
Linköping University | IDA 
Bachelor thesis | Innovative Programming 

Spring term 2017 | LIU-IDA/LITH-EX-G—17/009--SE 

 
 
 
 
 
 
 
 
 
 
 

The feasibility and practicality of a 
generic social media library 

 
 
 
 
 

Fredrik Jonsén 
Alexander Stolpe 

 
 
 
 

Tutor, Peter Dalenius 
Examinator, Rita Kovordanyi 

 
 
 
 
 
 
 
 
 



 

Upphovsrätt 

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under 25 år från 
publiceringsdatum under förutsättning att inga extraordinära omständigheter uppstår. 

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior 
för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. 
Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan 
användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, 
säkerheten och tillgängligheten finns lösningar av teknisk och administrativ art. 

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som 
god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet 
ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för 
upphovsmannens litterära eller konstnärliga anseende eller egenart. 

För ytterligare information om Linköping University Electronic Press se förlagets hemsida 
http://www.ep.liu.se/. 
 
 
 

Copyright 

The publishers will keep this document online on the Internet – or its possible replacement – for a 
period of 25 years starting from the date of publication barring exceptional circumstances. 

The online availability of the document implies permanent permission for anyone to read, to 
download, or to print out single copies for his/hers own use and to use it unchanged for non-commercial 
research and educational purpose. Subsequent transfers of copyright cannot revoke this permission. All 
other uses of the document are conditional upon the consent of the copyright owner. The publisher has 
taken technical and administrative measures to assure authenticity, security and accessibility. 

According to intellectual property law the author has the right to be mentioned when his/her work is 
accessed as described above and to be protected against infringement. 

For additional information about the Linköping University Electronic Press and its procedures for 
publication and for assurance of document integrity, please refer to its www home page: 
http://www.ep.liu.se/. 
 
 
 
 
 
 
 
 
 
 
 
 
© Fredrik Jonsén, Alexander Stolpe 

http://www.ep.liu.se/
http://www.ep.liu.se/


The feasibility and practicality of a generic social media library
Fredrik Jonsén

Linköping University
Linköping, Sweden

frejo105@student.liu.se

Alexander Stolpe
Linköping University
Norrköping, Sweden

alest170@student.liu.se

ABSTRACT
Many people today use social media in one way or another,
and many of these platforms have released APIs developers
can use to integrate social media in their applications. As
many of these platforms share a lot of functionality we see
a need for developing a library, to contain these, and ease
the development process when working with the platforms.
The purpose of this paper is to find common functionality
and explore the possibility of generalization in this regard.
We first look for common denominators between the top so-
cial media networks, and using this information we attempt
to make an implementation to evaluate the practicality. After
the development process we analyze our findings and discuss
the usability and maintainability of such a library. Our find-
ings show that the current state of the studied APIs are not
suitable for generalization.

INTRODUCTION
Today a lot of people are using social media in one way or
another and it is estimated that there will be around 2.67 bil-
lion social media users around the globe by 2018[11]. Most
of these social networks have released Application Program-
ming Interfaces (APIs) which developers can utilize to inte-
grate these networks into their software.

Social network usage is growing and has gone from 0.97 bil-
lion users in 2010 to 2.14 billion in 2015[11]. This would
account for approximately 29% of the earths population in
2015, which was 7.347 billion 2015[15]. It is worth not-
ing that this counts created user accounts and not unique
users, one person can have several accounts over multiple
networks, and accounts may not belong to an actual person,
but rather companies, organizations, or bots.

Because of the currently high, and still growing, number of
social media users we find it highly likely that we will see an
increasing number of applications that involve social media
in their software in one way or the other. Out of all the social
networks existing today there are twenty that have more than
100 million active accounts[12]. This means that if we would
want to create an application that involves a lot of social net-
works we will have to do a lot of work just to implement all
of these into the application.

Purpose
Because of this we see a need for a way to combine these
social network APIs in some way to save development time
and reduce the amount of duplicate code written in software.
The purpose of this project is to create a library that com-
bines the APIs in a modular fashion, where each API serves

as a module in order to simplify adding new networks, and
make it easier to involve social media in software.

A software library by definition is a set of pre-written code
that a developer might add to a project in order to add more
functionality or to ease the development process[14].

For our study, we define modularity as the extent to which
a program can be divided into modules where[6] each mod-
ule has its own well-defined interface, and there should be
no need to modify the interface when changing the modules
actual implementation. Together, these modules should be
easily combined to make up a full program. In the present
case modularity will mostly affect how easy it will be to in-
tegrate new social media APIs in the future.

Over time, as new social networks enter the market, it will
have to be possible to integrate them into our library. As
such, the code will have to be maintainable. Maintainability
is a very broad term, with many interpretations of its mean-
ing[1]. We will use maintainability as a general concept,
rather than a strict definition. For our study we refer to main-
tainability as how simple the code in itself is to work with,
when changes or new additions are necessary. In the Theory
chapter we will explore this subject more thoroughly. For
the evaluation of the maintainability of our library, we will
be making use of the third party tool SonarQube1.

RESEARCH QUESTION
As this paper aims to explore the feasibility and maintain-
ability of a generic social media library, we form our research
question as follows:

• Is it possible to create a maintainable modular library for
social network APIs?

As the question pertains to the possibility of creating the li-
brary, it is also necessary to define what would make us deem
it impossible to finalize the library with a satisfactory result.
In regards to this, we see two major potential risk factors:

1. It may not be possible to generalize the results of the APIs,
but each API will instead require a large mount of excep-
tions, making a common interface meaningless.

2. The rate of changes to the APIs may be unmaintainable. If
we during the course of the relatively short development
time find ourselves having to go back multiple times to
adjust already implemented functionality due to changes
in the API, we will consider the library unmaintainable.

LIMITATIONS
Because there are so many social networks existing today
and we have a finite amount of time to complete this project
1https://www.sonarqube.org/

1



we will focus on a smaller set of APIs to implement into our
library. We have set up a few criteria for the APIs so we can
find suitable candidates for our library, which are:

• The social network must be one of the 22 most popu-
lar[12].

• It must be relevant for our geographical location, in this
case Europe.

Other than this we will judge the API itself subjectively by
how good its documentation is, its functionality and its ease-
of-use.

THEORY

Code Reuse
A lot of time and money can be saved by reusing code, of
which libraries are one form. Although there are some issues
with using libraries, the gains from avoiding reinventing the
wheel makes writing and using libraries a common practice,
in particular in open source software[4].

Writing code which can be easily reused requires a deeper
analysis of the problem domain, which may increase the cost
and time required compared to developing the same code
without reuse in mind, but can drastically decrease the cost
of developing systems in the future where the code can be
reused [7]. This cost reduction is apparent foremost in terms
of direct cost of development, but also in time-to-market,
which can be argued to be even more important in the long
term[3].

With code reuse there are also several potential issues which
have to be kept in mind, both when it comes to the imple-
mentation itself but also when it comes to using the imple-
mentation. Backwards compatibility between versions is a
major topic in itself[8]. There is also the risk of a library
being abandoned by it’s maintainer. This is especially true
for proprietary libraries, where the source code may not be
available. It this case, the library might have to be replaced,
making all the effort to use the library wasted.

Library Interface Design
When designing our library we will want keep several things
in mind. We want to design the library so it’s easy and
straightforward to use for a developer. As Henning points
out in his article[5], about design of APIs, it is very easy to
create a bad one, but very hard to create an API that feels
natural and easy to work with. APIs, as we know, are a kind
of interface for a program to gain access to another program
without direct access, and can be compared to the interface
of our library.

Henning continues to discuss guidelines for how an API
should generally be designed. What feels most relevant to
our work is how he describes how the APIs should be de-
signed from the perspective of a user, because when it’s done
from the implementers point of view the needs of the user are
often forgotten. It’s usually best to document first, because
when it is done after the implementation the programmer,
who wrote the functionality, will usually just dictate what he
did, rather than make it is obvious enough for others who are
not as familiar with the code.

Maintainability
Maintainability can be defined as the simplicity with which
defects can be corrected and the library can be extended or
modified to support future requirements[13]. This can gen-
erally be measured by certain quantifiable attributes, such
as unit test coverage, lines of code and cyclomatic complex-
ity[10]. It also includes more subjective aspects, such as how
self-explanatory the code is, and how well commented sec-
tions of necessarily complex code is. In regards to our li-
brary, the aspect of code comprehension becomes the most
interesting. This is also the most subjective part, as it will
depend largely on the reader. Keeping code comprehension
high usually comes down to following a set of guidelines[9],
such as keeping blocks of code short, and minimizing the
amount of identifiers, to ensure the reader has to keep track
of as little as possible at any given time.

Social Media APIs
A social media API is an interface through which the soft-
ware can integrate functionality offered by the social media
platform, commonly set up as a REST API. These can be
used through registering the application on the social me-
dia site, thus acquiring an authentication token which can be
used to call different endpoints via HTTP. The services of-
fered varies between the APIs, but tend to share some basic
functionality such as publishing posts and sending private
messages.

As mentioned, one of the biggest issues with using libraries
is the risk of the project being abandoned. This risk increases
significantly when the library itself uses APIs which inte-
grate oft-changing platforms, such as the case of Social Me-
dia. The rate of change differs between networks, in some
cases on average three times a year2, in other cases several
times a month3, although the impact of the changes varies
greatly. At best, a lack of active development simply means
missing out on new functionality. In other cases, such as
unfixed security vulnerabilities4, may render the library un-
usable.

Similiar work

Several similar works, Agorava5, ASNE6 and SocialMedia
Abstractions7serve the same or similar purposes, but all were
abandoned before reaching a stable release. In the case of
ASNE, the project was abandoned explicitly due to a lack
of free time. This shows the issue of a library having only
a single maintainer, as the project risks being abandoned by
its developer as soon the project is no longer a priority. The
others have no stated reason for the lack of continued devel-
opment. There are also commercial services8 which provide
this functionality for some popular APIs, but charge money
to sign up and use. As it is proprietary its inner workings are
completely opaque, and thus will not be examined by this
study.
2https://developers.facebook.com/docs/apps/changelog
3https://www.hitchhq.com/twitter/activities
4https://github.com/gorbin/ASNE/issues/107
5http://www.agorava.org/
6https://github.com/gorbin/ASNE
7https://github.com/socialsensor/socialmedia-abstractions
8https://cloudrail.com

2



Encountered issues
Despite being abandoned, we hope the research community
can still learn from the problems the similar libraries encoun-
tered and solved. For this, one can look into each projects is-
sue tracking (where available) and commits. This was some-
what complicated in that one project, SocialMedia Abstrac-
tions, simply had not used issue tracking. Another project,
ASNE did use issue tracking, but much of the discussion re-
garding individual issues was largely in Russian, making it
unusable for the present case. The issues, despite the name,
did not always regard bugs. In the vast majority of cases, is-
sued stemmed from users misunderstanding the library doc-
umentation, requesting features, or suggesting refactoring of
code to increase maintainability. In the case of documenta-
tion misunderstandings, these were often solved by simply
adding examples. There was also a noticeable difference in
the amount of issues pertaining bugs in ASNE, which in-
cluded no automatic tests, compared to Agorava, which in-
cludes a large amount of automatic tests, and had almost no
issues regarding logical errors, despite having a much larger
code base.

METHOD
To find out if we could create a modular library for social
network APIs we structured our project into three different
parts. We began with evaluating the most popular networks
on a basis of which are relevant for our project and which are
appropriate to integrate into our library based on functional-
ity. As the next step we then implemented the library, using
SonarQube throughout development to ensure code quality
and maintainability stayed high. Lastly we evaluated the li-
brary in two different ways. First we analyzed the data we
got from SonarQube and see how well our library performs,
and then created a small application, in order to test the li-
brarys practical usability.

Social Networks Selection
To choose which APIs to implement into our library we ini-
tially looked at what social media network sites where most
popular[12]. Out of these networks we sorted out those
which were geographically irrelevant for the focus of this
project, which is the European market. We then further nar-
rowed down the list by looking at the functionality of each
API. This was done by looking through the official docu-
mentations provided by the respective platforms. As a first
step we summarized the basic functionality for each one,
see appendix A, and then dove deeper into the specifics of
each platforms respective implementation of said functional-
ity. We selected the APIs which shared a lot of generalizable
functionality. This made them more appropriate for the core
idea of our study, to develop a modular library.

Implementation
When we had chosen APIs to implement we started we
started to implement our library. For this we have chosen
to work in the Java language, as we found a decent num-
ber of pre-existing API-specific libraries we could use in this
language. We used the most current version of Java at the
time of our project, Java SE 8. We also used several tools,
which we will describe briefly.

Maven

Maven9is a project management tool. While the tool includes
a lot of functionality, we mostly made use of its automated
build tool, release-, and dependency management.

IntelliJ IDEA

IntelliJ IDEA10is the Integrated Development Environment
we chose for our project. It offers integration with Maven,
syntax highlighting, static analysis, boilerplate code genera-
tion and other functionality to simplify the implementation
work.

Travis CI

Travis11is a free Open Source service for continuous integra-
tion. It integrates with github and runs tests automatically
for the project when changes are checked in. When done,
participants of the project can be notified of the result.

SonarQube

Sonarqube12is a service for, in their own words, continuous
code quality. As with Travis, it integrates with GitHub and
automatically runs a series of checks when code is commit-
ted to the repository. This includes analysing the code for
general issues, such as a high cyclomatic complexity, miss-
ing documentation and dead code, but also more detailed
issues which may be easy to miss, such as potential infi-
nite loops, unhandled exceptions, or checking floating point
numbers for equality.

Work Method
We chose to work using a test driven development process,
where we first wrote tests for our interfaces. During this pro-
cess we also documented the functionality according to Hen-
nings[5] concept of documenting first, in an effort of making
the documentation more understandable from the users per-
spective. During this period we implemented functionality
iteratively for our two prioritized APIs, implementing one
functionality at a time for each as to not be left with only one
fully implemented API in our library.

Design
Our library mainly consist of two parts, see figure 1. Where
the library interface is what the users are in contact with
when interacting with our library. This interface is an ab-
straction of a generic social network API. The Generic So-
cial Network Implementation is the actual implementation
of each social media platform and acts as the middleware be-
tween the interface and the external social media platforms.
The internals of each implementation might differ greatly.
To as great a degree as possible, we will use existing libraries
which are either official or come officially recommended by
the API vendor, in order to save time and avoid reimplement-
ing functionality which is already available and suites our
purpose.

The already existing libraries we used are:
9https://maven.apache.org/

10https://www.jetbrains.com/idea/
11https://travis-ci.org/
12https://www.sonarqube.org/

3



Figure 1. Architectural overview of library and use case

• twitter4j (http://twitter4j.org/)

• facebook4j (https://facebook4j.github.io/)

• jumblr (https://github.com/tumblr/jumblr)

Evaluation
The evaluation of our library consists of three parts.
Throughout the project we have used SonarQube to ana-
lyze the quality and maintainability of our code, which is
the first part. As for the second, once we have finished im-
plementing two APIs, we attempted to implement a third,
to test the flexibility of the library interface. The third part
involves creating a small application which utilizes the li-
brary. When selecting the functionality of the application we
looked at what common denominators was shared between
the different plaforms, that might be suitable. This will gave
us a hands-on experience on how easy our library is to use
in practice and the more analytical aspect gained from the
SonarQube analysis.

When integrating our library into our test application, we
mainly focused on if we felt that there was anything lack-
ing, or if something was not working as intended. If we felt
the need to go back and change the source code of the library,
or its interfaces, the result is deemed unsatisfactory.

RESULTS

Social Networks Selection
When looking at social media APIs we found that out of the
22 networks from our list[12], 10 were geographically ir-
relevant for our study as many of these were niched at the
Asian market, primarily the Chinese one. We then narrowed
it down further to networks with APIs which shared a lot of
common functionality, see Appendix A, making them more
appropriate for the core idea of our study. Given that the
time of the project is finite we chose to look at the top four
platforms with good functionality, where Facebook and Mes-
senger was regarded as a single platform.

• Facebook

• Instagram

• Tumblr

• Twitter

Comparison
While comparing APIs functionality we found out that these
differ both in how well developed they are as well as how
much functionality they offer. Out of the top four platforms
facebook and twitter had the most well developed APIs, as
well as libraries developed by the same developer. Making
these our top priority. For the last two platforms we chose to
prioritize Tumblr over Instagram considering it had an offi-
cial library written in java, which would make it faster for us
to implement into our own library. As such, our final priori-
tization was as follows:

1. Facebook

2. Twitter

3. Tumblr

4. Instagram

Implementation
In terms of tools used, no implementation compromises had
to be made to suite our configuration. Although the library
has few dependencies, using Maven made the project signif-
icantly more portable, and outside of the initial startup and
configuration, handling dependencies proved to be no issue,
even when switching between workstations.

For SonarQube, our original intention was to use it for eval-
uation of the end result, but it proved more useful during the
implementation as well. When committing the code to our
git repository, SonarQube would automatically pull the code
and analyze it. As such, we always had a current idea of the
state of the quality of the implementation, and we occasion-
ally took the time to correct issues SonarQube reported. A
plugin called SonarLint13, developed by SonarQube, was also
available for IntelliJ IDEA, which uses a more basic rule set
than the SonarQube service, but allowed us to avoid many
of the most common mistakes, such as unnecessary package
imports, which may not directly impact the usefulness of the
library, but results in cleaner, and more easily worked with,
code.

Work Method
Using Test Driven Development helped in many cases to give
a better understanding at the problem each function is meant
to solve. This was the most useful when writing functions
which have no side effects, as it allows for clearer sets of in-
puts and outputs to and from the function. In essence, writing
the tests firsts forced us to write the functions in a way that
made them easier to test, and functions which were easy to
test also turned out to be easier to understand.

At the start of the project we set out to document first as
to make the documentation reach a higher quality. As our
library mainly consists of already documented functionality
in most cases this were merely duplicate information and did
not impact our own documentation in any meaningful way.

13http://www.sonarlint.org/

4



Design
For two of our chosen platforms, Facebook and Twitter,
third-party library implementations of the respective APIs
were available. While using these libraries significantly re-
duced the workload, some compromises had to be made.
One of the two, facebook4j, is completely synchronous,
which meant the other implementations had to be syn-
chronous as well in order to be generalized properly.

As the goal was to generalize the social network APIs, we
had to look for the lowest common denominator. This meant
that the classes for users and posts only supported the very
most basic functionality, such as getting their id, name and
biography. Other functionality, such as getting the friends of
a user, had to be relegated to API-specific classes, due to the
way friendships work on different networks. An example
would be Facebook, where friendship is mutual, while the
closest equivalent on Twitter is follow, which can be one-
sided. On the other hand, Facebook also has a concept of
follow, which is not accessible through the API, and thus
Facebook friends can not be generalized together with the
Twitter follow concept.

In some cases, in particular for Facebook, functionality
which is available on the site and library users would ex-
pect to be present in the library, is not available in the APIs.
This is largely in regards to functionality which could po-
tentially be used to spam or otherwise inconvenience regular
users, such as sending friend requests. Some functionality
is available, but has additional rules for usage, such as di-
rect messaging. In this case, users are required to start the
conversation, to avoid the chat being used as a system for
notifications or ads. This does also mean that the usefulness
of chat functionality is significantly reduced in the simple
REST API we intended the library to be, and we decided to
leave it out of the library, as it would be more suitable for
libraries with this specific purpose.

Evaluation

SonarQube
SonarQube proved to be more useful during the implemen-
tation process than as an evaluation tool after the implemen-
tation was complete. The most useful feature for us was that
of code coverage. Code coverage is a somewhat controver-
sial metric, as it only ensures that the code has been run, but
does prevent tests from always using happy paths. Nonethe-
less, it helped visualize which parts of the code had gone
untested, mostly due to human error. It also helped avoid-
ing bugs, such as using the == operator instead of equals for
string comparison, which is usually gives an undesirable re-
sult in Java. However, as for evaluation of the end result of
the implementation, SonarQube did not prove all that useful,
as the project was simply not large enough in scope to pro-
duce a large number of unfixable issues. SonarQube attempt
to quantify the complexity of the code, but as the majority
of the code written by us simply wraps the libraries we used,
most of the code is of very low complexity. There were also
cases where SonarQube considered the complexity to be very
high, such as when using Switches with many cases, even
though the cases were in actuality very simple and easy to
reason about.

Third API implementation
As for the second part of our evaluation, once the implemen-
tation of Twitter and Facebook was done, we attempted to
add Tumblr to our library. This forced some changes to the
library interface. One example is where the follower count
of users. For Twitter, this was always accessible, and would
always return an integer. In the Facebook API, this is not
available at all, and thus always throws an exception. As
such, the non-nullable type int was chosen as the return type
of the getFollowersCount function in the interface. However,
for Tumblr, this functionality may be available, depending
on the users settings. If the user has chosen to not make this
number available, the API will instead return null, making in
incompatible. Because of this, we had to change the return
type to Integer. While this may seem like a minor change, it
is in fact a breaking change, and would have forced any ex-
isting users of the library to make changers in the own code;
in particular, change the types of the variables handling the
returned data, and make null checks.

Test Application
For the last part of our evaluation, we built a small applica-
tion to test actually using the library. During the implemen-
tation of our test program we found that a lot of the shared
functionality was not suitable for generalization. The appli-
cation ended up being a smaller post publisher14that fetched
data from reddit15, and then republished it on our different
platforms. When developing the application we did not feel
like there was anything we had to go back and change in our
library for it to work. The development was very straightfor-
ward and our library was easy to use.

DISCUSSION
In this part we will first discuss our findings mentioned in the
result chapter and follow up with talking about our chosen
method of approach.

Method

Social media selection
During this study we have worked against social media net-
works that have been deemed geographically relevant for the
European market. When looking at the top platforms in so-
cial media today[12], many were discarded because of this.
There are several widely used platforms that fall under the
Asian market that did not get any attention in this paper. This
might affect the general outcome as these might have APIs
more suitable for a generic social media library than the ones
used in this study. Although the ones we used represent some
of the more popular platforms it might not necessarily mean
that it is true for every platform.

Existing libraries
In this study we have chosen to use already existing libraries
for different social media APIs, when including them into
our own library. We did this as a timesaver as to be able to
include more platforms in our study, but this also adds an-
other layer of abstraction to our library. Not only are we
dependant on updates from the APIs themselves, but also on
the libraries. Worst case scenario is one of these libraries

14https://github.com/Astol/smlevaluation
15https://www.reddit.com/dev/api/

5



stops being maintained and means that everything needs to
be reimplemented for that social media. For this reason,
rather than directly reusing library classes such as User or
Post, we wrote our own wrapper classes, in order to decou-
ple the libraries from the integrating application, and as such
make a potential transition from one library to another easier.

Document first
In our work process we set out to document first, as one of
the recommendations for achieving a higher quality on the
end product described by Henning[5]. This was mostly for
this project not very relevant. As we implemented function-
ality already written, both in the APIs and in the used li-
braries, we did not design much functionality ourselves. This
meant a lot of rewriting documentation from the APIs and
libraries we ourselves used. There were instances when it
served it’s purpose, but for the overall project it did not af-
fect our result in any significant way.

Test Driven Development
Due to poor documentation, both in regards to the APIs as
well as the libraries, it was often difficult to write tests first.
On many occasions, there were no examples of how the re-
turned data was formatted, or what would happen if e.g.
there was an attempt to fetch a post with a specified ID, but
no such post was found. For two libraries, this simply re-
turned null. For the third library, an exception was instead
thrown. Neither of these two behaviors were documented,
but we instead had to choose between directly reading the
source code, which turned out to be a very time consuming
task, or simply write the prototype of the function, use the
debug tools to check exactly what was returned, and then
modify the function to accommodate it. As such, we were
often unable to write tests first, as we had no idea how to
format our tests before the function was already written.

Result

Implementation and work method
In regards to the actual implementation work of the library,
very few issues came up. As we relied heavily on third party
libraries for the API implementations, Maven proved very
useful for dependency handling. Using a full-featured IDE
such as IntelliJ IDEA also helped with debugging, which was
particularly useful as some functionality in the library was
often poorly documented and had few to no examples of the
formatting of the data returned.

Design
The result proved to be more negative than our initial expec-
tations. Although it may seem at a glance that a lot of func-
tionality was present in several APIs, as can be seen in Ap-
pendix A, their actual implementation often made them un-
suitable for generalization. Examples of this includes check-
ins for posts, where some APIs only allows a general area,
like a city, where others use more specific locations, such as
a movie theatre, identified by a specific Place ID. In general,
it appears the APIs are built much more with the intention
of fetching information rather than creating or modifying. In
many cases, functionality has previously been available in
the APIs, but have later been removed in order to combat
spam and other abuse. This is noticeable in particular for

Facebook, where much of the functionality is still present
in the documentation, but tagged as either deprecated or al-
ready removed, despite the functionality still being available
on the actual Facebook site and mobile applications.

Maintainability
Actually measuring maintainability proved to be a compli-
cated matter. Many measures, especially in regards to com-
plexity, appear useful in theory, but in practice ended up be-
ing mostly misleading. Code which should be easily under-
stood even by someone relatively new to programming has
a high complexity score when measuring cyclomatic com-
plexity[2]. While we did indeed manage to measure the cog-
nitive complexity of our library source code through the use
of SonarQube, it is difficult to make use of these numbers in
practice, as there is little to compare them to. In a long term
project, the measurements could be used to ensure the code
does not grow in complexity, or as a tool to reduce complex-
ity, but as a final evaluation, the usefulness becomes mini-
mal.

Evaluation bias
In our third evaluation we developed an application, using
our library. Due to the fact that we wrote the application our-
selves, and interpreted the result, this might lead to a degree
of bias. As we as developers of the library we might have
felt functionality was obvious and easily understood, where
a test including third party participants might have proven
otherwise.

FUTURE WORK
As this paper was limited in time there are some aspects that
could be further researched to give a broader view on the
practicality of a generic social media library. The main focus
of these being on to including more social media platforms
and analyze a broader spectrum of platforms. This would
give a more accurate view on the practicality in question.

CONCLUSION
As for the general conclusion of this study we have deemed
the end result to be unsatisfactory due to the current state
of APIs. Where the APIs share functionality this seems to
be mostly coincidental rather than deliberate. The different
platforms vary greatly, both in how they logically are built
and on what functionality they choose to offer in their APIs.
In some cases functionality that once was available has been
removed. This discontinuation of functionality also raises
further worries for the future, as it could be possible that
functionality critical to the integrating application may be
removed, with no alternative being added.

As we did not research the whole market of social media
we see the need for further study to see if this is true as a
whole. But for this study we must conclude that this is regret-
tably not feasible at the present time. Our recommendation
for anyone wishing to integrate social media into their appli-
cations would instead be to research which social networks
are the most suitable, and then use the existing individual
libraries to integrate the desired functionality.

6



REFERENCES
1. Broy, Manfred, Deissenboeck, Florian, and Pizka,

Markus. Demystifying maintainability. Proceedings
of the 2006 international workshop on Software qual-
ity. 2006, 21–26.

2. Campbell, G. Ann. Cognitive complexity - a new way
of measuring understandability. Address: https://
www.sonarsource.com/docs/CognitiveComplexity.
pdf.

3. Griss, Martin L. Software reuse: from library to fac-
tory. IBM systems journal, 32(4), 1993: 548–566.

4. Haefliger, Stefan, Krogh, Georg von, and Spaeth, Se-
bastian. Code reuse in open source software. Manage-
ment Science, 54(1), 2008: 180–193.

5. Henning, Michi. Api design matters. Queue, 5(4),
May 2007: 24–36.

6. Kiczales, Gregor and Mezini, Mira. Aspect-oriented
programming and modular reasoning. Proc. ICSE ’05,
49–58.

7. Lim, Wayne C. Effects of reuse on quality, productiv-
ity, and economics. IEEE software, 11(5), 1994: 23–
30.

8. Raemaekers, Steven, Deursen, Arie van, and Visser,
Joost. Measuring software library stability through
historical version analysis. Software Maintenance
(ICSM), 2012 28th IEEE International Conference
on. 2012, 378–387.

9. Rilling, Juergen and Klemola, Tuomas. Identifying
comprehension bottlenecks using program slicing and
cognitive complexity metrics. Program Comprehen-
sion, 2003. 11th IEEE International Workshop on.
2003, 115–124.

10. SonarQube. Metric definitions. Address: https://
docs.sonarqube.org/display/SONAR/Metric+
Definitions.

11. Statista. Number of social network users worldwide
from 2010 to 2020 (in billions). Address: https:
//www.statista.com/statistics/278414/number-
of-worldwide-social-network-users.

12. Statista. Leading social networks worldwide as of
january 2017, ranked by number of active users (in
millions). Address: https://www.statista.com/
statistics/272014/global-social-networks-
ranked-by-number-of-users/.

13. Systems and software engineering – vocabulary.
ISO/IEC/IEEE 24765:2010(E), Dec. 2010: 1–418.

14. The Linux Documentation Project. Shared libraries.
Address: http://tldp.org/HOWTO/Program-
Library-HOWTO/shared-libraries.html.

15. World Bank. Population, total. Address: http://
data.worldbank.org/indicator/SP.POP.TOTL.

7

https://www.sonarsource.com/docs/CognitiveComplexity.pdf
https://www.sonarsource.com/docs/CognitiveComplexity.pdf
https://www.sonarsource.com/docs/CognitiveComplexity.pdf
http://dx.doi.org/10.1145/1255421.1255422
http://dx.doi.org/10.1145/1062455.1062482
http://dx.doi.org/10.1145/1062455.1062482
https://docs.sonarqube.org/display/SONAR/Metric+Definitions
https://docs.sonarqube.org/display/SONAR/Metric+Definitions
https://docs.sonarqube.org/display/SONAR/Metric+Definitions
https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users
https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users
https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users
https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
http://dx.doi.org/10.1109/IEEESTD.2010.5733835
http://tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html
http://tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html
http://data.worldbank.org/indicator/SP.POP.TOTL
http://data.worldbank.org/indicator/SP.POP.TOTL


Appendices

APPENDIX A: API SUPPORT TABLES

Figure
2.

O
verview

of
functionality

supported
by

different
A

PIs.
Inform

ation
regarding

support
w

as
taken

directly
from

each
A

PIs
respective

docum
entation.G

reen
indicates

the
functionality

is
fully

available
through

the
A

PI.Yellow
indicates

functionality
is

partly
available.

R
ed

indicates
functionality

is
presenton

the
platform

,butnotavailable
through

the
A

PI.G
ray

indicates
the

functionality
is

nota
partofthe

platform
,and

is
as

such
notapplicable.

*
For

Facebook,directm
essage

conversationsm
ustbe

initiated
and

keptalive
by

the
conversation

targetin
order

to
be

used
through

the
A

PI.

8


	Abstract
	Introduction
	Purpose

	Research Question
	Limitations
	Theory
	Code Reuse
	Library Interface Design
	Maintainability
	Social Media APIs
	Similiar work
	Encountered issues


	Method
	Social Networks Selection
	Implementation
	Maven
	IntelliJ IDEA
	Travis CI
	SonarQube

	Work Method
	Design
	Evaluation

	Results
	Social Networks Selection
	Comparison

	Implementation
	Work Method
	Design
	Evaluation
	SonarQube
	Third API implementation
	Test Application


	Discussion
	Method
	Social media selection
	Existing libraries
	Document first
	Test Driven Development

	Result
	Implementation and work method
	Design
	Maintainability
	Evaluation bias


	Future work
	Conclusion
	Appendices
	Appendix A: API Support Tables

