
for non-commercial research and educational purpose. Subsequent transfers of copyright
cannot revoke this permission. All other uses of the document are conditional upon the con-
sent of the copyright owner. The publisher has taken technical and administrative measures
to assure authenticity, security and accessibility. According to intellectual property law the
author has the right to be mentioned when his/her work is accessed as described above and
to be protected against infringement. For additional information about the Linköping Uni-
versity Electronic Press and its procedures for publication and for assurance of document
integrity, please refer to its www home page: http://www.ep.liu.se/.

c©Daniel Artchounin

http://www.ep.liu.se/
http://www.ep.liu.se/

Abstract

In software development projects, bug triage consists mainly of assigning bug reports
to software developers or teams (depending on the project). The partial or total automation
of this task would have a positive economic impact on many software projects. This thesis
introduces a systematic four-step method to find some of the best configurations of several
machine learning algorithms intending to solve the automatic bug assignment problem.
These four steps are respectively used to select a combination of pre-processing techniques,
a bug report representation, a potential feature selection technique and to tune several
classifiers. The aforementioned method has been applied on three software projects: 66
066 bug reports of a proprietary project, 24 450 bug reports of Eclipse JDT and 30 358 bug
reports of Mozilla Firefox. 619 configurations have been applied and compared on each
of these three projects. In production, using the approach introduced in this work on the
bug reports of the proprietary project would have increased the accuracy by up to 16.64
percentage points.

Acknowledgments

I would like to thank my supervisor, Daniel Nilsson, and, my line manager, Elisabeth Sjös-
trand, in the telecommunications company I have conducted my thesis work at, for having
given me the opportunity to work on this fabulous project, and, for their answers to my nu-
merous questions.

I would like to express my gratitude to my supervisor, Associate Professor Cyrille Berger,
and, my examiner, Associate Professor Ola Leifler, from Linköping University, for their sup-
port, feedback and patience.

I would like to acknowledge all the employees in the telecommunications company who
have helped me in the context of this project, in particular, Jonas Andersson, Hanna Mårtens-
son, Sixten Johansson and Leif Jonsson.

I am also very grateful to my opponent, Tova Linder, for having reviewed my thesis
several times, and, having provided me with valuable and constructive remarks.

iv

Contents

Abstract iii

Acknowledgments iv

Contents v

List of Figures vii

List of Tables x

List of Abbreviations xi

1 Introduction 1
1.1 Motivation . 1
1.2 Aim . 2
1.3 Research questions . 2
1.4 Delimitations . 3

2 Theory 4
2.1 Bug reporting and development tools . 4
2.2 Information retrieval . 7
2.3 Text classification . 11
2.4 Related work . 20

3 Method 26
3.1 Data sets . 26
3.2 Experimental setup . 27
3.3 Preliminary experiment . 28
3.4 Main experiments . 31
3.5 Evaluation . 36

4 Results 37
4.1 Preliminary experiment . 37
4.2 Main experiments . 46

5 Discussion 63
5.1 Results . 63
5.2 Method . 70
5.3 The work in a wider context . 71

6 Conclusion 73

Bibliography 75

v

A Preliminary experiment 78
A.1 First sub experiment . 78
A.2 Second sub experiment . 85

B Main experiments 92
B.1 Experiment 1 . 92
B.2 Experiment 2 . 101
B.3 Experiment 3 . 114
B.4 Experiment 4 . 121

List of Figures

2.1 The fields (except the description and the comments) of the bug report 75119 of
Mozilla Firefox . 5

2.2 Description and comments of the bug report 75119 of Mozilla Firefox 6
2.3 The simplified life cycle of a bug report in Bugzilla 7
2.4 The simplified life cycle of a bug report in the ITS of the telecommunications com-

pany . 8

3.1 The method used in the first sub experiment of the preliminary experiment 30
3.2 The method used in the second sub experiment of the preliminary experiment . . 31
3.3 The method used in all the main experiments . 32

4.1 Learning curves of the first sub experiment of the preliminary experiment con-
ducted on the telecommunications company . 39

4.2 Learning curves of the first sub experiment of the preliminary experiment con-
ducted on Eclipse JDT . 40

4.3 Learning curves of the first sub experiment of the preliminary experiment con-
ducted on Mozilla Firefox . 41

4.4 Learning curves of the second sub experiment of the preliminary experiment con-
ducted on the telecommunications company . 43

4.5 Learning curves of the second sub experiment of the preliminary experiment con-
ducted on Eclipse JDT . 44

4.6 Learning curves of the second sub experiment of the preliminary experiment con-
ducted on Mozilla Firefox . 45

4.7 Accuracy of the worst and best pre-processing configurations on the telecommu-
nications company . 47

4.8 MRR of the worst and best pre-processing configurations on the telecommunica-
tions company . 47

4.9 Accuracy of the worst and best pre-processing configurations on Eclipse JDT . . . 48
4.10 MRR of the worst and best pre-processing configurations on Eclipse JDT 48
4.11 Accuracy of the worst and best pre-processing configurations on Mozilla Firefox . 49
4.12 MRR of the worst and best pre-processing configurations on Mozilla Firefox 49
4.13 Accuracy of the worst and best feature extraction techniques on the telecommuni-

cations company . 51
4.14 MRR of the worst and best feature extraction techniques on the telecommunica-

tions company . 51
4.15 Accuracy of the worst and best feature extraction techniques on Eclipse JDT 52
4.16 MRR of the worst and best feature extraction techniques on Eclipse JDT 53
4.17 Accuracy of the worst and best feature extraction techniques on Mozilla Firefox . . 53
4.18 MRR of the worst and best feature extraction techniques on Mozilla Firefox 54
4.19 Accuracy of the worst and best feature selection techniques on the telecommuni-

cations company . 55

vii

4.20 MRR of the worst and best feature selection techniques on the telecommunications
company . 56

4.21 Accuracy of the worst and best feature selection techniques on Eclipse JDT 57
4.22 MRR of the worst and best feature selection techniques on Eclipse JDT 57
4.23 Accuracy of the worst and best feature selection techniques on Mozilla Firefox . . 58
4.24 MRR of the worst and best feature selection techniques on Mozilla Firefox 58
4.25 Best accuracy of the different classifiers (grid search and random search) on the

telecommunications company . 59
4.26 Best MRR of the different classifiers (grid search and random search) on the

telecommunications company . 60
4.27 Best accuracy of the different classifiers (grid search and random search) on

Eclipse JDT . 60
4.28 Best MRR of the different classifiers (grid search and random search) on Eclipse JDT 61
4.29 Best accuracy of the different classifiers (grid search and random search) on

Mozilla Firefox . 61
4.30 Best MRR of the different classifiers (grid search and random search) on Mozilla

Firefox . 62

A.1 Learning curves of the first sub experiment of the preliminary experiment con-
ducted on the telecommunications company . 79

A.2 Learning curves of the first sub experiment of the preliminary experiment con-
ducted on the telecommunications company . 80

A.3 Learning curves of the first sub experiment of the preliminary experiment con-
ducted on Eclipse JDT . 81

A.4 Learning curves of the first sub experiment of the preliminary experiment con-
ducted on Eclipse JDT . 82

A.5 Learning curves of the first sub experiment of the preliminary experiment con-
ducted on Mozilla Firefox . 83

A.6 Learning curves of the first sub experiment of the preliminary experiment con-
ducted on Mozilla Firefox . 84

A.7 Learning curves of the second sub experiment of the preliminary experiment con-
ducted on the telecommunications company . 86

A.8 Learning curves of the second sub experiment of the preliminary experiment con-
ducted on the telecommunications company . 87

A.9 Learning curves of the second sub experiment of the preliminary experiment con-
ducted on Eclipse JDT . 88

A.10 Learning curves of the second sub experiment of the preliminary experiment con-
ducted on Eclipse JDT . 89

A.11 Learning curves of the second sub experiment of the preliminary experiment con-
ducted on Mozilla Firefox . 90

A.12 Learning curves of the second sub experiment of the preliminary experiment con-
ducted on Mozilla Firefox . 91

B.1 Accuracy of the different pre-processing configurations on the telecommunica-
tions company . 93

B.2 MRR of the different pre-processing configurations on the telecommunications
company . 94

B.3 Accuracy of the different pre-processing configurations on Eclipse JDT 96
B.4 MRR of the different pre-processing configurations on Eclipse JDT 97
B.5 Accuracy of the different pre-processing configurations on Mozilla Firefox 99
B.6 MRR of the different pre-processing configurations on Mozilla Firefox 100
B.7 Accuracy of the different feature extraction techniques (without combination of

features) on the telecommunications company . 102

B.8 MRR of the different feature extraction techniques (without combination of fea-
tures) on the telecommunications company . 103

B.9 Accuracy of the different feature extraction techniques (with combination of fea-
tures) on the telecommunications company . 104

B.10 MRR of the different feature extraction techniques (with combination of features)
on the telecommunications company . 105

B.11 Accuracy of the different feature extraction techniques (without combination of
features) on Eclipse JDT . 106

B.12 MRR of the different feature extraction techniques (without combination of fea-
tures) on Eclipse JDT . 107

B.13 Accuracy of the different feature extraction techniques (with combination of fea-
tures) on Eclipse JDT . 108

B.14 MRR of the different feature extraction techniques (with combination of features)
on Eclipse JDT . 109

B.15 Accuracy of the different feature extraction techniques (without combination of
features) on Mozilla Firefox . 110

B.16 MRR of the different feature extraction techniques (without combination of fea-
tures) on Mozilla Firefox . 111

B.17 Accuracy of the different feature extraction techniques (with combination of fea-
tures) on Mozilla Firefox . 112

B.18 MRR of the different feature extraction techniques (with combination of features)
on Mozilla Firefox . 113

B.19 Accuracy of the different feature selection techniques on the telecommunications
company . 115

B.20 MRR of the different feature selection techniques on the telecommunications com-
pany . 116

B.21 Accuracy of the different feature selection techniques on Eclipse JDT 117
B.22 MRR of the different feature selection techniques on Eclipse JDT 118
B.23 Accuracy of the different feature selection techniques on Mozilla Firefox 119
B.24 MRR of the different feature selection techniques on Mozilla Firefox 120
B.25 Accuracy of the best grid search configurations on the telecommunications company122
B.26 MRR of the best grid search configurations on the telecommunications company . 123
B.27 Accuracy of the best random search configurations on the telecommunications

company . 124
B.28 MRR of the best random search configurations on the telecommunications company125
B.29 Accuracy of the best grid search configurations on Eclipse JDT 127
B.30 MRR of the best grid search configurations on Eclipse JDT 128
B.31 Accuracy of the best random search configurations on Eclipse JDT 129
B.32 MRR of the best random search configurations on Eclipse JDT 130
B.33 Accuracy of the best grid search configurations on Mozilla Firefox 132
B.34 MRR of the best grid search configurations on Mozilla Firefox 133
B.35 Accuracy of the best random search configurations on Mozilla Firefox 134
B.36 MRR of the best random search configurations on Mozilla Firefox 135

List of Tables

3.1 Data sets used . 27
3.2 The different training sets and test sets of the first sub experiment of the prelimi-

nary experiment . 29
3.3 The different training sets and test sets of the second sub experiment of the pre-

liminary experiment . 31
3.4 The possible values for the parameters of the experiment 1 33
3.5 The different configurations of the first part of the experiment 2 34
3.6 The different configurations of the second part of the experiment 2 34
3.7 The different configurations of the experiment 3 . 35
3.8 The different configurations of the experiment 4 . 36

4.1 The mapping of acronyms to pre-processing techniques 46
4.2 The mapping of acronyms to feature extraction techniques 50
4.3 The mapping of acronyms to feature selection techniques 55

B.1 The mapping of acronyms to classifiers . 121

x

List of Abbreviations

AFL Automatic fault localization

ANOVA Analysis of variance

ICF Iterative Case Filter

IDE Integrated development environment

IR Information retrieval

ITS Issue tracking system

JDT Java development tools

KL Kullback-Leibler

LDA Latent Dirichlet allocation

LSA Latent semantic analysis

LSI Latent semantic indexing

ML Machine learning

MRR Mean reciprocal rank

NLP Natural language processing

NMF Non-negative matrix factorization

OSS Open source software

POS Part of speech

QA Quality assurance

RFE Recursive feature elimination

SVD Singular value decomposition

SVM Support vector machines

WBFS Weighted breadth first search

xi

1 Introduction

Machine learning algorithms are becoming more widely used in the software engineering
industry. In some tasks such as sentiment classification, these algorithms surpass human per-
formance [26]. Sentiment classification consists of assigning a label to a textual document
based on the opinion expressed inside of it. For instance, as in the paper of Pang et al. [26],
predicting whether a movie review is positive or negative is a sentiment classification prob-
lem. This thesis will investigate the tuning of machine learning algorithms in the context of
automatic bug assignment.

1.1 Motivation

When the size of a software development project increases, more bugs are found. Devel-
opment teams generally use bug repositories to manage this growing number of discovered
bugs. These repositories are also called issue tracking systems (ITS).

When a bug is found in a piece of software, a bug report is written. This artifact mainly
describes the fault and the way to reproduce it. Generally, the person who writes a bug report
is a user, a developer or a tester, and, he or she is called a reporter.

According to Anvik et al. [3], since additional bugs are found and fixed through the use of
ITS, these systems might have a positive impact on the overall quality of software products.

Due to the ease of reporting bugs, a significant amount of bug reports is daily submitted
and more resources need to be allocated to process them. During four consecutive months,
around 29 bug reports have been daily submitted to the ITS of the Eclipse software devel-
opment project [4]. If 5 minutes have been used for each bug, more than 2 working hours
per day have been spent on handling these issues (the time needed to fix each bug is not
included).

Handling bug reports is called bug triage [3]. This task is frequently done by a specific
person called a bug triager. Bug triage is a combination of two subtasks. In the context of the
first subtask, the triager has to decide whether or not to consider the content of the bug report
based on its relevance. For instance, he or she has to identify the duplicate bug reports: if a
fault in a bug report has already been reported or has already been fixed, the triager should
not handle it. If the report is taken into account, then, the triager has to assign it to a person
or a team. This person or this team will have the responsibility to fix the issue.

1

1.2. Aim

The aforementioned second subtask is arduous, time-consuming and prone to errors [3].
This subtask is often done manually by analyzing various artifacts such as previously fixed
bug reports, source code and documents recording the skills of each developer.

The bug assignment task has a significant impact on the cost of the maintenance of a
software product. If the assignee is not able to fix the bug described in a bug report, it will
be reassigned. This phenomenon is called bug tossing [19]. As each time a bug is reassigned,
more working hours are spent to fix it, bug assignment has a major role in maintenance cost.

Due to its economic issues, automating bug assignment would be beneficial for many
software projects.

1.2 Aim

Many researchers have introduced various methods to solve the automatic bug assignment
problem. In almost all of them, the introduced technique uses at least an instance of a specific
type of machine learning algorithms called classifiers.

The topic of this thesis is mostly based on one of the main findings of Thomas et al. [34]:
the configuration of a classifier has an impact on the results obtained in the context of au-
tomatic bug localization. I believe that this result is also valid in the context of automatic
bug assignment. Within this framework, this thesis will therefore focus on introducing some
systematic approaches to potentially find some of the best existing configurations in terms of
two metrics, the accuracy and the mean reciprocal rank (MRR).

1.3 Research questions

The thesis will intend to answer the following research questions:

1. How can we select which pre-processing technique(s) to apply on a set of bug reports?

In text classification, many pre-processing techniques could be applied on a set of doc-
uments to get better results (stop words removal, stemming, lemmatization, etc.). As
the automatic bug triage problem could be considered as a text classification problem,
the aforementioned techniques may also be used to achieve better results. According to
Čubranić et al. [14], stemming has not a significant impact on the accuracy of a classifier
in the context of automatic bug assignment. Nevertheless, in their works, some other
researchers have used this pre-processing technique to probably improve their results
[37, 9, 39]. I believe that the selection of the pre-processing techniques to use should
be based on the bug reports of the data set. The answer to this research question will
introduce a method to make a systematic optimal choice among several options.

2. How can we choose which model to use to represent a bug report?

As any other text classification problem, many models can be used to extract features
from the textual content of a bug report (by counting the occurrences of each word in
each bug report, by using binary numbers to indicate the presence/absence of each
word in each bug report, by using tf-idf weights, etc.). I also believe that the choice
among the possible models should be based on the specificities of the bug reports in the
data set. The answer to this research question will also introduce a method to make a
systematic optimal choice.

3. How can we select which feature selection technique to apply on a given representation
of a bug report?

Due to the substantial number of distinct words that could be used in a set of bug
reports, the dimension of the feature vectors representing them can be significant. Using
all the features of these vectors might introduce some noise and have a negative impact

2

1.4. Delimitations

on the predictions of an automatic bug triage system. According to Xuan et al. [38], the
use of feature selection can have a positive impact on the predictions of an automatic
bug triage system, while reducing the size of the data set. Given a set of bug reports,
some feature selection techniques may lead to better results than others. Selecting the
size of the subset of the remaining features also influences the results. To answer this
research question, a method will be proposed to select a feature selection technique
among others and the size of the subset of the remaining features to get good results.

4. How can we tune an individual classifier on a set of bug reports?

In the paper of Jonsson et al. [20], the selection of the classifiers on which further studies
were made was based on their accuracies without having tuned them previously (using
the default configurations of the library implementing them). I believe that the results
may not have been the same if each classifier was tuned before the selection. The an-
swer to this research question will introduce a method to efficiently tune any individual
classifier on a set of bug reports.

1.4 Delimitations

In the framework of a software development project, several artifacts such as software archi-
tecture documents or project plans are produced. Some relevant data can be extracted from
these documents and be used to train some algorithms which could solve the bug assignment
problem. Nevertheless, in the framework of this thesis, only the titles and the descriptions of
the previously fixed bug reports in the ITS will be considered to train the individual classi-
fiers.

As mentioned above, several approaches have been introduced in order to solve the auto-
matic bug triage problem. In this thesis, only the approach using machine learning classifiers
will be studied.

Tuning and evaluating each algorithm used in this thesis will be done with 66 066 bug
reports of a telecommunications company. To achieve replicability, and, as most of the prior
works on automatic bug assignment have used them, the same analysis will be conducted on
24 450 bug reports of Eclipse JDT1 and 30 358 bug reports of Mozilla Firefox2.

The bug reports of the proprietary software development project will be used to solve
the automatic bug assignment to teams problem whereas the bug reports of the two open
source projects will be used to solve the automatic bug assignment to developers problem.
Both problems are very similar: they could be both considered as text classification problems.
The only major difference is the number of classes (lower in the context of automatic bug
assignment to teams). As the focus of the thesis is on the benefits that the application of
the introduced method could bring on the accuracies and the MRR values of the classifiers
solving the automatic bug assignment problem, I believe that the use of the bug reports of
these three projects in slightly different contexts will not cause any confusion.

1http://www.eclipse.org/jdt
2http://www.mozilla.org

3

http://www.eclipse.org/jdt
http://www.mozilla.org

2 Theory

In this chapter, the tools used to handle bug reports in software projects are first described.
Some techniques and models used in a specific field of computer science called information
retrieval are then presented. Next, some techniques generally used to solve text classification
problems are described. Finally, some scientific publications related to the automatic bug
assignment problem are presented.

2.1 Bug reporting and development tools

In this section, the process, and, the tools used to report and handle bugs in software devel-
opment projects are described.

2.1.1 Bug report

When a bug is found in a software project, a bug report is written. This report mainly de-
scribes the problem and how to reproduce it. A bug report is usually written by a user, a
developer or a tester. The author of a bug report is called the reporter.

Each bug report has some "pre-defined fields" [3], and, some other values such as a title
or a description which should be filled in by the reporter. It could also contain some other
relevant elements such as screenshots.

Two screenshots of the bug report 751191 of the Mozilla Firefox project could be consulted
in the Figures 2.1 and 2.2. As can be seen, the reporter field, the reported date and the identi-
fier of the bug report are some examples of "pre-defined fields" [3]. The values of these fields
were automatically set when the bug was reported. The values of some other fields such as
the product, the component or the importance of the bug report were manually set by the re-
porter. The other members of the project might have updated them later. The values of some
other fields such as the status or the assignee of the bug report change frequently until the
bug is fixed. The cc field generally contains the e-mail addresses of the members of the project
who are interested in the bug report. As mentioned above, each bug report has mainly two
textual fields: a title (Figure 2.1) and a description (Figure 2.2). Finally, the comments of the
other members of the project related to the bug also appear at the bottom of the bug report
(Figure 2.2).

1https://bugzilla.mozilla.org/show_bug.cgi?id=75119

4

https://bugzilla.mozilla.org/show_bug.cgi?id=75119

2.1. Bug reporting and development tools

Figure 2.1: The fields (except the description and the comments) of the bug report 75119 of
Mozilla Firefox

2.1.2 Issue tracking system

An issue tracking system (ITS) is mainly a system used to manage the bug reports and the
names of the developers who have fixed them. This type of system is often used as a mean of
communication among the developers as well as between the users and the developers [3].
According to Anvik et al. [3], as some additional bugs are found and fixed thanks to the ITS,
these types of repositories might have a positive impact on the quality of software products.

Bugzilla2 is an open source, cross platform and web-based ITS. It is one of the products of
the software community Mozilla. This ITS is used to manage the bug reports of all the prod-
ucts of the Eclipse project3 (including Eclipse JDT) and all the products of the Mozilla com-
munity4 (including Firefox). Eclipse Java development tools (JDT) is a product of the Eclipse
project which is an integrated development environment (IDE) mostly written in Java. The
Eclipse project is open source and cross platform. Eclipse JDT contains several plug-ins that
could be used for Java development. Firefox is another product of the software community
Mozilla. Firefox is an open source web browser mostly written in C++.

In the context of this Master’s thesis, the bug reports in the ITS of a telecommunications
company and the bug reports in the ITS of both aforementioned products (Eclipse JDT and
Mozilla Firefox) will be studied.

In any ITS, until it is eventually closed, each bug report goes through several states5. The
ordered sequence of all the states of a bug report is called its life cycle.

2https://www.bugzilla.org/
3https://bugs.eclipse.org/bugs/
4https://bugzilla.mozilla.org/
5https://www.bugzilla.org/docs/3.6/en/html/lifecycle.html

5

https://www.bugzilla.org/
https://bugs.eclipse.org/bugs/
https://bugzilla.mozilla.org/
https://www.bugzilla.org/docs/3.6/en/html/lifecycle.html

2.1. Bug reporting and development tools

Figure 2.2: Description and comments of the bug report 75119 of Mozilla Firefox

More specifically, in Bugzilla, the state of a bug report is a combination of two pieces of
information: the value of its status field and the value of its resolution field (used to know
how a bug report has been resolved). The Figure 2.3 is a simplified graphical representation
of the life cycle of a bug in Bugzilla6. When a bug is found, a report is filled in and its status is
generally set to NEW. Next, the bug report is assigned to a developer and its state is modified
to ASSIGNED. The bug is then generally either fixed (its status is modified to RESOLVED)
or reassigned (its status is updated to NEW). If it has been resolved, the bug is then verified
by the quality assurance (QA) team and its status is set to VERIFIED. Finally, the status of
the bug is modified to CLOSED. If the status of the bug report was set to RESOLVED and
the bug is still not fixed, the bug report is reopened (its status is updated to REOPENED).
When a bug is resolved, its resolution is modified. If a modification has been made in the
code base, the resolution field is set to FIXED. If the bug report is a duplicate, its resolution is
updated to DUPLICATE. The resolution is set to WORKSFORME if the assignee was not able
to reproduce the bug. If the bug report should not be taken into account, its resolution is set
to INVALID. Finally, if the issue in the bug report will not be solved, the resolution field is set
to WONTFIX.

The telecommunications company has its own ITS. The possible states of the life cycle of
a bug report in this ITS are slightly different from Bugzilla. The Figure 2.4 is a simplified
graphical representation of the life cycle of a bug in this ITS. When a bug is found, a report
is submitted and its state is set to PRIVATE. If the bug report should be taken into account,
its state is then set to REGISTERED. Otherwise, its state is updated to CANCELLED. If the
bug report should be considered, it is then assigned to a team (the status is modified to AS-
SIGNED). Next, normally, a fix is proposed and the state is updated to PROPOSED. Generally,
the fix is approved (the state is modified to PROPOSAL APPROVED). The fix is then verified
(the state is set to CORRECTION VERIFIED). Next, the bug report is answered and the state
is changed to ANSWERED. Finally, the bug report is closed (its status is set to FINISHED).

In any ITS, it is normally possible to search for a specific bug report thanks to its identifier
or some key words inside of it. It is also generally possible to look for all the bug reports
having some specific states. For instance, in the ITS of the Mozilla project, one can search
for all the bug reports belonging to the Firefox product with a RESOLVED, VERIFIED or
CLOSED status, and, a FIXED resolution.

6https://www.bugzilla.org/docs/3.6/en/html/lifecycle.html
7https://www.bugzilla.org/docs/3.6/en/html/lifecycle.html

6

https://www.bugzilla.org/docs/3.6/en/html/lifecycle.html
https://www.bugzilla.org/docs/3.6/en/html/lifecycle.html

2.2. Information retrieval

Figure 2.3: The simplified life cycle of a bug report in Bugzilla7

The text in the bug reports is a potentially valuable source of information that might be
used to route them. It is however critical to choose an appropriate representation of the
textual content for effective use by classification algorithms. Determining appropriate repre-
sentations is conducted using techniques that are usually described as information retrieval.

2.2 Information retrieval

Information retrieval (IR) is an area of computer science. In this field, based on specific needs
of a customer, the goal is to retrieve some relevant documents from a generally large set of
documents.

In this section, first, a formal representation of an IR model will be presented. Some com-
monly used pre-processing techniques in this field will then be introduced. Finally, two clas-
sic IR models will be described.

2.2.1 Formal representation of any IR model

As stated by Baeza-Yates et al. [6], any IR model could be formally described as a quadruple
(D, Q, F, R(~d,~q)), where D if a set of representations for the documents in the corpus; Q is a

7

2.2. Information retrieval

Figure 2.4: The simplified life cycle of a bug report in the ITS of the telecommunications
company

set of queries (representations of the needs of the user); F is a framework used to model the
documents in the corpus, the needs of the user and their relationships; R(~d,~q) is a ranking
function which maps a real number to a document representation ~d P D and a query ~q P Q.
The goal of the function R is to order the elements in D with respect to a query~q P Q.

2.2.2 Commonly used pre-processing techniques

Many IR models are based on the use of index terms [6]. These terms are generally keywords
which represent sets of words in the corpus or words which appear at least in one document
of the corpus. The goal of these terms is to simplify the IR problem by representing the
documents in the corpus and the needs of the customer using some keywords or words of
this set of documents. In this section, some commonly used techniques to build a set of index
terms are presented.

Tokenization

Tokenization is the process of splitting an input string (it could be a document) into smaller
meaningful strings which are called tokens [10]. The splitting task is generally based on some
specific delimiters such as punctuation characters.

8

2.2. Information retrieval

This task is not trivial. The management of some specific punctuation characters such as
hyphens and apostrophes is complex. Splitting an input string based on its white spaces is
not always an ideal solution. For instance, splitting the input string Las Vegas into two
tokens, Las and Vegas, is probably not desirable.

Stemming

A word stem is a specific part of a term that does not change when the word is modified.
This modification could be made to use a different grammatical category (add a suffix to an
adjective to form a noun for example) or could be based on the grammatical category of the
term (conjugate a verb for instance).

Stemming is the process of transforming a word into its stem [10].
For example, the stem of the word helping might be help.

Lemmatization

As stemming, the goal of lemmatization is to cluster related words together. Contrary to
stemming, lemmatization will reduce each word to its lemma (its dictionary form) [10].

Unlike stemming, this reduction is based on the analysis of the context of the occurrence
of each word. For instance, it could be based on the part of speech (POS) of each word. The
POS is the grammatical category of a word. Adjectives or nouns are parts of speech.

For instance, the lemma of the word tried might be try whereas the stem of the same
word might be tri.

Compared to stemming, one of the drawbacks of lemmatization is its increased computa-
tional cost due to the analysis needed to find the lemma of a word.

Stop words removal

A stop word is a word which will not be used by the selected model. Stop words are generally
common in the language used in the documents of the corpus [10]. The gain made by a model
analyzing these words is usually negligible.

For instance, the determiner the or the preposition on could be stop words.

Other techniques

The following techniques are also used to build a set of index terms:

• punctuation removal: all the tokens containing only punctuation characters such as
dots or commas are removed;

• numbers removal: all the tokens only made up of numbers are removed;

• conversion to lower case: each character of each token is converted to lower case [10].
The goal of this pre-processing step is that the following steps (classification for in-
stance) are not case-sensitive;

• in their paper, Naguib et al. [25] have introduced a new approach to solve the automatic
bug assignment problem. Before applying their method, they have used some regular
expressions to remove some non-discriminative tokens (HTML tags, hexadecimal num-
bers, etc.) from their bug reports.

9

2.2. Information retrieval

2.2.3 Three classic IR models

Three classic IR models use index terms to describe the documents in the corpus: the Boolean
model, the vector model and the probabilistic model. These index terms are generally re-
trieved using at least one of the pre-processing techniques introduced in the previous sec-
tion. In this thesis, only the Boolean model and the vector model will be used. Only these
two classic IR models will therefore be described.

Boolean model

As written in the book of Baeza-Yates et al. [6], the framework F of the Boolean model could
be described as follows. Each document ~di P D is a vector which elements represent the index
terms of the corpus and which are binary. If the index term k j is in the document ~di, then,
dij = 1. Otherwise, dij = 0. A query written by a user is a Boolean expression using the index
terms of the corpus and the three following Boolean operators and, or and not. This query
is converted to the disjunctive normal form (a disjunction of conjunctive vectors with all the
index terms of the corpus). If one of the conjunctive vectors of the converted query is the
same as a document ~di, then, this document will be predicted as being relevant. Otherwise, it
will be predicted as being irrelevant.

According to Baeza-Yates et al. [6], the main drawback is that the model is based on the
occurrence of a perfect matching between a conjunctive vector of a query and a document
~di. Too many documents or too few documents are therefore often retrieved. The documents
in the corpus are also not ranked with respect to a query (they are either relevant or not
relevant). However, the main advantage of the model is its intuitiveness.

Vector model

In the framework F of the vector model, the similarity sim between a document ~di P D and a
query~q P Q is computed using the Equation 2.1 [6].

sim(~di,~q) =
~di.~q

|~di| ˚ |~q|
=

řt
k=1 dik ˚ qk

b

řt
k=1 dik

2
˚

b

řt
k=1 qk

2
(2.1)

In the above equation, t is the number of index terms in the corpus. As can be seen in
the Equation 2.1, the similarity sim is the cosine of the angle between a representation ~di of a
document i of the corpus and a query~q.

Let N be the number of documents in the corpus, nj the number of documents in the
corpus in which the index term k j appears and f reqij the frequency of k j in ~di. The weight dij
of each word k j in each document i is computed using the Equation 2.2:

dij = fij ˚ id f j, (2.2)

where fij =
f reqij

maxj (f reqij)
and id f j = log

(
N
nj

)
.

Let f reqqj be the frequency of k j in the query q. The weight qj of each word k j in the query
q is computed using the Equation 2.3:

qj = fqj ˚ id f j, (2.3)

where fqj = 0.5 +
0.5˚ f reqqj

maxj (f reqqj)
and id f j = log

(
N
nj

)
.

The main disadvantage of this model is that the terms in each document and each query
are assumed to be independent [6]. In practise, this assumption is not always true. For in-
stance, the word science is likely to appear in a document containing the word computer.

10

2.3. Text classification

The main advantages of the model are its simplicity, its performance due to the weights com-
puted for each index term in each document, the facts that partial matching is taken into
account in the similarity index and that documents are ranked.

After having removed the noise from the textual content of the bug reports and selected
an appropriate model to represent them, the issues are routed using some algorithms of a
specific field of computer science called machine learning.

2.3 Text classification

As automatic bug assignment could be considered as a text classification problem, this section
will deal with some techniques generally used to solve this specific type of problems.

First, the machine learning field will be introduced and some algorithms generally used
in text classification will be described. Second, some feature extraction techniques will be
presented. Some feature selection techniques will then be described. The fourth section will
deal with some commonly used tuning techniques. Finally, three metrics used to evaluate the
performance of some text classification algorithms will be presented.

2.3.1 Machine learning

In machine learning (ML), the focus is on building computer systems which should perform
a task and improve themselves in this task by learning from data.

The learning process can be achieved mainly via three different ways: unsupervised learn-
ing, supervised learning and reinforcement learning.

The focus of this section will be on supervised learning as this thesis mainly deals with
this learning process.

In supervised learning, the computer systems learn from labeled data [28]. Each element
of this set (the labeled data used to train the system) is a pair containing an input (called a
feature vector) and an output (called a label). During the learning process called the training
phase, each computer system builds a function which associates each input to its related
output.

Supervised learning can mainly solve two types of problems: the classification problems
and the regression problems.

As this thesis only deals with classification, some algorithms solving only this category of
problems will be presented.

In classification, given the elements of the data set (the inputs and the outputs), the com-
puter system called the classifier should predict the output of an unseen input [11]. The per-
formance of the classifier is generally assessed using a subset of the data set not used to train
the model: this subset is called the test set. Various classification algorithms exist. As only six
of them will be used in the context of this thesis, only these algorithms will be introduced in
the following sections.

Nearest centroid classifier

With the nearest centroid classifier, which is also called the Rocchio classifier [24], first, the
centroid (mean) of each class is computed using the feature vectors of its observations. Given
a new input, the prediction of this classifier is the class whose centroid is closest to its feature
vector.

11

2.3. Text classification

Naive Bayes classifier

The prediction of this model is the class which maximizes the probability P(Y = ck|X1 =
x1, ¨ ¨ ¨ , Xn = xn) that the class of a feature vector (x1, ¨ ¨ ¨ , xn) is ck [11]. This model is based
on the Bayes’ theorem (Equation 2.4):

P(Y = ck|X1 = x1, ¨ ¨ ¨ , Xn = xn) =
P(X1 = x1, ¨ ¨ ¨ , Xn = xn|Y = ck)P(Y = ck)

P(X1 = x1, ¨ ¨ ¨ , Xn = xn)
, (2.4)

where P(X1 = x1, ¨ ¨ ¨ , Xn = xn) is the probability that the values of an unknown feature
vector are (x1, ¨ ¨ ¨ , xn); P(Y = ck) is the probability that the class of any feature vector is ck
and P(X1 = x1, ¨ ¨ ¨ , Xn = xn|Y = ck) is the probability that, knowing that the class of an un-
known feature vector is ck, the values of its features are (x1, ¨ ¨ ¨ , xn). This model also assumes
that the set of features is pairwise independent. Based on this assumption, the Equation 2.4
could be simplified as follows:

P(Y = ck|X1 = x1, ¨ ¨ ¨ , Xn = xn) =
P(Y = ck)

śn
i=1 P(Xi = xi|Y = ck)

P(X1 = x1, ¨ ¨ ¨ , Xn = xn)
. (2.5)

For a given feature vector (x1, ¨ ¨ ¨ , xn), the prediction of this algorithm is the class ck which
maximizes the numerator of the right-hand side of the Equation 2.5.

Support vector machines

In the support vector machines (SVM) algorithm, each feature vector of the data set is consid-
ered as a point in a n-dimensional space, where n is the number of features in each vector [11].
This algorithm learns a linear decision boundary which is the hyperplane that maximizes its
distance to the nearest point from any class. This algorithm can also be extended in order
to be able to build a non-linear decision boundary. It has been demonstrated that the linear
decision boundary can be represented as a linear combination of inner products. By replacing
each inner product by a kernel function applied on the two vectors normally involved in the
initial inner product, a non-linear decision boundary can be learned.

Logistic regression

In this algorithm, the prediction is the class ck which maximizes its posterior probability
P(Y = ck|φ (X1 = x1, ¨ ¨ ¨ , Xn = xn)), where x = (x1, ¨ ¨ ¨ , xn) is a feature vector and φ(x)
is a fixed nonlinear transformation of each feature vector to a space where the classes are
linearly separable [11].

In binary classification, the posterior probability of the class c1 is given below:

P(Y = c1|φ (X1 = x1, ¨ ¨ ¨ , Xn = xn)) = σ
(

wTφ (X1 = x1, ¨ ¨ ¨ , Xn = xn)
)

, (2.6)

where σ(x) = 1
1+e´x is the sigmoid function and wT = (w1, ¨ ¨ ¨ , wn) is a vector of parameters

which are estimated given a data set. The posterior probability of the class c2 is P(Y =
c2|φ (X1 = x1, ¨ ¨ ¨ , Xn = xn)) = 1´P(Y = c1|φ (X1 = x1, ¨ ¨ ¨ , Xn = xn)).

In multiclass classification, the posterior probability of the class ck is given below:

P(Y = ck|φ (X1 = x1, ¨ ¨ ¨ , Xn = xn) =
exp

(
wT

k φ (X1 = x1, ¨ ¨ ¨ , Xn = xn)
)

ΣK
i=1 exp

(
wT

i φ (X1 = x1, ¨ ¨ ¨ , Xn = xn)
) , (2.7)

where wT
i = (wi1, ¨ ¨ ¨ , win) are vectors of parameters which are estimated given a data set

and K is the number of classes.

12

2.3. Text classification

For both classification problems, in order to estimate the parameters of the model, first, the
cross-entropy error function (the negative log-likelihood) is written. The Newton-Raphson
algorithm is then used to find the parameters which minimize the aforementioned error func-
tion.

Perceptron

This machine learning algorithm solves a binary classification problem [11]. It could also be
extended to solve a multiclass classification problem using the one-versus-the-rest technique
or the one-versus-one technique. The prediction is made using the following equation:

t = f (wTφ (x1, ¨ ¨ ¨ , xn)), (2.8)

where x = (x1, ¨ ¨ ¨ , xn) is a feature vector, φ(x) is a fixed nonlinear transformation of each
feature vector to a space where the classes are linearly separable and wT = (w1, ¨ ¨ ¨ , wn) is a
vector of parameters which values are computed based on a given data set. f is a non linear
activation function defined below:

f (a) =
"

+1, a ě 0
´1, a ă 0

. (2.9)

The first component φ0(x) of φ(x) is generally a bias component (φ0(x) = 1). For con-
venience, the prediction +1 is related to the class c1 whereas the prediction ´1 is related to
the class c2. The values of the elements of w are selected so that they minimize the so-called
perceptron criterion:

E(w) = ´
ÿ

iPM

wTφiti, (2.10)

where φi = φ (xi1, ¨ ¨ ¨ , xin), ti = f (wTφi) and M is the set of the indexes of the misclassified
elements of the training set.

By using the stochastic gradient descent algorithm, the value of w is iteratively computed:

w(τ+1) = w(τ) ´ η∇E(w) = w(τ) + ηφiti, (2.11)

where η is the learning rate parameter and τ is used to represent the τ-th step of the algorithm.

Stochastic gradient descent

This algorithm is a technique used to find the parameter which minimizes a function. It is
usually used for large-scale machine learning problems [40]. In this algorithm, the goal is to
find the parameter w which minimizes the following equation:

EX,Y l(p(X), Y), (2.12)

where X is the parent random variable of the feature vectors, Y is the parent random variable
of the corresponding labels, E is the expectation, p(X) is the prediction of a classifier such
as SVM and l is a loss function measuring the quality of any prediction. For convenience,
the stochastic gradient descent algorithm will only be described for linear classifiers (when
p(x) = wTx, where wT = (w1, ¨ ¨ ¨ , wn) is a vector of parameters which should be estimated
given a data set).

As the Equation 2.12 may admit several solutions or no solution, some regularization
parameters are generally added:

EX,Y l(wTX, Y) +
λ

2
‖w‖2

2, (2.13)

where λ is a regularization parameter.

13

2.3. Text classification

The stochastic gradient descent algorithm will iteratively solve the Equation 2.13 as fol-
lows:

w(τ+1) = w(τ) ´ η(τ+1)(S(τ+1))´1 BLl
Bw

(
w(τ), X(τ+1), Y(τ+1)

)
, (2.14)

where η(τ) ą 0 is a learning rate parameter, S(τ) is a symmetric positive definite matrix which
could have an impact on the convergence rate and Ll(w, x, y) = l(wTx, y) + λ

2 ‖w‖2
2.

The Equation 2.14 could be written as follows:

w(τ+1) = w(τ) ´ η(τ+1)(S(τ+1))´1
(

λw(τ) + l11
(
(w(τ))TX(τ+1), Y(τ+1)

)
X(τ+1)

)
, (2.15)

where l11(p, y) = Bl(p,y)
Bp .

2.3.2 Feature extraction

In this section, some commonly used techniques to extract features from data are described.
The focus will mainly be on text classification feature extraction techniques.

Boolean representation

This technique is closely related to the Boolean model of information retrieval (Section 2.2)
[29]. Each j-th column of a term-document matrix TD is a Boolean vector which elements
represent the occurrences of the different terms of the whole corpus in the j-th document. If
the i-th term occurs at least one time in the j-th document, TDij = 1, where TDj is the vector
modeling the j-th document of the corpus (the j-th column of the term-document matrix).
Otherwise, TDij = 0.

Use of the tf weights

This technique is based on the vector model of information retrieval (Section 2.2). In this
representation, each j-th column of a term-document matrix TD models the content of the
j-th document in the corpus. The elements of this vector represent the different terms in the
whole corpus. The values of the vector modeling the j-th document of the corpus (the j-th
column of the term-document matrix TD) are computed using the first term on the right-
hand-side of the Equation 2.2. Only the term frequencies (tf) of each document are taken into
account to fill-in the matrix TD.

Use of the tf-idf weights

This technique is also based on the vector model of information retrieval (Section 2.2) [29].
The term-document matrix TD is filled-in using directly the Equation 2.2. The values of the
vector TDj modeling the j-th document of the corpus (the j-th column of the term-document
matrix TD) are computed using the frequency of each term of the corpus inside the j-th doc-
ument (tf) and the inverse document frequency of each term in the corpus (idf).

Latent semantic indexing

Also called latent semantic analysis (LSA), latent semantic indexing (LSI) is a technique used
to reduce the dimension of a term-document matrix TD [15].

This technique is based on a mathematical theorem called singular value decomposition
(SVD). This theorem states that, for all m ˚ n matrix X, there exists a decomposition:

X = UΣVT , (2.16)

14

2.3. Text classification

where U is a m ˆ m orthogonal matrix, Σ is a rectangular m ˆ n matrix and V is a n ˆ n
orthogonal matrix.

The diagonal elements of Σ are the singular values of X (the square roots of the eigenval-
ues of XTX).

Due to this theorem, any m ˚ n matrix X admits also the following decomposition:

X = UrΣrVT
r , (2.17)

where r is the rank of X, Ur is a m ˆ r matrix which columns could be considered as an
orthonormal set, Σr is a squared rˆ r matrix and Vr is a nˆ r matrix which columns could be
considered as an orthonormal set.

Based on the Equation 2.17, a term-document matrix TD could also be decomposed.
Given a number of features k desired by the user, the smallest submatrix in which the k high-
est diagonal terms of Σr appear will be extracted: the rest of Σr is discarded. The columns of
Ur and the columns of Vr containing the terms which were multiplied with the terms of the
discarded rows and columns of Σr are also discarded. Three new matrix are obtained: Uk (a
mˆ k matrix) Σk (a kˆ k matrix) and VT

k (a kˆ n).
As can be seen in the Equation 2.18, the product of the three aforementioned matrices is

an approximation of the initial term-document matrix.

TD = UrΣrVT
r « UkΣkVT

k (2.18)

Each row i of Uk is the representation of a term i (the i-th row of TD) in a k-dimensional
space. Each column j of VT

k is a representation of a document j (the j-th column of TD) in the
same k-dimensional space. The data in TD are projected in this k-dimensional space. With
the Equation 2.18, an approximation of TD is computed using these projected data.

Using the Equation 2.19, the projection dk of a new document d in the k-dimensional space
could be computed. Thanks to this formula, in this new space, a classifier could be trained
and could make some predictions.

dk = Σ´1
k UT

k d (2.19)

NMF

In text classification, non-negative matrix factorization (NMF) is generally used to reduce the
dimension of a document-term matrix (DT) [21]. In this matrix, each row models a document
of the corpus whereas each column represents a distinct term of the corpus.

This technique tries to find two non-negative matrices W and H such as:

DT « WH, (2.20)

where DT is a m ˚ n matrix, W is a m ˚ k matrix, H is a k ˚ n matrix and k ď n. The integer k is
selected by the user. The matrix W obtained thanks to this factorization could be interpreted
as a matrix which rows represent the documents of the corpus and which columns represent
the k topics of the corpus. H is a matrix which rows represent the topics of the corpus and
which columns represent the terms of the corpus. H might be used to determine the relative
importance of each term of the corpus in each topic.

2.3.3 Feature selection

Some features of the feature vectors may be noisy and could have a negative impact on the
classifiers which will use them. Sometimes, it could be relevant to train the classifiers on
a subset of the feature vectors. The process of selecting a subset of features among all the
available features in the feature vectors is called feature selection.

15

2.3. Text classification

According to Xuan et al. [38], this process could increase the performance of a classifier.
As the size of the feature vectors is reduced, it also has a positive impact on the computational
cost related to the training phase of the classifiers.

In the following sections, some commonly used feature selection techniques are described.

Chi-squared

A chi-squared (χ2) test is run between each feature and the vector of labels [29]. The χ2 test
is normally used to test the hypothesis of independence of two random variables based on
their samples. Running this test between each feature and the vector of labels could be used to
know which features have the most important impact on the vector of labels (their χ2 scores
are the highest). Based on this information, the aforementioned features could be selected.

ANOVA

As written in the paper of Surendiran et al. [33], the analysis of variance (ANOVA) is a statis-
tical test which aims to know whether or not the expectations of a set of random variables are
significantly different, based on their samples. This statistical test relies on the ratio between
the variance related to the mean of each random variable’s sample (called the between group
sum of squares) and the variance in each random variable’s sample (called the within group
sum of squares).

ANOVA could be used to determine the impact of each feature on the total sum of squares
(the sum of the within group sum of squares and the between group sum of squares) [33]. The
ratio between the within group sum of squares of each feature and the total sum of squares,
called the Wilks’s lambda, is used to filter the features. The features with the highest ratios
are generally selected.

Mutual information

Mutual information is a a measure used in probability theory to assess the dependency be-
tween two random variables [29]. The mutual information I(X, Y) of two random variables
X and Y is computed using the Equation 2.21:

I(X, Y) =
ÿ

xPX

ÿ

yPY

P(X = x, Y = y) log
(

P(X = x, Y = y)
P(X = x)P(Y = y)

)
. (2.21)

As can be seen in the Equation 2.21, if X and Y are independent, I(X, Y) = 0. Moreover,
the higher the value of I(X, Y) is, the higher the dependency between X and Y is.

For each feature, the value of this measure is computed to assess its dependency with the
labels.

The features with the highest mutual information values are selected.

Recursive feature elimination

Recursive feature elimination (RFE) is a recursive technique relying on a machine learning
algorithm which should assign a weight to each feature during its training phase [17].

The aforementioned feature selection method uses these weights to recursively filter the
features [17]. First, the ML algorithm is trained using all the features. The feature(s) with the
lowest weight(s) is/are then removed. Recursively, the ML algorithm will be trained using
the remaining features and its output will be used to remove some additional feature(s). This
recursive process is repeated until the number of features wanted by the user is reached.

16

2.3. Text classification

2.3.4 Tuning techniques

As seen in the Section 2.3.1, there exists many machine learning algorithms. Each of them
has several parameters. In order to obtain some good predictions from at least one of the
aforementioned models, optimal values for parameters need to be found. In this section,
some commonly used techniques to achieve this goal are introduced.

Training set and test set

As written in the book of Bishop [11], evaluating the performance of a machine learning
algorithm on the data set it has been trained on is not a good practice. Its performance will
be overestimated compared to its real one on some unseen data. This phenomenon is called
over-fitting. The data set is generally split into two subsets called the training set and the
test set to avoid this problem. The elements of the training set are used to train each model
whereas the elements of the test set are used to evaluate their performance.

Training set, validation set and test set

As the goal is to find the most suited model and the optimal values of its parameters for a
given data set, several models with several configurations will be trained on the training set
and evaluated on the test set [11]. As this procedure is repeated several times to find the best
model and its optimal parameters, it is likely that the performance of the aforementioned
model is overestimated on the test set. As over-fitting may have occurred on the test set,
generally, when a model should be selected among several, the data set is split into three
subsets: a training set, a validation set and a test set. As in the previous paragraph, the first
set is used to train each model. The second subset is used to select the most suited model
(based on its performance on this set). The third subset it used to evaluate the performance
of the selected model (on unseen data).

Cross-validation

According to Bishop et al. [11], splitting the data set into three subsets has also some draw-
backs. Bishop et al. claimed that, as the data set is a finite set in many machine learning
problems, one wants to increase the size of the training set in order to be able to train the
model on a representative set. One also wants to increase the size of the validation set to
obtain a relevant evaluation of the performance of each model and be able to select the best
one. In order to solve the above mentioned problem, a technique called cross-validation is
generally used. In this technique, the test set is not affected. The former training set and the
former validation set are merged. The resultant set is split into K subsets of equal size, where
K is an integer selected by the user. Each model is then evaluated on each of the K subsets
(for each evaluation, the model has previously been trained with the elements of the K ´ 1
remaining subsets). Finally, for each model, its performance on all the K subsets is averaged.
When the integer K is selected, this technique is called K-fold cross-validation. When the
data set is small, sometimes, K = L, where L is the number of elements of the data set not
in the test set. This particular instance of K-fold cross-validation is called the leave-one-out
technique. The main disadvantage of K-fold cross-validation is its induced computational
cost: the cost related to the model selection is multiplied by a coefficient proportional to K.

Consideration of the order of the elements in the data set

In 2008, Bettenburg et al. [8] published a paper on the impact of duplicate bug reports in ITS.
In their paper, they showed that, by adding more information related to a bug, duplicate bug
reports could be used to fix a bug more efficiently. They also showed that, by merging the data
inside the different duplicate bug reports, the performance of a classifier intending to solve
the automatic bug assignment problem might be improved. They used a new procedure

17

2.3. Text classification

to evaluate the performance of their classifiers. First, they sorted the bug reports by their
reporting dates (in the chronological order). Next, they split their data set into K + 1 subsets
of equal size. They then used K iterations to evaluate the performance of each classifier.
During the iteration i, i P t1; ¨ ¨ ¨ ; K ´ 1u, the ordered elements of the first i subset(s) is/are
used as a training set whereas the i + 1 subset is used as a test set. During the iteration
i + 1, i P t1; ¨ ¨ ¨ ; K ´ 1u, the i + 1 subset is added to the training set of the iteration i and the
test set is now replaced by a new i + 2 subset of the data set. Finally, as in cross validation,
the performance of each model on all the K test sets is averaged.

Based on cross validation, the procedure of Bettenburg et al. [8] could be easily extended
for model selection. First, the bug reports could be sorted by their reporting dates (in the
chronological order). Next, a test set (the last bug reports of the data set) could be extracted.
As in cross-validation, the procedure of Bettenburg et al. could then be applied to select the
best performing model. Finally, the performance of the best model might be evaluated on the
test set.

Grid search

Each machine learning algorithm has generally a set of parameters Θ which values are found
during the training phase by solving an optimization problem. Each machine learning al-
gorithm has also a set of hyper parameters λ. Finding good values for the aforementioned
parameters is called "hyper-parameter optimization" [7]. The problem consists of finding the
values which minimize the expectation of an error criterion for the parent distribution of the
data set. As the parent distribution of the data set is unknown, cross validation is generally
applied instead. One has to select a subset of Λ (the set of all the possible values of λ) and
find which element of the subset achieves the best average performance on the validation sets
of cross validation. Combining grid search and manual search is the most used technique to
solve this problem. Let t be the number of hyper parameters to tune. Before using grid search,
a set of values Li has to be selected for each hyper parameter λi, i P t1; ¨ ¨ ¨ ; tu. When applying
grid search, the model will be trained and evaluated with all the elements of the following
t-ary Cartesian product: L1 ˆ ¨ ¨ ¨ ˆ Lt. The number of models with different configurations
to train and evaluate is therefore |L1 ˆ ¨ ¨ ¨ ˆ Lt| =

ś

iPt1;¨¨¨ ;tu |Li|. As can be seen, the number
of trials increases exponentially with respect to the number of hyper parameters t. Manual
search is generally used to define the different sets Li, i P t1; ¨ ¨ ¨ ; tu. For each selected machine
learning algorithm, this technique should be applied to find its best configuration.

Random search

Random search assumes that all the trials are independent and identically distributed [7]. In
this technique, based on the multivariate uniform distribution, a chosen number of elements
of Λ are randomly selected. The model to tune is trained and evaluated with each of these
possible configurations. According to Bergstra et al. [7], random search has the same advan-
tages as grid search. Nevertheless, when the number of hyper parameters to tune is high,
it is more efficient than grid search because several parameters have a minor impact on the
performance of the model and grid search wastes a fraction of its trials on these parameters.
However, Bergstra et al. also claimed that random search is slightly less efficient than the
combination of manual search and grid search.

2.3.5 Learning curves

Learning curves are usually used to show the impact of a learning effort on the performance
of a system [27]. In machine learning, it generally consists of plotting the accuracy of an algo-
rithm on a test set over the size of the training set. When using neural networks, sometimes,
one might plot the error of the algorithm on the test set over the number of iterations of the
algorithm.

18

2.3. Text classification

Plotting on the same chart the accuracy or the error on the training set could be used
to know if increasing the size of the training set could have a major positive impact on the
performance of the algorithm. If the difference between the performance of the model on
the training set and the performance of the model on the test set is decreasing as the size of
the training set is increasing, and, both curves are relatively close, adding more data to the
training set might be unnecessary. However, if the performance of the model on the test set is
much more lower than the performance of the model on the training set, and, the difference
between both of them decreases when the size of the training set is increasing, adding more
data to the training set could be useful.

2.3.6 Evaluation

In this section, some metrics generally used to evaluate some text classification models will
be presented.

Accuracy

With the accuracy metric, which is also called "[t]op N rank" [41], if the developer who really
fixes the bug is in the N developers recommended by the algorithm, the prediction of the
algorithm is considered as a success. Otherwise, it is considered as a failure. The accuracy is
the number of correct predictions (in our case, the predictions where the developer who has
eventually fixed the bug is in the N developers recommended by the algorithm) divided by
the total number of predictions. An algorithm trying to carry out the automatic bug assign-
ment task has to try to maximize the value of the accuracy metric. This metric is calculated
using the Equation 2.22:

accuracy =

řm
i=1 1CPi (yi)

m
, (2.22)

where accuracy is the value of the accuracy metric; m is the total number of predictions; yi
is the developer who has eventually fixed the i-th bug; CPi is the set of the N developers
recommended by the algorithm for the resolution of the i-th bug and 1CP(y) is an indicator
function which is defined as follows:

1CP(y) =
"

1 , if y P CP
0 , if y R CP

. (2.23)

Rank

The rank of the developer, who has eventually fixed the bug, in the predictions of the algo-
rithm solving the automatic bug assignment problem, could be used as a metric. Using the
rank is consistent as it takes into account the fact that, if a developer who should fix the bug
has a good rank in the predictions of the algorithm, he or she is more likely to be selected
by the bug triager. A model intending to solve the bug assignment problem has to try to
minimize the value of this metric.

Mean reciprocal rank

The mean reciprocal rank (MRR) metric is the average of the inverse of the rank of the devel-
oper who has eventually fixed the bug in the predictions of the model [13]. As with the rank
metric, the MRR metric is relevant because it considers that a developer who has the skills
to fix a bug has to have a good rank to be assigned this task by the triager. The algorithm

19

2.4. Related work

which goal is to solve the automatic bug assignment problem has to maximize the value of
this metric. The MRR metric could be calculated using the formula in the Equation 2.24:

MRR =
1
m

m
ÿ

i=1

1
ranki

, (2.24)

where MRR is the value of the MRR metric, m is the total number of predictions and ranki is
the rank of the developer who has eventually fixed the i-th bug.

Many researchers have intended to solve the automatic bug assignment problem. In al-
most all their publications, a new model has been introduced. Nevertheless, most of these
models were based on a text classification approach.

2.4 Related work

In this section, some research related to the automatic bug assignment problem is presented.
As stated by Shokripour et al. [31], most of it has only used one of the following approaches:
the activity-based approach or the location-based approach.

First, several papers introducing some algorithms using the activity-based approach will
be presented. Second, some models based on the location-based approach will be described.
Third, a new algorithm introduced by Tian et al. [35] which combines the two aforementioned
approaches will be presented. Next, some solutions relying on probabilistic graphs will be
described. Finally, some work on automatic fault localization will be introduced.

2.4.1 Activity-based approach

In the activity-based approach, the algorithms make their predictions based on the expertise
of the developers of the project.

Like my work, Čubranić et al. [14] treated the automatic bug assignment problem as a text
classification problem in 2004. They trained a naive Bayes classifier on a training set made
up of bug reports and the developers assigned to them. When evaluating the performance of
the classifier, they reached 30 % accuracy on the test set. In their experiments, they measured
the accuracy of their classifier with different training/test sets ratios. They obtained some
relatively good results when splitting their data set into a training set made up of 90 % of
their bug reports and a test set containing the remaining ones (10 % of their data set). Based
on their result, in this thesis, the same proportions have been selected for the training set
and the test set. Additionally, similar to one result of the aforementioned authors, the best
configurations of this thesis, in terms of accuracy and MRR value, were not using stemming.

In 2006, Anvik et al. [4] used almost the same approach. Nevertheless, they used several
classifiers: naive Bayes, SVM and C4.5. The latter classifier generates a decision tree which
is a particular type of tree [11]. In decision trees, each interior node can be considered as a
decision made on a specific feature. Each arc incident from an interior node corresponds to a
set of possible values for a particular feature. Each branch of the decision tree is related to a
class predicted based on some possible values of each feature. The decision tree is built based
on the feature vectors of the training set. Each time a decision has to be made, based on the
value of each feature of the given feature vector, a branch of the decision tree will be followed
and the class related to the leaf of this branch will be the prediction of the algorithm. Anvik
et al. [4] have observed that SVM has the best performance on the data set they had used.
Instead of proposing only one developer, the classifier also proposed a short-list of developers
and the triager had to pick one of them. The goal of the classifier of Anvik et al. was to help
the triager in his or her task, not to replace him or her. In this thesis, I have similarly compared
the performance of several classifiers. Like their work, the best performing classifier, in terms
of accuracy, on the bug reports of the telecommunications company was SVM. In contrast to
their work, in this study, the classifiers were tuned before being compared.

20

2.4. Related work

In their paper, Lin et al. [22] have made two experiments on a Chinese software project.
First, they used SVM on the textual fields of the bug reports. They then used C4.5 on the
non textual fields of the bug reports. The results of the second experiment were better than
the first one because one of the non textual fields, the module id, was a good indication to
know which developer had fixed a given bug. In this project, each developer had generally
worked on only one module. According to the authors, the use of textual fields is therefore
more relevant than the use of non textual fields. Based on their result and due to the time
constraints related to this thesis work, I decided to use only the textual content of the bug
reports to make my predictions.

Ahsan et al. [1] used different feature extraction techniques in 2009: they used tf-idf,
and, they combined tf with LSI (with several configurations). They also used seven machine
learning algorithms after having extracted the features. They obtained the best results when
combining tf, LSI and SVM. Like their work, the results obtained with different feature ex-
traction configurations and different classifiers have been compared in this thesis. On the
bug reports of the telecommunications company, the best performing classifier, in terms of
accuracy, was also SVM. For any of the three software projects studied in this thesis, the best
feature extraction technique, in terms of accuracy or MRR value, was however not based on
LSI.

In 2010, Helming et al. [18] worked on a new model which is only usable in a specific
repository called UNICASE. In this repository, the issues, the bug reports, the tasks and the
functional requirements are stored. The work items (the issues, the bug reports and the tasks)
are linked to the functional requirements in UNICASE. The functional requirements stored
in the repository are also hierarchically structured. Given a new work item, they retrieved
from the repository all the work items related to the functional requirement, to the ancestors
of the functional requirement and to the descendants of the functional requirement of this
new work item. Their new model ranked all the developers based on the number of related
work items each of them had fixed. These authors have compared the performance of their
model with the predictions of several classifiers. Similar to my results on the bug reports of
the telecommunications company, their best performing classifier was SVM.

In 2011, Anvik et al. [5] made a more thorough study than their previous one [4]. In
their paper, they focused on the recommender systems that might help to process the bug
reports. For instance, these types of recommender systems could recommend a developer
to fix a bug, recommend the component in which the bug related to a bug report is located
or recommend the developers who might be interested in the resolution of a bug report.
According to them, before building such a system, six questions should be considered where
one of them is related to what machine learning algorithm that should be used. Like my
results on one of the three studied projects in this thesis, in their work, they decided to use
SVM because they obtained the best results with this classifier after having compared the
performance of five machine learning algorithms on two open source software (OSS) projects.
After having answered the aforementioned six questions, they evaluated their recommender
system on 5 OSS projects. In their study, they only considered the automatic bug assignment
to developers problem. They also implemented a tool especially for the bug triagers. This
tool was an interface between an ITS and the triagers which displayed the predictions of a
recommender system. This interface was tested by four triagers during four months. They
reported that the outcome was positive. Finally, they described two techniques to help the
triagers to configure such a recommender system. The first technique consists of grouping
the bug reports to allow the triagers to define some heuristics used by the recommender
system to automatically find the labels in the bug reports (in the context of automatic bug
assignment, the developers who eventually fixed each bug) before its training. The second
technique was related to the selection of the bug reports the recommender system should be
trained on.

Xie et al. [37] introduced Developer REcommendation based on TOpic Models
(DRETOM) in 2012. First, they extracted the developers who had written some comments

21

2.4. Related work

in each previously fixed bug report. Their model then used topic modeling to find the main
topic of each previously fixed bug report. Finally, using a probabilistic model, DRETOM
ranked each developer based on its prior contributions to each topic (to the previously fixed
bug reports of each topic) and the topic proportions of a new bug report. Based on their work,
for the two OSS projects studied in this thesis, only the bug reports with a FIXED resolution,
and, with a RESOLVED, VERIFIED or CLOSED status have been downloaded.

In 2013, Alenezi et al. [2] compared the use of five feature selection techniques before
applying the naive Bayes machine learning algorithm. Like for two of the three projects
studied in this thesis, they obtained their best results with the χ2 feature selection technique.

In 2015, Shokripour et al. [30] extracted the identifiers and the nouns from the code base,
and, associated them with their authors. The recommendations of their model were using
the similarity between the nouns and the identifiers used in a new bug report, and, the same
type of data used by each developer in the code base. In their similarity index, they took into
account the time when each noun was used (based on the reporting date of the bug report in
which it had been found). Their index was based on the formula used to compute the tf-idf
weights (Equation 2.2), the best feature extraction technique, in terms of accuracy, on two of
the three software projects studied in this thesis.

The same year, using two instance selection methods and two feature selection methods,
Xuan et al. [38] tried to find the optimal data reduction rates for both types of techniques. An
instance selection technique consists of filtering some elements of the data set which could
mislead the prediction of a machine learning algorithm. According to the authors, keeping
30 % of the features and 50 % of the bug reports were good choices. With these rates, they
then compared the results obtained with 4 feature selection methods and 4 instance selection
methods. They achieved the best results with χ2 as a feature selection method and Iterative
Case Filter (ICF) as an instance selection method. They found that, in the context of auto-
matic bug assignment, feature selection techniques might increase the accuracy of a classifier
whereas instance selection techniques might decrease the accuracy of a classifier. They then
compared the accuracies of three classifiers (SVM, kNN and naive Bayes) when combining
ICF and χ2. They obtained the best results with naive Bayes. They also noticed that combin-
ing both types of data reduction techniques might increase the accuracy. They reported that
using both types of data reduction techniques in different orders had an impact on the per-
formance of the classifiers. They therefore trained a classifier to predict which order should
be used to get the best results (which type of data reduction technique should be used first).
Like their work, the application of some feature selection techniques on the bug reports of an
OSS project has increased the accuracy of a classifier used in this thesis.

In 2015, Jonsson et al. [20] tried to solve the automatic bug assignment to teams problem
using around 50 000 bug reports of 2 companies. These bug reports belonged to 5 projects of
these 2 companies. In their study, they conducted 5 experiments. The first one was to compare
the performance of 28 classifiers on the 5 data sets. They then applied stacked generalization
(an ensemble method algorithm) using 3 configurations: the first configuration used the 5
worst performing classifiers of the previous experiment, the second one used the 5 best ones
and the last configuration was based on using 5 classifiers of different types (the best one of
each group). In stacked generalization, a higher level machine learning algorithm is trained
on the predictions of some lower level machine learning algorithms. In their study, they
obtained the best results with the last and second last configurations. Using learning curves,
they also showed that the number of bug reports used to train their model had a minor impact
on its performance when they exceeded a certain threshold. Furthermore, they showed that
the performance of their model tended to decrease when it was trained on older data. Finally,
by training their model on more and more sorted data, they showed that there was a trade off
between training a model with a bigger amount of data and older data. The positive impact
of using a bigger amount of data was counterbalanced by the negative impact of using older
data. The first sub experiment of the preliminary experiment of this thesis (Section 3.3.1) was
based on the last experiment of the aforementioned authors. In terms of accuracy, their best

22

2.4. Related work

performing classifier was furthermore similar to the best performing one on the bug reports
of the proprietary project studied in this thesis.

As stated by Tian et al. [35], some promising results have been obtained via the activity-
based approach. Nevertheless, this method does not take into account the relationship
between the bug reports and the modifications made in the code base. Using the afore-
mentioned information would probably increase the performance of the activity-based al-
gorithms.

2.4.2 Location-based approach

By guessing the locations of the bugs, the models presented in this section make their predic-
tions.

Linares-Vásquez et al. [23] introduced a new method in 2012. First, they extracted the
features from each source code file of a version of a software product using LSI. In their
approach, each file was considered as a document. Given a new bug report or a new feature
request, they extracted its features using LSI as well, and, they ranked all the source code
files based on their similarities with the new change request using IR. They then selected
the most similar source code files and extracted their authors from their headers. Based on
these extracted data, the developers were ranked. In this thesis, LSI was one of the feature
extraction techniques applied on the bug reports of the three studied software projects.

In 2014, Wang et al. [36] introduced FixerCache. According to the authors, many develop-
ers work only on few components of a software project. For each component, they therefore
estimated the probability of each developer to fix a bug based on his or her activity(ies) related
to this component in the ITS during the last days. Based on the value of the component field
in a new bug report, they used the previously estimated probabilities of the given component
to make their recommendations. The above mentioned authors compared the performance
of their model with two of the six classifiers used in this thesis.

As written in the paper of Tian et al. [35], the location-based algorithms have achieved
good results. Nevertheless, the quality of the recommendations of these algorithms is highly
based on the guesses made on the location(s) of the bug. If the algorithm does not find the
correct location(s), it is likely that the second step of the algorithm will fail.

2.4.3 Combined activity-based and location-based approaches

This section will present the algorithm introduced by Tian et al. [35] combining the activity-
based and the location-based approaches.

The paper of Tian et al. [35] was based on the fact that both aforementioned approaches
have advantages. They should therefore be both used to solve the automatic bug assignment
problem. In their paper, their model was based on 16 features. These features learned the sim-
ilarity between each bug report and each developer. The twelve first features were related to
the activity-based approach whereas the four last features were related to the location-based
approach. They have evaluated the performance of their model on some bug reports of three
OSS projects: Eclipse JDT, Eclipse SWT and ArgoUML. They have compared the performance
of their model with two instances of their model using only the subset of features related to
one of the two approaches. They have proved that a model combining the two approaches
achieves better performance than a model using only one of the two approaches. They have
also compared their model with two state of the art models using only one of the two ap-
proaches. In almost all the cases, their model has achieved better performance than the two
other algorithms. Finally, they have also identified the features among the 16 features which
had played a major role in the predictions of their model. In this thesis, the method used by
Tian et al. to build their data sets has also been applied: the bug reports have thus been sorted
based on their reported dates.

23

2.4. Related work

2.4.4 Use of tossing graphs

In this section, some publications intending to solve the automatic bug assignment problem
using some probabilistic graphs will be introduced.

In 2009, Jeong et al. [19] used probabilistic graphs to store the tossing events of bug re-
ports. In these graphs called tossing graphs, the nodes represent the developers and the
weights on the edges estimate the tossing probabilities between them. Their model was based
on Markov chains. For visualization purpose and in order to improve the quality of their
model, they removed the edges with low probabilities and the edges representing a small
number of tossing events between some pairs of developers. According to the authors, the
tossing graphs could be used as a management tool to visualize the main interactions between
the developers. Thanks to these graphs, using the weighted breadth first search (WBFS) algo-
rithm, they could also predict the developer to which an assigned bug report could be tossed.
Using their model and WBFS, they have shown that it was possible to reduce the number of
tossing events when processing a bug report. They have also tried to combine the predictions
made by their tossing graph with the predictions made by two classifiers. One of these ma-
chine learning algorithms has been used in this thesis. Thanks to the use of their graph, the
accuracy of the predictions of the two classifiers were improved.

In 2012, Bhattacharya et al. [9] tried to improve the model of Jeong et al. [19]. They used
five machine learning algorithms: naive Bayes, Bayesian networks, C4.5 and two SVM clas-
sifiers (differing in their kernel functions) as well as a tossing graph to solve the automatic
bug assignment problem. They have used some information retrieval techniques (stop words
removal, non-alphabetic words removal, stemming and tf-idf) to extract and clean the data
from the bug reports. The goal of their tossing graph was to store the fact that some bug re-
ports were misassigned to some developers, the activity of each developer in the project (the
degree to which they had contributed to the project) as well as the product and component
of each bug report. They have also used an incremental learning approach to improve the ac-
curacy of their model. They have concluded that the performance of each classifier is highly
correlated with the data set used to train it. According to them, no particular machine learn-
ing algorithm can therefore always be recommended to solve the automatic bug assignment
problem. Like their work, the naive Bayes and SVM classifiers have been used in this thesis.

2.4.5 Automatic fault localization

In this section, some publications aiming to find the location of a bug are presented. This
problem is called automatic fault localization (AFL).

In 2012, Somasundaram et al. [32] focused on the component assignment problem. In
this problem, the goal is to find the software component in which the bug related to a bug
report should be fixed. In this context, they compared the results obtained using three dif-
ferent combinations: tf-idf and SVM, latent Dirichlet allocation (LDA) and SVM, and, LDA
and Kullback-Leibler (KL) divergence. The LDA model is a specific topic modeling technique
[12]. Topic models are based on the fact that documents related to certain topics are likely to
contain some terms related to some specific contexts. In topic models, it is assumed that each
document deals with several topics. Thanks to topic modeling, the topic proportions of an
unseen document can be inferred. In LDA, it is assumed that each document is a combina-
tion of a subset of the topics extracted from the whole corpus. Each word of a document is
a sample of a word-topic distribution. Based on this generative model, the word-topic dis-
tributions and the topic proportions of each document of a corpus are inferred using some
other algorithms. In the study of Somasundaram et al. [32], the KL divergence, a metric gen-
erally used to compute the difference between two distributions, was applied to classify the
bug reports. They measured the difference between the average topic proportions of the bug
reports of each component and the topic proportions of a new bug report. This information
was used to make the predictions. They found that they had less performance issues on the

24

2.4. Related work

less represented components with LDA and KL divergence than with the two other methods.
As in two of the three projects studied in this thesis, they found that, in average, in terms of
accuracy, their best results were nevertheless obtained when using the tf-idf weights.

In 2013, Thomas et al. [34] worked on the effect of a classifier configuration on its per-
formance in the context of AFL. For each of the 3 OSS projects used in their work, they have
compared the results obtained with 3172 configurations. In their different configurations,
they have used different textual fields of the bug reports (the title, the description or both),
different features related to the source code files, different pre-processing techniques (dif-
ferent combinations among splitting, stemming and stop words removal), different feature
extraction techniques (tf-idf, LSI and LDA) and different values for the parameters of each of
these techniques. They have also tried to find the source code file which may contain a bug
using some software metrics. They found that the classifier configuration has an impact on
the results they could reach with it. They have also tried to combine the predictions of dif-
ferent combinations of the aforementioned classifiers. They used two approaches. In the first
one, they combined the predictions of the best individual classifiers trained on different types
of data from the bug reports and the source code files. In the second one, they randomly se-
lected the individual classifiers trained on different types of data from the bug reports and the
source code files. They also used two techniques: the Borda Count technique (which is based
on the ranks of the predictions of each individual classifier) and the score addition technique
(which takes into account the scores of the predictions of each individual classifier). As stated
in the Chapter 1, the topic of this thesis was based on the claim of the above mentioned au-
thors on the impact of a classifier configuration on its performance. Based on this result, the
goal of this thesis was nevertheless to introduce a systematic method to find some of these
best configurations in the context of automatic bug assignment (not in the context of AFL).

Ye et al. [39] worked on a new model to solve the AFL problem in 2014. Their model gave
a suspiciousness score to each file of the project using a linear combination of six features. The
first feature of their model was based on the textual similarity between a new bug report and
each source code file. The second one used the similarity between the concatenation of the
documentation of each variable used in each method of each class and the documentation
of the classes inside each source file, and, a new bug report. The third one was using the
similarity between the set of bug reports which have been fixed via some modifications in
each source file and a new bug report. The other features were respectively using the potential
occurrence of a class name inside a new bug report, the date of the last fix made on each source
file and the number of time(s) each source file had already been fixed. They evaluated their
approach on 6 OSS projects. Like their work, in this thesis, for the Eclipse JDT and Mozilla
Firefox projects, only the bug reports with a RESOLVED, VERIFIED or CLOSED status, and,
with a FIXED resolution have been downloaded.

25

3 Method

In this chapter, the data sets used in this Master’s thesis are first presented. The computer
resources and the main libraries used to conduct the experiments of this study are then de-
scribed. Next, the method used in the preliminary experiment and the main experiments of
this thesis is introduced. Finally, the metrics used to evaluate my approach are presented.

3.1 Data sets

In this thesis, all the experiments have been conducted on some bug reports of the ITS of
three software projects: a project of a telecommunications company, Eclipse JDT1 and Mozilla
Firefox2. These three data sets contain respectively 66 066, 24 450 and 30 358 bug reports.

The first project has mainly been selected because it is a proprietary project and few pa-
pers (compared to the OSS projects) have been written on trying to solve the automatic bug
assignment problem for these types of projects [18, 20, 22, 34].

The other projects have been selected for various reasons. First, these projects (Eclipse and
Mozilla) have been used in many prior works to train and evaluate the models introduced [1,
2, 4, 5, 8, 9, 14, 19, 30, 32, 34, 35, 36, 37, 38, 39]. Training and evaluating the models introduced
in prior works would be simplified. Then, since these projects were likely to be representative
instances of OSS projects, the findings made on these data sets should be generalized to any
large-scale OSS development project. Finally, as stated in the Chapter 1, since the data sets
are open source, they can be easily accessed by other researchers to reproduce the results of
this study.

In the context of this thesis, only the textual content of the bug reports has been used: only
the title and the description of each bug report have been considered (Section 2.1.1).

For the project of the telecommunications company, only the bug reports which were in a
FINISHED state have been downloaded (Figure 2.4). This choice was based on a discussion
with an expert triager of the company. According to him, all the fixed bug reports of the ITS
should be in this state.

For the Eclipse JDT and Mozilla Firefox projects, only the bug reports with a FIXED reso-
lution, and, with a RESOLVED, VERIFIED or CLOSED status have been downloaded (Figure

1http://www.eclipse.org/jdt
2http://www.mozilla.org

26

http://www.eclipse.org/jdt
http://www.mozilla.org

3.2. Experimental setup

Project Time range # bug reports Size of the vocabulary # of classes

A project of a telecoms company 2013/01/01 - 2017/02/13 66066 1406720 18
Eclipse JDT 2001/10/10 - 2017/01/25 24450 148589 186

Mozilla Firefox 2001/04/07 - 2017/02/09 30358 83795 1483

Table 3.1: Data sets used

2.3). More precisely, after having formulated a query to retrieve the aforementioned bug re-
ports, the relevant data have been extracted from the results via the use of web scraping.
According to Bhattacharya et al. [9], not only considering FIXED bug reports adds noise to
the data set. In their papers, Ye et al. [39] and Xie et al. [37] have made the same choices re-
garding their data sets: they have only downloaded the bug reports which had a RESOLVED,
VERIFIED or CLOSED status, and, a FIXED resolution.

Solving the automatic bug assignment to teams problem has been investigated via the bug
reports of the telecommunications company whereas the bug reports of the OSS projects have
been used to solve the automatic bug assignment to developers problem. Both problems are
text classification problems. The only major difference is thus the number of classes (lower in
the context of automatic bug assignment to teams).

Concerning the telecommunications company, the bugs reported until 2017/02/13 have
been extracted from its ITS. Regarding the Eclipse JDT and Mozilla Firefox projects, the same
type of data has been respectively downloaded until 2017/01/25 and 2017/02/09. After
having pre-processed them, the bug reports with an empty title field, an empty description
field or an empty assignee field were removed from the data sets of Eclipse JDT and Mozilla
Firefox. The details of the three data sets used in this thesis are described in the Table 3.1.

The same approach as the one of Tian et al. [35] has been used to build the data set: the
bug reports have been sorted based on their reported dates.

3.2 Experimental setup

All the experiments of this thesis have been conducted on a virtual machine with the follow-
ing specifications:

• x86_64 (architecture),

• 8 Intel R© Xeon R© Processor E5-2680 v3 @ 2.50 GHz (8 vCPUs),

• 31.3 GiB (RAM).

All the source code related to the experiments of this thesis has been written in Python
3.6.

The library NLTK3 has been used to pre-process the bug reports in all the experiments of
the thesis. NLTK is a well-documented natural language processing (NLP) Python library.
NLTK offers the possibility to easily apply some pre-processing techniques such as tokeniza-
tion, stemming, POS tagging or lemmatization on textual data. NLTK is a cross platform and
open source library. The creators of the library have written a book [10] which aims to be an
introduction to NLP and which is mostly based on Python and NLTK.

In all the experiments of the thesis, the classifiers implemented in scikit-learn4 have been
used. The implementations of the feature extraction and the feature selection techniques of
this library have also been used. scikit-learn is a Python machine learning library. In this
widely used open source library, many machine learning algorithms and techniques have
been implemented. A large community is continuously improving scikit-learn and this li-
brary is easy-to-use.

3https://www.nltk.org/
4http://scikit-learn.org/stable/

27

https://www.nltk.org/
http://scikit-learn.org/stable/

3.3. Preliminary experiment

3.3 Preliminary experiment

Before conducting the main experiments of this thesis, a preliminary experiment based on one
of the findings of L. Jonsson et al. [20] had been carried out. In the context of automatic bug
assignment to teams, using learning curves (Section 2.3.5), they showed that the performance
of machine learning algorithms tend to decrease when they are trained using an amount of
sorted data exceeding a certain threshold. If a machine learning algorithm is trained on too
many bug reports, its performance could decrease. On the other hand, if there are not enough
bug reports in its training set, its performance might be poor.

The goal of this preliminary experiment was to find the optimal number of bug reports
that should be used to train a machine learning algorithm.

The experiment was made up of two sub experiments. In each of them, tokenization
(based on the function word_tokenize of the module nltk.tokenize of NLTK) has been
applied on the textual content (the title and the description fields) of each bug report (Section
2.2.2). Only tokenization has been used so that this type of technique would not have a major
impact on the results. Next, the features of each bug report were extracted by using the tf
weight of each token in each bug report (Section 2.3.2). TF weights have been used because it
was the most intuitive way to extract features from some textual content and this step should
not have played a major role in the results.

Several SVM classifiers with a linear kernel have been trained and evaluated. The decision
related to the selected classifier was based on three facts. First, in several papers, the perfor-
mance of many classifiers including SVM have been compared: in most of these publications,
SVM has outperformed the other classifiers [4, 20, 1, 18]. Using directly SVM might there-
fore be representative of the best performance that could be reached with any other classifier.
Second, in many scientific publications, the authors have compared the performance of their
newly introduced models with the one reached with a SVM-based classifier in order to know
if the predictions of their models were reasonable [36, 23, 18]. This means that they have
considered the SVM-based classifiers as a baseline. Third, some authors have also decided to
directly use SVM for the classification part of their model [22, 32, 39]. Their choice was based
on the fact that, in many prior works, SVM had outperformed some other classifiers. Due to
the aforementioned three reasons, I have decided to use several linear SVM classifiers in both
sub experiments. More precisely, I have used the default configuration of the LinearSVC
class of scikit-learn. This class implements a linear SVM based on the liblinear5 open source
library.

3.3.1 First sub experiment

The first sub experiment was based on the last experiment of L. Jonsson et al. [20]. Each
set of bug reports was split into K subsets of equal size. In the remainder of this report, the
term ’fold’ will be used to designate any of the subsets defined when applying the cross-
validation technique (Section 2.3.4). The performance of the machine learning algorithm was
then evaluated several times on the bug reports of each Foldi, i P t2; ¨ ¨ ¨ ; Ku (on the bug
reports of each i-th fold). For each of the aforementioned i-th fold, the machine learning
algorithm was trained and evaluated i´ 1 times using each element of the following set:

tFoldsj,i´1, j P t1; ¨ ¨ ¨ ; i´ 1uu, (3.1)

where Foldsk,l , k ď l could be formally defined as follows Foldsk,l =
Ť

Foldm,mPtk;¨¨¨ ;lu, k ď l.

The selected machine learning algorithm has been trained
řK

i=2 i´ 1 =
řK´1

i=1 i = (K´1)K
2

times. The details related to the different training sets and test sets used in the context of this
sub experiment are in the Table 3.2.

5http://www.csie.ntu.edu.tw/~cjlin/liblinear/

28

http://www.csie.ntu.edu.tw/~cjlin/liblinear/

3.3. Preliminary experiment

Number of runs Size of each training set Training set Test set

K´ 1 1 fold

Folds1,1 Fold2
Folds2,2 Fold3

...
...

FoldsK´2,K´2 FoldK´1
FoldsK´1,K´1 FoldK

K´ 2 2 folds

Folds1,2 Fold3
Folds2,3 Fold4

...
...

FoldsK´3,K´2 FoldK´1
FoldsK´2,K´1 FoldK

...
...

...
...

2 K´ 2 folds Folds1,K´2 FoldK´1
Folds2,K´1 FoldK

1 K´ 1 folds Folds1,K´1 FoldK

Table 3.2: The different training sets and test sets of the first sub experiment of the preliminary
experiment

For each training set size, the average performance of the model was computed
based on its performance on the different test sets when trained on a training set
having that given size. Thanks to all the averages previously computed, a set
of pairs PERF_TE_SETK = t(tr_s_size1, te_s_avg_per f1); (tr_s_size2, te_s_avg_per f2); ¨ ¨ ¨ ;
(tr_s_sizeK´2, te_s_avg_per fK´2); (tr_s_sizeK´1, te_s_avg_per fK´1)u, where tr_s_sizei is the
number of bug reports in i folds and te_s_avg_per fi is the average performance of the model
when trained on a training set made up of i folds, was built.

The average performance of the model on the different training sets of same size was also
computed. Another set of pairs PERF_TR_SETK = t(tr_s_size1, tr_s_avg_per f1); (tr_s_size2,
tr_s_avg_per f2); ¨ ¨ ¨ ; (tr_s_sizeK´2, tr_s_avg_per fK´2); (tr_s_sizeK´1, tr_s_avg_per fK´1)u,
where tr_s_sizei is the number of bug reports in i folds and tr_s_avg_per fi is the average
performance of the model on a training set made up of i folds, was built.

Based on the results of L. Jonsson et al. [20], the bigger the test fold is, the more the
performance of the model should decrease (on its last predictions) as the last predictions of
the model are made using older data.

Due to this idea, I decided to plot several learning curves for different values of K, K P

t4; 6; 8; 10; 15; 25; 50u. For each K P t4; 6; 8; 10; 15; 25; 50u, two learning curves were plotted in
the same chart based on the elements of PERF_TR_SETK and PERF_TE_SETK. The standard
deviation related to each point plotted in each chart has also been represented. Based on the
obtained results, if the time needed to train the machine learning algorithm was reasonable,
the model could be periodically re-trained so that its performance would not continuously
decrease.

The Figure 3.1 depicts the method used in the first sub experiment of the preliminary
experiment of this thesis.

29

3.3. Preliminary experiment

Figure 3.1: The method used in the first sub experiment of the preliminary experiment

3.3.2 Second sub experiment

In the second sub experiment, I assumed that the machine learning algorithm would be pe-
riodically re-trained and that making the choice related to the optimal size of the training set
was more relevant when evaluating it on recent data. Only the last fold was therefore used
to plot the learning curves. In this sub experiment, as shown in the Table 3.3, the model has
been evaluated K ´ 1 times on the FoldK (the K-th fold). Each evaluation was made using a
model trained on each element of the following set:

tFoldsj,K´1, j P t1; ¨ ¨ ¨ ; K´ 1uu. (3.2)

Based on the idea mentioned in the previous section, several learning curves have been
plotted for different values of K, K P t4; 6; 8; 10; 15; 25; 50u. For each K P t4; 6; 8; 10; 15; 25; 50u,
two learning curves have been plotted in the same chart based on the elements of
PERF_TR_SETK and PERF_TE_SETK (the two sets have been defined in the previous sec-
tion).

The Figure 3.2 shows the method used in the second sub experiment of the preliminary
experiment of this study.

30

3.4. Main experiments

Number of runs Size of each training set Training set Test set
1 K´ 1 folds Folds1,K´1 FoldK
1 K´ 2 folds Folds2,K´1 FoldK
...

...
...

...
1 2 folds FoldsK´2,K´1 FoldK
1 1 fold FoldsK´1,K´1 FoldK

Table 3.3: The different training sets and test sets of the second sub experiment of the prelim-
inary experiment

Figure 3.2: The method used in the second sub experiment of the preliminary experiment

3.4 Main experiments

In this section, the main experiments which have been conducted in the context of the thesis
are described. The results related to each experiment is used to answer each research ques-
tion.

In all the experiments described below, first, each data set was split into a training set
(90 %) and a test set (10 %). This training set/test set ratio has been selected for mainly two
reasons. First, in the data set of the telecommunications company, 10 % represent approxi-
mately 5 months of bug reports. I judged that evaluating the performance of a classifier on
the issues reported during the last 5 months of the data set would probably be representative.
Second, in their experiments, Čubranić et al. [14] measured the accuracy of their classifier
with different training/test sets ratios. They obtained some relatively good results with this
particular ratio. As a consequence, I decided to select these proportions for the training set
and the test set.

As explained in the Section 2.3.4, the training set was then split into K + 1 folds (based
on the implementation of the class TimeSeriesSplit of scikit-learn). In each experiment,
each configuration of a classifier was trained and evaluated K times: the performance of
each machine learning algorithm was evaluated exactly one time on the bug reports of each
Foldj, j P t2; ¨ ¨ ¨ ; K + 1u. Each model evaluated on the fold Foldj had been trained on
Folds1,j´1. For each model, the average of its performance related to each evaluation was
computed. Finally, the model with the best performance was selected. In this thesis, the
value of K was set to 10.

The Figure 3.3 illustrates the method used in each main experiment of this thesis.

31

3.4. Main experiments

Figure 3.3: The method used in all the main experiments

In all the experiments, at least tokenization (based on the function word_tokenize of
the module nltk.tokenize of NLTK) has been applied on the textual content of each bug
report to later be able to extract the features from them (Section 2.2.2).

For the same reasons mentioned in the Section 3.3, in the first three experiments, the de-
fault configuration of the scikit-learn implementation of a linear SVM (the LinearSVC class)
has been used for the classification.

3.4.1 Experiment 1

The goal of this experiment was to find which combination of pre-processing techniques
should be used to obtain the best results (Section 2.2.2).

In the context of this experiment, 96 combinations have been tested. These combinations
were based on six parameters: five of them had two possible values whereas one of them had
three possible values.

Cleaning or not cleaning the bug reports was the first parameter. Cleaning the bug reports
consists of removing the elements which appear in a considerable number of bug reports (the
titles in the descriptions of the bug reports, the subtitles, etc.) using some regular expressions,
converting the HTML character entity references to Unicode characters, solving the encoding
problems, etc.

The second parameter was related to the use of a stemmer (the class PorterStemmer of
the module nltk.stem.porter of NLTK), a lemmatizer (the class WordNetLemmatizer
of the module nltk.stem.wordnet and the POS given by the function pos_tag of the
module nltk.tag of NLTK) or nothing (three possible values).

32

3.4. Main experiments

Parameter Possible value
Cleaning bug reports Yes/No

Stemmer vs. Lemmatizer Stemmer/Lemmatizer/Nothing
Stop words removal Yes/No

Punctuation characters removal Yes/No
Numbers removal Yes/No

Conversion to lower case Yes/No

Table 3.4: The possible values for the parameters of the experiment 1

Removing or not removing stop words (using the English stop words list of NLTK) was
also considered as a parameter.

The fourth parameter was based on the choice of removing or not the punctuation char-
acters.

Removing or not the numbers from the textual content of the bug reports was used as a
fifth parameter.

The sixth parameter was based on the choice of converting or not each token to lower
case.

Based on the possible choices related to the aforementioned six parameters, 96 = 2 ˚ 3 ˚
2 ˚ 2 ˚ 2 ˚ 2 configurations of parameters have been obtained (Table 3.4).

In this experiment, the bug reports were pre-processed with all the different configura-
tions. For the same reasons mentioned in the Section 3.3, the features of each bug report were
then extracted by using the tf weight of each token in each bug report (Section 2.3.2). Next,
96 linear SVM classifiers (96 instances of the LinearSVC class) were trained and evaluated
on the feature vectors extracted from the output of the distinct configurations.

3.4.2 Experiment 2

The aim of this experiment was to find the best way to extract the features from the bug
reports of an ITS.

In order to do that, several configurations were tested and the one which gave the best
performance was selected.

First of all, the best configuration of the experiment 1 (the best combination of pre-
processing techniques) was applied on the bug reports of the ITS.

The experiment was mainly based on a comparison between the results obtained using
three different representations: a Boolean representation (using the class CountVectorizer
of scikit-learn), a representation based on the tf weights (the class TfidfTransformer of
scikit-learn) and a representation based on the tf-idf weights (the class TfidfTransformer
of scikit-learn) of the words in the textual content of the bug reports (Section 2.3.2).

Next, the LSI algorithm (the class TruncatedSVD of scikit-learn) was separately run on
each of the three aforementioned representations. The NMF algorithm (the class NMF of scikit-
learn) was also separately run on each of the three representations. Each time the LSI or the
NMF algorithm was used, f P t10; 30; 50; 70; 90u features were selected. This choice was
motivated by the time and the space required to use these algorithms on my virtual machine
(Section 3.2).

33 linear SVM classifiers (33 instances of the LinearSVC class) were trained on the 33 =
3+ 6˚5 different representations of the bug reports. The details related to the aforementioned
33 configurations are provided in the Table 3.5.

Finally, all the possible pairs of extracted features were generated. For each experiment
involving, either LSI or NMF, only the configuration with the optimal number of selected
features was considered (the selected number of features which gave the best result). Only the
performance related to the (9

2) = 36 combined configurations were compared. 36 linear SVM

33

3.4. Main experiments

Representation Remaining features
Boolean All

TF All
TF-IDF All

Boolean + LSI t10; 30; 50; 70; 90u
TF + LSI t10; 30; 50; 70; 90u

TF-IDF + LSI t10; 30; 50; 70; 90u
Boolean + NMF t10; 30; 50; 70; 90u

TF + NMF t10; 30; 50; 70; 90u
TF-IDF + NMF t10; 30; 50; 70; 90u

Table 3.5: The different configurations of the first part of the experiment 2

Representation
Boolean

TF
TF-IDF

Best Boolean + LSI
Best TF + LSI

Best TF-IDF + LSI
Best Boolean + NMF

Best TF + NMF
Best TF-IDF + NMF

Table 3.6: The different configurations of the second part of the experiment 2

classifiers (36 instances of the LinearSVC class) were trained on all the features extracted
from these 36 combined configurations (Table 3.6).

In the context of the experiment 2, the results related to 69 = 33 + 36 = (3 + 6 ˚ 5) + (9
2)

configurations have been compared.

3.4.3 Experiment 3

The goal of this experiment was to know if using a feature selection technique would increase
the performance of a classifier. If it was the case, the experiment would also allow us to find
the size of the subset of the remaining features which should be selected to get the best results,
in terms of accuracy and MRR value.

First, the best configuration of the experiment 1 (the best combination of pre-processing
techniques) and the best configuration of the experiment 2 (the best feature extrac-
tion technique) were applied on the bug reports. The following feature selection tech-
niques were then separately applied on the set of bug reports: the χ2 test (the func-
tion chi2 of the module sklearn.feature_selection.univariate_selection
of scikit-learn), the ANOVA test (the function f_classif of the mod-
ule sklearn.feature_selection.univariate_selection of scikit-learn),
the mutual information (the function mutual_info_classif of the module
sklearn.feature_selection.mutual_info_ of scikit-learn) and the Recursive Fea-
ture Elimination (the class RFECV of scikit-learn) (Section 2.3.3). For each feature selection
technique, f P t0.1; 0.3; 0.5; 0.7; 0.9u of the initial features were selected. In total, 20 = 4 ˚ 5
configurations have been compared (Table 3.7). 20 linear SVM classifiers (20 instances of the
LinearSVC class) were trained on the remaining features of the different configurations. The
performance of the best feature selection technique with the best percentage of remaining
features was compared with the performance obtained without applying any feature selec-
tion technique (the performance of the best configuration of the experiment 2). If a particular

34

3.4. Main experiments

Feature selection technique Remaining features
Chi-2 t0.1; 0.3; 0.5; 0.7; 0.9u

ANOVA t0.1; 0.3; 0.5; 0.7; 0.9u
Mutual information t0.1; 0.3; 0.5; 0.7; 0.9u

Recursive feature elimination t0.1; 0.3; 0.5; 0.7; 0.9u

Table 3.7: The different configurations of the experiment 3

feature selection technique and a particular percentage of remaining features improved the
performance of a linear SVM classifier, this configuration would be selected.

3.4.4 Experiment 4

The aim of this experiment was to find the best performing classifier and its best configura-
tion on each data set. This goal was achieved by tuning a set of selected classifiers: a near-
est centroid classifier, a naive Bayes classifier based on a multinomial distribution, a linear
SVM classifier, a logistic regression classifier, a perceptron classifier and a classifier based on
stochastic gradient descent. The aforementioned classifiers have been selected because they
had been used in many prior works in the context of automatic bug assignment or they were
implemented in scikit-learn.

First, the best configuration of the experiment 1 (the best combination of pre-processing
techniques), the best configuration of the experiment 2 (the best feature extraction technique)
and the best configuration of the experiment 3 (the potential use of a feature selection tech-
nique) were applied on the bug reports. Two strategies were then used to tune each classifier:
a grid search and a random search (Section 2.3.4). For each classifier and each strategy, an
upper bound of 150 configurations was selected. The choice regarding this upper bound was
based on several parameters such as the specifications of my virtual machine (Section 3.2),
the computational cost related to the training phase of each classifier and the time constraints
related to the Master’s thesis. Based on this upper bound and their relevance, for each hyper-
parameter of each classifier, a set of possible values has been selected.

If it was complicated to predict the behaviour of a classifier when one of its hyper-
parameter(s) was tuned, this hyper-parameter was considered as relevant in the context of
this experiment. For example, if the number of iterations of the stochastic gradient descent
algorithm is increased, it is well known that the performance of the classifier will increase
and that the computational cost related to its training phase will also increase. In the context
of this experiment, this hyper-parameter was considered as irrelevant as it should be tuned
based on the needs of the customer. Tuning this hyper-parameter could be relatively easily
achieved by using some learning curves (Section 2.3.4). As tuning the aforementioned hyper-
parameter was highly related to the context of the problem (the needs of the customer), it was
not considered.

If it was well-known that one of the possible values of a hyper-parameter would defi-
nitely increase the performance of its classifier, this value was selected. For instance, if its
value is set to "balanced", the parameter class_weight of the constructor of the class
LinearSVC will allow the linear SVM classifier to take into account that some classes are
more represented than others. As it would likely improve the performance of the linear SVM
classifier, this parameter was always set to "balanced".

Using the above mentioned approach, for each relevant hyper-parameter of each of the
six classifiers, a set of values was built (Table 3.8). As they were considered as irrelevant in
the framework of this experiment, the default values of the parameters not in the Table 3.8
were used. A grid search strategy (based on the GridSearchCV class of scikit-learn) was
used to try to find the best configuration of each classifier. A random search strategy (based
on the RandomizedSearchCV class of scikit-learn) requiring the same number of runs was

35

3.5. Evaluation

Algorithm Implementation Number of runs Hyper-parameter

Nearest centroid classifier NearestCentroid 2 metric P {"manhattan";"euclidean"}
Naive Bayes classifier
(multinomial distribution)

MultinomialNB 22 alpha P np.linspace(0,1,11)
fit_prior P {True;False}

Linear SVM LinearSVC 20
C P np.logspace(-4, 4, 10)

loss P {"squared_hinge";"hinge"}
class_weight="balanced"

Logistic regression LogisticRegression 40

dual=False
C P np.logspace(-4, 4, 10)
class_weight="balanced"

solver P {"newton-cg";"sag";"lbfgs"}
multi_class="multinomial"

dual=True
C P np.logspace(-4, 4, 10)
class_weight="balanced"

solver="liblinear"
multi_class="ovr"

Perceptron Perceptron 13

penalty P {"l2";"elasticnet"}
alpha P 10.0**-np.arange(1,7)
class_weight = "balanced"

penalty=None
class_weight="balanced"

Stochastic gradient descent SGDClassifier 120

loss P {"hinge";"log";"modified_huber";
"squared_hinge";"perceptron"}

penalty P {"l2";"elasticnet"}
alpha P 10.0**-np.arange(1,7)

class_weight="balanced"
average P {True;False}

Table 3.8: The different configurations of the experiment 4

also used to try to find the best configuration of each classifier. For each set of values, a ran-
dom distribution was used to apply the random search. If a set contained some non-numeric
values, a discrete uniform distribution was used. Otherwise, a continuous distribution was
used to exploit the full potential of the random search strategy (Section 2.3.4). For each clas-
sifier, the best configuration among the configurations compared via the grid search strategy
and the random search strategy was eventually selected.

In total, in this experiment, 434 = 217˚2 = (2+ 22+ 20+ 40+ 13+ 120) ˚2 configurations
have been compared.

3.5 Evaluation

In the preliminary experiment (Section 3.3), only the value of the top 1 accuracy metric (Sec-
tion 2.3.6) has been computed.

Except for the nearest centroid classifier used in the forth experiment, in all the main ex-
periments of this thesis (Section 3.4), the value of the top 1 accuracy metric and the value
of the MRR metric (Section 2.3.6) have been computed in order to be able to make some
decisions related to the selection of the different types of techniques. As the classes were
not ranked during the validation and testing phases of the nearest centroid classifier imple-
mented in scikit-learn (the class NearestCentroid) and adding this feature would have
required significant development effort, the value of the MRR metric was not computed for
this classifier.

36

4 Results

In this chapter, first, the results related to the preliminary experiment of this thesis (Section
3.3) are described. Second, the results related to the main experiments of this thesis (Section
3.4) are presented.

4.1 Preliminary experiment

The results related to the preliminary experiment described in the Section 3.3 are presented
below.

4.1.1 First sub experiment

In this section, the results of the first sub experiment of the preliminary experiment of the
thesis are presented.

The graphs in the Figures 4.1, 4.2 and 4.3 illustrate the learning curves obtained with
different numbers of folds K, K P t4; 8; 50u. For each K P t4; 8; 50u, two learning curves are
represented: the red one is related to the accuracy on the training set whereas the green one
shows the accuracy on the test set. The standard deviation related to each point plotted in
each chart is also represented. The graphs related to the configurations with 6, 10, 15 and 25
folds can be found in the Figures A.1, A.2, A.3, A.4, A.5 and A.6 of the Appendix A.1.

Telecommunications company

In all the subfigures of the Figure 4.1, the accuracy on the training set has raised with an
increase in the size of the same set.

With less than 8 folds, the accuracy on the test set has decreased when using more bug
reports. With at least 8 folds, the accuracy on the test set has fluctuated, but generally, it has
increased, then, decreased. In the latter case, the accuracy has always reached its maximum
when the number of bug reports in the training set was between 10 000 and 20 000.

37

4.1. Preliminary experiment

Eclipse JDT

Contrary to the bug reports of the telecommunications company, in all the subfigures of the
Figure 4.2, the accuracy on the training set has decreased with an increase in the size of the
same set.

With no more than 8 folds, the accuracy on the test set has decreased when using more
bug reports. With strictly more than 8 folds, the accuracy on the test set has fluctuated, but
generally, it has increased, then, decreased: it has always reached its maximum when the
number of bug reports in the training set was between 2 500 and 5 000.

Mozilla Firefox

As with the bug reports of Eclipse JDT, in all the subfigures of the Figure 4.3, the accuracy on
the training set has decreased with an increase in the size of the same set.

With less than 8 folds, the accuracy on the test set has fluctuated, but, been relatively
constant. As with the data set of the telecommunications company, with at least 8 folds, the
accuracy on the test set has fluctuated, but generally, it has increased, then, decreased: it
has always reached its maximum when the number of bug reports in the training set was
between 3 000 and 10 000. For convenience, in the remainder of this report, the expression
’telecommunications company’ will be used to designate the data set of this company.

38

4.1. Preliminary experiment

(a) 4 folds

(b) 8 folds

(c) 50 folds

Figure 4.1: Learning curves of the first sub experiment of the preliminary experiment con-
ducted on the bug reports of the telecommunications company (obtained with 4, 8 and 50
folds) 39

4.1. Preliminary experiment

(a) 4 folds

(b) 8 folds

(c) 50 folds

Figure 4.2: Learning curves of the first sub experiment of the preliminary experiment con-
ducted on the bug reports of Eclipse JDT (obtained with 4, 8 and 50 folds)

40

4.1. Preliminary experiment

(a) 4 folds

(b) 8 folds

(c) 50 folds

Figure 4.3: Learning curves of the first sub experiment of the preliminary experiment con-
ducted on the bug reports of Mozilla Firefox (obtained with 4, 8 and 50 folds)

41

4.1. Preliminary experiment

4.1.2 Second sub experiment

In this section, the results of the second sub experiment of the preliminary experiment of the
thesis are described.

The graphs in the Figures 4.4, 4.5 and 4.6 depict the learning curves obtained with different
numbers of folds K, K P t4; 8; 50u. For each K P t4; 8; 50u, two learning curves are plotted:
the red one is related to the accuracy on the training set whereas the green one shows the
accuracy on the test set. The standard deviation related to each point plotted in each chart is
also represented. The graphs related to the configurations with 6, 10, 15 and 25 folds can be
found in the Figures A.7, A.8, A.9, A.10, A.11 and A.12 of the Appendix A.2. As explained in
the Section 3.3.2, contrary to the first sub experiment, only the last folds are used to plot the
green learning curves.

Telecommunications company

In all the subfigures of the Figure 4.4, with an increase in the size of the training set, the
accuracy on the same set has raised.

With 4 folds, the accuracy on the test set has steadily decreased with an increase in the
number of bug reports in the training set. With no more than 8 folds (and more than 4 folds),
the accuracy on the test set has increased, then, decreased. Its maximum was reached when
the number of bug reports in the training set was between 30 000 and 40 000. With strictly
more than 8 folds, the accuracy on the test set has fluctuated, but generally, it has increased
with an increase in the size of the training set.

Eclipse JDT

With an increase in the size of the training set, the accuracy on the same set has sometimes
fluctuated, but generally, it has decreased in all the subfigures of the Figure 4.5

With no more than 8 folds, the accuracy on the test set has steadily decreased with an
increase in the number of bug reports in the training set. With strictly more than 8 folds, the
accuracy on the test set has fluctuated, but generally, it has decreased with an increase in the
size of the training set.

Mozilla Firefox

In all the subfigures of the Figure 4.6, with an increase in the size of the training set, the
accuracy on the same set has sometimes fluctuated, but generally, decreased.

As with the first sub experiment conducted on the same data set, with less than 8 folds,
the accuracy on the test set has fluctuated, but, been relatively constant. With at least 8 folds,
the accuracy on the test set has fluctuated, but generally, it has increased, then, decreased: it
has reached its maximum when the number of bug reports in the training set was between 3
000 and 10 000.

42

4.1. Preliminary experiment

(a) 4 folds

(b) 8 folds

(c) 50 folds

Figure 4.4: Learning curves of the second sub experiment of the preliminary experiment con-
ducted on the bug reports of the telecommunications company (obtained with 4, 8 and 50
folds) 43

4.1. Preliminary experiment

(a) 4 folds

(b) 8 folds

(c) 50 folds

Figure 4.5: Learning curves of the second sub experiment of the preliminary experiment con-
ducted on the bug reports of Eclipse JDT (obtained with 4, 8 and 50 folds)

44

4.1. Preliminary experiment

(a) 4 folds

(b) 8 folds

(c) 50 folds

Figure 4.6: Learning curves of the second sub experiment of the preliminary experiment con-
ducted on the bug reports of Mozilla Firefox (obtained with 4, 8 and 50 folds)

45

4.2. Main experiments

4.2 Main experiments

The summarized results related to the main experiments of the thesis (Section 3.4) are pre-
sented below.

The detailed results related to the same experiments can be found in the Appendix B.

4.2.1 Experiment 1

In this section, the summarized results related to the first main experiment of the thesis (Sec-
tion 3.4.1) are described.

The detailed results related to the same main experiment can be found in the Appendix
B.1.

For readability purposes, the results will be described using a mapping of acronyms to
pre-processing techniques (Table 4.1). When a pre-processing technique is used, its acronym
is directly written. If not, it is preceded by the string NOT and enclosed within parenthesis.
All obtained strings are then concatenated and the character | is used as a delimiter between
them.

If the string C|NOT(S)|L|SW|P|N|NOT(LC) is used for instance, it means that the bug
reports have first been cleaned. The tokens have then been lemmatized. The stop words, the
tokens containing only punctuation characters and the tokens containing only numbers have
eventually been removed.

Acronym Pre-processing technique
C Cleaning bug reports
S Stemmer
L Lemmatizer

SW Stop words removal
P Punctuation characters removal
N Numbers removal
LC Conversion to lower case

Table 4.1: The mapping of acronyms to pre-processing techniques

Telecommunications company

The horizontal bar chart in the Figure 4.7 depicts the accuracy of the worst and best pre-
processing configurations on the project of the telecommunications company.

The horizontal bar chart in the Figure 4.8 shows the MRR value of the worst and best
pre-processing configurations on the bug reports of the telecommunications company.

As the best accuracy, 74.74 % (Figure 4.7), and, the best MRR value, 83.43 % (Figure 4.8),
were reached when cleaning the bug reports, removing the stop words, removing the tokens
containing only punctuation characters, removing the tokens containing only numbers and
performing a conversion to lower case, only the aforementioned pre-processing techniques
have been used in the following experiments conducted on the bug reports of the telecom-
munications company.

Eclipse JDT

The horizontal bar chart in the Figure 4.9 shows the accuracy of the worst and best pre-
processing configurations on the bug reports of the Eclipse JDT project.

The horizontal bar chart in the Figure 4.10 depicts the MRR value of the worst and best
pre-processing configurations on Eclipse JDT.

46

4.2. Main experiments

Figure 4.7: Accuracy of the worst and best pre-processing configurations on the bug reports
of the telecommunications company (the mapping of acronyms to pre-processing techniques
defined in the Table 4.1 has been used)

Figure 4.8: MRR of the worst and best pre-processing configurations on the bug reports of
the telecommunications company (the mapping of acronyms to pre-processing techniques
defined in the Table 4.1 has been used)

Contrary to the bug reports of the telecommunications company, the best configuration,
in terms of accuracy, was obtained, only when cleaning the bug reports, removing the stop
words and using a conversion to lower case (Figure 4.9). This configuration has therefore
been used when conducting the other experiments on the Eclipse JDT data set.

47

4.2. Main experiments

Figure 4.9: Accuracy of the worst and best pre-processing configurations on the bug reports
of Eclipse JDT (the mapping of acronyms to pre-processing techniques defined in the Table
4.1 has been used)

Figure 4.10: MRR of the worst and best pre-processing configurations on the bug reports of
Eclipse JDT (the mapping of acronyms to pre-processing techniques defined in the Table 4.1
has been used)

Mozilla Firefox

The horizontal bar chart in the Figure 4.11 illustrates the accuracy of the worst and best pre-
processing configurations on the bug reports of the Mozilla Firefox project.

The horizontal bar chart in the Figure 4.12 depicts the MRR value of the worst and best
pre-processing configurations on Mozilla Firefox.

48

4.2. Main experiments

Figure 4.11: Accuracy of the worst and best pre-processing configurations on the bug reports
of Mozilla Firefox (the mapping of acronyms to pre-processing techniques defined in the
Table 4.1 has been used)

Figure 4.12: MRR of the worst and best pre-processing configurations on the bug reports of
Mozilla Firefox (the mapping of acronyms to pre-processing techniques defined in the Table
4.1 has been used)

Contrary to the bug reports of the telecommunications company and the bug reports of
Eclipse JDT, the best configuration, in terms of accuracy and MRR value, has been obtained,
only when cleaning the bug reports, using a lemmatizer, removing the tokens containing only
numbers and using a conversion to lower case (Figures 4.11 and 4.12). This configuration has
been used when conducting the following experiments on the Mozilla Firefox project.

49

4.2. Main experiments

4.2.2 Experiment 2

The summarized results related to the second main experiment of the thesis (Section 3.4.2)
are presented in this section.

The detailed results related to the same main experiment can be found in the Appendix
B.2.

For readability purposes, the results will be described using a mapping of acronyms to
feature extraction techniques (Table 4.2). If a feature extraction technique is used, its acronym
is directly written. Each time the LSI or the NMF algorithm is used, the acronym is followed
by an hyphen - and the new number of features.

If the string TF+LSI-50 is used for instance, it means that the tf weights have first been
used. The LSI algorithm has then been run to extract 50 new features.

Acronym Feature extraction technique
BOOL Boolean

TF TF
TF-IDF TF-IDF

BOOL+LSI Boolean + LSI
TF+LSI TF + LSI

TF-IDF+LSI TF-IDF + LSI
BOOL+NMF Boolean + NMF

TF+NMF TF + NMF
TF-IDF+NMF TF-IDF + NMF

Table 4.2: The mapping of acronyms to feature extraction techniques

When all the possible pairs of extracted features have been generated, the acronyms in the
Table 4.3 are concatenated and the character & is used as a delimiter between them.

If the string TF-IDF+LSI&BOOL+NMF is used, it means that a combination of two feature
extraction techniques has been used. First, the LSI algorithm has been applied on the tf-idf
weights of the bug reports. Second, a Boolean representation of the bug reports followed by
the application of the NMF algorithm has been used. As explained in the Section 3.4.2, when
LSI or NMF is used in a combination of two feature extraction techniques, only the number
of features which has given the best accuracy is considered.

Telecommunications company

The horizontal bar chart in the Figure 4.13 shows the accuracy of the worst (without combi-
nation), best (without combination), worst (with combination) and best (with combination)
feature extraction techniques on the project of the telecommunications company.

As can be seen in the Figure 4.13, the best configuration (without combination), in terms
of accuracy, is using tf-idf weights.

The horizontal bar chart in the Figure 4.14 indicates the MRR value of the worst (without
combination), best (without combination), worst (with combination) and best (with combi-
nation) feature extraction techniques on the bug reports of the telecommunications company.

The best configuration (without combination), in terms of MRR, is only based on tf-idf
weights (Figure 4.14).

The accuracy of the best configuration, when combining feature extraction techniques,
is 75.90 % whereas the best one, when not combining these techniques, is 75.64 % (Figure
4.13). When combining feature extraction techniques, the MRR value of the best configuration
is 84.25 % whereas the best one, when not combining these techniques, is 84.06 % (Figure
4.14). As the differences between both accuracies and both MRR values are relatively low, in
the following experiments conducted on the project of the telecommunications company, the
features have been extracted via only the use of tf-idf weights.

50

4.2. Main experiments

Figure 4.13: Accuracy of the worst (without combination), best (without combination), worst
(with combination) and best (with combination) feature extraction techniques on the bug
reports of the telecommunications company (the mapping of acronyms to feature extraction
techniques defined in the Table 4.2 has been used)

Figure 4.14: MRR of the worst (without combination), best (without combination), worst
(with combination) and best (with combination) feature extraction techniques on the bug
reports of the telecommunications company (the mapping of acronyms to feature extraction
techniques defined in the Table 4.2 has been used)

Eclipse JDT

The horizontal bar chart in the Figure 4.15 illustrates the accuracy of the worst (without com-
bination), best (without combination), worst (with combination) and best (with combination)
feature extraction techniques on the bug reports of Eclipse JDT.

51

4.2. Main experiments

Figure 4.15: Accuracy of the worst (without combination), best (without combination), worst
(with combination) and best (with combination) feature extraction techniques on the bug
reports of Eclipse JDT (the mapping of acronyms to feature extraction techniques defined in
the Table 4.2 has been used)

The best configuration (without combination), in terms of accuracy, is using tf-idf weights
(Figure 4.15).

The horizontal bar chart in the Figure 4.16 indicates the MRR value of the worst (without
combination), best (without combination), worst (with combination) and best (with combi-
nation) feature extraction techniques on Eclipse JDT.

When combining feature extraction techniques, the accuracy of the best configuration is
27.90 % whereas the best one, when not combining these techniques, is 27.45 % (Figure 4.15).
The MRR value of the best configuration is 43.02 % when combining feature extraction tech-
niques, whereas the best one, when not combining these techniques, is 42.56 % (Figure 4.16).
Moreover, the MRR value of the best configuration (in terms of accuracy) is 42.39 % when not
combining feature extraction techniques (Figure B.12), whereas the best one, when combin-
ing these techniques, is 42.93 % (Figure B.14). As the differences between both accuracies and
the different MRR values are relatively low, in the following experiments conducted on the
bug reports of Eclipse JDT, the features have been extracted via only the use of tf-idf weights.

Mozilla Firefox

The horizontal bar chart in the Figure 4.17 shows the accuracy of the worst (without combi-
nation), best (without combination), worst (with combination) and best (with combination)
feature extraction techniques on Mozilla Firefox.

The horizontal bar chart in the Figure 4.18 depicts the MRR value of the worst (without
combination), best (without combination), worst (with combination) and best (with combi-
nation) feature extraction techniques on the bug reports of Mozilla Firefox.

Contrary to the bug reports of the telecommunications company and Eclipse JDT, the best
configuration (without combination), in terms of accuracy and MRR, is only based on the tf
weights (Figures 4.17 and 4.18).

The accuracy of the best configuration when combining feature extraction techniques is
16.79 %, whereas the best one, when not combining these techniques, is 16.78 % (Figure 4.17).

52

4.2. Main experiments

Figure 4.16: MRR of the worst (without combination), best (without combination), worst
(with combination) and best (with combination) feature extraction techniques on the bug
reports of Eclipse JDT (the mapping of acronyms to feature extraction techniques defined in
the Table 4.2 has been used)

Figure 4.17: Accuracy of the worst (without combination), best (without combination), worst
(with combination) and best (with combination) feature extraction techniques on the bug
reports on the bug reports of Mozilla Firefox (the mapping of acronyms to feature extraction
techniques defined in the Table 4.2 has been used)

When not combining feature extraction techniques, the MRR value of the best representation
is 34.62 %, whereas the best one, when combining them, is 34.63 % (Figure 4.18). As the best
accuracy and the best MRR value reached when combining feature extraction techniques are
almost the same as the ones reached when not combining these techniques, the features have

53

4.2. Main experiments

Figure 4.18: MRR of the worst (without combination), best (without combination), worst
(with combination) and best (with combination) feature extraction techniques on the bug
reports on the bug reports of Mozilla Firefox (the mapping of acronyms to feature extraction
techniques defined in the Table 4.2 has been used)

been extracted via only the use of the tf weights in the following experiments conducted on
the bug reports of Mozilla Firefox.

54

4.2. Main experiments

4.2.3 Experiment 3

In this section, the summarized results of the third main experiment of the thesis (Section
3.4.3) are presented.

The detailed results related to the same main experiment can be found in the Appendix
B.3.

For readability purposes, the results are presented with a mapping of acronyms to feature
selection techniques (Table 4.3). If a feature selection technique is applied, its acronym is
used. This string is then concatenated with an hyphen - and the percentage of remaining
features.

If the string CHI-2-30 is used for instance, it means that the χ2 test has been applied.
Based on the results of this test, 30 % of the features have then been selected.

Acronym Feature selection technique
CHI-2 Chi-2

ANOVA ANOVA
MI Mutual information

RFE Recursive Feature Elimination

Table 4.3: The mapping of acronyms to feature selection techniques

Telecommunications company

The horizontal bar chart in the Figure 4.19 illustrates the accuracy of the worst three and best
three feature selection techniques on the project of the telecommunications company.

Figure 4.19: Accuracy of the worst three and best three feature selection techniques on the bug
reports of the telecommunications company (the mapping of acronyms to feature selection
techniques defined in the Table 4.3 has been used)

The horizontal bar chart in the Figure 4.20 depicts the MRR value of the worst three and
best three feature selection techniques on the bug reports of the telecommunications com-
pany.

55

4.2. Main experiments

Figure 4.20: MRR of the worst three and best three feature selection techniques on the bug
reports of the telecommunications company (the mapping of acronyms to feature selection
techniques defined in the Table 4.3 has been used)

As can be seen in the Figures 4.19 and 4.20, the best three configurations are the ones using
the χ2 test as a feature selection technique. The worst three configurations are obtained when
selecting 10 % of the initial features.

The accuracy of the best configuration is 75.64 % (Figure 4.19). Its MRR value is 84.07 %
(Figure 4.20). As this accuracy and this MRR value have almost been reached in the experi-
ment 2, no feature selection technique has been used in the last experiment conducted on the
bug reports of the project of the telecommunications company.

Eclipse JDT

The horizontal bar chart in the Figure 4.21 shows the accuracy of the worst three and best
three feature selection techniques on Eclipse JDT.

The horizontal bar chart in the Figure 4.22 indicates the MRR value of the worst three and
best three feature selection techniques on the bug reports of Eclipse JDT.

In the Figures 4.21 and 4.22, the best configuration is using the χ2 test to select 90 % of the
features. The worst configuration is obtained when selecting 10 % of the initial features via
the use of the mutual information technique.

The accuracy of the best configuration is 27.43 % (Figure 4.21). Its MRR value is 42.38 %
(Figure 4.22). As this accuracy and this MRR value have already been reached in the experi-
ment 2, no feature selection technique has been used in the last experiment conducted on the
bug reports of Eclipse JDT.

Mozilla Firefox

The horizontal bar chart in the Figure 4.23 depicts the accuracy of the worst three and best
three feature selection techniques on the bug reports of Mozilla Firefox.

The horizontal bar chart in the Figure 4.24 indicates the MRR value of the worst three and
best three feature selection techniques on Mozilla Firefox.

Contrary to the bug reports of the telecommunications company and the bug reports of
Eclipse JDT, in the figures 4.23 and 4.24, the best three configurations are using recursive

56

4.2. Main experiments

Figure 4.21: Accuracy of the worst three and best three feature selection techniques on the
bug reports of Eclipse JDT (the mapping of acronyms to feature selection techniques defined
in the Table 4.3 has been used)

Figure 4.22: MRR of the worst three and best three feature selection techniques on the bug
reports of the bug reports of Eclipse JDT (the mapping of acronyms to feature selection tech-
niques defined in the Table 4.3 has been used)

feature elimination as a feature selection technique. The worst two configurations, in terms
of accuracy and MRR value, are selecting 10 % of the initial features.

As can be seen in the Figures 4.23 and 4.24, the accuracy of the best configurations is
16.84 % and their MRR value is 34.65 %. As this accuracy and this MRR value have almost
been reached in the experiment 2, no feature selection technique has been used in the last
experiment conducted on the bug reports of Mozilla Firefox.

57

4.2. Main experiments

Figure 4.23: Accuracy of the worst three and best three feature selection techniques on the bug
reports of Mozilla Firefox (the mapping of acronyms to feature selection techniques defined
in the Table 4.3 has been used)

Figure 4.24: MRR of the worst three and best three feature selection techniques on the bug
reports of Mozilla Firefox (the mapping of acronyms to feature selection techniques defined
in the Table 4.3 has been used)

4.2.4 Experiment 4

The summarized results of the forth main experiment of the thesis (Section 3.4.4) are de-
scribed in this section.

The detailed results related to the same main experiment can be found in the Appendix
B.4.

58

4.2. Main experiments

As mentioned in the Section 3.5, the MRR values of the nearest centroid classifier have not
been computed due to practical reasons.

Telecommunications company

The horizontal bar chart in the Figure 4.25 illustrates the best accuracy of the different clas-
sifiers (grid search and random search strategies) on the project of the telecommunications
company.

Figure 4.25: Best accuracy of the different classifiers (grid search and random search) on the
bug reports of the telecommunications company

Except for the stochastic gradient descent algorithm, the accuracies reached with the best
configuration of each classifier, using a random search strategy, are greater than or equal to
the ones reached when using a grid search strategy (Figure 4.25). In terms of accuracy, when
using a random search strategy, the classifiers are ordered the same way as the one obtained
when using a grid search strategy.

The horizontal bar chart in the Figure 4.26 depicts the best MRR value of the different
classifiers (grid search and random search strategies) on the project of the telecommunica-
tions company.

In terms of accuracy and MRR value, when using a grid search strategy, the best three
classifiers are the linear SVM, the logistic regression and the stochastic gradient descent algo-
rithm (Figures 4.25 and 4.26). In terms of accuracy, the worst configuration is obtained when
using the nearest centroid classifier (Figure 4.25).

Eclipse JDT

The horizontal bar chart in the Figure 4.27 depicts the best accuracy of the different classifiers
(grid search and random search strategies) on the bug reports of Eclipse JDT.

Except for the perceptron, the stochastic gradient descent algorithm, the linear SVM clas-
sifier and the logistic regression, the accuracies reached with the best configuration of each
classifier, using a random search strategy, are greater than or equal to the ones reached when
using a grid search strategy (Figure 4.27).

The horizontal bar chart in the Figure 4.28 indicates the best MRR value of the different
classifiers (grid search and random search strategies) on Eclipse JDT.

59

4.2. Main experiments

Figure 4.26: Best MRR of the different classifiers (grid search and random search) on the bug
reports of the telecommunications company

Figure 4.27: Best accuracy of the different classifiers (grid search and random search) on the
bug reports of Eclipse JDT

When using a grid search strategy or a random search strategy, the best classifier, in terms
of accuracy and MRR value, is the logistic regression (Figures 4.27 and 4.28). The worst
classifier, in terms of accuracy, is the perceptron (Figure 4.27).

Mozilla Firefox

The horizontal bar chart in the Figure 4.29 shows the best accuracy of the different classifiers
(grid search and random search strategies) on Mozilla Firefox.

60

4.2. Main experiments

Figure 4.28: Best MRR of the different classifiers (grid search and random search) on the bug
reports of Eclipse JDT

Figure 4.29: Best accuracy of the different classifiers (grid search and random search) on the
bug reports of Mozilla Firefox

The accuracies reached with the best configuration of each classifier, using a random
search strategy, are greater than or equal to the ones reached when using a grid search strat-
egy (Figure 4.29). In terms of accuracy, when using a random search strategy, the classifiers
are ordered the same way as the one obtained when using a grid search strategy.

The horizontal bar chart in the Figure 4.30 shows the best MRR value of the different
classifiers (grid search and random search strategies) on Mozilla Firefox.

When using a grid search strategy, the best four classifiers, in terms of accuracy and MRR
value, are the naive Bayes classifier (multinomial distribution), the logistic regression, the

61

4.2. Main experiments

Figure 4.30: Best MRR of the different classifiers (grid search and random search) on the bug
reports of Mozilla Firefox

stochastic gradient descent algorithm and the linear SVM classifier (Figures 4.29 and 4.30).
The worst configuration, in terms of accuracy, is obtained when using the nearest centroid
classifier (Figure 4.29).

62

5 Discussion

In this chapter, the results obtained in this work are first analyzed. The applied method is
then discussed. Finally, the ethical and societal aspects related to this thesis are discussed.

5.1 Results

The results obtained in this study are discussed in this section.

5.1.1 Preliminary experiment

The results related to the preliminary experiment of this thesis (Section 4.1 and Appendix A)
are analyzed below.

First sub experiment

In this section, the results of the first sub experiment of the preliminary experiment of the
thesis (Section 4.1.1 and Appendix A.1) are discussed.

In all the configurations of the telecommunications company, the accuracy on the test set
was above 40 % (Figures 4.1, A.1 and A.2). The accuracies on the test sets of all the config-
urations of Eclipse JDT and Mozilla Firefox was however below 30 % (Figures 4.2, A.3, A.4,
4.3, A.5 and A.6). The observed difference between the performance of a classifier on the bug
reports of the telecommunications company and the other data sets is probably due to the
fact that the number of classes is significantly lower in the first data set than in the other ones.
Increasing the number of classes has thus a negative impact on the performance of a classifier.
This observation is also valid for the second sub experiment of the preliminary experiment
and the other main experiments of the thesis.

Regarding the configurations based on less than 8 folds, and, applied on the bug reports
of the telecommunications company, as the accuracy on the test set decreases with an increase
in the number of bug reports in the training set, a machine learning algorithm should make
its predictions on a number of bug reports not greater than one eighth of the data set before
being re-trained (Figures 4.1 and A.1). One eighth of the data set represents approximately the
number of bug reports submitted during 6 months and a quarter. In their work, L. Jonsson
et al. [20] have shown that the accuracy of a machine learning algorithm decreases when

63

5.1. Results

it is trained on older data. When making its last predictions on the bug reports of more
than one eighth of the data set, the decisions of a machine learning algorithm are based on
knowledge learned from significantly old bug reports. This phenomenon is probably the
cause of the drop in its accuracy. When the configuration is based on no more than 8 folds,
the same observation could be made for the bug reports of Eclipse JDT (Figures 4.2 and A.3).
On this data set, a classifier should make its predictions on a number of bug reports lower
than one eighth of the data set before being re-trained. This observation is also valid for
the configurations using less than 8 folds, and, applied on the bug reports of Mozilla Firefox
(Figures 4.3 and A.5). On this data set, a classifier should not make its predictions on more
than one eighth of the bug reports before being re-trained.

Regarding the configurations based on at least 8 folds of the telecommunications company
(Figures 4.1, A.1 and A.2), the results are consistent with the findings made by L. Jonsson et
al. [20]. The accuracy on the test set has generally increased, then, decreased. The maximum
is reached when the number of bug reports in the training set is between 10 000 and 20 000.
One fiftieth of the data set represents approximately the number of bug reports submitted
during 1 month. Based on the results of this experiment, if the model is re-trained every
month in production, it should be trained on 15 000 bug reports so that it could reach its
optimum accuracy. Concerning the configurations based on more than 8 folds, the same
observation could be made on the bug reports of Eclipse JDT (Figures 4.2, A.3 and A.4). The
maximum accuracy is always reached when the number of bug reports in the training set is
between 2 500 and 5 000. If a classifier is re-trained every 3 3

4 months (around one fiftieth of
the data set is submitted during this period), each time, it should be trained on around 4 000
bug reports to reach its maximum accuracy. Concerning the configurations using at least 8
folds, and, applied on the bug reports of Mozilla Firefox, the maximum accuracy is reached
when the size of the training set is between 3 000 and 10 000 (Figures 4.3, A.5 and A.6). If a
classifier is re-trained every 3.8 months (during this period, around one fiftieth of the data set
is generated), it should be trained on around 4 500 bug reports.

For four of the five data sets used by L. Jonsson et al. [20], the maximum accuracy was
reached when the number of bug reports in the training set was between 1 000 and 2 000. For
the remaining data set, the accuracy on the test set has steadily increased with an increase in
the size of the training set. The authors have considered that the aforementioned behaviour
was a special case. The differences between the results obtained on four of the five data sets
of the above mentioned authors and the results obtained in this work are probably due to the
following reason: the data sets used in the study of these authors are not the same as the ones
used in this thesis.

Second sub experiment

In this section, the results of the second sub experiment of the preliminary experiment of the
thesis (Section 4.1.2 and Appendix A.2) are discussed.

Concerning the bug reports of the telecommunications company and Eclipse JDT (Figures
4.4, A.7, A.8, 4.5, A.9 and A.10), as the results are not exactly similar to the ones obtained in
the first preliminary experiment (Figures 4.1, A.1, A.2, 4.2, A.3 and A.4), the bug reports of the
last folds are not representative of the whole data sets. Regarding the predictions made on
the last quarters of the aforementioned data sets (Figures 4.4 and 4.5), the same observation
as the one made regarding the first sub experiment of the preliminary experiment could be
made. The drop in the accuracy of the classifier is probably related to the significant size of
the test set.

Regarding the other configurations of the telecommunications company (Figures 4.4, A.7
and A.8), it seems that the general behaviour of the classifier is similar to the one observed
in the first preliminary experiment (Figures 4.1, A.1 and A.2). The accuracy on the test set
seems to increase, then, decrease. More specifically, when making its predictions on the bug
reports of no more than the last eighth of the data set, the maximum accuracy of the machine

64

5.1. Results

learning algorithm is reached if it has been trained on an amount of between 30 000 and 40
000 bug reports. Regarding the remaining configurations, the maximum is not reached with
the bug reports in the data set. It is probably related to the fact that a significant proportion
of the bug reports in the test set are not similar to the bug reports in the training set. Based
on a discussion with an expert bug triager of the telecommunications company, when the
experiment was conducted, the firm was developing a new software product. A growing
proportion of bug reports related to this new product were consequently being submitted.

Concerning the other configurations of Eclipse JDT, although the accuracy on the test set
has fluctuated on the last one, it has generally decreased with an increase in the size of the
training set until stabilizing (Figures 4.5, A.9 and A.10). It seems that the increase in the size
of the training set has added some noise. As with the bug reports of the telecommunications
company, it is probably related to the fact that a significant proportion of the bug reports in
the test set is different from the bug reports added to the training set.

Regarding the bug reports of Mozilla Firefox (Figures 4.6, A.11 and A.12), the behaviour
of the classifier on the last fold is close to the behaviour observed in the first sub experiment
conducted on the same data set (Figures 4.3, A.5 and A.6). It means that the last fold is
relatively representative of the whole data set. When at least 8 folds were used, as in the
results of the first sub experiment, the maximum accuracy was thus reached when the size of
the training set was between 3 000 and 10 000.

5.1.2 Main experiments

The results related to the main experiments of this thesis (Section 4.2 and Appendix B) are
analyzed below.

Experiment 1

In this section, the results related to the first main experiment of the thesis (Section 4.2.1 and
Appendix B.1) are discussed.

The method used in this experiment is the answer to the first research question (Section
1.3). In the context of this experiment, several combinations of pre-processing techniques
were applied on the bug reports. Several instances of the same classifier were trained on the
bug reports differently pre-processed. The combination of pre-processing techniques which
gave the best results was then selected.

When the conversion to lower case was used, the results were always better for all the
software development projects. This observation is consistent with the choices made in some
related scientific publications. In their papers, Helming et al. [18], Jonsson et al. [20] and
Čubranić et al. [14] have applied the aforementioned pre-processing technique on their bug
reports before training and testing some classifiers. The reasons behind the choices of the
authors of these publications concerning this pre-processing technique were not explicitly
mentioned. One can guess that, after having made some minor experiments, they noticed
that they obtained better results when converting each token to lower case.

For the telecommunications company (Figures 4.7, B.1, 4.8 and B.2) and Mozilla Firefox
(Figures 4.11, B.5, 4.12 and B.6), the best results, in terms of accuracy and MRR, have been
reached when the tokens containing only numbers were removed. In terms of accuracy, the
best results were reached when removing the stop words from the bug reports of the telecom-
munications company (Figures 4.7 and B.1) and Eclipse JDT (Figures 4.9 and B.3).

As can be seen, the best combinations of pre-processing techniques are not similar for the
three projects studied in this thesis.

For the bug reports of any project, the best configuration of this experiment was not based
on the use of a stemmer. This result is coherent with one of the findings of Čubranić et
al. [14]. According to them, using a stemmer does not significantly affect the accuracy of a
classifier used to solve the automatic bug assignment problem. In some other prior works, the

65

5.1. Results

researchers have nevertheless used this pre-processing technique to probably improve their
results [37, 9, 39]. In the aforementioned papers, the reasons related to the choices of their
authors regarding this pre-processing technique were not precisely explained. If their choices
were based on a comparison of the performance of their model when using and not using this
technique, the difference in their results could be explained by the following reasons:

• the aforementioned authors might have used a stemmer different from the one used in
this thesis;

• all the aforementioned researchers have introduced a new model not solely based on a
classifier;

• the focus of Ye et al. [39] was on automatic fault localization and not on automatic bug
assignment;

• their data sets were not exactly the same as the ones used in this thesis.

Using the method introduced in this thesis would have allowed the above mentioned
authors to justify their choices regarding the use of a stemmer and would have allowed them
to make the right choice based on their data sets.

Based on the results of the first experiment, the tokens which are not discriminative
should be removed and this might be done via the use of regular expressions. As the use
of the conversion to lower case had a positive impact on the performance of the linear SVM
classifier, this pre-processing technique should probably also be used. For all the projects
studied in the thesis, the best configuration of the first experiment was not based on the use
of a stemmer. Nevertheless, as there exist various stemmers, and, only one instance of this
pre-processing technique has been used in this thesis, no conclusion can be drawn from this
experiment regarding them.

Experiment 2

In this section, the results related to the second main experiment of the thesis (Section 4.2.2
and Appendix B.2) are discussed .

The method used in the experiment 2 is the answer to the second research question (Sec-
tion 1.3). Several feature extraction techniques have been used on the bug reports of three
software development projects. A classifier was then trained on the output of each feature
extraction technique. The feature extraction technique which output allowed us to obtain the
best results, in terms of accuracy and MRR, was eventually selected.

In the first part of the experiment 2, except for the Mozilla Firefox project, the worst five
configurations were extracting ten features using either NMF or LSI (Figures B.7, B.8, B.11
and B.12). For all the projects, the best two feature extraction configurations were not based
on NMF or LSI, and, not relying on a Boolean representation of the bug reports (Figures B.7,
B.8, B.11, B.12, B.15 and B.16). Except for the Mozilla Firefox project, the best configuration, in
terms of accuracy, was only relying on the tf-idf weights (Figures 4.13, B.7, 4.15 and B.11). Re-
garding the bug reports of the Firefox project (Figure B.15), the second best configuration, in
terms of accuracy, is also based on tf-idf weights (this configuration is less than 0.5 percentage
point behind the first configuration which is only using tf weights). The LSI algorithm seems
to be more suited for a representation only based on the tf-idf weights. Except for the Firefox
project, the NMF algorithm gave its best results when running on a Boolean representation of
the bug reports (Figures B.7, B.8, B.11 and B.12). Except with a Boolean representation of the
bug reports of Mozilla Firefox, when extracting more features via NMF or LSI, the accuracy
and the MRR value have increased (Figures B.7, B.8, B.11, B.12, B.15 and B.16).

In the second part of the experiment 2, except for Mozilla Firefox, the best configurations
were the ones combining the tf-idf weights of the bug reports with another feature extraction

66

5.1. Results

technique (Figures B.9, B.10, B.13 and B.14). In all the software development projects, the
worst configurations were using NMF (Figures B.9, B.10, B.13, B.14, B.17 and B.18).

At least for the bug reports of the telecommunications company and Eclipse JDT, the re-
sults obtained in the second experiment are consistent with the choices made in some prior
works regarding the feature extraction technique to use (Figures 4.13, B.7, 4.14, B.8, 4.15, B.11,
4.16 and B.12). The similarity index used by Shokripour et al. [30] was indeed based on the
formula used to compute the tf-idf weights (Equation 2.2). Their choice was probably based
on a comparison with the results obtained using some other similarity indices based on some
other feature extraction techniques. In their approaches used to solve the automatic bug as-
signment problem, Bhattacharya et al. [9] and Jonsson et al. [20] have used the tf-idf weights
to extract the features from the bug reports. In the aforementioned papers, the reasons related
to the choices of their authors regarding this feature extraction technique were not precisely
explained. One can guess that it was probably based on the results related to some minor
experiments made using some other feature extraction techniques. In their paper, Thomas
et al. [34] compared the results obtained using different feature extraction techniques. For
all the projects studied in their work, even if they have not used any classifiers, the best re-
sults of their first experiment was obtained when using the tf-idf weights in the vector space
model. Their results are similar to the results obtained in this thesis even if the data sets are
not similar. In the context of the component assignment problem, Somasundaram et al. [32]
compared the accuracies obtained using three different configurations: tf-idf and SVM, LDA
and SVM, and, LDA and KL divergence. As in this thesis, the best results, in average, in
terms of accuracy, were obtained when using a SVM classifier trained on tf-idf weights. In
their work, Ahsan et al. [1] have compared the results obtained using different feature extrac-
tion techniques (tf-idf weights or tf weights combined with different configurations of LSI)
and different machine learning algorithms. In their paper, they obtained their best results, in
terms of accuracy, precision and recall, when using a SVM algorithm trained on 100 features
extracted via the LSI algorithm run on the tf weights of the tokens of the bug reports. The
difference in their results could be explained by the following reasons:

• they have not used a linear SVM classifier as in this thesis, but, a normal SVM classifier;

• they have used some feature selection techniques between the computation of the tf
weights and the use of the LSI algorithm;

• they have filtered out more than 60 % of the bug reports they had downloaded so that
their text classification problem contains only 18 classes (instead of 186);

• they have not only used the title and the description fields of the bug reports (they
have also used the product, the component and the operating system fields of the bug
reports);

• even if they have also used some bug reports of the Mozilla project, their data set was
not the same as the ones used in this thesis.

Regarding the bug reports of Mozilla Firefox, I believe that it was a special case (Fig-
ures 4.17, B.15, 4.18 and B.16). The results are nevertheless still consistent with the above
mentioned prior works. The accuracy and the MRR value of the configuration based on the
tf-idf weights are thus just behind the same metrics values of the configuration using only tf
weights. The tf weights are, furthermore, calculated with the first term of the equation used
to compute the tf-idf weights (Equation 2.2). The obtained results could probably be justified
by the fact that some tokens occur in a significant proportion of the bug reports of Mozilla
Firefox, but, are still discriminative. Using the inverse document frequencies would have
indeed a negative impact on the predictions of the classifier.

67

5.1. Results

Experiment 3

In this section, the results related to the third main experiment of the thesis (Section 4.2.3 and
Appendix B.3) are discussed.

The method used to conduct the experiment 3 is the answer to the third research ques-
tion (Section 1.3). Several feature selection techniques with various proportions of remaining
features have been used. The configuration on which a classifier gave the best results was
eventually kept.

For all the software development projects studied in this thesis, the worst configuration
was obtained when selecting 10 % of the initial features (Figures 4.19, B.19, 4.20, B.20, 4.21,
B.21, 4.22, B.22, 4.23, B.23, 4.24 and B.24).

Except for Mozilla Firefox, for all the software development projects, the best configu-
rations were the ones relying on the χ2 feature selection technique (Figures 4.19, B.19, 4.20,
B.20, 4.21, B.21, 4.22, and B.22). Before conducting further studies on the χ2 technique, Xuan
et al. [38] had compared the accuracy they could reach using four different feature selection
techniques. As with the bug reports of the telecommunications company and Eclipse JDT,
their best results were reached when using the χ2 feature selection technique. In their pub-
lication, Alenezi et al. [2] had compared the use of five feature selection techniques before
applying the naive Bayes classifier. They have also obtained their best results when using the
χ2 feature selection technique.

In their paper, Xuan et al. [38] have found that using a feature selection technique can
increase the accuracy of a classifier. As mentioned in the section describing the results of
the experiment 3 (Section 4.2.3), except with the bug reports of Mozilla Firefox, none of the
feature selection techniques used in this thesis has increased the accuracy of the predictions
of the classifier. The difference observed between both results could be explained by the
following reasons:

• the finding made by the above mentioned authors was mainly based on the use of the
naive Bayes machine learning algorithm (not on the linear SVM classifier);

• they have filtered out the bug reports fixed by the developers who had fixed less than
10 bug reports in their data sets;

• even if they obtained their best results when selecting 30 % or 50 % of the features,
other percentages than the ones used in this thesis might have eventually improved the
accuracy of the classifier;

• their data sets were not exactly the same as the ones used in this thesis.

For the bug reports of the telecommunications company, selecting 90 % of the features
with the χ2 test has, nevertheless, increased the value of the MRR metric (Figures 4.20 and
B.20). Selecting 50 % of the features via the recursive feature elimination technique has, fur-
thermore, increased the values of both the accuracy and the MRR metrics on the bug reports
of Mozilla Firefox (Figures 4.23, B.23, 4.24 and B.24).

Even if the results obtained on the bug reports of Mozilla Firefox are consistent with the
aforementioned prior works, I believe that it is a special case (Figures 4.23, B.23, 4.24 and
B.24). The results are thus drastically different from the results obtained on the two other
projects studied in this thesis. Using recursive feature elimination has, indeed, increased the
accuracy of the linear SVM classifier only on this project. Contrary to the other projects, the
best configuration was based on recursive feature elimination and not on χ2.

Contrary to the studies of Xuan et al. [38], in this thesis, the best results were reached
when selecting a number of features close to the original number of features. The difference
observed in my results might also be due to the fact that I have used the linear SVM classifier.
When Xuan et al. [38] used the SVM classifier in their study, they thus obtained some results
similar to the results obtained in this thesis. Among three algorithms, when they applied both

68

5.1. Results

some instance selection and feature selection techniques, the only machine learning algorithm
for which the accuracy decreased, was SVM.

For all the projects studied in this thesis, there was at least one feature selection configura-
tion which had divided the size of the feature vectors by 10, and, had decreased the values of
the accuracy and the MRR metrics by less than 0.5 percentage point (Figures B.19, B.20, B.21,
B.22, B.23 and B.24). This result is interesting because it shows that one can drastically reduce
the computation cost related to the training phase of a classifier without having a significant
negative impact on its performance.

Experiment 4

In this section, the results related to the forth main experiment of the thesis (Section 4.2.4 and
Appendix B.4) are discussed.

The method used in the context of the experiment 4 is the answer to the forth research
question (Section 1.3). Several classifiers have been tuned on the bug reports of the three
projects, using a grid search strategy and a random search strategy. The best performing
classifier, in terms of accuracy and MRR, has eventually been selected.

Except for Mozilla Firefox, for all the projects studied in this thesis, the best configuration,
in terms of accuracy, was obtained when tuning either the linear SVM classifier or the logistic
regression classifier (Figures 4.25, B.25, B.27, 4.27, B.29 and B.31). This result is consistent
with the findings made in several prior works [4, 20, 1, 18]. In the context of automatic bug
assignment, the authors of the aforementioned papers have compared the performance of
several classifiers including SVM: in these papers, the SVM classifier has outperformed the
other ones. Even if it seems that the above mentioned authors had not tuned the different
classifiers before comparing them (except in the paper of Jonsson et al. [20], the authors did
not explicitly mention that they had not used any tuning), the above mentioned results con-
firm the reliability of this thesis. Among the aforementioned authors, only Jonsson et al. [20]
have tried to use a logistic regression classifier in their comparison. They have nevertheless
not obtained all the results related to this classifier due to some out of memory issues, and,
the time needed to train this classifier.

Regarding the bug reports of Mozilla Firefox, as with the previous experiments, I believe
that it was a special case (Figures 4.29, B.33, B.35, 4.30, B.34 and B.36). The results are never-
theless still consistent with the aforementioned prior works. In terms of accuracy and MRR
value, the linear SVM classifier is thus always one of the best five classifiers used in this study.
More specifically, in terms of accuracy, the best configurations of the logistic regression (pri-
mal problem) are furthermore just behind the best configurations of the naive Bayes classifier
based on a multinomial distribution (Figures B.33 and B.35). For both the grid search and
random search strategies, the highest MRR values were reached when tuning the logistic re-
gression solving a primal problem (Figures B.34 and B.36). In the papers of Anvik et al. [4],
Jonsson et al. [20] and Ahsan et al. [1], the accuracy reached with a naive Bayes classifier
was significantly lower than the accuracy reached when using a SVM classifier. Neverthe-
less, in the study of Helming et al. [18], the performance of a naive Bayes classifier was
almost similar to the performance of a SVM classifier. For two of the three projects studied in
the aforementioned paper, the naive Bayes classifier had thus better accuracy than the linear
SVM classifier. The results of Helming et al. [18] therefore confirm the reliability of this thesis.

One of the findings of Bergstra et al. [7] was that the use of the random search strategy
is more efficient than the use of the grid search strategy when tackling the hyper-parameter
optimization problem. The results related to the experiment 4 of the thesis are consistent
with the finding of the above mentioned authors. With the same computational budget, in
terms of accuracy and MRR value, the results obtained with the random search strategy are
almost similar to the ones obtained with the grid search strategy. For the bug reports of
the telecommunications company and Mozilla Firefox, the configurations which reached the
highest accuracy were furthermore found using a random search strategy.

69

5.2. Method

5.2 Method

In all the experiments of the study, the approach of Tian et al. [35] has been used to build
the data set. The bug reports have thus been sorted based on their reported dates. Training
a machine learning algorithm on a shuffled data set would have had a positive impact on
its accuracy. I nevertheless believe that the calculated accuracy on the validation set or the
test set would not have been representative of its true performance. This algorithm would
have made its predictions based on knowledge partly learned from bug reports historically
submitted after the ones being analyzed. As this situation would not occur in production, I
decided to sort the bug reports using their reported dates.

In the experiments 1, 2 and 3 of the thesis, only the linear SVM classifier, respectively, has
been used to select a combination of pre-processing techniques, a feature extraction technique
and a potential feature selection technique. This choice might have had an impact on the re-
sults obtained in this thesis. In their study, Xuan et al. [38] have compared the accuracies
of three classifiers (SVM, kNN and naive Bayes) when combining the ICF instance selection
technique with the χ2 feature selection technique. They obtained the best results when using
the naive Bayes classifier. The only classifier for which the accuracy decreased, was, however,
SVM. This finding shows that the usefulness of a feature selection technique might be related
to the classifier which is used. There might also be some correlations between the selected
classifier and the optimal combination of pre-processing techniques, and, the selected classi-
fier and the optimal feature extraction technique. The results of the first three experiments
may also have impacted the following experiments. Conducting a full factorial experiment
on all the factors of all the experiments of the thesis would be the ideal method. This approach
is nevertheless practically not feasible due to combinatorial explosion and some continuous
factors. The method introduced in this thesis is an heuristic mainly used to avoid the combi-
natorial explosion problem.

Although the results related to the first experiment of the thesis are consistent with the
findings of Čubranić et al. [14], some other researchers have used stemming in their works
[37, 9, 39]. This choice could be based on the fact that a specific stemmer had a positive impact
on the predictions of their models. As the aforementioned authors might have used other
stemmers than the one used in this thesis (the Porter stemming algorithm), these decisions are
not considered as threats for the reliability of this Master’s thesis. The focus of my work was
on introducing a method to improve the accuracies of several classifiers solving the automatic
bug assignment problem and not on the results themselves. The approach introduced in
this work could be extended by comparing the impacts of several types of stemmers and
lemmatizers in the framework of the first experiment.

In the context of the first experiment, the regular expressions used to remove less dis-
criminative tokens might have a negative impact on the replicability of this study. Writing
these regular expressions was based on my common sense and some discussions with some
bug triagers of the telecommunications company. For each of these regular expressions, its
impact on the accuracy of the linear SVM classifier was assessed. If the impact was positive,
the regular expression was retained. Otherwise, it was deleted. This parameter of the first
experiment should nevertheless not be considered as a threat to the reliability of the study.
Using exactly the same regular expressions as the ones written in the context of this work, on
the same data sets, should lead to the same results.

In their work, Anvik et al. [4] have used some heuristics1 to label the bug reports of
Mozilla Firefox and Eclipse. Due to the time constraints related to this thesis work, these
heuristics have not been applied. In their study, Anvik et al. [4] have downloaded every
bug report of Eclipse and Mozilla Firefox, resolved or assigned within a specific period of
time. Contrary to my work, they have not only downloaded the bug reports with a FIXED
resolution, and, with a RESOLVED, VERIFIED or CLOSED status. As most of their heuristics

1http://www.cs.ubc.ca/labs/spl/projects/bugTriage/assignment/heuristics.html

70

http://www.cs.ubc.ca/labs/spl/projects/bugTriage/assignment/heuristics.html

5.3. The work in a wider context

were used to label the bug reports not with a FIXED resolution, this decision should not have
a major impact on my results. Even if the results of the thesis were impacted by this deci-
sion, as the focus of this study is mainly on the introduced approach and not on the results
themselves, this choice should not be considered as a treat to the validity of this work. As
in the work of Anvik et al. [4], if one wants to significantly improve the accuracy of a classi-
fier, one could remove from the data set the bug reports solved by the developers who have
not fixed at least a certain amount of bug reports recently. As in the paper of Shokripour et
al. [30], one could also use a larger N (N ą 1) when evaluating the performance of his or her
algorithm with the top N accuracy metric. In this thesis, N = 1 has been selected because
the emphasis was not on the accuracy itself, but on the benefits that the application of the
introduced method could bring on the accuracies and the MRR values of the classifiers solv-
ing the automatic bug assignment problem. In production, using the approach introduced in
this work on the bug reports of the telecommunications company would have increased the
accuracy by up to 16.64 percentage points (the difference between the accuracy of the best
configuration of the last experiment and the accuracy of the worst configuration of the first
experiment). Applying the approach on the bug reports of Eclipse JDT would have increased
the accuracy by up to 2.85 percentage points (the difference between the accuracy of the best
configuration of the last experiment and the accuracy of the worst configuration of the first
experiment). However, using this method on the bug reports of Mozilla Firefox would have
decreased the accuracy by up to 2.75 percentage points (the difference between the accuracy
of the best configuration of the last experiment and the accuracy of the best configuration of
the first experiment). After having conducted some minor experiments, I have noticed that
this decrease was due to the fact that the parameter class_weight of the constructors of
several classifiers used in the forth experiment had been set to "balanced" (Section 3.4.4).
As the data set of Mozilla Firefox was imbalanced, the accuracy has decreased when conduct-
ing the forth experiment. This problem could have been solved by adding some additional
configurations to tune the hyper parameter class_weight (in the experiment 4). One could
also ignore the last experiment of the approach introduced in this thesis if it has a negative im-
pact on the accuracy. When ignoring the forth experiment, applying the approach on the bug
reports of Mozilla Firefox would have thus increased the accuracy by up to 1.46 percentage
point (the difference between the accuracy of the best configuration of the third experiment
and the accuracy of the worst configuration of the first experiment).

5.3 The work in a wider context

According to Frey et al. [16], due to the abundance of data related to certain tasks and recent
advances in artificial intelligence, not only the tasks that are explicitly definable with rules
could be automated. Only the tasks, in which an agent needs to interact with an unstructured
environment, use its creativity or interact with other people, are less likely to be automated.
In their work, these authors have intended to estimate the probabilities of 702 jobs to be
automated via the use of a Gaussian process classifier. They have found that the high-income
jobs and the jobs that are usually done by more highly educated people are respectively less
likely to be automated than the low-income jobs and the jobs that are done by less educated
people. To the authors’ mind, this result is a radical change with the present trend. During
the nineteenth century, due to advances in production technologies, a significant proportion
of tasks requiring more skills have been replaced by tasks requiring less skills. During the
twentieth century, there has been a decrease in the demand of middle-income jobs due to
automation. Based on the results of the aforementioned authors, the low-income jobs will
mainly be impacted by automation during the twenty-first century.

Bug triage is usually not a full-time activity. It is thus a task done by one or several per-
son(s) called bug triager(s). These people have generally a broad knowledge of the software
development project and are sometimes managers. Although this task is generally not done

71

5.3. The work in a wider context

by a low-paid worker or less educated person of the software development project, this task
is susceptible to being automated as the bug triager does not need to significantly interact
with his or her environment, use his or her creativity, or, his or her social skills. The triager
mainly needs to use his or her knowledge of the project to assign a bug report to a developer,
or, a team having the required skills to solve the problem. As shown in this study, using the
prior decisions taken by the human bug triagers, a significant proportion of this knowledge
can be learned by some machine learning algorithms.

Due to the stressful, arduous and time consuming aspects of bug triage, carrying out this
task was not appreciated by the bug triagers I have worked with in the telecommunications
company. Automating, partially or totally, this task would allow them to save some time to
do some other tasks that are less likely to be automated and less arduous. Automating this
task would also have an obvious positive economic impact on all the software development
projects relying on manual bug assignment.

72

6 Conclusion

Due to its significant cost in the maintenance of a product, the partial or total automation
of bug triage via the use of machine learning algorithms would be advantageous for many
software development projects.

According to Thomas et al. [34], the configuration of a classifier impacts the quality of its
predictions when solving the automatic bug localization problem. Based on the result of the
aforementioned authors, the purpose of this thesis was to introduce a systematic approach
to find some of the best existing configurations, in terms of accuracy and MRR, of several
classifiers intending to solve the automatic bug assignment problem.

The method introduced in this thesis is an heuristic made up of four steps. In each of
them, several configurations are compared on the first 90 % of the bug reports in the data
set. The best configuration of each of the first three experiments is used in the following
one(s). The accuracy and the MRR value of a linear SVM classifier are used to select the
best configuration in each of the first three steps. In the first step, several combinations of
pre-processing techniques are compared, and, the one which leads to the best accuracy is
selected. The second step consists of comparing different feature extraction techniques and
selecting the technique which gives the best results in terms of accuracy. In the context of the
third step, different feature selection configurations are applied on the bug reports and the
configuration which leads to the best accuracy is selected. In the last step, via the use of the
grid search strategy and the random search strategy, several classifiers are tuned and the best
performing one is eventually selected. Its performance is finally evaluated on the remaining
10 % of the bug reports.

The above mentioned method has been applied on three software development projects:
66 066 bug reports of a proprietary project of a telecommunications company, 24 450 bug
reports of Eclipse JDT and 30 358 bug reports of Mozilla Firefox. 619 configurations have
been applied and compared on each of these three projects. In production, when solving the
automatic bug assignment problem, the application of the method introduced in this thesis on
the bug reports of the telecommunications company has the potential to increase the accuracy
by up to 16.64 percentage points.

Future work could focus on extending the method introduced in this thesis by adding
more factors in each of its four steps. This could be achieved by using other pre-processing
techniques, other bug reports representations, other feature selection techniques or other clas-
sifiers. Another possibility could be the use of the other fields of the bug reports. The use of

73

several classifiers in the first three steps of the method instead of the only use of the linear
SVM classifier could be another alternative. Practitioners can also apply the method intro-
duced in this work on other proprietary, or, open source projects, and, then, assess the impact
of the use of the approach.

74

Bibliography

[1] Syed Nadeem Ahsan, Javed Ferzund, and Franz Wotawa. “Automatic software bug
triage system (bts) based on latent semantic indexing and support vector machine”. In:
Software Engineering Advances, 2009. ICSEA’09. Fourth International Conference on. IEEE.
2009, pp. 216–221.

[2] Mamdouh Alenezi, Kenneth Magel, and Shadi Banitaan. “Efficient Bug Triaging Using
Text Mining.” In: JSW 8.9 (2013), pp. 2185–2190.

[3] John Anvik, Lyndon Hiew, and Gail C Murphy. “Coping with an open bug repository”.
In: Proceedings of the 2005 OOPSLA workshop on Eclipse technology eXchange. ACM. 2005,
pp. 35–39.

[4] John Anvik, Lyndon Hiew, and Gail C Murphy. “Who should fix this bug?” In: Pro-
ceedings of the 28th international conference on Software engineering. ACM. 2006, pp. 361–
370.

[5] John Anvik and Gail C Murphy. “Reducing the effort of bug report triage: Recom-
menders for development-oriented decisions”. In: ACM Transactions on Software Engi-
neering and Methodology (TOSEM) 20.3 (2011), p. 10.

[6] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. Modern information retrieval. Vol. 463.
ACM press New York, 1999, pp. 19–34.

[7] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter optimiza-
tion”. In: Journal of Machine Learning Research 13.Feb (2012), pp. 281–305.

[8] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and Sunghun Kim. “Dupli-
cate bug reports considered harmful. . . really?” In: Software maintenance, 2008. ICSM
2008. IEEE international conference on. IEEE. 2008, pp. 337–345.

[9] Pamela Bhattacharya, Iulian Neamtiu, and Christian R Shelton. “Automated, highly-
accurate, bug assignment using machine learning and tossing graphs”. In: Journal of
Systems and Software 85.10 (2012), pp. 2275–2292.

[10] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python:
analyzing text with the natural language toolkit. " O’Reilly Media, Inc.", 2009, pp. 60–62,
107–112.

[11] Christopher M.. Bishop. Pattern recognition and machine learning. Springer, 2006, pp. 1–4,
32–38, 179–196, 203–210, 325–345, 378–383, 663–666.

75

Bibliography

[12] David M Blei, Andrew Y Ng, and Michael I Jordan. “Latent dirichlet allocation”. In:
Journal of machine Learning research 3.Jan (2003), pp. 993–1022.

[13] Nick Craswell. “Mean reciprocal rank”. In: Encyclopedia of Database Systems. Springer,
2009, pp. 1703–1703.

[14] Davor Čubranić. “Automatic bug triage using text categorization”. In: In SEKE 2004:
Proceedings of the Sixteenth International Conference on Software Engineering & Knowledge
Engineering. Citeseer. 2004.

[15] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and Richard
Harshman. “Indexing by latent semantic analysis”. In: Journal of the American society for
information science 41.6 (1990), p. 391.

[16] Carl Benedikt Frey and Michael A Osborne. “The future of employment: how suscep-
tible are jobs to computerisation?” In: Technological Forecasting and Social Change 114
(2017), pp. 254–280.

[17] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. “Gene selec-
tion for cancer classification using support vector machines”. In: Machine learning 46.1
(2002), pp. 389–422.

[18] Jonas Helming, Holger Arndt, Zardosht Hodaie, Maximilian Koegel, and Nitesh
Narayan. “Semi-automatic Assignment of Work Items.” In: ENASE 10 (2010), pp. 149–
158.

[19] Gaeul Jeong, Sunghun Kim, and Thomas Zimmermann. “Improving bug triage with
bug tossing graphs”. In: Proceedings of the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations of software
engineering. ACM. 2009, pp. 111–120.

[20] Leif Jonsson, Markus Borg, David Broman, Kristian Sandahl, Sigrid Eldh, and Per
Runeson. “Automated bug assignment: Ensemble-based machine learning in large
scale industrial contexts”. In: Empirical Software Engineering (2015), pp. 1–46.

[21] Daniel D Lee and H Sebastian Seung. “Learning the parts of objects by non-negative
matrix factorization”. In: Nature 401.6755 (1999), pp. 788–791.

[22] Zhongpeng Lin, Fengdi Shu, Ye Yang, Chenyong Hu, and Qing Wang. “An empirical
study on bug assignment automation using Chinese bug data”. In: Empirical software en-
gineering and measurement, 2009. ESEM 2009. 3rd international symposium on. IEEE. 2009,
pp. 451–455.

[23] Mario Linares-Vásquez, Kamal Hossen, Hoang Dang, Huzefa Kagdi, Malcom Gethers,
and Denys Poshyvanyk. “Triaging incoming change requests: Bug or commit history,
or code authorship?” In: Software Maintenance (ICSM), 2012 28th IEEE International Con-
ference on. IEEE. 2012, pp. 451–460.

[24] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, et al. Introduction to
information retrieval. Vol. 1. 1. Cambridge university press Cambridge, 2008, pp. 269–
273.

[25] Hoda Naguib, Nitesh Narayan, Bernd Brügge, and Dina Helal. “Bug report assignee
recommendation using activity profiles”. In: Mining Software Repositories (MSR), 2013
10th IEEE Working Conference on. IEEE. 2013, pp. 22–30.

[26] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. “Thumbs up?: sentiment clas-
sification using machine learning techniques”. In: Proceedings of the ACL-02 conference
on Empirical methods in natural language processing-Volume 10. Association for Computa-
tional Linguistics. 2002, pp. 79–86.

[27] Claudia Perlich. “Learning curves in machine learning”. In: Encyclopedia of Machine
Learning. Springer, 2011, pp. 577–580.

76

Bibliography

[28] Stuart Jonathan Russell, Peter Norvig, John F Canny, Jitendra M Malik, and Douglas
D Edwards. Artificial intelligence: a modern approach. 3rd ed. Vol. 2. Prentice hall Upper
Saddle River, 2003, pp. 693–697.

[29] Fabrizio Sebastiani. “Machine learning in automated text categorization”. In: ACM com-
puting surveys (CSUR) 34.1 (2002), pp. 1–47.

[30] Ramin Shokripour, John Anvik, Zarinah M Kasirun, and Sima Zamani. “A time-based
approach to automatic bug report assignment”. In: Journal of Systems and Software 102
(2015), pp. 109–122.

[31] Ramin Shokripour, John Anvik, Zarinah M Kasirun, and Sima Zamani. “Why so com-
plicated? simple term filtering and weighting for location-based bug report assign-
ment recommendation”. In: Proceedings of the 10th Working Conference on Mining Software
Repositories. IEEE Press. 2013, pp. 2–11.

[32] Kalyanasundaram Somasundaram and Gail C Murphy. “Automatic categorization of
bug reports using latent dirichlet allocation”. In: Proceedings of the 5th India software
engineering conference. ACM. 2012, pp. 125–130.

[33] B Surendiran and A Vadivel. “Feature selection using stepwise ANOVA discriminant
analysis for mammogram mass classification”. In: International J. of Recent Trends in En-
gineering and Technology 3.2 (2010), pp. 55–57.

[34] Stephen W Thomas, Meiyappan Nagappan, Dorothea Blostein, and Ahmed E Hassan.
“The impact of classifier configuration and classifier combination on bug localization”.
In: IEEE Transactions on Software Engineering 39.10 (2013), pp. 1427–1443.

[35] Yuan Tian, Dinusha Wijedasa, David Lo, and Claire Le Gouesy. “Learning to rank for
bug report assignee recommendation”. In: Program Comprehension (ICPC), 2016 IEEE
24th International Conference on. IEEE. 2016, pp. 1–10.

[36] Song Wang, Wen Zhang, and Qing Wang. “FixerCache: Unsupervised caching active
developers for diverse bug triage”. In: Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement. ACM. 2014, p. 25.

[37] Xihao Xie, Wen Zhang, Ye Yang, and Qing Wang. “Dretom: Developer recommenda-
tion based on topic models for bug resolution”. In: Proceedings of the 8th international
conference on predictive models in software engineering. ACM. 2012, pp. 19–28.

[38] Jifeng Xuan, He Jiang, Yan Hu, Zhilei Ren, Weiqin Zou, Zhongxuan Luo, and Xindong
Wu. “Towards effective bug triage with software data reduction techniques”. In: IEEE
transactions on knowledge and data engineering 27.1 (2015), pp. 264–280.

[39] Xin Ye, Razvan Bunescu, and Chang Liu. “Learning to rank relevant files for bug re-
ports using domain knowledge”. In: Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM. 2014, pp. 689–699.

[40] Tong Zhang. “Solving large scale linear prediction problems using stochastic gradient
descent algorithms”. In: Proceedings of the twenty-first international conference on Machine
learning. ACM. 2004, p. 116.

[41] Jian Zhou, Hongyu Zhang, and David Lo. “Where should the bugs be fixed?-more accu-
rate information retrieval-based bug localization based on bug reports”. In: Proceedings
of the 34th International Conference on Software Engineering. IEEE Press. 2012, pp. 14–24.

77

A Preliminary experiment

This appendix presents some of the results related to the preliminary experiment of the thesis.

A.1 First sub experiment

In this section, some of the results of the first sub experiment of the preliminary experiment
of the thesis are presented.

The graphs in the Figures A.1, A.2, A.3, A.4, A.5 and A.6 illustrate the learning curves
obtained with different numbers of folds K, K P t6; 10; 15; 25u. For each K P t6; 10; 15; 25u,
two learning curves are represented: the red one is related to the accuracy on the training set
whereas the green one shows the accuracy on the test set. The standard deviation related to
each point plotted in each chart is also represented.

78

A.1. First sub experiment

A.1.1 Telecommunications company

In the Figures A.1 and A.2, the graphs show the learning curves obtained with 6, 10, 15 and
25 folds on the bug reports of the telecommunications company.

(a) 6 folds

(b) 10 folds

Figure A.1: Learning curves of the first sub experiment of the preliminary experiment con-
ducted on the bug reports of the telecommunications company (obtained with 6 and 10 folds)

79

A.1. First sub experiment

(a) 15 folds

(b) 25 folds

Figure A.2: Learning curves of the first sub experiment of the preliminary experiment con-
ducted on the bug reports of the telecommunications company (obtained with 15 and 25
folds)

80

A.1. First sub experiment

A.1.2 Eclipse JDT

The graphs in the Figures A.3 and A.4 depict the learning curves obtained with 6, 10, 15 and
25 folds on the bug reports of Eclipse JDT.

(a) 6 folds

(b) 10 folds

Figure A.3: Learning curves of the first sub experiment of the preliminary experiment con-
ducted on the bug reports of Eclipse JDT (obtained with 6 and 10 folds)

81

A.1. First sub experiment

(a) 15 folds

(b) 25 folds

Figure A.4: Learning curves of the first sub experiment of the preliminary experiment con-
ducted on the bug reports of Eclipse JDT (obtained with 15 and 25 folds)

82

A.1. First sub experiment

A.1.3 Mozilla Firefox

In the Figures A.5 and A.6, the graphs show the learning curves obtained with 6, 10, 15 and
25 folds on the bug reports of Mozilla Firefox.

(a) 6 folds

(b) 10 folds

Figure A.5: Learning curves of the first sub experiment of the preliminary experiment con-
ducted on the bug reports of Mozilla Firefox (obtained with 6 and 10 folds)

83

A.1. First sub experiment

(a) 15 folds

(b) 25 folds

Figure A.6: Learning curves of the first sub experiment of the preliminary experiment con-
ducted on the bug reports of Mozilla Firefox (obtained with 15 and 25 folds)

84

A.2. Second sub experiment

A.2 Second sub experiment

In this section, some of the results of the second sub experiment of the preliminary experiment
of the thesis are presented.

The graphs in the Figures A.7, A.8, A.9, A.10, A.11 and A.12 depict the learning curves
obtained with different numbers of folds K, K P t6; 10; 15; 25u. For each K P t6; 10; 15; 25u, two
learning curves are plotted: the red one is related to the accuracy on the training set whereas
the green one shows the accuracy on the test set. The standard deviation related to each point
plotted in each chart is also represented. As explained in the Section 3.3.2, contrary to the first
sub experiment, only the last folds are used to plot the green learning curves.

85

A.2. Second sub experiment

A.2.1 Telecommunications company

The graphs in the Figures A.7 and A.8 depict the learning curves obtained with 6, 10, 15 and
25 folds on the bug reports of the telecommunications company.

(a) 6 folds

(b) 10 folds

Figure A.7: Learning curves of the second sub experiment of the preliminary experiment
conducted on the bug reports of the telecommunications company (obtained with 6 and 10
folds)

86

A.2. Second sub experiment

(a) 15 folds

(b) 25 folds

Figure A.8: Learning curves of the second sub experiment of the preliminary experiment
conducted on the bug reports of the telecommunications company (obtained with 15 and 25
folds)

87

A.2. Second sub experiment

A.2.2 Eclipse JDT

In the Figures A.9 and A.10, the graphs show the learning curves obtained with 6, 10, 15 and
25 folds on the bug reports of Eclipse JDT.

(a) 6 folds

(b) 10 folds

Figure A.9: Learning curves of the second sub experiment of the preliminary experiment
conducted on the bug reports of Eclipse JDT (obtained with 6 and 10 folds)

88

A.2. Second sub experiment

(a) 15 folds

(b) 25 folds

Figure A.10: Learning curves of the second sub experiment of the preliminary experiment
conducted on the bug reports of Eclipse JDT (obtained with 15 and 25 folds)

89

A.2. Second sub experiment

A.2.3 Mozilla Firefox

The graphs in the Figures A.11 and A.12 depict the learning curves obtained with 6, 10, 15
and 25 folds on the bug reports of Mozilla Firefox.

(a) 6 folds

(b) 10 folds

Figure A.11: Learning curves of the second sub experiment of the preliminary experiment
conducted on the bug reports of Mozilla Firefox (obtained with 6 and 10 folds)

90

A.2. Second sub experiment

(a) 15 folds

(b) 25 folds

Figure A.12: Learning curves of the second sub experiment of the preliminary experiment
conducted on the bug reports of Mozilla Firefox (obtained with 15 and 25 folds)

91

B Main experiments

This appendix presents the detailed results related to the main experiments of the thesis.

B.1 Experiment 1

In this section, the detailed results related to the first main experiment of the thesis (Section
3.4.1) are described.

For readability purposes, the results are presented using the mapping of acronyms to pre-
processing techniques defined in the Table 4.1. When a pre-processing technique is used, its
acronym is directly written. If not, it is preceded by the string NOT and enclosed within paren-
thesis. All obtained strings are then concatenated and the character | is used as a delimiter
between them. Next, the string related to each configuration is followed by a hash character
and a unique identifier.

B.1.1 Telecommunications company

The horizontal bar chart in the Figure B.1 depicts the accuracy of the different pre-processing
configurations on the project of the telecommunications company.

The horizontal bar chart in the Figure B.2 shows the MRR value of the different pre-
processing configurations on the bug reports of the telecommunications company.

In the best ten configurations of both charts (Figures B.1 and B.2), it can be seen that the
bug reports have been cleaned. In the best five configurations, the stop words, the tokens
containing only punctuation characters and the tokens containing only numbers have been
removed. A conversion to lower case has been performed in the best three configurations.
The best one was not based on stemming or lemmatization. Stemming has not been used
in the best two configurations. In the worst twenty-four configurations, neither the bug re-
ports have been cleaned nor the tokens containing only punctuation characters have been
removed. The stop words have been removed in the worst ten configurations. The worst five
configurations were not based on a conversion to lower case.

92

B.1. Experiment 1

Figure B.1: Accuracy of the different pre-processing configurations on the bug reports of
the telecommunications company (the mapping of acronyms to pre-processing techniques
defined in the Table 4.1 has been used)

93

B.1. Experiment 1

Figure B.2: MRR of the different pre-processing configurations on the bug reports of the
telecommunications company (the mapping of acronyms to pre-processing techniques de-
fined in the Table 4.1 has been used)

94

B.1. Experiment 1

B.1.2 Eclipse JDT

The horizontal bar chart in the Figure B.3 shows the accuracy of the different pre-processing
configurations on the bug reports of the Eclipse JDT project.

The horizontal bar chart in the Figure B.4 depicts the MRR value of the different pre-
processing configurations on Eclipse JDT.

In the best configurations of both charts (Figures B.3 and B.4), the bug reports have been
cleaned. In the best twenty configurations, a conversion to lower case has been performed.
Stemming has not been used in the best ten configurations. In the worst fourteen configura-
tions, no conversion to lower case has been used. The configurations are not ordered exactly
the same way in both charts.

95

B.1. Experiment 1

Figure B.3: Accuracy of the different pre-processing configurations on the bug reports of
Eclipse JDT (the mapping of acronyms to pre-processing techniques defined in the Table 4.1
has been used)

96

B.1. Experiment 1

Figure B.4: MRR of the different pre-processing configurations on the bug reports of Eclipse
JDT (the mapping of acronyms to pre-processing techniques defined in the Table 4.1 has been
used)

97

B.1. Experiment 1

B.1.3 Mozilla Firefox

The horizontal bar chart in the Figure B.5 illustrates the accuracy of the different pre-
processing configurations on the bug reports of the Mozilla Firefox project.

The horizontal bar chart in the Figure B.6 depicts the MRR value of the different pre-
processing configurations on Mozilla Firefox.

The configurations are not ordered exactly the same way in both charts (Figures B.5 and
B.6). In the best three configurations of both charts, the bug reports have nevertheless been
cleaned. In the best sixteen configurations, a conversion to lower case has been performed.
In the worst six configurations, the bug reports have not been cleaned and no conversion to
lower case has been used. Stemming has not been used in the best three configurations.

98

B.1. Experiment 1

Figure B.5: Accuracy of the different pre-processing configurations on the bug reports of
Mozilla Firefox (the mapping of acronyms to pre-processing techniques defined in the Table
4.1 has been used)

99

B.1. Experiment 1

Figure B.6: MRR of the different pre-processing configurations on the bug reports of Mozilla
Firefox (the mapping of acronyms to pre-processing techniques defined in the Table 4.1 has
been used)

100

B.2. Experiment 2

B.2 Experiment 2

The detailed results related to the second main experiment of the thesis (Section 3.4.2) are
presented in this section.

For readability purposes, the results are presented using the mapping of acronyms to
feature extraction techniques defined in the Table 4.2. If a feature extraction technique is used,
its acronym is directly written. Each time the LSI or the NMF algorithm is used, the acronym
is concatenated with an hyphen - and the new number of features. The string related to each
configuration is then followed by a hash character # and a unique identifier.

B.2.1 Telecommunications company

The horizontal bar chart in the Figure B.7 shows the accuracy of the different feature extrac-
tion configurations (without combination of features) on the project of the telecommunica-
tions company.

As can be seen in the Figure B.7, the worst five configurations in terms of accuracy are
using NMF or LSI to extract 10 new features. The best three configurations are not based on
NMF or LSI. When using NMF, the best configurations are obtained with a boolean repre-
sentation of the bug reports. When using LSI, the best configurations are obtained with tf-idf
weights. When NMF or LSI is used, and, more features are extracted, the accuracy increases.

The horizontal bar chart in the Figure B.8 shows the MRR value of the different feature
extraction configurations (without combination of features) on the project of the telecommu-
nications company.

As with the accuracy, the best three configurations, in terms of MRR, are not based on
NMF or LSI (Figure B.8). The worst five configurations are using NMF or LSI to extract 10
features. When using LSI, the best configurations are obtained with tf-idf weights. When
using NMF, the best configurations are obtained with a boolean representation of the bug
reports. When NMF or LSI is used, and, more features are extracted, the MRR value increases.

The horizontal bar chart in the Figure B.9 indicates the accuracy of the different feature
extraction configurations (with combination of features) on the project of the telecommunica-
tions company.

The horizontal bar chart in the Figure B.10 shows the MRR value of the different feature
extraction configurations (with combination of features) on the bug reports of the telecom-
munications company.

In both charts (Figures B.9 and B.10), it can be seen that the best two representations are
combining tf-idf weights with a boolean representation of the bug reports followed by the use
of the NMF or the LSI algorithm. In the best six configurations, the tf-idf weights are used
and combined with another feature extraction technique. The worst three representations are
combining feature extraction techniques relying on NMF.

101

B.2. Experiment 2

Figure B.7: Accuracy of the different feature extraction techniques (without combination of
features) on the bug reports of the telecommunications company (the mapping of acronyms
to feature extraction techniques defined in the Table 4.2 has been used)

102

B.2. Experiment 2

Figure B.8: MRR of the different feature extraction techniques (without combination of fea-
tures) on the bug reports of the telecommunications company (the mapping of acronyms to
feature extraction techniques defined in the Table 4.2 has been used)

103

B.2. Experiment 2

Figure B.9: Accuracy of the different feature extraction techniques (with combination of fea-
tures) on the bug reports of the telecommunications company (the mapping of acronyms to
feature extraction techniques defined in the Table 4.2 has been used)

104

B.2. Experiment 2

Figure B.10: MRR of the different feature extraction techniques (with combination of features)
on the bug reports of the telecommunications company (the mapping of acronyms to feature
extraction techniques defined in the Table 4.2 has been used)

105

B.2. Experiment 2

B.2.2 Eclipse JDT

The horizontal bar chart in the Figure B.11 illustrates the accuracy of the different feature
extraction configurations (without combination of features) on the bug reports of Eclipse JDT.

Figure B.11: Accuracy of the different feature extraction techniques (without combination of
features) on the bug reports of Eclipse JDT (the mapping of acronyms to feature extraction
techniques defined in the Table 4.2 has been used)

The horizontal bar chart in the Figure B.12 depicts the MRR value of the different feature
extraction techniques (without combination of features) on Eclipse JDT.

In the Figures B.11 and B.12, it can be seen that the worst five configurations are using
NMF or LSI to extract 10 new features. The best two configurations are not based on NMF
or LSI, and, are not using a boolean representation of the bug reports. As with the data set
of the telecommunications company, when using LSI, the best configurations are obtained
with tf-idf weights. When using NMF, the best configurations are obtained with a boolean
representation of the bug reports. When NMF or LSI is used, and, more features are extracted,
the accuracy and the MRR value increase.

106

B.2. Experiment 2

Figure B.12: MRR of the different feature extraction techniques (without combination of fea-
tures) on the bug reports of Eclipse JDT (the mapping of acronyms to feature extraction tech-
niques defined in the Table 4.2 has been used)

The horizontal bar chart in the Figure B.13 shows the accuracy of the different feature
extraction configurations (with combination of features) on the bug reports of Eclipse JDT.

The horizontal bar chart in the Figure B.14 indicates the MRR value of the different feature
extraction configurations (with combination of features) on Eclipse JDT.

In the four best configurations of the Figure B.13, the tf-idf weights are used and combined
with another feature extraction technique. The tf-idf weights are used and combined with
another feature extraction technique in two of the three best configurations of the Figure
B.14. In both figures, at least the three worst representations are using NMF.

107

B.2. Experiment 2

Figure B.13: Accuracy of the different feature extraction techniques (with combination of
features) on the bug reports of Eclipse JDT (the mapping of acronyms to feature extraction
techniques defined in the Table 4.2 has been used)

108

B.2. Experiment 2

Figure B.14: MRR of the different feature extraction techniques (with combination of features)
on the bug reports of Eclipse JDT (the mapping of acronyms to feature extraction techniques
defined in the Table 4.2 has been used)

109

B.2. Experiment 2

B.2.3 Mozilla Firefox

The horizontal bar chart in the Figure B.15 shows the accuracy of the different feature extrac-
tion techniques (without combination of features) on Mozilla Firefox.

Figure B.15: Accuracy of the different feature extraction techniques (without combination of
features) on the bug reports of Mozilla Firefox (the mapping of acronyms to feature extraction
techniques defined in the Table 4.2 has been used)

The horizontal bar chart in the Figure B.16 illustrates the MRR value of the different fea-
ture extraction configurations (without combination of features) on the bug reports of Mozilla
Firefox.

In the Figures B.15 and B.16, as with the bug reports of Eclipse JDT, the best two configu-
rations are not relying on NMF or LSI, and, are not using a boolean representation of the bug
reports. When using LSI, the best configurations are based on the tf-idf weights. Contrary to
the telecommunications company and Eclipse JDT, the best configurations, when using NMF,
are also based on the tf-idf weights. Except with a boolean representation of the bug reports,
when NMF or LSI is used, and, more features are extracted, the accuracy and the MRR value

110

B.2. Experiment 2

Figure B.16: MRR of the different feature extraction techniques (without combination of fea-
tures) on the bug reports of Mozilla Firefox (the mapping of acronyms to feature extraction
techniques defined in the Table 4.2 has been used)

increase. Contrary to the two other software development projects, the worst five configura-
tions, in terms of accuracy and MRR value, are not only using NMF or LSI to extract 10 new
features.

The horizontal bar chart in the Figure B.17 indicates the accuracy of the different feature
extraction configurations (with combination of features) on Mozilla Firefox.

The horizontal bar chart in the Figure B.18 depicts the MRR value of the different feature
extraction techniques (with combination of features) on the bug reports of Mozilla Firefox.

In both charts (Figures B.17 and B.18), in five of the six best configurations, the tf weights
are used and combined with another feature extraction technique. At least three of the four
worst configurations are, furthermore, using NMF in both figures.

111

B.2. Experiment 2

Figure B.17: Accuracy of the different feature extraction techniques (with combination of
features) on the bug reports of Mozilla Firefox (the mapping of acronyms to feature extraction
techniques defined in the Table 4.2 has been used)

112

B.2. Experiment 2

Figure B.18: MRR of the different feature extraction techniques (with combination of fea-
tures) on the bug reports of Mozilla Firefox (the mapping of acronyms to feature extraction
techniques defined in the Table 4.2 has been used)

113

B.3. Experiment 3

B.3 Experiment 3

The detailed results related to the third main experiment of the thesis (Section 3.4.3) are pre-
sented in this section.

For readability purposes, the results are presented using the mapping of acronyms to
feature selection techniques defined in the Table 4.3. If a feature selection technique is applied,
its acronym is used. This string is then concatenated with an hyphen - and the percentage
of remaining features. Next, the string related to each configuration is followed by a hash
character # and a unique identifier.

B.3.1 Telecommunications company

The horizontal bar chart in the Figure B.19 illustrates the accuracy of the different feature
selection configurations on the project of the telecommunications company.

The horizontal bar chart in the Figure B.20 depicts the MRR value of the different feature
selection configurations on the bug reports of the telecommunications company.

Except for recursive feature elimination, for each feature selection technique, when more
features are selected, the accuracy and the MRR value increase (Figures B.19 and B.20).

114

B.3. Experiment 3

Figure B.19: Accuracy of the different feature selection techniques on the bug reports of the
telecommunications company (the mapping of acronyms to feature selection techniques de-
fined in the Table 4.3 has been used)

115

B.3. Experiment 3

Figure B.20: MRR of the different feature selection techniques on the bug reports of the
telecommunications company (the mapping of acronyms to feature selection techniques de-
fined in the Table 4.3 has been used)

116

B.3. Experiment 3

B.3.2 Eclipse JDT

The horizontal bar chart in the Figure B.21 shows the accuracy of the different feature selec-
tion configurations on Eclipse JDT.

Figure B.21: Accuracy of the different feature selection techniques on the bug reports of
Eclipse JDT (the mapping of acronyms to feature selection techniques defined in the Table
4.3 has been used)

The horizontal bar chart in the Figure B.22 indicates the MRR value of the different feature
selection techniques on the bug reports of Eclipse JDT.

In the Figures B.21 and B.22, the orders of the different configurations are not similar.

117

B.3. Experiment 3

Figure B.22: MRR of the different feature selection techniques on the bug reports of Eclipse
JDT (the mapping of acronyms to feature selection techniques defined in the Table 4.3 has
been used)

118

B.3. Experiment 3

B.3.3 Mozilla Firefox

The horizontal bar chart in the Figure B.23 depicts the accuracy of the different feature selec-
tion configurations on the bug reports of Mozilla Firefox.

Figure B.23: Accuracy of the different feature selection techniques on the bug reports of
Mozilla Firefox (the mapping of acronyms to feature selection techniques defined in the Table
4.3 has been used)

The horizontal bar chart in the Figure B.24 indicates the MRR value of the different feature
selection configurations on Mozilla Firefox.

119

B.3. Experiment 3

Figure B.24: MRR of the different feature selection techniques on the bug reports of Mozilla
Firefox (the mapping of acronyms to feature selection techniques defined in the Table 4.3 has
been used)

The orders of the different feature selection configurations are not similar in the Figures
B.23 and B.24. Only for χ2, when more features are selected, the accuracy and the MRR value
increase.

120

B.4. Experiment 4

B.4 Experiment 4

In this section, the detailed results related to the forth main experiment of the thesis (Section
3.4.4) are presented.

For readability purposes, the results will be described using a mapping of acronyms to
classifiers (Table B.1). If a classifier has been trained and has made some predictions, its
acronym is used. This string is then concatenated with a pipe | and another string con-
taining the value(s) of its hyper parameter(s). The second sub-string has the following
form: hyper_param_1=val_1|...|hyper_param_n=val_n, where hyper_param_i is
the name of the i-th hyper parameter and val_i is its value.

If the string NC|alpha=0|fit_prior=True is written, for instance, it means that a
naive Bayes classifier with a multinomial distribution has been used with the following val-
ues for its hyper parameters: 0 for alpha and True for fit_prior.

Acronym Classifier
NC Nearest centroid classifier

MNB Naive Bayes classifier (multinomial distribution)
LSVC Linear SVM
PLR Logistic regression (primal problem)
DLR Logistic regression (dual problem)
PWP Perceptron (with penalty)

P Perceptron (without penalty)
SGCD Stochastic gradient descent

Table B.1: The mapping of acronyms to classifiers

B.4.1 Telecommunications company

The horizontal bar chart in the Figure B.25 illustrates the accuracy of the best configuration
(in terms of accuracy) of each classifier on the project of the telecommunications company.

The horizontal bar chart in the Figure B.26 shows the MRR value of the best configura-
tion (in terms of MRR value) of each classifier on the bug reports of the telecommunications
company.

The aforementioned best configurations have been obtained via the use of a grid search
strategy. In both charts, the classifiers are ordered in the same way.

Except for the stochastic gradient descent algorithm, for both the accuracy and the MRR
value, the best configurations of each classifier are similar (Figures B.25 and B.26). In terms of
accuracy and MRR value, the four best classifiers are, in descending order, the linear SVM, the
logistic regression (dual problem), the logistic regression (primal problem) and the stochastic
gradient descent algorithm. In terms of accuracy, the worst configuration is obtained when
using the nearest centroid classifier.

The horizontal bar chart in the Figure B.27 depicts the accuracy of the best configuration
(in terms of accuracy) of each classifier on the project of the telecommunications company.

The horizontal bar chart in the Figure B.28 illustrates the MRR value of the best configura-
tion (in terms of MRR value) of each classifier on the bug reports of the telecommunications
company.

The above mentioned best configurations have been obtained via the use of a random
search strategy.

Except for the perceptron with penalty, the stochastic gradient descent algorithm and the
logistic regression (primal problem), the accuracies reached with the best configuration of
each classifier, using a random search strategy, are greater than or equal to the ones reached
when using a grid search strategy. In terms of accuracy, when using a random search strategy,
the classifiers are ordered the same way as the one obtained when using a grid search strategy.

121

B.4. Experiment 4

Figure B.25: Accuracy of the best grid search configurations (in terms of accuracy) on the bug
reports of the telecommunications company (the mapping of acronyms to classifiers defined
in the Table B.1 has been used)

122

B.4. Experiment 4

Figure B.26: MRR of the best grid search configurations (in terms of MRR value) on the bug
reports of the telecommunications company (the mapping of acronyms to classifiers defined
in the Table B.1 has been used)

123

B.4. Experiment 4

Figure B.27: Accuracy of the best random search configurations (in terms of accuracy) on
the bug reports of the telecommunications company (the mapping of acronyms to classifiers
defined in the Table B.1 has been used)

124

B.4. Experiment 4

Figure B.28: MRR of the best random search configurations (in terms of MRR value) on the
bug reports of the telecommunications company (the mapping of acronyms to classifiers de-
fined in the Table B.1 has been used)

125

B.4. Experiment 4

B.4.2 Eclipse JDT

The horizontal bar chart in the Figure B.29 depicts the accuracy of the best grid search config-
uration (in terms of accuracy) of each classifier on the bug reports of Eclipse JDT.

The horizontal bar chart in the Figure B.30 indicates the MRR value of the best grid search
configuration (in terms of MRR value) of each classifier on Eclipse JDT.

Except for the linear SVM classifier, the best configurations of each classifier are the same
for both the accuracy and the MRR value (Figures B.29 and B.30). The two best classifiers,
in terms of accuracy and MRR value, are, in descending order, the logistic regression (primal
problem) and the logistic regression (dual problem). The worst classifier, in terms of accuracy,
is the perceptron without penalty.

The horizontal bar chart in the Figure B.31 illustrates the accuracy of the best random
search configuration (in terms of accuracy) of each classifier on Eclipse JDT.

The horizontal bar chart in the Figure B.32 shows the MRR value of the best random search
configuration (in terms of MRR value) of each classifier on the bug reports of Eclipse JDT.

Except for the linear SVM classifier, the stochastic gradient descent algorithm and the lo-
gistic regression (dual problem), the best configurations of each classifier are the same for
both the accuracy and MRR metrics (Figures B.31 and B.32). Except for the perceptron with
penalty, the stochastic gradient descent algorithm, the linear SVM classifier and the logistic
regression (primal problem), the accuracies reached with the best configuration of each clas-
sifier, using a random search strategy, are greater than or equal to the ones reached when
using a grid search strategy. In terms of accuracy, when using a random search strategy, the
classifiers are not ordered exactly the same way as the one obtained when using a grid search
strategy (at least two transpositions should be used).

126

B.4. Experiment 4

Figure B.29: Accuracy of the best grid search configurations (in terms of accuracy) on the bug
reports of Eclipse JDT (the mapping of acronyms to classifiers defined in the Table B.1 has
been used)

127

B.4. Experiment 4

Figure B.30: MRR of the best grid search configurations (in terms of MRR value) on the bug
reports of Eclipse JDT (the mapping of acronyms to classifiers defined in the Table B.1 has
been used)

128

B.4. Experiment 4

Figure B.31: Accuracy of the best random search configurations (in terms of accuracy) on the
bug reports of Eclipse JDT (the mapping of acronyms to classifiers defined in the Table B.1
has been used)

129

B.4. Experiment 4

Figure B.32: MRR of the best random search configurations (in terms of MRR value) on the
bug reports of Eclipse JDT (the mapping of acronyms to classifiers defined in the Table B.1
has been used)

130

B.4. Experiment 4

B.4.3 Mozilla Firefox

The horizontal bar chart in the Figure B.33 shows the accuracy of the best grid search config-
uration (in terms of accuracy) of each classifier on Mozilla Firefox.

The horizontal bar chart in the Figure B.34 depicts the MRR value of the best grid search
configuration (in terms of MRR value) of each classifier on the bug reports of Mozilla Firefox.

Except for the stochastic gradient descent algorithm, the logistic regression (primal prob-
lem), the logistic regression (dual problem) and the linear SVM classifier, the best configura-
tions of each classifier are similar for both the accuracy and the MRR value (Figures B.33 and
B.34). The best five classifiers, in terms of accuracy and MRR value, are the naive Bayes clas-
sifier (multinomial distribution), the logistic regression (primal problem), the logistic regres-
sion (dual problem), the stochastic gradient descent algorithm and the linear SVM classifier.
The worst configuration, in terms of accuracy, is obtained when using the perceptron without
penalty.

The horizontal bar chart in the Figure B.35 shows the accuracy of the best random search
configuration (in terms of accuracy) of each classifier on Mozilla Firefox.

The horizontal bar chart in the Figure B.36 illustrates the MRR value of the best random
search configuration (in terms of MRR value) of each classifier on the bug reports of Mozilla
Firefox.

Except for the stochastic gradient descent algorithm, when using the random search strat-
egy, the best configurations of each classifier are the same for both the accuracy and MRR
metrics (Figures B.35 and B.36). Except for the logistic regression (dual problem), the accu-
racies reached with the best configuration of each classifier, using a random search strategy,
are greater than or equal to the ones reached when using a grid search strategy. In terms of
accuracy, when using a random search strategy, the classifiers are ordered the same way as
the one obtained when using a grid search strategy.

131

B.4. Experiment 4

Figure B.33: Accuracy of the best grid search configurations (in terms of accuracy) on the bug
reports of Mozilla Firefox (the mapping of acronyms to classifiers defined in the Table B.1 has
been used)

132

B.4. Experiment 4

Figure B.34: MRR of the best grid search configurations (in terms of MRR value) on the bug
reports of Mozilla Firefox (the mapping of acronyms to classifiers defined in the Table B.1 has
been used)

133

B.4. Experiment 4

Figure B.35: Accuracy of the best random search configurations (in terms of accuracy) on the
bug reports of Mozilla Firefox (the mapping of acronyms to classifiers defined in the Table
B.1 has been used)

134

B.4. Experiment 4

Figure B.36: MRR of the best random search configurations (in terms of MRR value) on the
bug reports of Mozilla Firefox (the mapping of acronyms to classifiers defined in the Table
B.1 has been used)

135

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Aim
	Research questions
	Delimitations

	Theory
	Bug reporting and development tools
	Information retrieval
	Text classification
	Related work

	Method
	Data sets
	Experimental setup
	Preliminary experiment
	Main experiments
	Evaluation

	Results
	Preliminary experiment
	Main experiments

	Discussion
	Results
	Method
	The work in a wider context

	Conclusion
	Bibliography
	Preliminary experiment
	First sub experiment
	Second sub experiment

	Main experiments
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4

