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Abstract

The application of local optimal control is a promising paradigm for ma-
nipulative robot motion generation. In practice this involves instanta-
neous formulations of convex optimization problems depending on the
current joint configuration of the robot and the environment. To be ef-
fective, however, constraints have to be carefully constructed as this kind
of motion generation approach has a trade-off of completeness. Local op-
timal solvers, which are greedy in a temporal sense, have proven to be
significantly more effective computationally than classical grid-based or
sampling-based planning approaches.

In this thesis we investigate how a local optimal control approach,
namely the task function approach, can be implemented to grant high
usability, extendibility and effectivity. This has resulted in the HiQP
control framework, which is compatible with ROS, written in C++. The
framework supports geometric primitives to aid in task customization by
the user. It is also modular as to what communication system it is being
used with, and to what optimization library it uses for finding optimal
controls.

We have evaluated the software quality of the framework according to
common quantitative methods found in the literature. We have also eval-
uated an approach to perform tasks using minimal jerk motion generation
with promising results. The framework also provides simple translation
and rotation tasks based on six rudimentary geometric primitives. Also,
task definitions for specific joint position setting, and velocity limitations
were implemented.
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for his diligent explanations and helpful comments,

my examiner Cyrille Berger at Linköping University
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Chapter 1

Introduction

1.1 Motivation

Apart from industrial robots who carry out very specific preset motions
repeatedly, the next generation of service robots need to autonomously
respond to changes and disturbances in their surrounding environment by
adapting their movements. Examples of this involve humanoid walking on
rough terrain in the DARPA Robotics Challenge [12], or Unmanned Aerial
Vehicles responding to wind changes [8], or autonomous order picking in
logistics [19]. Earlier approaches in artificial intelligence have aspired to
discretize the configuration space to generate a graph and use graph-search
algorithms like A-star to find a feasible path from a start node to a goal
node [23]. However, such a classical artificial-intelligence-approach suffers
from the curse of dimensionality1 and renders a non-computable prob-
lem for most robot configurations. Another approach has been to use
a sampling-based pose generator that randomly draws samples from the
configuration space and tries to link such states together in some feasible
way. Eventually as the network of configuration states grows a trajectory
from a start pose to a goal pose is found and a desired motion can be exe-
cuted. OMPL, for instance, is a framework that essentially generalises the
way such sampling-based solvers are formalised [31]. The main problem
with such a sampling-based approach is that it mostly results in subopti-
mal solutions as the finding of a feasible motion is very much depending
on the random evolution of the state graph. Furthermore, the produced
motion is seldom replicable and it is difficult to incorporate constraints in

1using breadth-first search algorithms to process the configuration space of for ex-
ample humanoid robots often results in computational loads that are non-processable
with today’s computers
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the motion generation problem formulation.
The idea that we explore further in this thesis is using motion genera-

tion and execution based on local optimal control. The controls are com-
puted using a dynamic hierarchical optimization problem that is formed
from finding redundancies in the desired end-effector pose placements. The
redundancies are subject to the kinematic and/or dynamic constraints of
the robot as well as customized constraints on desired evolution of the
fulfillment of those end-effector positions. The redundancies are defined
as functions of the configuration parameters in a so called task space and
multiple redundancies are assembled to execute multiple motions simulta-
neously. Recomputing the controls is done in real-time and this approach
allows for incorporation of sensor feedback which reduces any noise or en-
vironmental disturbances. Deviations from a desired motion are processed
and handled in real-time. Our work has resulted in the HiQP kinematic
control framework available with ROS support.

1.2 Problem Definition

The main objective of this thesis has been to investigate possible gen-
eralizations of motion primitives and motion generation by using local
optimal control in a context of robotic grasping. Our work has resulted in
the HiQP Control Framework, a whole-body motion generator built on the
task function approach, see Section 3 for further details. The framework
has been tested on the ABB YuMi robotic system.

The work was focused on the following research questions:

• How can motion primitives for robots be constructed from abstrac-
tions of pose and motion constraints ensuring minimal loss of kine-
matic redundancy?

• How can these abstractions be integrated in a scalable and dynamic
way with emphasis on usability, intuitive design and fast perfor-
mance?

• (optional) How can the task dynamics be formulated to allow for
shared autonomy with human control interaction?

• (optional) How can the task dynamics be formulated to generate
motions mimicking a learned expert behaviour, for example by using
Dynamical Movement Primitives? [13]
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Figure 1.1: Photo: ABB.

1.3 Thesis Outline

Chapter 1 introduces the area of study, describes the underlying dependen-
cies of the framework, and defines the thesis project objectives. Chapter
2 accounts for related work in the area. Chapter 3 summarizes the main
ideas in local control optimization that forms the theoretical basis for the
framework. In Chapter 4 we present an overview of the software design of
the framework. In Chapter 5 we describe our way of decomposing general
motion primitives into geometric primitives and task definitions. Chapter
6 demonstrates two different areas of application of our framework. In
Chapter 7 we evaluate the framework in terms of functionality and perfor-
mance. In Chapter 8 we discuss the outcome of the evaluation data and
relate it to our research questions. Chapter 9 concludes the thesis and
suggests further work in the area.

1.4 The ABB YuMi Robot

The evaluation of the HiQP framework was performed on the YuMi robot
from ABB [1], see Figure 1.1. The current version of YuMi only supports
a joint position interface. All evaluations was done in simulation using
a proprietary model of YuMi, Gazebo was used for physics simulation.
To be able to set velocity controls for the robot a non-priority wrapper
interface was used when running the framework on hardware. YuMi is a
dual-arm manipulator robot with a gripper on the end-link of each arm.
Each arm consists of seven joints.
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Figure 1.2: Source: ABB.
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Chapter 2

Related Work

Traditional AI approaches to motion planning have relied on the use of
symbols to model the physical environment. Lozano-Pérez introduced
configuration space representation in 1983 [22] which enabled classical AI
search techniques once these c-spaces have been rasterized into bitmaps
of collision/collision free intervals [21]. Such techniques involved dynamic
programming, A*-search, best-first search etcetera to find a collision free
path in the configuration space from an initial pose to a goal pose. Khatib
(1986) [18] then introduced the use of potential fields in configuration space
to generate robot controls in an attempt to battle high dimensionality in
the search space. By placing artificial repulsive forces around obstacles
and attractive forces around goals the control can be calculated from the
gradient of the resulting potential field. One problem that arises from this
method is that entering the vicinity of an obstacle could generate oscilla-
tions or make it impossible to enter into narrow passages [14]. Later in
1990-1991 Barraquand and Latombe [3] [4] presented an approach consist-
ing of finding and connecting local minima of a potential function in the
configuration space of the robot. The technique they used to escape local
minima is based on Monte Carlo and Brownian motion execution. Zho
and Latombe (1991) also addressed the popular hierarchical approximate
cell decomposition method in [33]. This involves hierarchically decompos-
ing the configuration space into rectangloid spaces known as cells. The
cells are then marked as empty, full or mixed depending on the exis-
tence of obstacles inside the region. Hierarchical planning is performed in
this manner by analysing a newly constructed cells connectivity to others
in a connectivity graph. This graph is then used to search for obstacle
free paths towards a goal. The primary problem though with classical
grid search is that, as the number of dimensions of the c-space and the
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resolution of the bitmap along each dimension increase, the search gets
incalculable [21].

The graph-search based planner’s suffering from a large number of de-
composed cells, or from too many local minima in the potential field lead
to mere practical use of these techniques on robots with up to five dimen-
sions [15]. This inspired the development of sampling-based algorithms
such as Probablistic Roadmaps (PRM) and Rapidly exploring Random
Trees (RRT). Kavraki et.al. [16] submitted in 1996 the PRM technique
for path planning. The original mechanism was divided into two steps:
the learning and query phases. The objective of the learning phase is to
build a collection of tree structures connecting collision free configurations
with each other in feasible motion paths for the robot. This was done by
randomly exploring the c-space adding new collision free configurations
in the neighbourhood of old ones if a feasible path exists between them.
The paths are generated by a local planner. The actual local path be-
tween nodes in the trees are not memorized, and no cycles are generated
among the nodes. In the query phase, a start s and goal g configuration
is connected by searching the trees. s and g are connected to nodes s̄, ḡ
by the local planner. If a feasible path between s̄ and ḡ exists the path
is returned, otherwise the query fails. As each query necessitates fast ex-
ecution the strategy for connecting s and g to s̄ and ḡ is by considering
nodes in increasing distance from s and g. Kuffner and LaValle [20] pre-
sented RRTs in 2000 which do not need knowledge about the environment
a priori. Instead of making multiple queries searching in a world model
that is generated offline, as for PRTs, RRTs generate two tree structures
in the work space departing from the start and the goal configuration
respectively. These trees are then randomly appended to with new con-
figuration nodes using a heuristic. The work in [15] states that though
sense-plan-act approaches (graph-search-based, or sampling based) have
been shown to work well in practical implementations, and that they are
both probablistically complete, they are limited by the dimensionality of
the c-space of the robot. As the number of grid/sampling points grow ex-
ponentially with the number of dimensions, so does the worst-case running
time of the planner.

2.1 Approaches Derived from Operational-
Space Formulations

Berenson, Srinivasa and Kuffner (2011) have applied the task-space for-
mulation on an RRT-based planning algorithm called CBiRRT2 and pre-
sented a framework [5]. In their work, they consider end-effector poses
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as mappings from c-space to SE(3), i.e. as positions and orientations in
euclidean space. Much like our own work, they regard constraints on these
poses and define Task Space Regions (TSRs) as the set of two transfor-
mation matrices in homogeneous coordinates from an initial frame to the
end-effector pose and a 6× 2-dimensional matrix of bounds on each DOF
of the pose. Naturally, then these TSRs represent manifolds in C-space.
Berenson et. al. then identify the applicability of the TSR formulation
in sampling based planning algorithms by introducing a distance metric
and sampling methods in task space. They note however that this can be
problematic for kinematically redundant robots (number of DOF higher
than 6) as the sampling inside a sub-manifold can bias the probablistic
sampling in c-space. As the sampling with TSRs is done in task space, this
can dramatically improve performance for highly redundant robots. To
execute multiple tasks in parallel Berenson et.al. introduce TSR chains. A
TSR chain is treated as a virtual kinematic structure defining dependen-
cies between many TSRs and partakes in the motion planning as if they
were real kinematic constraints. Berenson et.al. however identify a num-
ber of difficulties with this approach, namely: 1) difficult to incorporate
non-holonomic constraints, 2) no current way of prioritizing constraints,
3) the sampling in task space biases the sampling in c-space. In contrast to
our work a sampling based approach will be able to escape local minima,
which the HiQP framework currently can not.
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Chapter 3

Control-based Motion
Generation and Execution

In this chapter we summarize the control and motion generation concepts
that the HiQP framework is based on. The main idea is to formulate
kinematic constraints in lower dimension submanifolds of the robot’s con-
figuration space. These constraints, together with the jacobians for these
manifolds, are then used by an optimizer to compute velocity controls that
will execute motions. Bu formulating these constraints in certain ways the
resulting motions can be made to achieve certain robotic behaviours. We
refer to these kinematic constraints as tasks, and task dynamics, and the
rest of the chapter explains further these concepts.

3.1 The Task Function Approach

As the robot’s configuration space is set under a number of kinematic con-
straints the actual space in which a motion is designed is a dimensionally
smaller limited submanifold of the whole-body c-space [28]. Favourably
then, one would like to operate in this smaller subspace when planning a
motion; this idea forms the basis of the task-function approach [29], or the
operational space formulation [17]. A task is defined as a triplet consisting
of a task function, a reference behaviour, and a differential mapping be-
tween the whole-body space and a task space denoted (e(q), ė(q)∗, Q(q))
respectively.

Let us consider a robot with n joints, and a set of constraints limiting
the configuration to a m-dimensional submanifold. Formally a task func-
tion task

function
is denoted as an m-dimensional vector function of the configuration

12
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vector q:
e(q) = 0 (3.1)

where q ∈ IRn, e(q) is a function from IRn 7→ IRm [14].
Throughout this chapter we will return to the following example of

a task given in [19]: Consider bringing an end-effector p(q) onto a plane
that is defined by the normal vector n and the offset distance d from the
origin. The task function then becomes

e(q) = nT p(q)− d (3.2)

id est the projection residual between the plane and the end-effector minus
the given distance d. In this manner the task is to bring the end-effector
onto the plane, while the task function is a scalar function measuring the
distance between the end-effector and the plane that we want to minimize.
We will revisit this example throughout this chapter.

The reference behaviour reference
behaviour

of a task denoted as ė∗ forms a relation on
how the task behaviour ė will develop over time. For example, when
designing a movement for a robot arm, a nearby obstacle might be setup
as a constraint on the task behaviour ensuring that the arm will not collide
with the obstacle during execution of the task.

In order to fully define a task, one needs to specify the task space with
respect to the configuration space. This is the differential mapping differential

mapping
, Q,

between the configuration space and the task space.
We can now depict the impact of a control u in the whole-body space

by
ė(q) + µ = Qu (3.3)

where µ is known as the drift of the task, and Q is the differential mapping
from the whole-body configuration space to the task space. The drift is not
to be mistaken for sensor-drift or similarly in a traditional control sense,
but is a consequence of a temporal change in the differentiable mapping
introduced by higher-order derivatives. We will see later that for inverted
kinematics (first-order derivation) µ becomes zero, but for inverted dy-
namics (second-order derivation) µ will not be equal to zero. Considering
a desired reference behaviour ė∗ we get the appropriate control input u∗

by taking the inverse of Q as follows.

u∗ = Q#(ė∗ + µ) + Pu2,

where P = I −Q#Q
(3.4)

Here Q# is any reflexive generalized inverse of Q, such as the Moore-
Penrose pseudoinverse, and P is the projector onto the nullspace of Q
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corresponding to Q#. u2 therefore expresses the redundancy redundancyof the kine-
matic system of a robot corresponding to task e.

One of the main benefits of using the task function approach is that it
enables a way to formalise a recursive use of the redundancies with respect
to the degrees of freedom for various tasks. Particularly, redundancy ex-
pressed by the projection P can be used to successively process a strict
hierarchy of tasks, or Stack-of-Tasks Stack-of-

Tasks
(SoT), by lending each lower priority

task the remaining redundant degrees of freedom. This will lead to a re-
cursive version of Equation (3.4) and we use k for ascending indexation of
task functions ek(q) with descending priorities. Next, consider using the
redundant control uk+1 to solve a new task ek+1(q) and solve the Equation
(3.4) using the remaining control uk+1. We get

ėk+1 + µk+1 −Qk+1Q
#
k (ė∗k + µk) = Qk+1Pkuk+1. (3.5)

After deciding upon a reference behaviour for the propagation of task k+1,
ė∗k+1, we can derive the following recursive control solution recursive

control
solutionu∗k+1 = (Qk+1Pk)#

(
ė∗k+1 + µk+1 −Qk+1Q

#
k (ė∗k + µk)

)
+ Pk+1uk+2.

(3.6)
[28] Later we will use this notation to form recursive SoT-solutions to the
inverted kinematics and dynamics problem formulations.

Many tasks and task behaviour constraints are not defined as equali-
ties with respect to the kinematic configuration. Some examples include
observing joint limits, avoiding obstacles, or the goal state being a set
of multiple feasible configurations et cetera. In [14] the writers therefore
extend the task definition from Equation (3.1) to include inequality tasks

inequality
tasks

as
e(q) ≤ 0. (3.7)

This reduced form also encompasses lower bounds e(q) ≥ 0, double bounds
−r ≤ e(q) ≤ r, and equalities 0 ≤ e(q) ≤ 0. Regarding inequality con-
straints inequality

constraints
we use the same reduced form:

∂e

∂q
q̇ ≤ 0 (3.8)

as this also includes lower and double bounds as well as equalities. The
Stack-of-Tasks solution to this problem tries to fulfill lower-level tasks as
good as possible in the Least Squares sense inside the null-space of higher-
level tasks [24]. In general, problem definitions with inequalities cannot
be solved using the inverse of Q. One approach proposed by [14] instead
adds slack variables slack

variables
to the inequalities reorganizing them into equalities

and then relies on quadratic programming solvers, see Section 3.4, for a
resolution.
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3.2 Inverted Kinematics

The concept of the task function approach can be used to solve general
inverted kinematics problems by explicitly formulating the task behaviour
and the differential mapping between the configuration space and the task
space. In inverted kinematics mode, the control is intuitively chosen as
the velocities of each joint u = q̇ [28]. The task evolution task

evolution
, or equivalently

the task behaviour [28], is then derived by differentiation

ė(q) = Jq̇ (3.9)

J =
∂e

∂q
(3.10)

where J is the task jacobian task
jacobian

[19] and expresses the differential mapping
between the two spaces, id est J corresponds to Q in the template in
Equation (3.3) Q = J [28]. The main idea behind inverse kinematics is to
find joint velocities which produce given task space velocities. The term
inverted therefore originates from

q̇ = J−1ė∗ (3.11)

which says that the joint velocities can be obtained from the differentiable
mapping J and a reference behaviour ė∗ described in a task space.

By matching Equation (3.9) with the template in Equation (3.3) we
get that

Q = J, u = q̇, µ = 0. (3.12)

This can now be inserted in template Equation (3.6) yielding

q̇∗k+1 = (Jk+1Pk)#(ė∗k+1 − Jk+1J
#
k ė
∗
k) + Pk+1q̇k+2

Pk = I −Q#
k Qk.

(3.13)

Choosing a Reference Behaviour

The differential mapping Q is essentially a consequence of how the task
function e(q) is defined. In the example of an end-effector begin at a given
distance to a plane, see Equation (3.2), by differentiating the task function
we get the following relation.

e(q) = nT p(q)− d

ė(q) = nT
∂p

∂q
q̇.

(3.14)
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It is clear that Q = nT ∂p∂q , in other words that the task jacobian in this
case is time dependent through the configuration q. By inverting this
kinematic relation we get

q̇ = (nT
∂p

∂q
)−1ė(q) (3.15)

The reference behaviour defines the desired task dynamics, in other words
how the qualities describing the task are supposed to change over time.
In this section we will discuss one common way of defining a reference be-
haviour in particular and comment on other possible behaviours. However
one must keep in mind that stability of the reference behaviour is crucial
to the outcome of a task-function based controller.

A common practice is to let the reference behaviour ė∗ cause an expo-
nential decay of e to zero [28], forming the Ordinary Differential Equation

Ordinary
Differential
Equation

(ODE)
∂ek
∂q

q̇ = −λek(q) (3.16)

where λ is a positive real constant. The decay to zero eventually leads
to fulfilling the task constraint ek(q) = 0, which motivates this approach
[14]. This setup also facilitates the handling of inequality constraints as
we will discuss forthwith.

By relying on the system interpretation in Equation (3.16) we derive
the Ordinary Differential Inequality Ordinary

Differential
Inequality∂ek

∂q
q̇ ≤ −λekq (3.17)

Such an inequality lends itself well to solving by using Grönwall’s Inequal-
ity which is presented in [14].

Lemma 1 (Grönwall’s Inequality on Differential Form). Let f ∈ C1([a, b])
and g ∈ C([a, b]), where a and b are real constants, such that

f ′(t) ≤ g(t)f(t) ∀t : a < t < b

then
f(t) ≤ f(a)e

∫ t
a
g(τ)dτ ∀t : a < t < b

Here C is the set of continuous functions, and C1 is the set of contin-
uous functions with continuous first derivatives with respect to time. The
ordinary differential inequality in Equation (3.17) can then be solved and
we write

ek(q) ≤ ek(q0)e−λ(t−t0) (3.18)
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where t > t0 and q0 = q(t0). We examine again the example task given
earlier on keeping an end-effector p(q) at a distance d from a plane with
normal vector n, making the task function e(q) being the distance between
the end-effector and the plane. According to the first order dynamics
reference behaviour chosen in Equation (3.16), and under the assumption
that the initial distance is 1.8 length units, the desired distance d = 0,
t0 = 0 and λ = 2, the task function is then limited by the inequality e(q) ≤
1.8e−2t. If we plot this equation we can see that the reference behaviour
results in an infinite acceleration spike at the beginning and a slow motion
towards the goal state at the end, see Figure 3.1. We can conclude that

1 2 3 4

1

2

t

e(q(t))

Figure 3.1: The distance between the end-effector p(q) and the plane over
time considering the reference behaviour given in Equation (3.18).

both equality and inequality constraints converge exponentially fulfilling
the task formulated by the set of constraints [14].

According to the minimal-jerk hypothesis minimal-jerk
hypothesis

in [32], humans try to per-
form a movement by minimizing the square of the jerk1 over the whole
movement. One interpretation of such an objective is that it will result in
a minimization on the changes of stresses on the parts of a moving body.
Such a criterion is derived by [9] resulting in

qi(t) = q
(0)
i + (q

(0)
i − q

(f)
i )(15τ4 − 6τ5 − 10τ3) (3.19)

where τ = t
tf

, q
(0)
i is the i:th joint’s position of the robot at the initial

time t = t0, and q
(f)
i is the i:th joint’s position of the robot at the final

time t = tf .

1Jerk is the rate of change of acceleration with respect to time.
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3.3 Inverted Dynamics

Following the notation used in inverse kinematics we can broaden our task
domain to incorporate also the dynamics of a robot. We find the second
derivative of the task function from the inverted kinematics notation, see
Equation (3.9), by writing

ë = Jq̈ + J̇ q̇. (3.20)

Considering the robot in free space the joint accelerations q̈ can then be
derived from for example Newton’s and Euler’s laws of motion:

M(q)q̈ = τ + f(q, q̇) (3.21)

where M(q) is the inertia matrix of the dynamic system, τ are the torques
acting on each joint, and f(q, q̇) is the sum of the nonlinear Coriolis,
centrifugal and gravitational forces on the system. By plugging Equation
(3.21) into Equation (3.20) we get:

ë− J̇ q̇ + JM−1f(q, q̇) = JM−1τ. (3.22)

In analogy with setting u = q̇ in inverted kinematics to get the joint
velocities from a given reference behaviour ė∗ we can interpret u = τ as
our controls in inverted dynamics. By fitting this interpretation with a
second-order differentiation of the template from Equation (3.3) we get:

µ = −J̇ q̇ + JM−1f(q, q̇) (3.23)

Q = JM−1 (3.24)

This can then be inserted in Equation (3.6) to get a recursive solution
to τ∗k+1 from a reference behaviour ë∗k+1 with respect to the remaining
redundancies of the robot manipulators.

3.4 Quadratic Programming

As stated above, the solution by inverting the differential mapping of each
task is only possible for tasks and task constraints on equality form. One
instead leans on quadratic programming solvers to relax different con-
straints of a task to get a Least Squares solution to the problem. In this
section we will consider the QP-solution to a problem with only equality
constraints, and extend to a method used in [14] to solve for inequal-
ity constraints. Later we shall also summarize a hierarchical quadratic
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Linköping University

18 of 76 Centre for Applied
Autonomous Sensor Systems
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problem resolution to solve a Stack-of-Tasks (SoT) with strict descending
priorities using the remaining redundant degrees of freedom.

We start by recalling the definition of a quadratic program quadratic
program

and the
derivation of its solution. A quadratic program is an optimization problem
with a quadratic objective function and linear constraints. A general
quadratic program with constraints of equality form equality

form
can be written in

matrix notation as

min
x

q(x) = xT c+
1

2
xTGx

s.t. Ax = b
(3.25)

The first-order optimality conditions first-order
optimality
conditions

, the Karush-Kuhn-Tucker conditions,
state that the gradient of the objective function must be a linear combina-
tion of the gradients of each constraint given in Ax = b together with x∗

being a feasible solution with respect to the constraints. This is written

∇xq(x)|x=x∗ =

m∑
i=1

λi∇gi(x) (3.26)

where gi(x) is the i:th equality constraint in (3.25), and λi are the La-
grangian multipliers. These conditions can be written as a system of linear
equations: [

G −AT
A 0

] [
x∗

λ∗

]
=

[
−c
b

]
. (3.27)

This is known as a Karush-Kuhn-Tucker system Karush-
Kuhn-
Tucker
system

. We can see that if A
has full rank there exists a unique solution (x∗, λ∗) to Equation (3.27).
Further, if the second-order optimality conditions are fulfilled, that is the
second gradient of the objective function at x∗ being larger than zero,
then (x∗, λ∗) is a globally minimal solution to the quadratic program in
Equation (3.25). The second-order optimality conditions are written as

ZTGZ > 0 (3.28)

where Z is a matrix whose columns form the nullspace of G such that Z
has full rank and GZ = 0. In other words, if G is positive semidefinite

positive
semidefinite

(xTGx > 0 ∀x 6= 0) the solution (x∗, λ∗) will be a globally minimal solu-
tion. G being positive definite makes the quadratic program in Equation
(3.25) convex. [26] [6]
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Solving for Inequality Constraints

The problem formulation in Equation (3.25) can be extended to allow for
having inequality constraints as follows

min
x

q(x) = xT c+
1

2
xTGx

s.t. Ax = a

Bx ≥ b.

(3.29)

Considering a point x∗, the active set active setof x∗ is denoted

A(x∗) = {i : BTi x
∗ = bi}+ E (3.30)

where Bi and bi are the rows of B and b in Equation (3.29), and E are the
set of indices of all equality constraints. In other words the set of indices
of all the inequality constraints equaling to zero at x∗. Solving the general
optimization problem in Equation (3.29) now corresponds to finding the
optimal active set and solve it as a problem with only equality constraints.
We will now explore some of the most common approaches to finding such
an optimal active set.

Active Set Methods

1. Start with choosing a subset of all inequality constraints known as
the working set.

2. Try to guess a solution xk and let p = x− xk where x is the actual
solution to the main problem.

3. Reformulate the optimization problem as a problem to solve p in-
stead of x over only the working set regarded as active equality
constraints.

4. If p = 0 and if the Lagrangian multipliers associated with the in-
equalities on the current working set are all greater than or equal to
0 we have found the optimal active set.

5. If p = 0 and some Lagrangian multiplier is less than zero we remove
the inequality associated with the lowest multiplier and continue
from 3.

6. If p 6= 0 we compute a step length α and we set xk+1 = xk + αp.
If this step involves violating a constraint we add that constraint to
the working set. Continue from 3.
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Such a solver can be implemented as a linear-equation-system solver
[26]. Equation (3.27) can be adjusted with the variable substitution x∗ =
x − p where x is a solution estimate and p being the desired step. Such
a formalism enables computing the solution through iteration. The linear
equation system can now be obtained as[

G AT

A 0

] [
−p
λ∗

]
=

[
c+Gx
Ax− b

]
. (3.31)

3.5 Solving a Stack-of-Tasks Problem

The task-function-approach relies on solving lower priority tasks in the
null-space of higher priority task solutions. In this section we summarize
the concepts used in solving such a hierarchical optimization problem.

A stage is the set of tasks with the same priority level among all cur-
rently active tasks. At each time step of the controller all tasks are as-
sembled in stages forming stacks of vectors and matrices resulting in one
compound task for each stage. A stage only contains the jacobians and
task dynamics matrices/vectors since the task function values are not used
in solving the final optimization problem. Equation 3.32 depicts an exam-
ple of a stage containing two tasks.

Jstage =
[
J1 J2

]T
ė∗stage =

[
ė∗1 ė∗2

]T (3.32)

When the stages are assembled for each iteration the tasks are refor-
mulated as less-than inequality tasks, i.e. ė∗ ≤ 0, by possibly altering the
sign of the task function. Equality tasks are added twice with opposite
signs. In order to solve for optimal controls (velocity, but could also be
done for effort) the stages are formed into quadratic problems by setting
the following constraints

Jkq̇ ≥ ė∗k +wk (3.33)

where k is the index of each stage and is directly related to the priority
level, and wk are slack variables of that stage. This relation is then used in
a recursive hierarchical structure where the slack variable is fixed between
stages. We write the final recursive optimization problem as:

min
q̇,wp

1

2
||wp||22 + κ||q̇||22

subject to
0 ≤ Jiq̇ − ė∗i −wi ≤ ∞
0 ≤ Jpq̇ − ė∗p −wp ≤ ∞

where i = 1, ..., p− 1

(3.34)
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This is the same as trying to find both the control output, q̇ in the
kinematic case and τ in the dynamic case, and the slack variable wp that
minimizes the L2-norm of the slack variables of each stage p = 1, 2, ..., P .
The control vector q̇ or τ retrieved at the lowest priority level then is the
instantaneous optimal solution of the given task hierarchy for a particular
robot configuration. The slack variables of upper and already solved stages
are locked when processing lower priority stages, this ensures that the
solver operates in the null-space of higher tasks.
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Chapter 4

System Architecture:
Quality and Design

4.1 Design Principles

Upon designing the framework we relied on three areas of software design:
a set of general software quality attributes [2] [30], four common require-
ments modelling techniques [27] [30], and the five SOLID class design
principles [25]. We have chosen only a subset of the common practices
in software engineering that we saw most fit to our needs. This section
traces the three areas and explains our view on their application.

As we wanted to rely on a set of quality objectives when designing and
implementing the framework, a short survey on the area of software quality
was conducted. According to [7] in general various -ilities (functionality,
reliability, usability etc.) outline the overall quality attributes and these
often variy between quality studies and software designs. However, the
particular terminology chosen often targets the same comparable aspect
of a software quality attribute.

A comprehensive set of quality attributes and informal definitions is
given in [2]: reusability, flexibility, understandability, functionality, exten-
sibility, effectiveness. A slightly modified version of these attributes are
what we have leaned on in the design process of our framework, see Table
??. However, we have not cared for any of the software security issues
discussed in [2].

In addressing these attributes in the design of the control framework
we looked at a set of requirements modelling methods, see Table ??. As
with the quality attributes, many different modelling methods exist in the
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QUALITY ATTRIBUTES

Reusability Relates to how well a design structure allows
for reapplication to new problems without sig-
nificant change. Such a portable design is easy
to change or adapt upon replication.

Flexibility Relates to how resistant in degradation the de-
sign is to structural changes. A flexible design
is able to adapt to suit a similar functionality
without much effort. A high level of coupling
among distinct modules can lead to low flexi-
bility.

Understandability Relates to which degree the design is compre-
hensible in terms of its complexity. This incor-
porates how easy the framework is to install,
use and extend.

Functionality Relates to how well the responsibilities of
classes suit the problems they intend to solve.
Such an attribute encourages modularity in
the design to allow for interoperability, and
also pursues testability.

Extensibility Relates to how open the design is to extensions
in terms of new requirements.

Effectiveness Relates to what degree the design is able to
achieve the desired functionality, particularly
in terms of computation time and memory us-
age. An effective design is also regarded as to a
degree self-recoverable in being fault-tolerant.

Table 4.1: The set of quality attributes intended for the design of our
control framework.
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literature [30] that targets the same areas. We refer to one definition of a
chosen subset of these modelling methods in Table ??, and we discuss the
outcome of these models in Section 4.2.

Upon identifying the general requirements on the framework we made
use of the class-design principles in [25] and the design pattern found in
[11]. The SOLID class-design principles in [25] are cited in Table 4.2
for easy reference. As our plan was to write one single package for our
control framework, we never concerned ourselves with any of the package
cohesion and coupling principles that were also presented in [25]. The
actual design patterns that were applied, along with the interpretation
of the class-design principles in practice, is presented with the framework
structure in Section 4.3.

The Single Responsibility Principle
— A class should have one, and only one, reason to change.

The Open Closed Principle
— You should be able to extend a classes behavior, without modifying

it.

The Liskov Substitution Principle
— Derived classes must be substitutable for their base classes.

The Interface Segregation Principle
— Make fine grained interfaces that are client specific.

The Dependency Inversion Principle
— Depend on abstractions, not on concretions.

Table 4.2: The S.O.L.I.D. software design principles related to class design
as stated in [25].

4.2 Requirements Elicitation

We start this section by informally describing the setting in which the
framework is supposed to live. This is a result of trying to apply the
system modelling methods described in Table ??.

The main user-groups this control framework is intended for are scientific-
and industry-affiliated teams developing robotic and/or autonomous con-
trol systems. The framework is not thought of as a highly scalable and
fully industrial tool, but rather an open source contribution preferably
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REQUIREMENTS MODELLING

Enterprise Modelling Used to describe the organizational ob-
jectives to investigate how the software
should be operated. A functional ap-
proach focusing on the role of the software
and its purpose.

Data Modelling Considers what data the software needs
to represent and how it is to be presented
to the user(s). Values high comparabil-
ity between the data handled and the real
world phenomena it represents.

Behavioural Modelling Models how the system logically behaves
in terms of data handling, and modular
interaction. A type of modelling that out-
lines the software’s behavioural function-
ality.

Domain Modelling Attempting to detail the technical domain
in which the software will live in terms of
domain assumptions.

Table 4.3: The requirements elicitation models, [27], that we based our
list of requirements on.
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supporting or highly integrated with the ROS framework. Direct users of
our framework are experienced C++ developers. The control framework
shall aim to allow users to easily and efficiently define own tasks for any
robot configuration and to provide the user with an efficient inverted kine-
matics/dynamics solver. The tasks shall be easy to add, change or remove
on demand at run-time and defining uni- and double-bounded inequality
constraints and equality constraints shall be made straightforward to the
user. Different optimization back-ends such as Gurobi, IPOPT, or pro-
prietary libraries shall be easily swapped, making possible investigation
on different solvers behaviour; this is not required to be available at run-
time. Defining own tasks or changing which optimizer back-end to use
could require C++ knowledge, setting tasks at run-time shall not.

Dealing with robot manoeuvring, the main data that needs to be repre-
sented in the framework are the robot configuration and the task function,
reference behaviour, differential mapping and task drift at each time in-
stant. Regarding the configuration, this would preferably be represented
using some data structure that is already commonly used in the ROS
community. The task-related metrics are preferably represented as scalar
matrices as they simply are snapshots of the values at each sampling time
step in the controller and evolves due to the definition inside a user-defined
task implementation. The framework thus needs to be given the current
robot configuration at each time step, and calculates the current task met-
rics which are then given to a optimizer that generates the joint velocities
for a kinematic controller, or joint torques for a dynamic controller.

As task-setting shall be accessible at run-time, this functionality shall
be offered through some facility well-known in the ROS community. Set-
ting a task shall allow specifying its intrinsic parameters which requires a
rather generic way to do this. Also the user shall be able to set the prior-
ity of any task, change the priority, start and pause the task and remove
tasks at run-time. Upon faulty input, each task is alone responsible for
the handling of it. However, the control framework shall not be allowed
to cause the whole controller to crash upon a user-defined task not being
able to handle erroneous information. Erroneous information shall instead
be printed to the standard output stream as a warning message.

4.3 Framework Architecture

Coming out of the requirements identified in Section 4.2 we suggested a
set of features. These features have been made accessible via the HiQP
framework and are listed below.

1. Add new tasks by inheriting from one or more common task inter-
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faces. This is to allow the user to formulate own task spaces, task
functions and task dynamics.

2. Add and remove tasks during run-time through ROS service calls.

3. Use geometric primitives when working with existing tasks or when
defining new ones. This is to facilitate describing tasks as constraints
related to geometric objects.

4. Add and remove geometric primitives during run-time through ROS
service calls.

5. Use a basic set of robot movement tasks without knowledge of the
inner workings of the framework.

6. Be able to change the solver used through CasADi, or implement
his/her own solver.

7. Visualize tasks and geometric primitives in rViz.

We will continue with a discussion on the framework design in the context
of each of these features and relate the decisions made to the quality
attributes and the class-design principles stated in Section 4.1.

4.3.1 Architecture Overview

The framework is built around the Model-View-Controller design pattern
where the Task Manager acts as the Controller, or as a mediator, connect-
ing the other classes; please refer to Figure ??. The HiQPKinematicsController
and the HiQPDynamicsController are derived from ROS specific inter-
faces wrapping the dependency on ROS. ROS then communicates with
the framework through these classes. Along with the Visualizer inter-
face and the ROSVisualizer realization, these classes forms the View of
the MVC pattern in that the data produced by the framework, the actual
joint controls and visualization messages, are delivered by these classes.
The TaskFunction, TaskDynamics and HiQPSolver interfaces along with
their realizations form the View part of the MVC pattern. The realizations
of these interfaces do however perform computations and data processing
such as computing task function and jacobian values, and solve quadratic
programs.

In compliance with the fifth SOLID principle, all classes except for the
Task Manager are realizations of interfaces with a clear functional con-
tract. This increases the reusability of the code, both among the View
classes, and among the Model ones, by enabling further realizations. The
specific ROS realizations, i.e. the two controller classes, can be swapped
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Figure 4.1: UML diagram showing an overview of a selected part of the
system architecture. Not all classes are visible here, and not all member
methods and inter-class dependencies are shown.
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with classes that realizes some other interface according to another com-
munication bridge than ROS. The same holds true for the ROSVisualizer
class. In this manner, the Task Manager can be seen as the entry point
of the framework in that only by communicating with the Task Manager
a program can gain access to the full capability of the framework.

In an attempt to reduce class coupling to increase flexibility, the Task
Manager provides three ways of communication: one towards the ROS
wrapper classes, one towards the quadratic programming solver implemen-
tations, and one towards the task defining classes. These three divisions
of data-flow in the framework clarify the division of functionality which
makes the framework more understandable to the user.

Figure 4.2: Geometric Primitives Class Structure.

The framework also provides a set of six geometric primitives: a point,
a line, a plane, a box, a cylinder and a sphere primitive. The choice of
this set of primitives is to provide zero-, one-, two- and three-dimensional
geometric representations. These types are defined as realizations of the
TaskGeometricPrimitive interface and can be either accessed by the user
through the GeometricPrimitiveMap, or by using the type constructors
directly. By using the Geometric Primitive Map instance when creating
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geometric primitives, the primitive is mapped to a string identifier and
available in all parts throughout the framework. The primitives themselves
are agnostic to any visualizer and therefore unable to visualize themselves.
This functionality is provided by the Geometric Primitive Map class and
primitives created through its interface can be sent to the visualizer in
use. The Geometric Primitive Map is also made accessible through ROS
service calls and primitives can be created at run-time. The user can then
implement his/her own task and use the string identifier of a primitive to
access it via the map.

To handle the kinematic structure of an arbitrary robot inside the
framework we rely on KDL1 from Orocos. KDL provides functionality
to parse a ROS robot description and uses its own indexing of the joints
called q nr. Since we have made the interface towards the communications
system, in this version of the implementation ROS, modular with respect
to the TaskManager class we want to keep the joint indexation in ROS
separate from the q nr used by KDL. This is the motivation behind adding
the joint handles map field in RosKinematicsController.

4.3.2 Custom Task Implementation

The TaskFunction interface has three pure virtual methods init, apply and
monitor, and one virtual method getFinalState, see Figure ??. The task
function value e is stored as a protected member of type Eigen::VectorXd
in TaskFunction. The task jacobian J , the desired task dynamics ė∗, and
the initial and final task function values are also stored in this way. The
init-method is supposed to be implemented as setting the correct sizes of
these member fields and to set the initial values for them. The apply-
method is called at every time step of the controller and should update
the values of these data fields which are later collected to form the stages
that are sent to the solver. The monitor-method can be used to produce
any specific performance measures that are to be sent along with the
monitoring topic published by the ROSKinematicsController class. The
getFinalState-method returns the zero-vector 0 as a Eigen::VectorXd

with the same size as e by default but can be reimplemented to allow for
other final task function values than zero. This is mainly used by task
dynamics that are non-holonomic. The same methods for TaskDynamics

have the same intent as given above, see Figure ??

4.3.3 Interaction at Run-Time

Add a geometric primitive:

1Kinematics and Dynamics Library
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Figure 4.3: Implementations of the TaskFunction and TaskDynamics in-
terfaces.

1 rosservice call /yumi/hiqp_kinematics_controller/add_primitive

\

2 "name: ’mypoint1 ’

3 type: ’point ’

4 frame_id: ’gripper_r_base ’

5 visible: true

6 color: [1.0, 0.0, 0.0, 0.9]

7 parameters: [0, 0, 0.1]"

Add a task:

1 rosservice call /yumi/hiqp_kinematics_controller/add_task \

2 "name: ’geomproj155 ’

3 type: ’TaskGeometricProjection ’

4 behaviour: [’DynamicsFirstOrder ’, ’0.5’]

5 priority: 1

6 visibility: 0
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7 parameters: [’point ’, ’box ’, ’mypoint1 = mybox1 ’]"

Remove a certain geometric primitive:

1 rosservice call /yumi/hiqp_kinematics_controller/

remove_primitive ’name: mypoint1 ’

Remove a certain task:

1 rosservice call /yumi/hiqp_kinematics_controller/remove_task ’

task_id: 2’

Remove all primitives:

1 rosservice call /yumi/hiqp_kinematics_controller/

remove_all_primitives

Remove all tasks:

1 rosservice call /yumi/hiqp_kinematics_controller/

remove_all_tasks

4.3.4 CasADi and Solving Optimal Controls

The TaskManager searches at each time step for all active tasks and or-
ders them with respect to their priority level. The manager then creates
new HiQPStage objects, one for each priority level apparent among the
active tasks, and copies the data from the task objects to the stages. The
assembly of the stages are done in likewise to the way described in Section
3.5.
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Örebro, Sweden



Chapter 5

Task Specific
Implementations

In this chapter we lay out the details on specific task implementations that
follow with the HiQP framework. We note that when implementing a task,
the task function and task jacobian expressions must be expressions of the
same behaviour. However, as in some of our own cases in this chapter,
having a proportionality constant in the jacobian is valid and only affects
the speed of the task behaviour.

5.1 Joint Configuration

A joint configuration task is useful when debugging a controller, it is easier
to bring the robot back to an initial state between running tasks than to
restart the controller. Setting the total robot configuration could be a
useful feat in-between stages of a finite-state-machine to ensure a certain
pose before execution a next set of tasks.

We identify two ways of implementing this functionality as a task:

1. by designing the joint configuration task function as simply the sum
of squares of the deviations from the desired joint position yielding
a one-dimensional task function,

2. or, as the vector difference between a desired joint position vector
and the current joint position vector, yielding a n-dimensional vector
where n is the number of joints.

The second design choice will not require a recomputation of the task ja-
cobian as it always becomes the n-by-n identity matrix, while the former
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requires such recomputation. The task progression does not depend on
which of the designs is used and therefore the design choice boils down to
a matter of computational efficiency. Recalculating the 1-by-n jacobian
vector takes O(n) time in the former design alternative, while extending
the task dimensionality to use n slack variables in the quadratic program-
ming solver always takes at least O(n) to compute. We have therefore
chosen the first design alternative.

The task function the becomes

e = (q∗ − q)T (q∗ − q) (5.1)

where q∗, q ∈ IRn×1. The time derivative of this task function becomes

ė = −2(q∗ − q)T q̇ (5.2)

and we write the task jacobian as

Je = −2(q∗ − q)T (5.3)

where Je ∈ IR1×n.
When this task formulation is used as an inequality task q∗ functions

as a lower or upper bound for joint positions and therefore suits well to
the design of obstacle avoidance tasks.

A sample service call to start a joint configuration task, for a 5-joint
robot, is given below.

Figure 5.1: A sample ros service call to start a joint configuration task.

1 rosservice call /yumi/hiqp_kinematics_controller/add_task \

2 "name: ’jntconfig1 ’

3 type: ’TaskJntConfig ’

4 behaviour: [’DynamicsFirstOrder ’, ’2.0’]

5 priority: 1

6 visibility: 0

7 parameters: [’0.4’, ’0.3’, ’0.3’, ’0.6’, ’1.0’]"

5.2 Joint Velocity Limitation

Being able to hinder the quadratic programming solver to produce certain
joint velocity controls (that are later induced on the robot by a lower level
controller) is a desirable feat to the user of the framework for a number of
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reasons. For instance, for safety reasons one might not want too high joint
velocities and simply cutting the resulting controls from the solver risks
leading to suboptimal motion generation. Another example could be that
the produced controls are simply not achievable by the actual actuators
on the robot. By allowing the user to set such velocity limits the solver
can take such desired characteristics of the motion generation into account
when solving for optimal controls.

In this section we begin first with a straight forward joint velocity
limitation task formulation that, as we will see, will be implementable by
a joint effort controller. Later we adjust this formulation to better suit a
joint velocity controller interface.

A joint velocity limitation task that bounds each joint velocity by ±δi
for each joint i can be written as

e =

n∑
i=1

(
q̇2i − δ2i

)
(5.4)

whose derivation with respect to time becomes

ė =
d

dt

n∑
i=1

q̇2i =
d

dt
(q̇T q̇) = 2q̇T q̈ (5.5)

and we write the task jacobian as

Je = 2q̇T (5.6)

where Je ∈ IR1×n. However as Je in this case maps joint acceleration
space to the task function space this formulation is only suitable for a
joint effort controller.

Another way of enforcing the quadratic programming solver to limit
joint velocities is by customizing the task dynamics. By setting the task
function value to equal the joint positions the desired task dynamics can
be let to act as a joint velocity limitation. We write

e = q (5.7)

where e ∈ IRn×1. This then leads to the task jacobian being the n-by-n
identity matrix. We then set the customized task dynamics as

ė∗ = δ (5.8)

where δ ∈ IRn×1 is a vector containing the velocity limits for each joint.
When used as a top priority task other tasks will be solved in the null-
space of this task, i.e. allowing only velocity controls that lie below or
above the limitation δ depending on the sign of the inequality task.

A sample service call to start a joint velocity limitation task for a
5-joint robot is given below.
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Figure 5.2: A sample ros service call to start a joint velocity limitation
task.

1 rosservice call /yumi/hiqp_kinematics_controller/add_task \

2 "name: ’jntlimit1 ’

3 type: ’TaskJntLimits ’

4 behaviour: [’DynamicsJntLimits ’, ’0.1’, ’0.1’, ’0.1’, ’0.1’,

’0.1’]

5 priority: 1

6 visibility: 0

7 parameters: [’<’]"

5.3 Geometric Projection

This section describes a class of tasks that attempts to position a ge-
ometric point fixed to one link frame relative to a geometric primitive
fixed in another link frame. The TaskGeometricProjection class ex-
tends the TaskFunction class with a generic interface to allow for Point-
on-Primitive projections of end-effector positions. Applying this task
to two existing geometric primitives, of which the first must be of type
GeometricPoint, results in controls that positions the point relative to the
other geometric primitive. This class of tasks is generic in nature in that
regardless of what primitive the given point is coupled with the calculation
of the task function value and the task jacobian is made identically once
the geometric projection onto the second primitive has been determined.
The following generic instantiations of TaskGeometricProjection<> are
currently implemented:

• TaskGeometricProjection<GeometricPoint, GeometricPoint>

• TaskGeometricProjection<GeometricPoint, GeometricLine>

• TaskGeometricProjection<GeometricPoint, GeometricPlane>

• TaskGeometricProjection<GeometricPoint, GeometricBox>

• TaskGeometricProjection<GeometricPoint, GeometricCylinder>

• TaskGeometricProjection<GeometricPoint, GeometricSphere>

The part of the task function and jacobian calculations that are com-
mon for all combinations of primitives are made in the apply method, see
Figure ?? for a UML diagram of the TaskGeometricProjection class.
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Figure 5.3: UML diagram showing the template class
TaskGeometricProjection. The Frame, Jacobian, Tree and JntVe-
lArray types are members of KDL.

This involves calculating the jacobian of each of the two link frames that
the two end-effector primitives are attached to and fixed in, along with
the current poses of those link frames. The jacobians and poses of each
link frame are then used by each specialization of the project method to
compute the final task function value and the task jacobian. We cover the
details of these implementations in the oncoming sections.

Since each projection only should constrain the movement of the robot
in one dimension, that is movement restricted along the line between one
point and its projection on another primitive, each of the primitive combi-
nation tasks are designed as one dimensional tasks. Practically this means
that the task function is a scalar, and that the task jacobian has size 1×n
where n is the number of joints of the robot.

To further explain the user-interaction with this class of tasks a sample
ROS service call to start a point-on-plane equality task is given in Figure
??.

5.3.1 Point-on-Point

Consider two points P1 and P2 fixed to each respective link frame F1 and
F2. Let p1 and p2 be vectors in the world frame from the origin to the
points. We write these as

pi = p′i + di (5.9)
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Figure 5.4: Sample ros service call to start a geometric projection task.

1 rosservice call /yumi/hiqp_kinematics_controller/add_task \

2 "name: ’geomproj1 ’

3 type: ’TaskGeometricProjection ’

4 behaviour: [’DynamicsFirstOrder ’, ’10’]

5 priority: 1

6 visibility: 0

7 parameters: [’point ’, ’plane ’, ’mypoint1 = myplane2 ’]"

Figure 5.5: Point on point task sketch.
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Örebro, Sweden



Online Whole-Body Control
using Hierarchical Quadratic Programming

Marcus A Johansson
M. Sc. Thesis

where p′i is the vector from the origin of frame Fi to the point pi and
i = 1, 2. This is depicted in Figure 5.5.

We choose our task function as the square of the euclidean distance
between these two points by writing

e = (p2 − p1)T (p2 − p1) (5.10)

By differentiating this task function formulation with respect to time
we can derive the task jacobian. We write

ė = 2(p2 − p1)T (ṗ2 − ṗ1) (5.11)

For any point formulated as in Equation (5.9) we write its time deriva-
tive as

ṗi = Jvpi q̇ (5.12)

where Jvpi ∈ IR3×n is the upper half of the jacobian, or equivalently the
velocity jacobian, with respect to the point pi, and i = 1, 2.

The velocity jacobian of pi can be expressed as

Jvpi =
[
k1 × (r1 + p′i) k2 × (r2 + p′i) · · · kn × (rn + p′i)

]
(5.13)

where kj is the unit vector pointing along the rotation axis of joint j,
and rj is the vector from the origin on link frame j to the origin of the
end-effector’s link frame. n is the number of joints of the kinematic tree,
or equivalently the robot.

The velocity jacobian for a point pi that is fixed in a frame Fi can thus
be written as

Jvpi = Jvdi + Jvp′i
where

Jvdi =
[
k1 × r1 · · · k1 × rn

]
Jvp′i =

[
k1 × p′i · · · kn × p′i

] (5.14)

Combining Equations (5.11), (5.12) and (5.14) now yields the task
jacobian as

Je = 2(p2 − p1)T (Jvd2 + Jvp′2 − J
v
d1 − J

v
p′1

) (5.15)

and we have that Je ∈ IR1×n.
We note that projections of points onto different geometric primitives

always can be regarded as point-on-point projections. The difference with
an actual point-on-point projection is that the projected point on the other
geometric primitive might vary as the robot motion evolves. We will reuse
this notion for projection tasks of higher order geometric primitives.
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Figure 5.6: Point on line task sketch.

5.3.2 Point-on-Line

To achieve a point-on-line task we recompute at each time step the pro-
jection point P ′ of the given point P on the given line L. The points
P and P ′ are then regarded as a point-on-point task and we reuse the
formulations from the previous section.

To compute a vector in the world frame, p′ to the projection point P ′
we let L be a line such that

L = {l ∈ IR3 : l = d+ λv̂, λ ∈ IR} (5.16)

where d ∈ IR3 is the offset of the line from the origin of its link frame1,
and v̂ is a unit vector giving the direction of the line, see the Figure 5.6.
The vector p′ can then be written as

p′ = d+ λ′v̂

λ′ = (p− d)T v̂
(5.17)

where p is the vector to the point P.
We get the task function value and the task jacobian from setting

p1 = p and p2 = p′ in Equations (5.10) and (5.15).

1this could be any point on the line
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Figure 5.7: Point on line task sketch.

5.3.3 Point-on-Plane

The point-on-plane projection task aims at positioning a point relative to
a plane. We denote the point P fixed to one link frame and the plane
H fixed to another link frame and we distinguish between the positive
and negative half-spaces under and above the plane. The definition of the
plane H is

H = {x ∈ IR3 : n̂Tx− d = 0} (5.18)

where n̂ is the normal unit vector of the plane and the scalar d is the
offset of the plane from the origin of the link frame to which it is attached
along n̂. See Figure 5.7.

The half-spaces under, H−, and above, H+, the plane are determined
by the normal direction of the plane and are defined as

H+ = {x ∈ IR3 : n̂Tx− d ≥ 0}
H− = {x ∈ IR3 : n̂Tx− d ≤ 0}

(5.19)

A less-than point-on-plane task would try to put the point under the
plane, and a greater-than point-on-plane task would try to put it above
the plane.

The task function value can now be interpreted as the signed euclidean
distance between the point P and its projection point P ′ on the plane H.
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Thus we can write

e = n̂T (p− d) + (p− d)T ṅ (5.20)

where d = dn̂. The reason we actually define the vector d is that it is
fixed to the frame FH and therefore it’s jacobian will be calculated in
apply before using it in the specialized version of project. This distance
measure is signed to distinguish between the point being under or above
the plane.

From its time derivative we can extract the task jacobian. We write

ė = (n̂T (Jvp − Jvd ) + (p− d)TJvn)q̇ (5.21)

and
Je = n̂T (Jvp − Jvd ) + (p− d)TJvn (5.22)

where Je ∈ IR1×n.
This task could also be written as a point-on-point task by defining

a projection point P ′ on the plane and then reusing the point-on-point
formulation from Section 5.3.1. However, a point-on-point formulation is
unable to consider any orientation relative to the plane and we would in
that case lose the ability to have the point-on-plane task implemented as
an inequality task. Also, the short and concise formulation given in this
section motivates a stand-alone solution which we will reuse in the coming
sections.

5.3.4 Point-on-Box

The point-on-box projection task regards positioning of a point relative to
a six-sided box with orthogonal sides. There are a number of incentives
for providing such a geometric projection which we list below.

1. Positioning a point outside of a space enclosed by a box is not appli-
cable by using, for example, six point-on-plane tasks, as keeping the
point above all non-parallel planes at the same time is never achiev-
able. Interaction between multiple point-on-plane tasks is therefore
necessary, which motivates writing a point-on-box projection task.

2. Using six point-on-plane tasks for keeping a point inside a rectangu-
lar space will induce six constraints in the quadratic programming
solver which is not necessary as at each time step the desired move-
ment relates to moving the point in a straight line. When multiple
such tasks are added to a compound problem using six slack con-
straints instead of one will affect the speed of the controller. A
point-on-box task can, as we show below, be implemented using a
scalar task function which therefore will affect performance.
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Figure 5.8: Point on box task sketch.

3. By providing a common point-on-box task the user can more easily
and more quickly define and parametrize the robot’s environment for
interaction with it. This type of task is suitable for defining spaces
in the environment where certain end-effector points are not allowed
to enter, as for obstacle avoidance for instance.

Let the given point be denoted as P, the boundary of the box B and
the projection point of P on B as P ′. P ′ is defined as the point on B that
lies on the line from the box’s center to P, regardless of whether P lies
inside or outside the box. We then let p be a vector from the world origin
to P, p′ a vector to P ′, c a vector to the box’s center, R the rotation
matrix of the box relative to the world frame2, and S a scaling matrix of
the box such that

S = Diag(w, d, h) (5.23)

where w is the box’s width, d its depth and h its height. Please refer to
Figure 5.8

By performing a transformation (translate, rotate and scale) on p to
an affine space we can derive a vector to the point P from the box’s origin
in a frame F that describes the box’s geometry as a unit cube. We call
this translated, rotated and scaled vector x and write

x = S−1R(p− c) (5.24)

2Note that the box is allowed to have a fixed rotation inside the link frame to which
it is attached.
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Given that the geometry of the box in the frame F , which x is described
in, is a unit cube, each of the six planes encompassing the box’s inner
space has their normals parallel with one of the frame axes, and all have
an offset of 0.5. We can exploit this geometry to easily compute a vector
from the center of the box to the projection point P ′ in this frame F .
By multiplying x with a factor that makes the component of x with the
largest absolute value become ±0.5 we get a vector x′ that point from the
box’s center to P ′ in frame F . To achieve this we write

x′ = λx (5.25)

λ =
1

2
· 1

max(|xT x̂|, |xT ŷ|, |xT ẑ|)
=

1

2
· 1

||x||∞
(5.26)

By re-scaling, re-rotating and re-translating we can now get the vector
p′ going from the origin of the world frame to the projection point P ′ by
writing

p′ = R−1Sx′ + c (5.27)

To formulate the task function and the task jacobian we reuse the
formulations from the point-on-plane task. We defining a plane K as

K = {x ∈ IR3 : n̂Tx− d = 0}

n̂ =
p− p′

|p− p′|
d = n̂Tp′

d = dn̂

(5.28)

The task function and task jacobian for the point-on-box task are then
the same as in Equation (5.20) and (5.22) with parameters as in Equation
(5.28).

5.3.5 Point-on-Cylinder

A task function that places a point relative to the surface of an open cylin-
der is geometrically very similar to that of a point-on-line task. While a
point-on-line task can not be distinguished between an inequality inter-
pretation and an equality interpretation, a point-on-cylinder can however.
A less-than-or-equal-to point-on-cylinder task would try to achieve posi-
tioning the point somewhere inside the cylinder, while a greater-than-or-
equal-to task would position in outside the cylinder, and in the equality
case position it on the cylinders surface. To achieve this, the task function
formulation from the point-on-line task must be extended with a term re-
lated to the cylinder’s radius. As the point-on-line task function value is
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Linköping University

45 of 76 Centre for Applied
Autonomous Sensor Systems
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Figure 5.9: Point-on-cylinder task sketch.

an always positive scalar (the shortest euclidean distance to a point the
line squared), subtracting the cylinder’s radius squared would achieve this.
We also note that such an appendix to the task function value is never
time dependent, and therefore leaves the task jacobian unchanged. We
will now define the point-on-cylinder problem and its solution.

Let the cylinder be defined by an offset vector d, a unit vector going in
the direction of the main axis of the cylinder v̂ and a radius scalar r. The
cylinder is regarded as open. The task function value is then defined as
the difference between the point-on-line task function value and r2. Please
see Figure 5.9.

We write the task function as

e = (p− p′)T (p− p′)− r2 (5.29)

The expression for the task jacobian is equal to that of the point-on-line
task, see Section 5.3.2.

5.3.6 Point-on-Sphere

The point-on-sphere task is a point-on-point task extended with a radius
and the ability to be distinguished between an inequality and an equality
task. Similar to the formulation of the point-on-line task this extension
only affects the task function value in Equation (5.10) with the addition
of a term, but not the jacobian in Equation (5.15) as the added term is
constant with respect to time.
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Örebro, Sweden



Online Whole-Body Control
using Hierarchical Quadratic Programming

Marcus A Johansson
M. Sc. Thesis

Figure 5.10: Point-on-sphere task sketch.

Consider a sphere with its center at point C and radius r ∈ IR, and a
point P. Consider also two vectors c going from the world origin to the
point C, and p going from the world origin to the point P. Please see
Figure 5.10. The task function value then becomes

e = (p− c)T (p− c)− r2 (5.30)

and the task jacobian remains unchanged compared to Equation (5.15)
with p1 = p and p2 = c.

5.4 Geometric Alignment

While the positioning of end-effectors is an important feature when it
comes to robotic manipulation, simply placing an end-effector at a certain
position is not enough to ensure proper interaction with the environment.
Consider for instance, as in the case of the YuMi robot, picking up a box
with one of the grippers. If the gripper in not directed towards one of
the sides of the box, the gripper could be grasping the box’s edges or
corners instead of its sides which would result in an unstable lift of the
box. This section therefore covers basic alignment task definitions and
their implementations.

We regard first a general task formulation for aligning one line to be
parallel with another line while allowing for a certain degree of alignment
error. This is not to be confused with positioning a line to intersect with
another line which is another type of task. For example both grippers
of the YuMi robot can with a line-with-line alignment task be made to
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Figure 5.11: line with line task sketch.

always point in the same direction, or to always be opposite each other
when executing for example two-hand grasping.

The following spcializations of TaskGeometricAlignment have been
implemented:

• TaskGeometricAlignment<GeometricLine, GeometricLine>

• TaskGeometricAlignment<GeometricLine, GeometricPlane>

• TaskGeometricAlignment<GeometricLine, GeometricCylinder>

• TaskGeometricAlignment<GeometricLine, GeometricSphere>

5.4.1 Line-with-Line Alignment

Consider two lines L1 and L2 fixed in two end-effector frames Fi and
described in the world frame, each with their offset vector di and normal
directional vector v̂i for i = 1, 2 as

Li = {li ∈ IR3 : li = ci + di + λiv̂i, λi ∈ IR}
i = 1, 2

(5.31)

where ci is the origin of frame Fi described in the world frame, see Figure
5.11. The offset and directional vectors are here expressed in the world
frame but fixed in the link frame of each end-effector Fi. A task formula-
tion that leads to aligning the two lines can be written as

e = v̂T1 v̂2 − cos(δ) (5.32)

In other words, the cosine of the angle between the two unit vectors minus
the cosine of the angular error margin δ. We chose this definition since it
makes it easy to find the jacobian of this expression since δ is constant.
This definition of the angle computes a rotation around the vector v̂1× v̂2.
The constant term δ enables the use of inequality tasks to ensure that the
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angle between two line stays larger or smaller than δ, and equality tasks
that the angle equals δ. Geometrically this can be likened to placing a
cone around one of the lines and keeping the other line inside, on, or
outside the cone. However, this comparison is not fully valid as the task
only regards the rotation of each line and not their relative position, i.e.
the task will not ensure that the two lines will intersect.

From derivation of the task function with respect to time we get

ė = ˙̂v
T

1 v̂2 + v̂T1
˙̂v2 (5.33)

Essentially, this projects the angular velocity of the end-effector frame
onto the desired axis of rotation. We can now see that

v̂T1
˙̂v2 = v̂T1

[
k1 × v2 · · ·kn × v2

]
q̇ = (v̂1 × v̂2)TJωv2 q̇ (5.34)

We can now write the task jacobian as

Je = (v̂1 × v̂2)TJωv2 + (v̂2 × v̂1)TJωv1 =

(v̂1 × v̂2)T (Jωv2 − J
ω
v1)

(5.35)

where Je ∈ IR1×n.

5.4.2 Line Alignment with Other Primitives

The line-with-line alignment task formulation can easily be extended to en-
compass line-with-plane, line-with-box, line-with-cylinder and line-with-
sphere, while a point on the other hand never has any orientation and
cannot be aligned with. Aligning a line with a plane naturally has two
apparent interpretations: either the line is aligned to be parallel with or
perpendicular to the plane. Both these interpretations would be useful
for applications in real control implementations, however as we extend
the definition to encompass also boxes, cylinders and spheres the paral-
lel alignment is not longer as applicable. Letting a line be parallel to
the surface of a cylinder or a sphere generally results in no condition on
the orientation of the line at all, since all possible line orientations have
tangential representations somewhere on the cylinder and on the sphere.
Instead, letting line alignment with a plane, box, cylinder or sphere sig-
nify the line being perpendicular to the surface at the point of intersection
between the line and the other geometric primitive yields a more clearly
defined alignment behaviour and thus renders more useful for robotic con-
trol applications.

For a line-with-plane alignment task this would involve having the line
always be parallel with the planes normal vector. This is then very similar
to the line-with-line alignment formulation which we reuse in this case.
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For a line-with-cylinder and line-with-sphere alignment tasks we find
the projection P ′ on the cylinder/sphere of the point P given by the offset
vector of the line. The line’s directional vector is then aligned with the
normal vector or the cylinder/sphere at P ′. This line can be placed at,
for instance, the center of a gripper and point in the approach direction
of the gripper. By aligning this line with a plane, cylinder or sphere the
gripper will always be directed perpendicular to the surface at the point
of contact. This is a more useful interpretation of alignment to real world
applications than letting a line be parallel with the surface at point P ′.

This definition does not hold for line-with-box alignment however. As
the projection point P ′ can end up on one or the box’s edges or corners,
the choice of normal vector becomes ambiguous. We have therefore chosen
not to implement this task.

5.5 First-Order Task Dynamics

A common type of task dynamics is exponential decay. The main reason
for this is that exponential decay does not depend on time. We have
implemented first-order exponential decay according to Equation 5.36.
This behaviour is indirectly evaluated in the gripping experiment, see
Chapter 6, where it is being used to perform gripping motions.

ė∗ = −λe (5.36)

5.6 Minimal Jerk Task Dynamics

A minimal jerk task dynamics tries to fulfill a task while considering
the task evolution to minimize the total jerk on the kinematic structure
throughout the execution of the task. While this is used in applications
to minimize total energy spent in execution or minimizing the strain on
mechanical parts for instance, that would imply a minimal jerk evolution
of each joint. As tasks are often defined in a lesser dimensional space than
the configuration space, the definition of minimal jerk with respect to each
joint’s velocity is not fully applicable. We can, however, define a minimal
jerk task behaviour in the task space by using the same mathematical def-
inition of minimal jerk evolution as given by [9]. We define the minimal
task dynamics as in Equation (5.37).

e∗(t) = e(t0) + (e(tf )− e(t0))
(
10τ3 − 15τ4 + 6τ5

)
where τ =

t− t0
tf − t0

(5.37)
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As we desire to define a reference task behaviour ė∗, we derive the
expression in Equation (5.37) with respect to time and get

ė∗(t) = − 30

tf − t0
(e(tf )− e(t0))

(
τ2 − 2τ3 + τ4

)
(5.38)

This notation relies on knowing the initial and final task function values.
The parameter tf − t0 can be seen as a design parameter (the total task
duration) as the initial time is the system time at the initiation instant of
the task. In many cases the final task value is zero, however to allow the
user to customize his/her own tasks our implementation the term e(tf ) is
kept in the task dynamics definition in Equation (5.38).

From experience of applying the task dynamics in Equation (5.38) we
saw that the task fulfillment rate (the final task function value divided
by the initial task function value) was not satisfactorily low3. We there-
fore introduced a feed-forward P-controller that penalizes deviations from
the minimal jerk task trajectory given in Equation (5.37). The resulting
desired reference behaviour then instead becomes

ė∗(t) = ė∗mj(t) + ė∗P (t)

where

ė∗mj(t) = − 30

tf − t0
(e(tf )− e(t0))

(
τ2 − 2τ3 + τ4

)
ė∗P (t) = −K(e(t)− e∗(t))

(5.39)

where e∗(t) is the desired task function value when applying minimal jerk
task dynamics, i.e. the value of e∗(t) in Equation (5.37). In effect the
feed-forward P-controller becomes a First-Order Task Dynamics where
the reference value is the minimal jerk task trajectory instead of zero as
it is defaulted to in our First-Order Task Dynamics implementation, see
Section 5.5.

The ROS service-call used to add a task using minimal jerk dynamics
is shows in Listing 5.12.

3For the tasks we tested the ratio was above 4%.
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Figure 5.12: Sample ros service call of a minimal jerk dynamics. Design
parameters are tf = 3.4 seconds and k = 35.

1 rosservice call /yumi/hiqp_kinematics_controller/add_task \

2 "name: ’taskname ’

3 type: ’TaskType ’

4 behaviour: [’DynamicsMinimalJerk ’, ’3.4’, ’35’]

5 priority: 1

6 visibility: 0

7 parameters: [’task parameters ’]"

Dept of Comp & Info Science
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Chapter 6

Evaluation

To evaluate the HiQP control framework we look closer at the performance
of gripping motion generations, and minimal jerk task dynamics.

6.1 Software Quality

There are various design measures used to evaluate the quality of a soft-
ware design [7]. Many of these correlate with, for instance, fault-proneness
and thus actually span a lower dimension metric space for code design
quality than the total number of measures. That, along with the fact that
many measures require code analysis software that were not at hand dur-
ing the project, we looked for a smaller set of design measures. This more
concise still comprehensive set of design measures that formed the basis
of our evaluation were proposed by [2] and are quoted here in Table 6.1.
The work in [2] also links these design metrics to the quality attributes
we stated in Chapter 4, see Table 6.4.

The design metrics are only applicable when compared to an earlier
version of the code base, or with another library with the same functional-
ity. The number of classes, for example, is relative to the size of the project
and to what functionality it shall provide. However, we can regard the
design size as the number of classes and the total number of methods to
make comparisons between code bases.

In [2] the design metrics of the Microsoft Foundation Classes are given.
Although we cannot compare the design size directly as the libraries are
of different sizes altogether, we can make some rational comparisons. By
dividing the metrics NOH, ANA and DCC, which are related to the design
size in number of classes, with DSC we can compare HiQP and MFC. By
dividing the metrics NOP and CIS, which are metrics related to the total
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Table 6.1: Design Metric Descriptions. This table is quoted from [2].

METRIC NAME DESCRIPTION

DSC Design Size in
Classes

This metric is a count of the total number of
classes in the design.

NOH Number of Hi-
erarchies

This metric is a count of the number of class hi-
erarchies in the design.

ANA Average
Number of
Ancestors

This metric value signifies the average number of
classes from which a class inherits information. It
is computed by determining the number of classes
along all paths from the ”root” class(es) to all
classes in an inheritance structure.

DAM Data Access
Metric

This metric is the ratio of the number of private
(protected) attributes to the total number of at-
tributes declared in the class. A high value of
DAM is desired. (Range 0 to 1)

DCC Direct Class
Coupling

This metric is a count of the different classes
that a class is directly related to. The metric in-
cludes classes that are directly related by attribute
declarations and message passing (parameters) in
methods.

CAM Cohesion
Among Meth-
ods of Class

This metric computes the relatedness among
methods of a class based upon the parameter list
of the methods. The metric is computed using the
summation of the intersection of parameters of a
method with the maximum independent set of all
parameter types in the class. A metric value close
to 1.0 is preferred. (Range 0 to 1)

MFA Measure of
Functional
Abstraction

This metric is the ratio of the number of methods
inherited by a class to the total number of meth-
ods accessible by member methods of the class.
(Range 0 to 1)

NOP Number of
Polymorphic
Methods

This metric is a count of the methods that can
exhibit polymorphic behaviour. Such methods in
C++ are marked as virtual.

CIS Class Inter-
face Size

This metric is a count of the number of public
methods in a class.

NOM Number of
Methods

This metric is a count of all the methods defined
in a class.
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Table 6.2: Design Metrics of the HiQP framework.

METRIC DESIGN PROPERTY VALUE

DSC Design Size 30

NOH Hierarchies 5

ANA Abstraction 0.53

DAM Encapsulation 0.93

DCC Coupling 3.03

CAM Cohesion 0.56

MFA Inheritance 0.51

NOP Polymorphism 2.57

CIS Messaging 10.59

NOM Complexity 11.48

number of methods, with NOM we can compare HiQP and MFC for these
design measures as well. Also three of the metrics, namely DAM, CAM
and MFA, are ratios ranging between 0 and 1 which we compare directly
between the two libraries. It is difficult to say whether one of these ratios
is good or bad in general, but they work well for telling what library excels
over the other on that design property. Therefore the numbers can not be
interpreted on their own, but only in comparison.

We make the following observations of the design metrics when com-
paring HiQP and MFC:

• Hierarchies. The ratio NOH/DSC1 for the HiQP framework is
0.1667 and the maximum for 5 different versions of MFC is 0.0258.
From this we conclude that our number of hierarchies in HiQP is
relatively higher than that of the MFC.

• Abstraction. The ratio ANA/DSC for HiQP is 0.0177 and the
highest value for MFC is 0.0233.

• Coupling. The ratio DCC/DSC for HiQP is 0.101 and the maxi-
mum for MFC is 0.0838 (MFC v.1.0) which indicates that our code
involves more coupling than MFC.

• Polymorphism. Looking at the measure of polymorphism we can
see that the ratio NOP/NOM2 is 0.2239 for HiQP and the maxi-
mum is 0.19 for MFC (v.5.0). That indicates that our code is slightly
more polymorphic than MFC.

1the number of hierarchies over the total number of classes
2the number of polymorphic methods over the total number of methods
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Table 6.3: Comparison between the DAM, CAM and MFA design metrics
between HiQP and the maximum value for MFC.

HiQP MFC

DAM 0.93 0.61

CAM 0.56 0.2

MFA 0.51 0.5

Table 6.4: Linkage of design metrics to quality attributes. The sign sifg-
nifies whether the metric has a positive/negative impact on the quality
attribute. Re. = Reusability, Fl. = Flexibility, Un. = Understandability,
Fu. = Functionality, Ex. = Extendability, Ef. = Effectiveness.

Reusa. Flexi. Under. Funct. Exten. Effec.

Design Size + +

Hierarchies +

Abstraction - + +

Encapsulation + + +

Coupling - - - -

Cohesion + + +

Inheritance + +

Polymorphism + - + + +

Messaging + +

Complexity -

• Messaging. The ratio CIS/NOM is for HiQP 0.9225 and the max-
imum for MFC is 0.7894.

Regarding the DAM, CAM and MFA ratio-based measures we compare
the values of HiQP and the maximum value among the MFC versions in
[2] in Table 6.3. Since the DSC and NOM metrics are regarded as metrics
of the project size and used to normalize the other metrics we cannot make
any comparison using these.

From these measures and their impact on quality attributes given in
Table 6.4 we can attempt drawing conclusions on the quality of our code
base compared to the MFC library. Regarding reusability, as both co-
hesion and messaging is estimated to be higher in HiQP than in MFC
which indicates more reusable code. However, our code is indicating more
coupling than the MFC code which decreases the reusability. The same
conclusion can be drawn for code flexibility as the hierarchies, encapsu-
lation and polymorphism metrics are higher which makes HiQP a more
flexible code base than MFC. Although again, the high coupling in HiQP
indicates low flexibility. Finally there are more arguments that points

Dept of Comp & Info Science
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at the HiQP framework being more flexible than MFC than arguments
against it. The understandability of the code is a more unsure case as the
three measures of abstraction, encapsulation and cohesion indicates that
the HiQP framework is more understandable in terms of its source code
than MFC. On the other hand, both the high coupling and high polymor-
phism values relative to MFC pulls down the understandability measure
for HiQP in comparison with MFC. HiQP can quite easily be said to be
more functional than MFC since all the three measures it is positively
linked to are higher for HiQP than MFC. HiQP is however less extendis-
ble as two measures are playing in MFC’s favour, namely abstraction and
coupling, while the measure of inheritance seems to be roughly the same in
both frameworks and only the polymorphism metric is in favour of HiQP.
The effectiveness is, along with the understandability, difficult to address
to the one framework over the other. Abstraction if lower for HiQP which
indicates it being less effective, while encapsulation is higher, inheritance
being roughly the same and polymorphism only slightly larger. It is there-
fore difficult to say which of the two frameworks is the most effective. The
conclusions on the quality attributes for HiQP and MFC in comparison
are summarised in Table 6.5.

Table 6.5

HiQP MFC

Reusability +

Flexibility +

Understandability - -

Functionality ++

Extendability +

Effectivity - -

6.2 Gripping

With the HiQP framework being subject to deficiencies associated with
local optimal control3 we wanted to evaluate this approach in a gripping
setting. We placed a virtual cylinder at 25 different positions in front of
YuMi and set up tasks to initiate grabbing it from 25 different starting
positions. The orientation of the wrist was unconstrained for each starting
position. The setup is shown in detail in Figure 6.1, however of the 25

3Local optimal control in a temporal sense does not take into account future state
solutions and therefore might not find a valid path even if there is one.

Dept of Comp & Info Science
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intended starting positions one could not be reached by the gripper and
was therefore excluded from the experiment.

Figure 6.1: Overview of starting positions and cylinders in the gripping
experiment.

(a) Front view.

(b) Side view. (c) Isometric view.

6.2.1 Test Setup

The test was setup to bring the right hand gripper of YuMi from 25 dif-
ferent starting positions to end positions that would indicate successful
placement of the gripper to pickup a cylindrical object. This was under
the assumption that closing the gripper once all tasks were satisfied yielded
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a successful grasp. There were 25 different positions of the cylinder. The
starting positions were placed across a grid in the y-z-plane with fixed
x = 0.2. The cylinder had a radius of 0.05 and was placed across a grid
in the x-y-plane coaxially with the z-axis. The cylinder was encapsulated
by two planes referred to as the floor plane, at height z = 0.115, and the
top plane, at height z = 0.215. We refer to Figure 6.1 for an overview of
the total setup.

The gripping task that was tested consisted of the following subtasks:

1. bring gripper point to cylinder A point-on-cylinder equlity task
for the gripper point and the cylinder.

2. bring gripper point above floor A point-on-plane inequality task
for the gripper point and the floor plane.

3. bring gripper point under plane A point-on-plane inequality task
for the gripper point and the plane just above the cylinder.

4. align gripper with floor A line-with-plane alignment task for a
line going vertically trough the gripper and the floor plane.

5. align gripper with cylinder A line-with-cylinder alignment task
for a line going in the gripping direction of the gripper and the
cylinder.

Figure 6.2: Communication diagram for testing gripping.

We wrote a separate multi-threaded program, called run experiment,
registered as a ROS node to handle the evolution and recording of the
test, see Figure 6.2. run experiment sends a string array message to a
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topic subscriber in the controller ROS node which is there parsed. The
following list shows the messages parsed and their resulting behaviour of
the controller.

• "set start pos, x, y, z" deactivates all tasks, sets the start point
primitive to (x,y,z), activates the bring back to start task.

• "set cyl pos, x, y, z" sets the position of the cylinder to (x,y,z).

• "grab cyl" deactivates all tasks, and activates the tasks involved in
grabbing the cylinder.

The run experiment ROS node implemented a finite state machine that
cycles through these messages to bring the gripper to one of the 25 starting
positions and towards gripping the cylinder at its 25 different locations.
run experiment also listens to the monitoring data topic and registers
whether the task of gripping the cylinder has been successful or not within
10 seconds from launching it. The gripping of a cylinder was considered
successful when all of the tasks involved in grabbing the cylinder had task
function value deviations less than 0.01 from 0.

6.2.2 Results

We collected data on whether grabbing the cylinder at one of its 25 desig-
nated locations from one of the 24 starting positions of the grabber could
be successfully achieved by the controller or not. In Table 6.6 we present
the percentage of cylinders that was successfully grabbed from each of the
24 starting positions. In Table 6.7 we show the percentage of starting posi-
tions from which each of the 25 positions of the cylinder could successfully
be grabbed.

From our results we can see that the non-global solution mechanism in
HiQP have a significant effect on whether a set of tasks can be successfully
performed or not. On average only 55% of the total 600 test cases were
successful. Obvious reasons for this are either that the controller gets
stuck at a local minima4, or that there actually does not exist a valid
solution i.e. that the cylinder is not reachable by the gripper. However,
from the design of the test cases we know that all cylinders and 24 out of
25 of the starting positions were reachable.

4The iterative instantaneous optimization carried out by HiQP is not able to foresee
future unsatisfied constraints and is not able to proactively avoid them.
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Table 6.6: Map of starting positions from which a percentage of the
25 cylinders was successfully grabbed. The mean-row and mean-column
shows the average success rate for each row and column, and the value in
the down-right cell shows the total success rate as an average of all test
cases. z-positions are written horizontally, and y-positions vertically.

0.250 0.425 0.600 0.775 0.950 mean

-0.450 64% 32% 16% 88% 80% 56%

-0.225 96% 36% 32% 72% 68% 61%

0.0 36% 68% 100% 64% 48% 63%

0.225 60% 56% 48% 60% 36% 52%

0.450 N/A 33% 44% 67% 20% 41%

mean 64% 45% 48% 70% 50% 55%

Table 6.7: Map of cylinder positions which a percentage of the 25 start-
ing positions was successfully grabbed from. The mean-row and mean-
column shows the average success rate for each row and column, and the
value in the down-right cell shows the total success rate as an average of all
test cases. x-positions are written horizontally, and y-positions vertically.

0.077 0.191 0.305 0.419 0.533 mean

-0.533 35% 30% 40% 45% 30% 36%

-0.3415 55% 55% 55% 45% 40% 50%

-0.15 65% 75% 83% 91% 65% 76%

0.0415 40% 80% 75% 91% 65% 70%

0.233 45% 45% 63% 54% 42% 50%

mean 48% 57% 63% 65% 48% 56%

6.3 Minimal Jerk

We evaluated the minimal jerk task dynamics too see how well it performed
in comparison to the analytic version. An analytic expression for a cost
measure was calculated and its value was also numerically extracted from
simulations. We have compared the sum of deviations from the analytic
jerk of a generated point-on-point motion, and also the rate at which the
task was fulfilled. By writing the rate we mean the final task function
value divided by the initial task function value. This section covers the
details of this evaluation.
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6.3.1 Analytic Cost Function

From the definition of minimal jerk found by [9], see Equation 6.1, we
compute an analytic expression for the sum of the absolute value of the
jerk throughout the task evolution.

e = e0 + (ef − e0)(10τ3 − 15τ4 + 6τ5)

where τ =
t− t0
tf − t0

(6.1)

First we calculate the derivatives d/dt, d2/dt2, d3/dt3 of e as in (6.2),
see Figure 6.3 for plots of these functions.

de

dt
=

30(ef − e0)

tf − t0
(τ2 − 2τ3 + τ4)

d2e

dt2
=

30(ef − e0)

(tf − t0)2
(2τ − 6τ2 + 4τ3)

d3e

dt3
=

60(ef − e0)

(tf − t0)3
(1− 6τ + 6τ2)

(6.2)

Figure 6.3: Minimal Jerk Task Evolution.
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From the expression of jerk in Equation 6.2 we form the sum of the
absolute value of the jerk called C, see Equation 6.3. For simplicity we
only regard a one dimensional task function e.

C =

∫ tf

t0

∣∣k(6τ2 − 6τ + 1)
∣∣ dt

where k =
60(ef − e0)

(tf − t0)3

0 ≤ t0 < tf , 0 ≤ ef < e0

0 ≤ k <∞

(6.3)

We let t0 = 0 for simplicity, and change the integration variable to
τ = t/tf . We write

C = k

∫ 1

0

∣∣(6τ2 − 6τ + 1)
∣∣ dτ (6.4)

and

6τ2 − 6τ + 1 = 0⇔ τ =
1

2
(1± 1√

3
)

let τ1 =
1

2
(1− 1√

3
), τ2 =

1

2
(1 +

1√
3

)

(6.5)

and from looking at the plot of the jerk in Figure 6.3 and the parts
where it is positive/negative specifically, we can now write C as

C = k

(
−
∫ τ1

0

l(τ)dτ +

∫ τ2

τ1

l(τ)dτ −
∫ 1

τ2

l(τ)dτ

)
where l(τ) = 6τ2 − 6τ + 1

(6.6)

and we have

C = k
(
[L(τ)]0τ1 + [L(τ)]τ2τ1 + [L(τ)]τ21

)
where L(τ) = 2τ3 − 3τ2 + τ

(6.7)

and we develop the expression by writing

C = k(−2L(τ1) + 2L(τ2)− L(1))

= k (2(L(τ2)− L(τ1))− (2− 3 + 1))
(6.8)

where
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L(τ2)− L(τ1)

=

2(
1 + 1/

√
3

2
)3 − 3(

1 + 1/
√

3

2
)2 +

1 + 1/
√

3

2

−2(
1− 1/

√
3

2
)3 + 3(

1− 1/
√

3

2
)2 − 1− 1/

√
3

2
=

1

4

(
(1 +

1√
3

)3 − (1− 1√
3

)3 − (1 +
√

3)2 + (−1 +
√

3)2
)

+
1√
3

=

1

4

(
3 · 3 · 2 + 2

3
√

3
− 4 · 3√

3

)
+

1√
3

=

−
(

1√
3

)3

(6.9)

and from Equations 6.3, 6.8, 6.9 we get C as

C = − 40√
3

ef − e0
t3f

(6.10)

When evaluating the performance of our minimal jerk task dynamics
implementations we will compare the total sum of the jerk across the
motion from simulation with the value of C.

6.3.2 Testbed Setup

To evaluate our implementation of minimal jerk task dynamics we setup
a point-on-point equality task to bring two points, attached to each of the
two grippers, together. In our test we varied the frequency of the controller
as we expected the deviation from the analytic case would decrease with
higher frequency. We also varied the total time duration of the motion.
Since our implementation allows for adding a feed-forward P-controller we
also vary the gain K of this controller, see Section 5.6.

By logging all task jacobian and joint velocity values throughout the
motion we used the finite difference coefficient method, see [10], to numer-
ically derive the jerk of the task function value. Technically, the values of
the task jacobian J and the generated controls q̇ are written to a csv-file
at every time step. One csv-file is generated per test case and these are
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parsed by an R-script that numerically calculates the jerk. The essential
part of the R-script is shown in Listing 6.1. We also logged the initial and
final task function values at time t = 0 and t = tf .

1 rawdata <- read.csv("csv_data/f20t10K0.csv", header=FALSE)

2 J <- rawdata[rawdata$V2==’J’ ,3:20]

3 qdot <- rawdata[rawdata$V2==’qdot’ ,3:20]

4 t <- rawdata[rawdata$V2==’J’,c("V1")]

5

6 dt <- t[2: length(t)] - t[1: length(t) -1]

7 dt <- c(dt, sum(dt)/length(dt))

8

9 t_red <- t[2:( length(t) -1)]

10 dt_red <- dt[2:( length(dt) -1)]

11

12 de <- rowSums(J*qdot)

13 de <- unname(de)

14 dde <- (-0.5*de[3: length(de)] +0.5*de[1:( length(de) -2)]) / dt_

red

15 ddde <- (de[3: length(de)] -2*de[2:( length(de) -1)] +de[1:(

length(de) -2)]) / dt_red

Listing 6.1: R-script for numerical calculation of task jerk.

6.3.3 Test Results

We could see that, as the frequency of the controller was increased, the
readings got more unstable. Reasons for this can for example be that the
writing of results to a file can affect the CPU power that the controller is
given. Another way of measuring this however is by lowering the frequency
of the controller and increasing the duration of the motion. That results
in the same amount of samplings but in the latter case the effects of high
frequencies on the readings are not as prominent. We therefore refer to
the number of samples, rather than the controller frequency or the motion
duration, when discussing the results in this section.

The desired final task value for this setup was 0, i.e. the two points
fixed to the grippers were to be on top of each other. However, this was
never fully achieved as can be seen on the left-hand side in Figure 6.4
and Figure 6.5. For this particular task the final task value never gets
lower than 1.75% of the initial task value. Reasons for this can be that
the implementation of minimal jerk task dynamics is not perfect due to
that it is sampling-based and that the kinematic controls are never exactly
achieved. We could observe a minimum in the error rate of final task values
between 25-30 samplings throughout the motion duration, see Figure 6.4,
and for values of K higher than 1, see Figure 6.5.
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When looking at how well the minimal jerk property of the generated
motion was achieved we could see that the jerk increased with the number
of samplings and with increasing K. We believe that the low rations found
at low durations, see the right-hand side of Figure 6.4, are due to that at
these few samplings the controller never reaches the desired jerk which
then results in the final error rate being high. As the jerk is numerically
derived from the task velocity we see that by increasing the number of
samplings would also increase the motion jerk. The more changes there
are in the desired task velocity, the more total jerk. This can be seen as
the duration increases in Figure 6.4.

The Σ/C ratio5 increases drastically with increasing K, see the right-
hand side of Figure 6.5. The plateau in the graph is partially due to that
the values on the x-axis are distributed logarithmically (which enlarges
the plateau visually). The steady increase of Σ/C is however also seen in
Figure 6.6a and 6.6b. When K is increased, the controller is more and
more likely to react on deviations from the perfect minimal jerk trajectory.
This results in increased jagged behaviour of the motion acceleration and
thus increases the total jerk.

From all these observations we can see that for this particular task a
good number of samplings lies between 18-25 throughout the motion, and
a K-value between 1-5. That would imply a final error rate at under 2%
and 5% increase in total jerk compared with the perfect analytic minimal
jerk trajectory.

Figure 6.4: Final task error and total jerk ratio as functions of motion
duration. The controller frequency was 5 Hz.

5C is the analytic cost value found in Equation (6.10). Σ is the numerical version
of this, i.e. the sum of ddde in Listing 6.1.
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Figure 6.5: Final task error and total jerk ratio as functions of K. log
refers to the natural logarithm. The controller frequency was 5 Hz.

(a) Derivatives of the task function for
K = 0 at 5Hz during 5s. The green line
shows smooth motion jerk.

(b) Derivatives of the task function for
K = 10 at 5Hz during 5s. The green
line shows jagged motion jerk.

Figure 6.6: Two graphs showing task velocity evolution with acceleration
and jerk computed using finite difference coefficients.
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Table 6.8: Results from minimal jerk evaluation tests.

f [Hz] tf [s] K [] e(t0) [mm] e(tf ) [mm]
e(tf )
e(t0)

[%] Σ/C []

5 5 0 66.8478 2.776140 4.15 0.996328
7 5 0 66.7390 2.207200 3.31 0.9986536
10 5 0 66.8675 1.764370 2.64 1.001305
20 5 0 66.8341 1.193240 1.79 1.027811
35 5 0 66.8068 0.930022 1.39 1.074604
70 5 0 66.8431 0.738589 1.10 1.167346
140 5 0 66.7979 0.642059 0.96 1.325218
280 5 0 66.7485 0.592049 0.89 N/A
550 5 0 66.8262 0.557443 0.83 N/A
1000 5 0 66.7537 0.546637 0.82 N/A
20 1 0 66.8181 2.88184 4.31 0.9963557
20 2 0 67.0790 1.74175 2.60 0.9990655
20 3 0 66.7654 1.39452 2.09 0.9994530
20 4 0 66.9984 1.24228 1.85 1.0025070
20 5 0 66.8946 1.18913 1.78 1.0267550
20 6 0 66.8160 1.18773 1.78 1.0544740
20 7 0 66.8283 1.20804 1.81 1.0866080
20 8 0 66.9008 1.24011 1.85 1.1149260
20 9 0 66.8777 1.30059 1.94 1.1560850
20 10 0 66.8497 1.36504 2.04 1.200642

Table 6.9: Results of closed-loop minimal jerk dynamics (with added P-
controller) applied on a 1d-point-on-point projection task.

f [Hz] tf [s] K [] e(t0) [mm] e(tf ) [mm]
e(tf )
e(t0)

[%] Σ/C []

5 5 0.25 66.8145 1.04379 1.56 0.9886755
5 5 0.5 66.7367 0.400301 0.60 1.030462
5 5 0.75 66.8091 0.127858 0.19 1.031439
5 5 1 66.8207 0.0296274 0.04 1.047914
5 5 5 66.7469 0.0154645 0.02 1.051242
5 5 10 66.8388 0.00773114 0.01 1.31
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Chapter 7

Conclusions

In this thesis we have investigated how a local optimization based motion
planning and generation framework can be implemented in software. We
wanted a modular framework that could automatically translate task and
task space definitions customized by an end user to quadratic programs
that were ordered and solved hierarchically. To do this, we set up soft-
ware quality attributes and designed a framework that was implemented in
C++. The framework is independent of which third-party optimization
solver library is used, and also independent of which third-party com-
munications systems library is used to communicate with a robot. Our
implementation also provides the use of ROS as a communications system,
and Gurobi as an optimization solver through the CasADi library. In the
oncoming subsections we discuss the results of the evaluations made.

Software Quality

We find that whether or not the quality attributes setup for this project
were satisfactorily fulfilled was not determinable from the evaluations
made of the source code. Partially, this is due to that our research ques-
tion on software quality was not posed to give a quantitative measure.
However, due to the nature of these quality attributes it is very hard to
extract quantitative measures that are fully comparable between software
projects. The Microsoft Foundation Classes versions that we compared
our framework with, v. 1.0-5.0, were developed in 1992-1997 [2]. With
the increased knowledge created in software quality, and techniques such
as design patterns, the results showing that HiQP has similar software
quality levels as MFC did during its development in 1992-1997 we find
reasonable and sound.
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To address the two areas where HiQP seems to fall short compared to
MFC, id. est. understandability and effectivity, we conclude the follow-
ing. Understandability is negatively impacted by the measures of polymor-
phism and coupling. While polymorphism affects four quality attributes
positively and only one negatively we instead propose changes to be made
that decreases coupling in the code. High coupling in the current version of
HiQP is primarily found in classes that use the geometric primitive classes.
Currently, in these cases all geometric primitive types must be accounted
for at every such occasion therefore the coupling gets high. Finding an-
other design that addresses this problem is crucial to reduce coupling in
HiQP. Regarding effectivity, we noted that abstraction is higher for MFC
than it is for HiQP. Abstraction, when measured as the average number
of ancestors, in HiQP can be difficult to increase since all hierarchies have
only one level and inherit in tree-structures. Thus, classes in HiQP have
at most one ancestor currently. One way of changing the code to increase
abstraction could be to make a task interface that inherits from both
TaskFunction and TaskDynamics. Also, among the geometric primitives
a lot of the data representations available in the point primitive and in the
line primitive are relevant to the higher order primitives such as cylinder
and sphere. Here changing the inheritance structure to let higher order
primitives inherit from lower order ones could lead to a higher level of
abstraction.

Framework Functionality

Since only 55% of the (globally feasible) test cases for gripping a cylinder
were successful, we conclude that when using the HiQP framework in a
gripping context with a 7-DoF revolution-joint robot arm one has to be
careful of the setup of the grabbing tasks. More generally, using such
a local optimization approach to motion generation requires an analysis
of how tasks are setup predicated on certain initial configurations. More
specifically, in a one task only case, if a goal position in task space is
visible from the initial position it seems likely that the HiQP controller
will generate a valid motion. Also, setting up tasks that are out of reach
can cause problems if a set of different behaviours are to be executed in
series using for instance a finite state machine. If the finite state machine
is triggered on the successful achievement of tasks the process of behaviour
execution can be brought to a halt1. Because of this the benefits of using
a local optimization approach such as

• being able to compute controls online at runtime,

1Such failure behaviour can be detected in task progress stagnation, but the FSM
might still be unable to recover from stagnation.

Dept of Comp & Info Science
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• being able to pose constraints,

• being able to react to disturbances or changes in the environment,

• being able to exploit redundancy,

• being able to use feedback control for more precise task execution,

• begin able to account for multiple tasks simultaneously,

• being able to enforce a strict hierarchy of tasks

come at the cost of careful implementation and execution of tasks. Ad-
dressing the issue of incompleteness of this approach therefore becomes
important to extend the usage of tasks to generate globally feasible solu-
tions for motion generation. We discuss this further in Section 7.1.

Minimal Jerk Task Dynamics

The evaluation of our minimal jerk implementation shows that it is possi-
ble to generate minimal jerk motions for simple tasks using local control
optimization. Since the gain K of the feed-forward part of the controller is
reacting on deviations from the minimal jerk trajectory, a set of undesired
outcomes can be identified.

• If the position of the task is pushed away from its trajectory by a
higher priority task, the feed-forward controller will react stronger
the further away from the trajectory the task function value is. This
will not override the constraints set by higher priority tasks as lower
priority tasks will be solved for in the null-space of the higher prior-
itized ones. However, the feed-forward might produce rapid changes
in acceleration inside that null-space that will result in higher motion
jerk throughout the task evolution which might be undesirable.

• During task evolution the computed optimal controls can be exe-
cuted more or less effectively by the underlying velocity controller.
When the effectivity of executing these controls vary during motion
execution, a static K-value will have different impacts. At times
when the task function value is deviating more from its reference
value a certain level of feed-forward control will result in a more
jerky behaviour, which is not desirably when using minimal jerk
dynamics.

Thus, setting K to values larger than 0 to utilize the feed-forward controller
requires careful planning of how the tasks are setup. This can improve
both the fulfillment of the task as well as the overall jerk minimization,
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but can also lead to undesired behaviour. We note also that rapid changes
of the task dynamics due to K will lead to rapid changes of the null-space
left over to lower priority tasks. Therefore, their performance can possibly
be undesirably affected by this feature. To gain more insight into this,
one would have to evaluate the use of feed-forward control when running
multiple tasks in parallel at various priority levels.

Relation to Global Path Planning

The main issue with a local optimal control approach as with HiQP, which
is greedy in a temporal sense, is that tasks can stagnate before having
reached their goal state. To battle this issue one could use an internal
model representation of the robot and its environment to try to optimize
controls into the future2. However, using sampling-based path planning
solvers one is often able to find a global solution, but perhaps not an
optimal one, in much shorter time than when using a fully optimal control
that is optimal also with respect to time. Graph based path planning
approaches allow to find an optimal solution at a certain discretization
level but the time consumption grows exponentially with the number of
degrees of freedom. Using control also benefits task execution accuracy as
it involves feedback at run-time. Planning based controllers need to re-
plan upon changes in the environment. Also, they need to re-plan upon
task fulfillment in order to make up for any deviations from the goal state.

7.1 Future Work

Currently HiQP comes with a velocity controller implementation for ROS.
As many robots do not have hardware interfaces supporting velocity con-
trols implementing a position controller and an effort controller would be
beneficiary. Implementing a position controller would be quite straight
forward as one would only have to use the current joint positions and the
velocity controls to produce desired joint positions. Implementing an ef-
fort controller would involve implementing a general way of representing
an internal model of the robot. This could be done for example by having
an interface parameterized using types from Orocos KDL. It would then
be up to the user to implement a class inheriting from this interface that
performs internal simulation of the robot in real time.

Having such an internal robot model interface also allows for predicting
the future state of the robot given the generated controls. As in model
predictive control (MPC) the optimization can then be carried out over a

2Known as Model Predictive Control.
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time span instead of only instantaneously. Since the task jacobian would
still be instantaneously constant for each time step, but not the same
between time steps, there is reason to belief that modern hardware would
be able to run optimization and future prediction inside some time horizon,
effectively this would extend into an MPC controller. Another benefit of
predicting the future could be to try to avoid getting stuck inside local
minima. If the time horizon given to the optimizer is long enough to find
more than one local minima, these can be stored and used when the task
function reaches a minima to try to get out of the locally optimal region.
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