
Linköping University | Department of Computer and Information Science 
Bachelor thesis, 16 credits | Computer programming 

Spring term 2017 | LIU-IDA/LITH-EX-G--17/011—SE 
 

 

 

 

Transition-Based Dependency Parsing 
with Neural Networks 

 

 

 

Joakim Gylling 

 

 

Supervisor, Rita Kovordányi 
Co-supervisor, Marco Kuhlmann 
Examiner, Peter Dalenius 

 
 
 
 
 
 
 
 
 

 



 

 

Upphovsrätt 

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under 25 år från publiceringsdatum 
under förutsättning att inga extraordinära omständigheter uppstår. 

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt 
bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av 
upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet 
kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns 
lösningar av teknisk och administrativ art. 

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed 
kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller 
presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller 
konstnärliga anseende eller egenart. 

För ytterligare information om Linköping University Electronic Press se förlagets hemsida 
http://www.ep.liu.se/. 
 

 

 

Copyright 

The publishers will keep this document online on the Internet – or its possible replacement – for a period of 25 
years starting from the date of publication barring exceptional circumstances. 

The online availability of the document implies permanent permission for anyone to read, to download, or to 
print out single copies for his/hers own use and to use it unchanged for non-commercial research and 
educational purpose. Subsequent transfers of copyright cannot revoke this permission. All other uses of the 
document are conditional upon the consent of the copyright owner. The publisher has taken technical and 
administrative measures to assure authenticity, security and accessibility. 

According to intellectual property law the author has the right to be mentioned when his/her work is 
accessed as described above and to be protected against infringement. 

For additional information about the Linköping University Electronic Press and its procedures for publication 
and for assurance of document integrity, please refer to its www home page: http://www.ep.liu.se/. 
 

 

 

 

 

 

 

 

 

 

 

 

© Joakim Gylling 
 

http://www.ep.liu.se/
http://www.ep.liu.se/


1 

 

ABSTRACT 

Dependency parsing is important in contemporary speech 

and language processing systems. Current dependency 

parsers typically use the multi-class perceptron machine 

learning component, which classifies based on millions of 

sparse indicator features, making developing and 

maintaining these systems expensive and error-prone. This 

thesis aims to explore whether replacing the multi-class 

perceptron component with an artificial neural network 

component can alleviate this problem without hurting 

performance, in terms of accuracy and efficiency. A simple 

transition-based dependency parser using the artificial 

neural network (ANN) as the classifier is written in 

Python3 and the same program with the classifier replaced 

by a multi-class perceptron component is used as a baseline. 

The results show that the ANN dependency parser provides 

slightly better unlabeled attachment score with only the 

most basic atomic features, eliminating the need for 

complex feature engineering. However, it is about three 

times slower and the training time required for the ANN is 

significantly longer. 

INTRODUCTION  

Natural Language Processing (NLP) is an area of research 

that explores how computer systems can be created and 

used to understand and manipulate natural language text or 

speech in a useful manner. It is the area of research behind 

Google Translate, spellchecking programs and many more 

applications we often use in our everyday lives. 

 

NLP faces several challenges, one of which is ambiguity. 

Most words have different meaning in different context. It 

is easy for us humans to figure out the intention of the 

words by looking at the context they appear in, but how can 

this be achieved for a machine? The idea of “context” is 

very fuzzy and situational, thus it cannot simply be 

hardcoded. One way to help figure out the meaning of the 

words in a sentence is to create a dependency graph with 

part-of-speech tagging. Figure 1 illustrates how a 

dependency graph typically looks like. 

 

 

Figure 1: An illustration of a dependency graph. 

Dependency parsing is the task of mapping a natural 

language sentence into a representation of its syntax or 

semantics in the form of a dependency graph. Dependency 

graphs can be created in linear time complexity with 

transition-based dependency parsing [4].  

 

In standard experiments using the Penn Treebank [14] as 

the training and test data source, labeled and unlabeled 

attachment scores of over 90% have previously been 

achieved by transition-based dependency parsers using 

linearly separable machine learning algorithms such as the 

multi-class perceptron [4, 5]. However, many of these rely 

on millions of hand-crafted features, making developing 

and maintaining these systems expensive and error-prone. 

Models based on artificial neural networks [1] as the 

machine learning component promise a solution to this 

problem, as they are able to learn new features 

automatically. 

Purpose 

The goal of this project is to get a better understanding of 

the possibilities and limitations of neural networks in the 

context of a system for transition-based dependency parsing 

and to provide an implementation of such a system. 

 

Focus will be placed on simplicity rather than cutting-edge 

performance, with the intention to construct a system that is 

easy to apply small specific changes to for experimentation 

purposes. 

 

Honnibal [3] has developed a compact system for 

transition-based dependency parsing based on the multi-

class perceptron. A similar implementation will be 

provided, were the current machine learning model is 

replaced by an appropriate neural network model.  

Research question 

Given the system provided by Honnibal [3]: 

 What are the pros and cons of using a neural 

network instead of the multi-class perceptron as 

the machine learning component? 

 How high is the unlabeled attachment score for the 

new system, using standard test from the English 

Universal Dependency Treebank [24] and how 

well does that fare in comparison with Honnibal’s 

original system? 

Delimitations 

Several transition-based parsers with neural networks have 

been explored and produced very promising results in 

recent times [8, 9, 10, 11, 12, 13, 17]. The main goal of 

these articles is mostly about finding a better and more 

accurate algorithm than the, at the time, current state of the 

art. The focus of this project, however, is to compare a 

simple implementation with one specific modification and 

analyze the experimental findings. 

 

The created system is written in Python3.6.0. The state of 

the art neural network library, Keras [29], is used to 

simplify the neural network implementation process 

significantly. The Python library gensim [31] is used to 

create Word2Vec models in this thesis. Word2Vec [30] is a 

program that maps words to fixed size vector 

representations based on semantic information. 
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THEORY 

There are a lot of techniques and concepts involved in the 

context of dependency parsing and machine learning 

algorithms, and a lot of them are very complex. This section 

will attempt to give a high-level overview of the most 

relevant techniques and concepts. 

Dependency parsing 

The computerized task of mapping a natural language 

sentence into a dependency graph is a classification 

problem at its core. The algorithm finds correlated pairs of 

tokens in a natural language sentence and classifies each 

such pair with its specific syntax type. Every pair is 

basically a directed arc consisting of one “head” pointing to 

its “dependent”. Furthermore, every standalone token will 

also oftentimes be classified with its own syntactic type. 

A dependency graph is a directed graph where every 

standalone token is a vertex, and every mapped pair of 

tokens is an arc [21]. The graph satisfies the following 

constraints: 

 There is a single root vertex that has no incoming 

arcs.  

 With the exception of the root vertex, each vertex 

has exactly one incoming arc.  

 There is a unique path from the root vertex to each 

vertex in the graph. 

As shown by Figure 1, it is common practice in dependency 

parsing to add a dummy node marked as ROOT to facilitate 

connectedness to the graph. 

Dependency parsing is a problem that requires some kind of 

search strategy that can either be categorized as “greedy”, 

“exhaustive”, or a hybrid of the two. A greedy search 

strategy relies on local information when making the 

classification decisions, and an exhaustive search relies on 

global information. It is essentially these two search 

strategies that further divide a dependency parsing strategy 

into either a transition-based or a graph-based dependency 

parsing strategy. 

Transition-based dependency parsing 

The process of a transition-based dependency parser can 

generally be explained as a procedure that follows these 

steps: 

1. The parser starts in the initial configuration. 

2. It uses a classifier to predict the transition that 

should be made to move to the next configuration. 

3. It repeats step 2 until it reaches a terminal 

configuration.   

The classifier uses a greedy search algorithm on local 

information accessible from the current configuration to 

determine what transition to be made next. Inference by a 

trained multi-class perceptron component is the most 

commonly used greedy search strategy for transition-based 

dependency parsing. 

Because the search space is limited to the current 

configuration at each step, the runtime complexity of this 

approach is linear in the number of transitions and hence in 

the length of the sentence. A major disadvantage, on the 

other hand, is that the greedy parsing strategy may lead to 

error propagation. Another disadvantage is that the 

transition-based approach can only produce projective 

dependency graphs, but not all sentences are projective, as 

shown by Figure 2. So there will necessarily be some errors 

in such sentences [21]. 

 

Figure 2: An example of a non-projective dependency graph. 

A graph is projective if all arcs are projective. An arc from 

head to dependent is projective if there is a path from the head 

to all the tokens in between the arc. This is not the case for the 

arc between the head ‘flight’ and the dependent ‘was’ in this 

example. 

The transitioning during the parsing can be done in several 

different ways. The three most commonly used algorithms 

for transitioning are the arc-standard, the arc-eager and the 

arc-hybrid, as explained in great detail by Nivre [23]. The 

arc-standard is a simple variant with only three possible 

transition actions, whilst the arc-eager is slightly more 

complex with four possible transitions and 3 constraints. 

Arc-hybrid is very similar to arc-standard but with a few 

additional constraints. 

Graph-based dependency parsing  

Graph-based parsers use an exhaustive search on global 

data from the whole space of possible trees to find an 

optimal solution for the current problem. It is generally 

more accurate than transition-based dependency parsing but 

suffers from efficiency problems. There are algorithms that 

make it possible to limit the time complexity to polynomial 

time of the sentence length, such as the CKY (Cocke-

Kasami-Younger) algorithm, so it is definitely a worthy 

approach when accuracy is of importance. 

Zhang and Zhao [7] combined a convolutional neural 

network in combination with a graph-based dependency 

parsing and yielded good results, both in regards to runtime 

and accuracy. 

Hybrid 

Combining the two approaches for dependency parsing and 

only receiving the best from two worlds is an obvious idea. 

It is fairly difficult to accomplish since they rely on two 

completely different scopes of data, but it is possible and 

can yield good results, as shown by Zhang, Nivre and 

McDonald [25, 22]. 

Machine learning algorithms 

Every sentence consists of words, and every word consists 

of letters. The parts are not the same as the whole in this 
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case, because the whole carries meaning that cannot be 

found in the parts. For a computer to “understand” the 

meaning of a sentence, a representation of the syntactic 

structure, with relevant metadata like word relations etc., is 

a requirement. A dependency graph is a sufficient syntactic 

representation for this. It is, however, not an easy task to 

create a handcrafted function that can parse an arbitrary 

sentence into its correct dependency graph. For an 

algorithm to be able parse it into its syntactic structure it 

would possibly need a database of all possible sentences 

and their correct syntactic structure, which is not feasible. 

For that reason a machine learning algorithm is needed.  

Machine learning is a kind of algorithm that uses data to 

learn how to approximate functionalities rather than being 

explicitly coded for that functionality from the start [26]. 

Sometimes it is too difficult for a certain functionality to be 

understood and implemented efficiently and that is when 

machine learning algorithms come to the rescue.  

In the context of dependency parsing the most used 

machine learning algorithmic approach is the multi-class 

perceptron. In more recent times neural networks have 

made great progress and become popular [8, 9, 10, 11, 12, 

13, 17]. 

Perceptron 

A perceptron essentially consists of three parts. 

 A vector of input variables commonly referred to 

as features. 

 A set of output variables.  

 A set of weights. 

Every feature have as many weights as there are outputs, 

and every one of these weights is connected to one of the 

outputs, as shown by Figure 3. 

 

Figure 3: An example of a perceptron algorithm with 3 

features (F1, F2, F3), their corresponding weights (drawn as 

lines) and 2 outputs (Out1 and Out2). 

The perceptron is trained from provided data via supervised 

learning [26]. Training involves making changes to the 

weight values. By extracting features from a sentence a 

calculation will occur and the result will end up in the 

output. Depending on the values of the outputs the system 

will determine what class it represents. 

Multi-class perceptron 

The multi-class perceptron is an extension of the standard 

perceptron introduced by Collins [15]. The standard 

perceptron has a binary classification, meaning that every 

input will be predicted to either belong to class A or class 

B, no other choices are available. The multi-class 

perceptron, on the other hand, can have a huge amount of 

possible classes available and it is not simply a single 

prediction involved in the larger context. It is sequence of 

predictions that include previous class predictions as 

features when making future predictions and the final result 

is the whole sequence of the predicted classes. 

In the context of transition-based dependency parsing the 

predicted class at each step is the correct transition action 

given the current configuration. The predicted action will 

be taken and give rise to a new configuration with new 

available local information extracted as features to make yet 

another prediction and this process is repeated until 

terminal configuration is reached. The final result is one of 

all possible dependency graphs, for the given sentence. 

In practice the dependency parsing will extract millions of 

features based on, for example, specific word combinations 

and place them with their corresponding weights in a table 

during the training phase. After that, during the prediction 

phase, a set amount of information will be extracted from 

the current configuration and looked up in said table. This 

extraction step is expensive and causes most of the runtime 

to be consumed in this step [27], in some cases. 

Artificial neural network 

Artificial neural network is pretty much like an extended 

and more advanced version of a multi-class perceptron. The 

basic idea with weights, inputs (features) and outputs are 

the same, but there is one or more extra layers of vectors 

added in neural networks (called hidden layers) and the 

learning algorithm is significantly different. Another 

difference is that neural networks use an activation 

function, which a multi-class perceptron does not. For the 

explanation and details regarding all of these concepts I will 

refer to Demuth’s book [1]. 

Why artificial neural networks instead of multi-class 
perceptron? 

The important point is that the multi-class perceptron suffer 

from the disadvantage that they are only able to solve 

linearly separable classification problems. To cope with 

that, a huge amount of hand-crafted features is required. 

Artificial neural network, on the other hand, is able to 

approximate almost any function, if it has a sufficient 

amount of neurons in its hidden layers, and can solve non-

linear separable problems as a result [1]. This makes it 

possible for neural networks to accurately make predictions 

when presented by only the most basic atomic features used 

by the multi-class perceptron and still come out with better 

accuracy. In fact, this has already been demonstrated by 

Chen and Manning [11]. 
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Although inefficiency is a potential problem with the 

complex feature extractions required by the multi-class 

perceptron [27], it is not the biggest problem. The biggest 

problem is that the hand-crafted features require a good 

deal of tweaking and expert knowledge to perform 

satisfactory, and even then it is often biased towards the 

current language and test data. The same features might 

need to be altered once again when presented with a 

different set of data. A model using a neural network model 

does not suffer from this problem because the features used 

are just basic atomic information. The hidden layers of the 

network are responsible for finding the relevant patterns 

from these so the need for manual tweaking disappears. Just 

feed the network with a sufficient amount of good training 

data and it will “engineer itself”, so to speak. 

Dense data representation 

A typical data representation for the multi-class perceptron 

is to extract a huge amount of different word combinations 

that appear in the sentences from the training set as 

features, and this will make the data representation 

extremely sparse. This representation will often contain 

millions of such word combinations, but only a few of them 

will be relevant at any given time when parsing a sentence. 

It is an unnecessary expense of the runtime. 

The multi-class perceptron requires such sparse 

representations due to the limitations of the algorithm, but 

this is not the case for a neural network.  By using the 

computer program Word2Vec the available atomic 

information can be represented as a dense vector instead 

and this has been shown to work very well when parsing 

with a neural network component [11]. 

Word2Vec 

Word2Vec is a program that creates dense vector 

representations of words based on semantic information 

[30]. The semantic information is based on the idea that 

similar words occur in similar contexts. Word2Vec 

implements two methods to create said vector 

representations.  

1. Continuous skip-gram: Predicting a context based 

on a word. 

2. Continuous bag of words (CBOW): Predicting a 

word based on the context. 

There exist several excellent pre-trained Word2Vec models 

freely available on the Internet. The most popular at the 

time of writing is the Google news dataset model
1
. It has 

been trained on roughly a 100 billion words and has a 

vector length of 300 features. 

The Python library gensim [32] is used in this thesis to 

produce a Word2Vec model for the parser. 

                                                           

1. 1
 https://code.google.com/archive/p/word2vec/ 

 

Part-of-speech tags  

The information available as features when dependency 

parsing includes part-of-speech tags (POS-tags). The 

process of automatically predicting POS-tags is called part-

of-speech tagging (POS-tagging). It is a classification 

problem that generally requires inference from a machine 

learning component as its search strategy, similarly to 

dependency parsing. The multi-class perceptron is the most 

commonly used machine learning component for POS-

tagging, but artificial neural networks can also be used with 

good results, as shown by Strandqvist [6]. 

Honnibal’s original system [3] 

The following summarizes Honnibal’s implementation. 

 It is written in Python2.7 with approximately 500 

lines of code.  

 It is a transition-based dependency parser using the 

arc-hybrid transition algorithm [23].  

 It uses the algorithm “dynamic oracle” [28] to 

predict gold-standard moves at runtime as a way to 

recover from errors and avoid error propagation. 

 It raises an error when presented with non-

projective dependency graphs as training data. 

 The parser only predicts unlabeled dependency 

information and POS-tags. 

 It uses the multi-class perceptron as the machine 

learning component. 

 It has its own POS tagger, which also uses the 

multi-class perceptron as the machine learning 

component. 

 The POS-tagger has a dictionary of common 

words with almost constant tags independent of 

the context. These words are located in the training 

phase and helps speed up the parsing time. 

Honnibal’s system was rewritten in Python3.6.0 and used as 

the baseline program for this thesis. It was tested on the 

same machine with the same environment as the newly 

created system. 

Evaluation 

When measuring dependency parsing accuracy, there are 

three common strategies to use. They are the following: 

 Labeled Attachment Score (LAS): Percentage of 

tokens for which the system has predicted the 

correct head and dependency relation. 

 Unlabeled Attachment Score (UAS): Percentage of 

tokens for which the system has predicted the 

correct head. 

 Label Accuracy (LA): Percentage of tokens for 

which the system has predicted the correct 

dependency relation. 

Unlabeled attachment score is the only measurement 

used in this thesis, due to the limitations of the baseline 

system. 

https://code.google.com/archive/p/word2vec/
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Treebanks 

Modern dependency parsers use data from corpora of 

syntactic analyses called Treebanks to train their machine 

learning components. There are many such Treebanks 

available, but the most commonly used one, in the context 

of dependency parsing, is The Penn Treebank [14, 16]. 

The Penn Treebank is a huge corpus, consisting of 

approximately 3 million words of American English, with 

part-of-speech tagging and skeletal syntactic structure. 

There exist a collection of smaller freely available corpora 

compiled and released by the Universal Dependencies 

project (UD) [24]. The English UD data is the one mostly 

used as training and test data in this thesis. It contains 

229,753 tokens and 14,545 sentences. 

A more recent treebank that expanded upon the Penn 

Treebank, but with more information included enabling 

significantly better automatic semantic analysis, is the 

OntoNotes project [19, 20]. Goldberg and Orwant have also 

produced a huge corpus even more recently based on the 

English Google books corpus, consisting of text from 

3,473,595 English books [2]. 

These are all corpora based on English texts, but there 

exists large and sophisticated corpora based on other 

languages as well. For example: The Prague Dependency 

Treebank [18] contains ~1.5 million Czech word tokens. 

Gold-standard for transition-based dependency parsing 

One of the core ideas of transition-based dependency 

parsing is to predict a sequence of transition actions via a 

supervised machine learning algorithm and that means that 

it needs training data with provided desired output. The 

treebanks is a collection of such data. Usually they are 

created manually by experts and this reliable data is 

commonly referred to as gold-standard. However, the gold-

standard for transition-based dependency parsing is a 

sequence of transition actions which is not originally 

available from given training data found in a Treebank. For 

that reason a preprocessing of the training data where the 

action sequence for the given dependency graphs needs to 

be computed. An efficient algorithm to compute this at 

runtime is the “dynamic oracle” [28]. 

METHOD 

In essence, this thesis aims to answer how and if a simple 

neural network can improve performance in the context of 

transition-based dependency parsing, and evaluate potential 

problems with its implementation. In order to reach a well-

defined conclusion, Honnibal’s system [3] was used as a 

baseline for the implementation and for the measurement of 

the efficiency and complexity. 

This chapter will explain the neural network architecture, 

the experimentation process, the implementation and 

provide pseudocode for the parsing. 

The computer device used for testing was a Hewlett-

Packard; model p6770sc. It had 8.0 GB RAM and the 

operative system was a 64-bit Windows 7. The processor 

was a 2.80GHz Intel Core i5-2300.  

Artificial neural network architecture 

Figure 4 illustrates the neural network design chosen for 

this thesis. The same design is used for both the POS-tagger 

and the dependency parser. The only difference between the 

two is the amount of neurons in each layer. Table 1 

provides the details. 

  POS-tagger Dependency parser 

Output layer 53 3 

Hidden layer 100 80 

Input layer 2689 5825 
Table 1: Number of neurons in the neural network 

models. 

The training algorithm for the ANN is the mini-batch 

gradient descent. Gradient descent is a way to minimize an 

objective function J(θ) with parameters θϵ   by updating 

the parameters in the opposite direction of the gradient to 

the objective function        . The equation is shown 

below (Eq1) 

         (   
                )  Eq1 

  is the learning rate constant, n is the size of the mini-

batch,      is the training example and      is the desired 

output. 

Figure 4: My Neural network architecture. The concatenated word vectors are denoted as     and the tag vector is denoted as   . 

The lines between the hidden layer and the input layer represent the weight vector denoted as    and the lines between the output 

layer and hidden layer represent the weight vector denoted as    
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Experimentation process 

The programs were executed via the terminal with the 

training and test data filenames as arguments. The time 

library of python was used to measure the time taken for the 

programs at different breakpoints. The parsing time refers 

to the time taken to parse all sentences from the test set 

(size ~2000 sentences) and the training time refers to the 

time taken to train on all sentences from the training set 

(size ~12000). The parsing time was further divided into 3 

steps for the dependency parsers: feature extraction step, 

prediction step, and POS-tagging step.  

The unlabeled attachment score was calculated by parsing 

the test set after each training iteration and comparing the 

results with the desired output. 

Implementation 

Honnibal’s implementation [3], available on GitHub, was 

rewritten in Python3.6.0. A few modifications regarding the 

reading of training- and test-data were required, and a 

function that removes all non-projective graphs from the 

training set has been implemented. These were the only 

modifications applied for the baseline program. 

The required modifications were necessary for the 

following reasons:  

1. The original system throws an error when non-

projective graphs are encountered. 

2. The original system was created with the format of 

the Penn Treebank in mind, but the format of the 

English Universal Dependency files differs 

slightly. Both have the same structure with word 

information in each line separated with tabs, but 

the order and amount of available information is 

different.  

The system mainly consists of two parts; a part of speech 

tagger and a dependency parser. Both use the multi-class 

perceptron as the machine learning component in the 

baseline system. The new system effectively replaced both 

the POS taggers perceptron and the parsers perceptron with 

an appropriate feedforward ANN model without changing 

the overall functionality. 

POS Tagger 

The final ANN created for the POS tagger is a basic 

feedforward model that is very similar to Strandqvist’s [6] 

implementation with the following hyper parameters: 

1. Learning rate: 0.1. 

2. Activation function: Sigmoid for the hidden layers 

and softmax for the output layer. 

3. Batch size: Sentence length. 

4. Hidden layers: 1. 

5. Hidden units in the hidden layer: 100. 

6. Features: Word context set to 3 and the 3 previous 

tags represented as sparse vectors. 

The context refers the number of words prior to and after 

the current word in the given sentence that will be encoded 

with Word2Vec and concatenated to the input vector as 

features for the network. Figure 5 illustrates a concrete 

example of a configuration and the chosen features in it. 

      Current       
 

Words From the AP comes this story : 

Tags IN DT NNP VBZ DT NN : 

Context               

features <start> From the AP comes this story 

Tag               

features <start> IN DT         

Figure 5: A short sentence from the training dataset and 

its chosen features when context is set to 3. The current 

word in this example is “AP”. 

Every word feature was encoded into a dense vector of size 

300 with the Word2Vec model. The Word2Vec model used 

in the implementation is the popular “Google news dataset” 

model previously mentioned. It is a very reliable model 

with lots of good semantic information for most occurring 

words. It takes roughly 1 minute to load the model, and the 

lookup speed at runtime is fast enough to be negligible. One 

problem with it, however, is that there are several tokens 

that don’t exist in the vocabulary of this Word2Vec model. 

The loaded model is an untrainable “keyedVector” so the 

missing words cannot be decoded and added manually to it. 

If all of these unknown words are represented as a single 

extra binary value the performance of the tagger becomes 

unsatisfactory, and if they are added as a sparse “one-hot” 

vector the size of the network becomes way to large and 

inefficient. To solve this issue an “UNK dictionary” with 

applied normalization on the missing tokens was created 

and added to the word vector representation as a small 

“one-hot” sparse vector. Only common unknown words 

from the training dataset, with a threshold set to at least 5 

occurrences, has a place in this dictionary and with the 

current training dataset the vector representation for each 

word increased from 300 to 360. 

There is of course a possibility of using the Word2Vec 

algorithm to train my own model that does include the 

missing tokens without the need for said “UNK dictionary”. 

However, a huge amount of training data would be required 

for that and possibly several days of training time, which 

was something I didn’t have. 

The tags were represented as a “one-hot” sparse vector with 

the length being the number of all uniquely occurring tags 

found in the training dataset. With the English Universal 

Dependency training dataset the length of the vector 

became 53. 

The total length of the input vector for the implemented 

POS-taggers artificial neural network was 2689, given the 

English Universal Dependency training set and with a 

context size of 3. To put this in perspective, the original 
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multi-class perceptron POS-tagger had a sparse “one-hot” 

input vector of a size larger than 70,000. 

The other hyper parameters were mostly adjusted to the 

current choice through trial and error. 

Dependency parser 

The final ANN created for the dependency parser was a 

basic feedforward model almost identical to the ANN for 

the POS tagger. The following hyperparameters were used. 

1. Learning rate: 0.2. 

2. Activation function: Sigmoid for the hidden layers 

and softmax for the output layer. 

3. Batch size: Sentence length. 

4. Hidden layers: 1. 

5. Hidden units in the hidden layer: 80. 

6. Features: 14 words from the current configuration 

and their corresponding POS tags. See table 2 for 

the details. 

Word features 
Total 
(14) Abbreviation 

Top 3 words from the buffer 3 b0,b1,b2 

Top 3 words from the stack 3 s0,s1,s2 

2 leftmost children of s0 and 
b0 4   

2 rightmost children of s0 and 
b0 4   

Tag features 
Total 
(14)   

The corresponding POS tags of all word features 
Table 2: The feature template for the ANN parser. 

Every word feature was encoded into a dense vector of size 

300 with the Word2Vec model, plus 60 from the 

concatenation of the “UNK dictionary”, exactly the same as 

the POS tagger. The atomic features were 14 words from 

the current configuration and their corresponding POS tags. 

The size of the input vector for the implemented 

dependency parser was 5825 in total, given the English 

Universal Dependency training set. To put this in 

perspective, the original multi-class perceptron dependency 

parser had a sparse “one-hot” input vector of a size larger 

than 1,000,000. 

Pseudocode of the parser 

A simplified (incomplete) pseudocode of the 

implementations parsing process, given a sentence as a list 

of words: 

1. Predict the corresponding POS-tags for the words 

in the given sentence with a POS-tagger. Returns 

a list of POS-tags. 

2. current_word  0 (integer, also points to the 

corresponding POS-tag) 

3. list_of_heads  empty list of tuples 

4. While not terminal(current_word) 

a. Extract features from the current 

configuration. Returns a fixed size list of 

floats (the input vector). 

b. Make prediction based on the extracted 

features.  Returns an action. 

c. Take action and update current_word and 

list_of_heads accordingly. 

5. Return the list_of_heads. 

The above pseudocode was the same for both the baseline 

parser and the ANN parser. The only differences were at 

step 1, 4.a and 4.b. The differences were: different models 

used when predicting in step 1 and 4.b, and different feature 

representations returned at step 4.a. 

RESULTS 

The objective experimental findings of using a neural 

network for the POS tagger and dependency parser are 

presented in this chapter. 

POS tagger 

The original multi-class perceptron POS tagger is more 

efficient than the ANN tagger, but the ANN has slightly 

better accuracy. 

The average time taken to parse 23625 tokens with the 

multi-class perceptron model is ~1.8 seconds and the 

average time for the ANN model with context size set to 3 

is ~3.0 seconds (see Table 3).  

  ANN Perceptron 

Training time 80 sec/iter 10 sec/iter 

Tagging time  3.0 seconds 1.8 seconds 
Table 3: Training and tagging time taken for the ANN 

tagger and the baseline tagger. 

The accuracy of the multiclass perceptron model usually 

settles around 93.3% accuracy and the ANN model usually 

settles at 93.5% accuracy, when trained on the English 

Universal Dependency training dataset and tested on the 

corresponding test set. This is illustrated in figure 6 and 7. 

 

Figure 6: A typical training session of the ANN and the 

original multi-class perceptron implementation for 

POS-tagging using the same English Universal 

Dependency datasets. The X-axis represents number of 

iterations and the Y-axis represents unlabeled 

attachment score in decimal form. 
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Figure 7: The same Perceptron and ANN model tested 

and trained on another training- and test-dataset 

downloaded from the website cnts
2
.  

Dependency parser 

The ANN parser achieved an accuracy of approximately 

1.5% higher than the baseline program, but the parsing 

speed is around 3 times slower. 

Table 4 illustrates the parsing time and training time for the 

two parsers. Table 5 illustrates the parsing time in greater 

detail. 

  ANN Perceptron 

Training time: 6 min/iter 1 min/iter 

Parsing time:  22 seconds 7 seconds 
Table 4: Parsing and training time taken for the ANN 

parser and the baseline parser. 

Detailed parsing time 

  ANN Perceptron 

Feature extraction 7.9 seconds 2.7 seconds 

Prediction 10.2 seconds 2.8 seconds 

Tagging 3.0 seconds 1.8 seconds 
Table 5: parsing time in more detail. The above three 

steps are the most time consuming when parsing. 

The accuracy for the ANN parser is at best slightly above 

82.0% and for the multi-class perceptron it is slightly below 

80.7% on the English Universal dependency datasets. This 

is illustrated in figure 8. 

                                                           
2
 http://www.cnts.ua.ac.be/conll2000/chunking/ 

 

Figure 8: A typical training session of the ANN and the 

original multi-class perceptron implementation for 

dependency parsing using the same English Universal 

Dependency datasets. The X-axis represents number of 

iterations and the Y-axis represents unlabeled 

attachment score in decimal form.  

Because simplicity is of relevance in this thesis, a small 

experiment to see how the training size affected the 

performance and training time was carried out. The parsing 

time was seemingly unaffected, but the training time was 

affected linearly with the training size, as one might expect. 

The results are illustrated in figure 9. 

 

Figure 9: The same Perceptron and ANN dependency 

parsers trained on half the English Universal 

Dependency training data (the top two lines) and one 

fourth of the training data (the two bottom lines). They 

were tested on the same unmodified English Universal 

Dependency test-dataset. 

DISCUSSION 

A subjective analysis of the experimental findings is 

presented in this chapter. 

Complexity 

The aim of this thesis is to create a good but simple 

dependency parser, including its POS tagger. If complexity 

is measured in the number of lines of code, then both 

parsers have almost the same complexity. Both of them 

consist of approximately 600 lines of code which is 

considered very small in the context of dependency parsing. 

It is, however, not that simple to judge the complexity of 
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the program. The ANN parser relies heavily on external 

libraries such as Keras and Gensim, which cannot be 

regarded as simple. If I were to write my own functionality 

imitating the functionality used from said libraries the 

amount of code would easily exceed 1000 extra lines of 

code. 

Another thing to consider when judging the complexity is 

the amount of required knowledge for the 2 

implementations. ANN is a very broad machine learning 

algorithm with a huge amount of different variations that 

may or may not work well at solving the given problem. As 

an example, I personally tested five different activation 

functions for the hidden layer before settling on the sigmoid 

function, which produced best results on this particular 

implementation. The multiclass perceptron requires 

complex feature engineering to perform well, but aside 

from that it is very straightforward and relatively simple 

with few possible alterations. 

Another problem with the ANN is that it is difficult to 

know what architecture works best for the problem, and the 

most common way to figure it out is to use trial and error. 

This would not be a problem if it weren’t for the fact that 

the training time is very slow. In my case I had to wait 

around 30 minutes for every new tweak to be able to 

determine whether the change was an improvement or not. 

An attempt to decrease the size of the training dataset to 

speed up the process were made, but it turns out that even 

though the training time is halved if the training dataset is 

halved, the performance of the ANN is significantly 

reduced at a much faster rate than the multi-class 

perceptron. Whether it would still be possible to determine 

if a tweak is good or bad from this setup is not certain at 

this point, but it is a possibility. I will leave the conclusions 

regarding that to future work. 

It does indeed seem like the ANN implementation is more 

complex and time consuming to implement properly than 

the multi-class perceptron, but there is one thing it does 

much better. It does not require any particular feature 

engineering. All it requires are a few atomic features from 

the locally available information. Combinations of many of 

the atomic features are essential for the multi-class 

perceptron to be able to perform satisfactory, and 

depending on the language the best combinations will vary. 

The experiments of this thesis showed that an ANN model 

can indeed capture enough information to perform well 

without the need of any such feature engineering. 

Performance 

The ANN models perform better than the baseline models 

in both the POS tagger and the dependency parser, in terms 

of accuracy (unlabeled attachment score). However, the 

difference is quite small. Both perform pretty bad compared 

to modern parsers trained and tested on the Penn Treebank 

datasets and one reason could be difference in size of the 

training data. Another reason could be the lack of additional 

information from the available configuration during the 

dependency parsing process in the form of dependency 

labels. Because both the baseline model and the ANN 

models in this thesis were created with simplicity in mind 

the dependency labels have been completely left out. 

Efficiency 

Previous works [11, 27] mentioned that the feature 

extraction process and the sparse vector representation is 

very time consuming for typical multi-class perceptron 

based dependency parsers, but this does not seem to be the 

case with the baseline system. The ANN parser created in 

this thesis extracts less information from the configuration 

but still takes twice as long time in this step than the 

baseline parser. The reason seems to be the building of the 

dense input vector at runtime. The perceptron parser only 

need to lookup the relatively few extracted features in the 

weight table and do a calculation with their corresponding 

weights and all the other zeros are ignored in the 

calculation. The ANN needs to create a dense 

representation of every feature and calculate all the values 

in the created dense input vector in two steps and this is 

shown to be even more time consuming.  

CONCLUSION 

This thesis has shown that a transition-based dependency 

parser using a simple artificial neural network with a purely 

atomic feature representation can indeed slightly 

outperform an identical system that uses the multi-class 

perceptron in terms of accuracy, eliminating the need for 

complex feature engineering. However, it is about three 

times slower and the training time required for the ANN 

dependency parser is significantly longer.  
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