
Linköping University | Department of Computer and Information Science
Bachelor thesis, 16 credits | Computer programming

Spring term 2017 | LIU-IDA/LITH-EX-G--17/011—SE

Transition-Based Dependency Parsing
with Neural Networks

Joakim Gylling

Supervisor, Rita Kovordányi
Co-supervisor, Marco Kuhlmann
Examiner, Peter Dalenius

Upphovsrätt

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under 25 år från publiceringsdatum
under förutsättning att inga extraordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt
bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av
upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet
kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns
lösningar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed
kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller
presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller
konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se förlagets hemsida
http://www.ep.liu.se/.

Copyright

The publishers will keep this document online on the Internet – or its possible replacement – for a period of 25
years starting from the date of publication barring exceptional circumstances.

The online availability of the document implies permanent permission for anyone to read, to download, or to
print out single copies for his/hers own use and to use it unchanged for non-commercial research and
educational purpose. Subsequent transfers of copyright cannot revoke this permission. All other uses of the
document are conditional upon the consent of the copyright owner. The publisher has taken technical and
administrative measures to assure authenticity, security and accessibility.

According to intellectual property law the author has the right to be mentioned when his/her work is
accessed as described above and to be protected against infringement.

For additional information about the Linköping University Electronic Press and its procedures for publication
and for assurance of document integrity, please refer to its www home page: http://www.ep.liu.se/.

© Joakim Gylling

http://www.ep.liu.se/
http://www.ep.liu.se/

1

ABSTRACT

Dependency parsing is important in contemporary speech

and language processing systems. Current dependency

parsers typically use the multi-class perceptron machine

learning component, which classifies based on millions of

sparse indicator features, making developing and

maintaining these systems expensive and error-prone. This

thesis aims to explore whether replacing the multi-class

perceptron component with an artificial neural network

component can alleviate this problem without hurting

performance, in terms of accuracy and efficiency. A simple

transition-based dependency parser using the artificial

neural network (ANN) as the classifier is written in

Python3 and the same program with the classifier replaced

by a multi-class perceptron component is used as a baseline.

The results show that the ANN dependency parser provides

slightly better unlabeled attachment score with only the

most basic atomic features, eliminating the need for

complex feature engineering. However, it is about three

times slower and the training time required for the ANN is

significantly longer.

INTRODUCTION

Natural Language Processing (NLP) is an area of research

that explores how computer systems can be created and

used to understand and manipulate natural language text or

speech in a useful manner. It is the area of research behind

Google Translate, spellchecking programs and many more

applications we often use in our everyday lives.

NLP faces several challenges, one of which is ambiguity.

Most words have different meaning in different context. It

is easy for us humans to figure out the intention of the

words by looking at the context they appear in, but how can

this be achieved for a machine? The idea of “context” is

very fuzzy and situational, thus it cannot simply be

hardcoded. One way to help figure out the meaning of the

words in a sentence is to create a dependency graph with

part-of-speech tagging. Figure 1 illustrates how a

dependency graph typically looks like.

Figure 1: An illustration of a dependency graph.

Dependency parsing is the task of mapping a natural

language sentence into a representation of its syntax or

semantics in the form of a dependency graph. Dependency

graphs can be created in linear time complexity with

transition-based dependency parsing [4].

In standard experiments using the Penn Treebank [14] as

the training and test data source, labeled and unlabeled

attachment scores of over 90% have previously been

achieved by transition-based dependency parsers using

linearly separable machine learning algorithms such as the

multi-class perceptron [4, 5]. However, many of these rely

on millions of hand-crafted features, making developing

and maintaining these systems expensive and error-prone.

Models based on artificial neural networks [1] as the

machine learning component promise a solution to this

problem, as they are able to learn new features

automatically.

Purpose

The goal of this project is to get a better understanding of

the possibilities and limitations of neural networks in the

context of a system for transition-based dependency parsing

and to provide an implementation of such a system.

Focus will be placed on simplicity rather than cutting-edge

performance, with the intention to construct a system that is

easy to apply small specific changes to for experimentation

purposes.

Honnibal [3] has developed a compact system for

transition-based dependency parsing based on the multi-

class perceptron. A similar implementation will be

provided, were the current machine learning model is

replaced by an appropriate neural network model.

Research question

Given the system provided by Honnibal [3]:

 What are the pros and cons of using a neural

network instead of the multi-class perceptron as

the machine learning component?

 How high is the unlabeled attachment score for the

new system, using standard test from the English

Universal Dependency Treebank [24] and how

well does that fare in comparison with Honnibal’s

original system?

Delimitations

Several transition-based parsers with neural networks have

been explored and produced very promising results in

recent times [8, 9, 10, 11, 12, 13, 17]. The main goal of

these articles is mostly about finding a better and more

accurate algorithm than the, at the time, current state of the

art. The focus of this project, however, is to compare a

simple implementation with one specific modification and

analyze the experimental findings.

The created system is written in Python3.6.0. The state of

the art neural network library, Keras [29], is used to

simplify the neural network implementation process

significantly. The Python library gensim [31] is used to

create Word2Vec models in this thesis. Word2Vec [30] is a

program that maps words to fixed size vector

representations based on semantic information.

2

THEORY

There are a lot of techniques and concepts involved in the

context of dependency parsing and machine learning

algorithms, and a lot of them are very complex. This section

will attempt to give a high-level overview of the most

relevant techniques and concepts.

Dependency parsing

The computerized task of mapping a natural language

sentence into a dependency graph is a classification

problem at its core. The algorithm finds correlated pairs of

tokens in a natural language sentence and classifies each

such pair with its specific syntax type. Every pair is

basically a directed arc consisting of one “head” pointing to

its “dependent”. Furthermore, every standalone token will

also oftentimes be classified with its own syntactic type.

A dependency graph is a directed graph where every

standalone token is a vertex, and every mapped pair of

tokens is an arc [21]. The graph satisfies the following

constraints:

 There is a single root vertex that has no incoming

arcs.

 With the exception of the root vertex, each vertex

has exactly one incoming arc.

 There is a unique path from the root vertex to each

vertex in the graph.

As shown by Figure 1, it is common practice in dependency

parsing to add a dummy node marked as ROOT to facilitate

connectedness to the graph.

Dependency parsing is a problem that requires some kind of

search strategy that can either be categorized as “greedy”,

“exhaustive”, or a hybrid of the two. A greedy search

strategy relies on local information when making the

classification decisions, and an exhaustive search relies on

global information. It is essentially these two search

strategies that further divide a dependency parsing strategy

into either a transition-based or a graph-based dependency

parsing strategy.

Transition-based dependency parsing

The process of a transition-based dependency parser can

generally be explained as a procedure that follows these

steps:

1. The parser starts in the initial configuration.

2. It uses a classifier to predict the transition that

should be made to move to the next configuration.

3. It repeats step 2 until it reaches a terminal

configuration.

The classifier uses a greedy search algorithm on local

information accessible from the current configuration to

determine what transition to be made next. Inference by a

trained multi-class perceptron component is the most

commonly used greedy search strategy for transition-based

dependency parsing.

Because the search space is limited to the current

configuration at each step, the runtime complexity of this

approach is linear in the number of transitions and hence in

the length of the sentence. A major disadvantage, on the

other hand, is that the greedy parsing strategy may lead to

error propagation. Another disadvantage is that the

transition-based approach can only produce projective

dependency graphs, but not all sentences are projective, as

shown by Figure 2. So there will necessarily be some errors

in such sentences [21].

Figure 2: An example of a non-projective dependency graph.

A graph is projective if all arcs are projective. An arc from

head to dependent is projective if there is a path from the head

to all the tokens in between the arc. This is not the case for the

arc between the head ‘flight’ and the dependent ‘was’ in this

example.

The transitioning during the parsing can be done in several

different ways. The three most commonly used algorithms

for transitioning are the arc-standard, the arc-eager and the

arc-hybrid, as explained in great detail by Nivre [23]. The

arc-standard is a simple variant with only three possible

transition actions, whilst the arc-eager is slightly more

complex with four possible transitions and 3 constraints.

Arc-hybrid is very similar to arc-standard but with a few

additional constraints.

Graph-based dependency parsing

Graph-based parsers use an exhaustive search on global

data from the whole space of possible trees to find an

optimal solution for the current problem. It is generally

more accurate than transition-based dependency parsing but

suffers from efficiency problems. There are algorithms that

make it possible to limit the time complexity to polynomial

time of the sentence length, such as the CKY (Cocke-

Kasami-Younger) algorithm, so it is definitely a worthy

approach when accuracy is of importance.

Zhang and Zhao [7] combined a convolutional neural

network in combination with a graph-based dependency

parsing and yielded good results, both in regards to runtime

and accuracy.

Hybrid

Combining the two approaches for dependency parsing and

only receiving the best from two worlds is an obvious idea.

It is fairly difficult to accomplish since they rely on two

completely different scopes of data, but it is possible and

can yield good results, as shown by Zhang, Nivre and

McDonald [25, 22].

Machine learning algorithms

Every sentence consists of words, and every word consists

of letters. The parts are not the same as the whole in this

3

case, because the whole carries meaning that cannot be

found in the parts. For a computer to “understand” the

meaning of a sentence, a representation of the syntactic

structure, with relevant metadata like word relations etc., is

a requirement. A dependency graph is a sufficient syntactic

representation for this. It is, however, not an easy task to

create a handcrafted function that can parse an arbitrary

sentence into its correct dependency graph. For an

algorithm to be able parse it into its syntactic structure it

would possibly need a database of all possible sentences

and their correct syntactic structure, which is not feasible.

For that reason a machine learning algorithm is needed.

Machine learning is a kind of algorithm that uses data to

learn how to approximate functionalities rather than being

explicitly coded for that functionality from the start [26].

Sometimes it is too difficult for a certain functionality to be

understood and implemented efficiently and that is when

machine learning algorithms come to the rescue.

In the context of dependency parsing the most used

machine learning algorithmic approach is the multi-class

perceptron. In more recent times neural networks have

made great progress and become popular [8, 9, 10, 11, 12,

13, 17].

Perceptron

A perceptron essentially consists of three parts.

 A vector of input variables commonly referred to

as features.

 A set of output variables.

 A set of weights.

Every feature have as many weights as there are outputs,

and every one of these weights is connected to one of the

outputs, as shown by Figure 3.

Figure 3: An example of a perceptron algorithm with 3

features (F1, F2, F3), their corresponding weights (drawn as

lines) and 2 outputs (Out1 and Out2).

The perceptron is trained from provided data via supervised

learning [26]. Training involves making changes to the

weight values. By extracting features from a sentence a

calculation will occur and the result will end up in the

output. Depending on the values of the outputs the system

will determine what class it represents.

Multi-class perceptron

The multi-class perceptron is an extension of the standard

perceptron introduced by Collins [15]. The standard

perceptron has a binary classification, meaning that every

input will be predicted to either belong to class A or class

B, no other choices are available. The multi-class

perceptron, on the other hand, can have a huge amount of

possible classes available and it is not simply a single

prediction involved in the larger context. It is sequence of

predictions that include previous class predictions as

features when making future predictions and the final result

is the whole sequence of the predicted classes.

In the context of transition-based dependency parsing the

predicted class at each step is the correct transition action

given the current configuration. The predicted action will

be taken and give rise to a new configuration with new

available local information extracted as features to make yet

another prediction and this process is repeated until

terminal configuration is reached. The final result is one of

all possible dependency graphs, for the given sentence.

In practice the dependency parsing will extract millions of

features based on, for example, specific word combinations

and place them with their corresponding weights in a table

during the training phase. After that, during the prediction

phase, a set amount of information will be extracted from

the current configuration and looked up in said table. This

extraction step is expensive and causes most of the runtime

to be consumed in this step [27], in some cases.

Artificial neural network

Artificial neural network is pretty much like an extended

and more advanced version of a multi-class perceptron. The

basic idea with weights, inputs (features) and outputs are

the same, but there is one or more extra layers of vectors

added in neural networks (called hidden layers) and the

learning algorithm is significantly different. Another

difference is that neural networks use an activation

function, which a multi-class perceptron does not. For the

explanation and details regarding all of these concepts I will

refer to Demuth’s book [1].

Why artificial neural networks instead of multi-class
perceptron?

The important point is that the multi-class perceptron suffer

from the disadvantage that they are only able to solve

linearly separable classification problems. To cope with

that, a huge amount of hand-crafted features is required.

Artificial neural network, on the other hand, is able to

approximate almost any function, if it has a sufficient

amount of neurons in its hidden layers, and can solve non-

linear separable problems as a result [1]. This makes it

possible for neural networks to accurately make predictions

when presented by only the most basic atomic features used

by the multi-class perceptron and still come out with better

accuracy. In fact, this has already been demonstrated by

Chen and Manning [11].

4

Although inefficiency is a potential problem with the

complex feature extractions required by the multi-class

perceptron [27], it is not the biggest problem. The biggest

problem is that the hand-crafted features require a good

deal of tweaking and expert knowledge to perform

satisfactory, and even then it is often biased towards the

current language and test data. The same features might

need to be altered once again when presented with a

different set of data. A model using a neural network model

does not suffer from this problem because the features used

are just basic atomic information. The hidden layers of the

network are responsible for finding the relevant patterns

from these so the need for manual tweaking disappears. Just

feed the network with a sufficient amount of good training

data and it will “engineer itself”, so to speak.

Dense data representation

A typical data representation for the multi-class perceptron

is to extract a huge amount of different word combinations

that appear in the sentences from the training set as

features, and this will make the data representation

extremely sparse. This representation will often contain

millions of such word combinations, but only a few of them

will be relevant at any given time when parsing a sentence.

It is an unnecessary expense of the runtime.

The multi-class perceptron requires such sparse

representations due to the limitations of the algorithm, but

this is not the case for a neural network. By using the

computer program Word2Vec the available atomic

information can be represented as a dense vector instead

and this has been shown to work very well when parsing

with a neural network component [11].

Word2Vec

Word2Vec is a program that creates dense vector

representations of words based on semantic information

[30]. The semantic information is based on the idea that

similar words occur in similar contexts. Word2Vec

implements two methods to create said vector

representations.

1. Continuous skip-gram: Predicting a context based

on a word.

2. Continuous bag of words (CBOW): Predicting a

word based on the context.

There exist several excellent pre-trained Word2Vec models

freely available on the Internet. The most popular at the

time of writing is the Google news dataset model
1
. It has

been trained on roughly a 100 billion words and has a

vector length of 300 features.

The Python library gensim [32] is used in this thesis to

produce a Word2Vec model for the parser.

1. 1
 https://code.google.com/archive/p/word2vec/

Part-of-speech tags

The information available as features when dependency

parsing includes part-of-speech tags (POS-tags). The

process of automatically predicting POS-tags is called part-

of-speech tagging (POS-tagging). It is a classification

problem that generally requires inference from a machine

learning component as its search strategy, similarly to

dependency parsing. The multi-class perceptron is the most

commonly used machine learning component for POS-

tagging, but artificial neural networks can also be used with

good results, as shown by Strandqvist [6].

Honnibal’s original system [3]

The following summarizes Honnibal’s implementation.

 It is written in Python2.7 with approximately 500

lines of code.

 It is a transition-based dependency parser using the

arc-hybrid transition algorithm [23].

 It uses the algorithm “dynamic oracle” [28] to

predict gold-standard moves at runtime as a way to

recover from errors and avoid error propagation.

 It raises an error when presented with non-

projective dependency graphs as training data.

 The parser only predicts unlabeled dependency

information and POS-tags.

 It uses the multi-class perceptron as the machine

learning component.

 It has its own POS tagger, which also uses the

multi-class perceptron as the machine learning

component.

 The POS-tagger has a dictionary of common

words with almost constant tags independent of

the context. These words are located in the training

phase and helps speed up the parsing time.

Honnibal’s system was rewritten in Python3.6.0 and used as

the baseline program for this thesis. It was tested on the

same machine with the same environment as the newly

created system.

Evaluation

When measuring dependency parsing accuracy, there are

three common strategies to use. They are the following:

 Labeled Attachment Score (LAS): Percentage of

tokens for which the system has predicted the

correct head and dependency relation.

 Unlabeled Attachment Score (UAS): Percentage of

tokens for which the system has predicted the

correct head.

 Label Accuracy (LA): Percentage of tokens for

which the system has predicted the correct

dependency relation.

Unlabeled attachment score is the only measurement

used in this thesis, due to the limitations of the baseline

system.

https://code.google.com/archive/p/word2vec/

5

Treebanks

Modern dependency parsers use data from corpora of

syntactic analyses called Treebanks to train their machine

learning components. There are many such Treebanks

available, but the most commonly used one, in the context

of dependency parsing, is The Penn Treebank [14, 16].

The Penn Treebank is a huge corpus, consisting of

approximately 3 million words of American English, with

part-of-speech tagging and skeletal syntactic structure.

There exist a collection of smaller freely available corpora

compiled and released by the Universal Dependencies

project (UD) [24]. The English UD data is the one mostly

used as training and test data in this thesis. It contains

229,753 tokens and 14,545 sentences.

A more recent treebank that expanded upon the Penn

Treebank, but with more information included enabling

significantly better automatic semantic analysis, is the

OntoNotes project [19, 20]. Goldberg and Orwant have also

produced a huge corpus even more recently based on the

English Google books corpus, consisting of text from

3,473,595 English books [2].

These are all corpora based on English texts, but there

exists large and sophisticated corpora based on other

languages as well. For example: The Prague Dependency

Treebank [18] contains ~1.5 million Czech word tokens.

Gold-standard for transition-based dependency parsing

One of the core ideas of transition-based dependency

parsing is to predict a sequence of transition actions via a

supervised machine learning algorithm and that means that

it needs training data with provided desired output. The

treebanks is a collection of such data. Usually they are

created manually by experts and this reliable data is

commonly referred to as gold-standard. However, the gold-

standard for transition-based dependency parsing is a

sequence of transition actions which is not originally

available from given training data found in a Treebank. For

that reason a preprocessing of the training data where the

action sequence for the given dependency graphs needs to

be computed. An efficient algorithm to compute this at

runtime is the “dynamic oracle” [28].

METHOD

In essence, this thesis aims to answer how and if a simple

neural network can improve performance in the context of

transition-based dependency parsing, and evaluate potential

problems with its implementation. In order to reach a well-

defined conclusion, Honnibal’s system [3] was used as a

baseline for the implementation and for the measurement of

the efficiency and complexity.

This chapter will explain the neural network architecture,

the experimentation process, the implementation and

provide pseudocode for the parsing.

The computer device used for testing was a Hewlett-

Packard; model p6770sc. It had 8.0 GB RAM and the

operative system was a 64-bit Windows 7. The processor

was a 2.80GHz Intel Core i5-2300.

Artificial neural network architecture

Figure 4 illustrates the neural network design chosen for

this thesis. The same design is used for both the POS-tagger

and the dependency parser. The only difference between the

two is the amount of neurons in each layer. Table 1

provides the details.

 POS-tagger Dependency parser

Output layer 53 3

Hidden layer 100 80

Input layer 2689 5825
Table 1: Number of neurons in the neural network

models.

The training algorithm for the ANN is the mini-batch

gradient descent. Gradient descent is a way to minimize an

objective function J(θ) with parameters θϵ by updating

the parameters in the opposite direction of the gradient to

the objective function . The equation is shown

below (Eq1)

 (
) Eq1

 is the learning rate constant, n is the size of the mini-

batch, is the training example and is the desired

output.

Figure 4: My Neural network architecture. The concatenated word vectors are denoted as and the tag vector is denoted as .

The lines between the hidden layer and the input layer represent the weight vector denoted as and the lines between the output

layer and hidden layer represent the weight vector denoted as

6

Experimentation process

The programs were executed via the terminal with the

training and test data filenames as arguments. The time

library of python was used to measure the time taken for the

programs at different breakpoints. The parsing time refers

to the time taken to parse all sentences from the test set

(size ~2000 sentences) and the training time refers to the

time taken to train on all sentences from the training set

(size ~12000). The parsing time was further divided into 3

steps for the dependency parsers: feature extraction step,

prediction step, and POS-tagging step.

The unlabeled attachment score was calculated by parsing

the test set after each training iteration and comparing the

results with the desired output.

Implementation

Honnibal’s implementation [3], available on GitHub, was

rewritten in Python3.6.0. A few modifications regarding the

reading of training- and test-data were required, and a

function that removes all non-projective graphs from the

training set has been implemented. These were the only

modifications applied for the baseline program.

The required modifications were necessary for the

following reasons:

1. The original system throws an error when non-

projective graphs are encountered.

2. The original system was created with the format of

the Penn Treebank in mind, but the format of the

English Universal Dependency files differs

slightly. Both have the same structure with word

information in each line separated with tabs, but

the order and amount of available information is

different.

The system mainly consists of two parts; a part of speech

tagger and a dependency parser. Both use the multi-class

perceptron as the machine learning component in the

baseline system. The new system effectively replaced both

the POS taggers perceptron and the parsers perceptron with

an appropriate feedforward ANN model without changing

the overall functionality.

POS Tagger

The final ANN created for the POS tagger is a basic

feedforward model that is very similar to Strandqvist’s [6]

implementation with the following hyper parameters:

1. Learning rate: 0.1.

2. Activation function: Sigmoid for the hidden layers

and softmax for the output layer.

3. Batch size: Sentence length.

4. Hidden layers: 1.

5. Hidden units in the hidden layer: 100.

6. Features: Word context set to 3 and the 3 previous

tags represented as sparse vectors.

The context refers the number of words prior to and after

the current word in the given sentence that will be encoded

with Word2Vec and concatenated to the input vector as

features for the network. Figure 5 illustrates a concrete

example of a configuration and the chosen features in it.

 Current

Words From the AP comes this story :

Tags IN DT NNP VBZ DT NN :

Context

features <start> From the AP comes this story

Tag

features <start> IN DT

Figure 5: A short sentence from the training dataset and

its chosen features when context is set to 3. The current

word in this example is “AP”.

Every word feature was encoded into a dense vector of size

300 with the Word2Vec model. The Word2Vec model used

in the implementation is the popular “Google news dataset”

model previously mentioned. It is a very reliable model

with lots of good semantic information for most occurring

words. It takes roughly 1 minute to load the model, and the

lookup speed at runtime is fast enough to be negligible. One

problem with it, however, is that there are several tokens

that don’t exist in the vocabulary of this Word2Vec model.

The loaded model is an untrainable “keyedVector” so the

missing words cannot be decoded and added manually to it.

If all of these unknown words are represented as a single

extra binary value the performance of the tagger becomes

unsatisfactory, and if they are added as a sparse “one-hot”

vector the size of the network becomes way to large and

inefficient. To solve this issue an “UNK dictionary” with

applied normalization on the missing tokens was created

and added to the word vector representation as a small

“one-hot” sparse vector. Only common unknown words

from the training dataset, with a threshold set to at least 5

occurrences, has a place in this dictionary and with the

current training dataset the vector representation for each

word increased from 300 to 360.

There is of course a possibility of using the Word2Vec

algorithm to train my own model that does include the

missing tokens without the need for said “UNK dictionary”.

However, a huge amount of training data would be required

for that and possibly several days of training time, which

was something I didn’t have.

The tags were represented as a “one-hot” sparse vector with

the length being the number of all uniquely occurring tags

found in the training dataset. With the English Universal

Dependency training dataset the length of the vector

became 53.

The total length of the input vector for the implemented

POS-taggers artificial neural network was 2689, given the

English Universal Dependency training set and with a

context size of 3. To put this in perspective, the original

7

multi-class perceptron POS-tagger had a sparse “one-hot”

input vector of a size larger than 70,000.

The other hyper parameters were mostly adjusted to the

current choice through trial and error.

Dependency parser

The final ANN created for the dependency parser was a

basic feedforward model almost identical to the ANN for

the POS tagger. The following hyperparameters were used.

1. Learning rate: 0.2.

2. Activation function: Sigmoid for the hidden layers

and softmax for the output layer.

3. Batch size: Sentence length.

4. Hidden layers: 1.

5. Hidden units in the hidden layer: 80.

6. Features: 14 words from the current configuration

and their corresponding POS tags. See table 2 for

the details.

Word features
Total
(14) Abbreviation

Top 3 words from the buffer 3 b0,b1,b2

Top 3 words from the stack 3 s0,s1,s2

2 leftmost children of s0 and
b0 4

2 rightmost children of s0 and
b0 4

Tag features
Total
(14)

The corresponding POS tags of all word features
Table 2: The feature template for the ANN parser.

Every word feature was encoded into a dense vector of size

300 with the Word2Vec model, plus 60 from the

concatenation of the “UNK dictionary”, exactly the same as

the POS tagger. The atomic features were 14 words from

the current configuration and their corresponding POS tags.

The size of the input vector for the implemented

dependency parser was 5825 in total, given the English

Universal Dependency training set. To put this in

perspective, the original multi-class perceptron dependency

parser had a sparse “one-hot” input vector of a size larger

than 1,000,000.

Pseudocode of the parser

A simplified (incomplete) pseudocode of the

implementations parsing process, given a sentence as a list

of words:

1. Predict the corresponding POS-tags for the words

in the given sentence with a POS-tagger. Returns

a list of POS-tags.

2. current_word  0 (integer, also points to the

corresponding POS-tag)

3. list_of_heads  empty list of tuples

4. While not terminal(current_word)

a. Extract features from the current

configuration. Returns a fixed size list of

floats (the input vector).

b. Make prediction based on the extracted

features. Returns an action.

c. Take action and update current_word and

list_of_heads accordingly.

5. Return the list_of_heads.

The above pseudocode was the same for both the baseline

parser and the ANN parser. The only differences were at

step 1, 4.a and 4.b. The differences were: different models

used when predicting in step 1 and 4.b, and different feature

representations returned at step 4.a.

RESULTS

The objective experimental findings of using a neural

network for the POS tagger and dependency parser are

presented in this chapter.

POS tagger

The original multi-class perceptron POS tagger is more

efficient than the ANN tagger, but the ANN has slightly

better accuracy.

The average time taken to parse 23625 tokens with the

multi-class perceptron model is ~1.8 seconds and the

average time for the ANN model with context size set to 3

is ~3.0 seconds (see Table 3).

 ANN Perceptron

Training time 80 sec/iter 10 sec/iter

Tagging time 3.0 seconds 1.8 seconds
Table 3: Training and tagging time taken for the ANN

tagger and the baseline tagger.

The accuracy of the multiclass perceptron model usually

settles around 93.3% accuracy and the ANN model usually

settles at 93.5% accuracy, when trained on the English

Universal Dependency training dataset and tested on the

corresponding test set. This is illustrated in figure 6 and 7.

Figure 6: A typical training session of the ANN and the

original multi-class perceptron implementation for

POS-tagging using the same English Universal

Dependency datasets. The X-axis represents number of

iterations and the Y-axis represents unlabeled

attachment score in decimal form.

0,88

0,89

0,9

0,91

0,92

0,93

0,94

1 3 5 7 9 11 13

Perceptron

ANN

8

Figure 7: The same Perceptron and ANN model tested

and trained on another training- and test-dataset

downloaded from the website cnts
2
.

Dependency parser

The ANN parser achieved an accuracy of approximately

1.5% higher than the baseline program, but the parsing

speed is around 3 times slower.

Table 4 illustrates the parsing time and training time for the

two parsers. Table 5 illustrates the parsing time in greater

detail.

 ANN Perceptron

Training time: 6 min/iter 1 min/iter

Parsing time: 22 seconds 7 seconds
Table 4: Parsing and training time taken for the ANN

parser and the baseline parser.

Detailed parsing time

 ANN Perceptron

Feature extraction 7.9 seconds 2.7 seconds

Prediction 10.2 seconds 2.8 seconds

Tagging 3.0 seconds 1.8 seconds
Table 5: parsing time in more detail. The above three

steps are the most time consuming when parsing.

The accuracy for the ANN parser is at best slightly above

82.0% and for the multi-class perceptron it is slightly below

80.7% on the English Universal dependency datasets. This

is illustrated in figure 8.

2
 http://www.cnts.ua.ac.be/conll2000/chunking/

Figure 8: A typical training session of the ANN and the

original multi-class perceptron implementation for

dependency parsing using the same English Universal

Dependency datasets. The X-axis represents number of

iterations and the Y-axis represents unlabeled

attachment score in decimal form.

Because simplicity is of relevance in this thesis, a small

experiment to see how the training size affected the

performance and training time was carried out. The parsing

time was seemingly unaffected, but the training time was

affected linearly with the training size, as one might expect.

The results are illustrated in figure 9.

Figure 9: The same Perceptron and ANN dependency

parsers trained on half the English Universal

Dependency training data (the top two lines) and one

fourth of the training data (the two bottom lines). They

were tested on the same unmodified English Universal

Dependency test-dataset.

DISCUSSION

A subjective analysis of the experimental findings is

presented in this chapter.

Complexity

The aim of this thesis is to create a good but simple

dependency parser, including its POS tagger. If complexity

is measured in the number of lines of code, then both

parsers have almost the same complexity. Both of them

consist of approximately 600 lines of code which is

considered very small in the context of dependency parsing.

It is, however, not that simple to judge the complexity of

0,95

0,955

0,96

0,965

0,97

0,975

0,98

1 3 5 7 9 11 13

Perceptron

ANN

0,72

0,74

0,76

0,78

0,8

0,82

0,84

1 3 5 7 9 11 13

Perceptron

ANN

0,6

0,65

0,7

0,75

0,8

1 3 5 7 9 11 13

Perceptron
1/2

ANN 1/2

Perceptron
1/4

ANN 1/4

9

the program. The ANN parser relies heavily on external

libraries such as Keras and Gensim, which cannot be

regarded as simple. If I were to write my own functionality

imitating the functionality used from said libraries the

amount of code would easily exceed 1000 extra lines of

code.

Another thing to consider when judging the complexity is

the amount of required knowledge for the 2

implementations. ANN is a very broad machine learning

algorithm with a huge amount of different variations that

may or may not work well at solving the given problem. As

an example, I personally tested five different activation

functions for the hidden layer before settling on the sigmoid

function, which produced best results on this particular

implementation. The multiclass perceptron requires

complex feature engineering to perform well, but aside

from that it is very straightforward and relatively simple

with few possible alterations.

Another problem with the ANN is that it is difficult to

know what architecture works best for the problem, and the

most common way to figure it out is to use trial and error.

This would not be a problem if it weren’t for the fact that

the training time is very slow. In my case I had to wait

around 30 minutes for every new tweak to be able to

determine whether the change was an improvement or not.

An attempt to decrease the size of the training dataset to

speed up the process were made, but it turns out that even

though the training time is halved if the training dataset is

halved, the performance of the ANN is significantly

reduced at a much faster rate than the multi-class

perceptron. Whether it would still be possible to determine

if a tweak is good or bad from this setup is not certain at

this point, but it is a possibility. I will leave the conclusions

regarding that to future work.

It does indeed seem like the ANN implementation is more

complex and time consuming to implement properly than

the multi-class perceptron, but there is one thing it does

much better. It does not require any particular feature

engineering. All it requires are a few atomic features from

the locally available information. Combinations of many of

the atomic features are essential for the multi-class

perceptron to be able to perform satisfactory, and

depending on the language the best combinations will vary.

The experiments of this thesis showed that an ANN model

can indeed capture enough information to perform well

without the need of any such feature engineering.

Performance

The ANN models perform better than the baseline models

in both the POS tagger and the dependency parser, in terms

of accuracy (unlabeled attachment score). However, the

difference is quite small. Both perform pretty bad compared

to modern parsers trained and tested on the Penn Treebank

datasets and one reason could be difference in size of the

training data. Another reason could be the lack of additional

information from the available configuration during the

dependency parsing process in the form of dependency

labels. Because both the baseline model and the ANN

models in this thesis were created with simplicity in mind

the dependency labels have been completely left out.

Efficiency

Previous works [11, 27] mentioned that the feature

extraction process and the sparse vector representation is

very time consuming for typical multi-class perceptron

based dependency parsers, but this does not seem to be the

case with the baseline system. The ANN parser created in

this thesis extracts less information from the configuration

but still takes twice as long time in this step than the

baseline parser. The reason seems to be the building of the

dense input vector at runtime. The perceptron parser only

need to lookup the relatively few extracted features in the

weight table and do a calculation with their corresponding

weights and all the other zeros are ignored in the

calculation. The ANN needs to create a dense

representation of every feature and calculate all the values

in the created dense input vector in two steps and this is

shown to be even more time consuming.

CONCLUSION

This thesis has shown that a transition-based dependency

parser using a simple artificial neural network with a purely

atomic feature representation can indeed slightly

outperform an identical system that uses the multi-class

perceptron in terms of accuracy, eliminating the need for

complex feature engineering. However, it is about three

times slower and the training time required for the ANN

dependency parser is significantly longer.

REFERENCES

1. DEMUTH, Howard B., et al. Neural network design.

Martin Hagan, 2014.

2. GOLDBERG, Yoav; ORWANT, Jon. A dataset of

syntactic-ngrams over time from a very large corpus of

english books. In: Second Joint Conference on Lexical

and Computational Semantics (* SEM). 2013. p. 241-

247.

3. HONNIBAL, Matthew. Parsing English in 500 Lines

of Python. In explosion.ai [interactive]. 2013.

[Previewed 2017- 02-01]. Access through internet:

<https://explosion.ai/blog/parsing-english-in-python>.

4. NIVRE, Joakim. Inductive dependency parsing.

Springer Netherlands, 2006.

5. ZHANG, Yue; NIVRE, Joakim. Transition-based

dependency parsing with rich non-local features.

In: Proceedings of the 49th Annual Meeting of the

Association for Computational Linguistics: Human

Language Technologies: short papers-Volume 2.

Association for Computational Linguistics, 2011. p.

188-193.

6. STRANDQVIST, Wiktor. Neural Networks for Part-

of-Speech Tagging. 2016.

https://explosion.ai/blog/parsing-english-in-python

10

7. ZHANG, Zhisong; ZHAO, Hai; QIN, Lianhui.

Probabilistic graph-based dependency parsing with

convolutional neural network. In: Proceedings of the

54th Annual Meeting of the Association for

Computational Linguistics (ACL). 2016. p. 1382-1392.

8. VASWANI, Ashish; SAGAE, Kenji. Efficient

structured inference for transition-based parsing with

neural networks and error states. Transactions of the

Association for Computational Linguistics, 2016, 4:

183-196.

9. ALI, Basirat; NIVRE, Joakim. Greedy Universal

Dependency Parsing with Right Singular Word

Vectors. In: Swedish Language Technology Conference

(SLTC). 2016.

10. WEISS, David, et al. Structured training for neural

network transition-based parsing. arXiv preprint

arXiv:1506.06158, 2015.

11. CHEN, Danqi; MANNING, Christopher D. A Fast and

Accurate Dependency Parser using Neural Networks.

In: EMNLP. 2014. p. 740-750.

12. DYER, Chris, et al. Transition-based dependency

parsing with stack long short-term memory. arXiv

preprint arXiv:1505.08075, 2015.

13. ALBERTI, Chris; WEISS, David; PETROV, Slav.

Improved transition-based parsing and tagging with

neural networks. 2015.

14. MARCUS, Mitchell P.; MARCINKIEWICZ, Mary

Ann; SANTORINI, Beatrice. Building a large

annotated corpus of English: The Penn

Treebank. Computational linguistics, 1993, 19.2: 313-

330.

15. COLLINS, Michael. Discriminative training methods

for hidden markov models: Theory and experiments

with perceptron algorithms. In: Proceedings of the

ACL-02 conference on Empirical methods in natural

language processing-Volume 10. Association for

Computational Linguistics, 2002. p. 1-8.

16. TAYLOR, Ann; MARCUS, Mitchell; SANTORINI,

Beatrice. The Penn treebank: an overview.

In: Treebanks. Springer Netherlands, 2003. p. 5-22.

17. ZHOU, Hao, et al. A Neural Probabilistic Structured-

Prediction Model for Transition-Based Dependency

Parsing. In: ACL (1). 2015. p. 1213-1222.

18. BÖHMOVÁ, Alena, et al. The Prague dependency

treebank. In: Treebanks. Springer Netherlands, 2003. p.

103-127.

19. HOVY, Eduard, et al. OntoNotes: the 90% solution.

In: Proceedings of the human language technology

conference of the NAACL, Companion Volume: Short

Papers. Association for Computational Linguistics,

2006. p. 57-60.

20. WEISCHEDEL, Ralph, et al. OntoNotes: A large

training corpus for enhanced processing. Handbook of

Natural Language Processing and Machine

Translation. Springer, 2011.

21. JURAFSKY, Dan; MARTIN, James H. Speech and

language processing. Pearson, 2014.

22. NIVRE, Joakim; MCDONALD, Ryan T. Integrating

Graph-Based and Transition-Based Dependency

Parsers. In: ACL. 2008. p. 950-958.

23. NIVRE, Joakim. Algorithms for deterministic

incremental dependency parsing. Computational

Linguistics, 2008, 34.4: 513-553.

24. SILVEIRA, Natalia, et al. A Gold Standard

Dependency Corpus for English. In: LREC. 2014. p.

2897-2904.

25. ZHANG, Yue; CLARK, Stephen. A tale of two

parsers: investigating and combining graph-based and

transition-based dependency parsing using beam-

search. In: Proceedings of the Conference on Empirical

Methods in Natural Language Processing. Association

for Computational Linguistics, 2008. p. 562-571.

26. RUSSELL, Stuart; NORVIG, Peter; INTELLIGENCE,

Artificial. A modern approach. Artificial Intelligence.

Prentice-Hall, Egnlewood Cliffs, 1995, 25: 27.

27. HE, He; DAUMÉ III, Hal; EISNER, Jason. Dynamic

Feature Selection for Dependency Parsing. In: EMNLP.

2013. p. 1455-1464.

28. GOLDBERG, Yoav; NIVRE, Joakim. Training

deterministic parsers with non-deterministic

oracles. Transactions of the association for

Computational Linguistics, 2013, 1: 403-414.

29. CHOLLET, Fran\c{c}ois. Keras. In keras.io

[interactive]. 2015. [Previewed 2017- 03-01]. Access

through internet: https://keras.io/.

30. MIKOLOV, Tomas, et al. Distributed representations

of words and phrases and their compositionality.

In: Advances in neural information processing systems.

2013. p. 3111-3119.

31. REHUREK, Radim; SOJKA, Petr. Software

framework for topic modelling with large corpora.

In: In Proceedings of the LREC 2010 Workshop on

New Challenges for NLP Frameworks. 2010.

32. RUBENSTEIN, Herbert; GOODENOUGH, John B.

Contextual correlates of synonymy. Communications

of the ACM, 1965, 8.10: 627-633.

https://keras.io/

