
Linköpings universitet
SE–581 83 Linköping

+46 13 28 10 00 , www.liu.se

Linköping University | Department of Computer Science
Bachelor thesis, 16 ECTS | Datateknik

2016 | LIU-IDA/LITH-EX-G--16/036--SE

Lightweight User Agents
Användaragenter med små avtryck

Martin Estgren

Supervisor : Teodor Sommestad
Examiner : Cyrille Berger

http://www.liu.se

Upphovsrätt

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under 25 år
från publiceringsdatum under förutsättning att inga extraordinära omständigheter uppstår.
Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka
kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för
undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta
tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För
att garantera äktheten, säkerheten och tillgängligheten finns lösningar av teknisk och admin-
istrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i
den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt
samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sam-
manhang som är kränkande för upphovsmannenslitterära eller konstnärliga anseende eller
egenart. För ytterligare information om Linköping University Electronic Press se förlagets
hemsida http://www.ep.liu.se/.

Copyright

The publishers will keep this document online on the Internet – or its possible replacement
– for a period of 25 years starting from the date of publication barring exceptional circum-
stances. The online availability of the document implies permanent permission for anyone to
read, to download, or to print out single copies for his/hers own use and to use it unchanged
for non-commercial research and educational purpose. Subsequent transfers of copyright
cannot revoke this permission. All other uses of the document are conditional upon the con-
sent of the copyright owner. The publisher has taken technical and administrative measures
to assure authenticity, security and accessibility. According to intellectual property law the
author has the right to be mentioned when his/her work is accessed as described above and
to be protected against infringement. For additional information about the Linköping Uni-
versity Electronic Press and its procedures for publication and for assurance of document
integrity, please refer to its www home page: http://www.ep.liu.se/.

c© Martin Estgren

http://www.ep.liu.se/
http://www.ep.liu.se/

Abstract

The unit for information security and IT architecture at The Swedish Defence Research
Agency (FOI) conducts work with a cyber range called CRATE (Cyber Range and Training
Environment). Currently, simulation of user activity involves scripts inside the simulated
network. This solution is not ideal because of the traces it leaves in the system and the gen-
eral lack of standardised GUI API between different operating systems. FOI are interested
in testing the use of artificial user agent located outside the virtual environment using com-
puter vision and the virtualisation API to execute actions and extract information from the
system.

This paper focuses on analysing the reliability of template matching, a computer vision
algorithm used to localise objects in images using already identified images of said object
as templates. The analysis will evaluate both the reliability of localising objects and the
algorithms ability to correctly identify if an object is present in the virtual environment.

Analysis of template matching is performed by first creating a prototype of the agent’s
sensory system and then simulate scenarios which the agent might encounter. By simulat-
ing the environment, testing parameters can be manipulated and monitored in a reliable
way. The parameters manipulated involves both the amount and type of image noise in
the template and screenshot, the agents’ discrimination threshold for what constitutes a
positive match, and information about the template such as template generality.

This paper presents the performance and reliability of the agent in regards to what type
of image noise affects the result, the amount of correctly identified objects given different
discrimination thresholds, and computational time of template matching when different
image filters are applied. Furthermore the best cases for each study are presented as com-
parison for the other results.

In the end of the thesis we present how for screenshots with objects very similar to the
templates used by the agent, template matching can result in a high degree of accuracy in
both object localization and object identification and that a small reduction of similarity be-
tween template and screenshot to reduce the agent’s ability to reliably identifying specific
objects in the environment.

Acknowledgments

I would like to thank FOI and especially my supervisor Teodor Sommestad for giving me the
opportunity to do my bachelor thesis with them and for doing a great job at aiding me during
the course of the project. I’ve learned a lot during the last couple of months.

Furthermore, I would like to thank my examiner Cyrille Berger for his guidance during
this project.

At last I would like to thank Rasmus Holm and Adnan Avdagic for both providing feed-
back on the report and aiding me by discussing different approaches and solutions during
the project.

iv

Contents

Abstract iii

Acknowledgments iv

Contents v

List of Figures vii

List of Tables 1

1 Introduction 2
1.1 Motivation . 2
1.2 Aim . 3
1.3 Research questions . 3
1.4 Delimitations . 3

2 Theory 4
2.1 Digital Image Processing . 4
2.2 Intelligent Agents . 13
2.3 Statistical analysis . 14

3 Method 17
3.1 Evaluation of template matching algorithms . 17
3.2 Template Localization - General Reliability . 19
3.3 Template Matching - Robustness between Operating System Versions 21
3.4 Template Matching - Computational Time . 21
3.5 State Identification . 21

4 Results 23
4.1 Template Localization - General Reliability . 23
4.2 Template Localization - Robustness between Operating System Versions 26
4.3 Template Matching - Computational Time . 26
4.4 State Identification . 27

5 Discussion 29
5.1 Object Localization . 29
5.2 Computational Time . 31
5.3 State Identification . 31
5.4 Method . 32
5.5 Reproducibility & Repeatability . 32
5.6 Ethical aspects . 32
5.7 Future Work . 33

6 Conclusion 34

v

Bibliography 35

List of Figures

2.1 Example of an image corner. 5
2.2 Example of an image edge. 5
2.3 Example of an image blob/region. 5
2.4 Example of a Gaussian Window with the size of 128. 7
2.5 Reference screenshot . 9
2.6 Reference template. For the sake of presentation the template in figure 2.6 has been

scaled up. During testing it was the same size as the Firefox icon in the screenshot. 9
2.7 Result from Normalised cross correlation applied to 2.5 with template 2.6. Brighter

means better match. 10
2.8 Result from normalised squared difference applied to 2.5 with template 2.6. Darker

means better match. 11
2.9 Result from normalised cross coefficient correlation applied to 2.5 with template 2.6 .

Brighter means better match. 12
2.10 The result of applying Canny edge detect on 2.5. 13
2.11 Example of a ROC-curve with a green reference line. 15

3.1 Example of the difference between buttons in a GUI environment. 17
3.2 Result image after the FLUSH image filter have been applied. The template used

are 2.6 . 18
3.3 Example of how colour variance affects a image for the values -90, -45, 0, 45. 90

degrees respectively . 20
3.4 Example of how brightness variance affects an image for the values 0.25, 0.5, 1.0,

2.0, 4.0 respectively . 20
3.5 Example of how obstruction affects a image for the values 0, 25, 50, 75 respectively 20
3.6 Example of how template size variance affects a image for the values 0.25, 0.50, 1.0,

2.0, 4.0 respectively . 21
3.7 Modular overview of the proposed agent. 22
3.8 Structural definition of a state . 22

4.1 Prediction regression model for experiential data. 23
4.2 Mean predicted probability for the independent variable template generality. 1 is

good and 0 is bad. 24
4.3 Mean predicted probability for the independent variable algorithm. 1 is good and

0 is bad. 24
4.4 Mean predicted probability for the independent variable colour variance. 1 is good

and 0 is bad. 24
4.5 Mean predicted probability for the independent variable brightness variance. 1 is

good and 0 is bad. 24
4.6 Mean predicted probability for the independent variable obstruction. 1 is good and

0 is bad. 25
4.7 Mean predicted probability for the independent variable template size variance. 1 is

good and 0 is bad. 25

vii

4.8 Mean computational time for image filter and algorithm. Values closer to zero is
good. 27

4.9 Mean success rate for the independent variable template Accept threshold. Y-values
close to 1 are good and values close to 0 is bad. 27

4.10 Mean success rate for the independent variable state accept threshold. Y-values close
to 1 are good and values close to 0 are bad. 27

4.11 Mean success rate for the independent variable algorithm. Y-values close to 1 is
good and values close to 0 are bad. 28

List of Tables

2.1 Confusion Matrix for a binary classifier where the X-values are what the classifier
gave as output and the Y-values are the actual value of the input. 14

4.1 Top 20 parameter configurations in terms of mean success rate. Mean success rate
is the key column where 1 is good and 0 is bad. 25

4.2 Mean success rate in terms of accuracy over all configurations of algorithms and
image filters. mean success rate is the key column. 1 is good and 0 is bad. 26

4.3 Top 20 parameter configurations. Mean success rate is the key column and values
close to 1 is good and values under 0.95 are bad. 28

1

1 Introduction

1.1 Motivation

The unit for information security and IT architecture at The Swedish Defence Research
Agency (FOI) conducts work with a cyber range, a virtual computer environment used for
cyberwarfare training, called CRATE [1] (Cyber Range And Training Environment). Cyber-
warfare can be defined in a multitude of ways 1 but common for all of them is that they
involve one or more organisations trying to disrupt and/or damage another party’s digi-
tal communication. An example of such action can be Distributed Denial of service attacks
(DDOS) like the one hitting Github in 2015 2.

CRATE consists of a server cluster about 800 units in size and utilises the virtualization
utility called VirtualBox to simulate different kinds of systems [1]. Network units that can-
not be simulated in VirtualBox are connected either physically or through a virtual private
network (VPN).

In the case of many cyber ranges it is desirable create an as authentic as possible virtual
environment. The reason for this is that the more authentic the environment, the more the
data gathered can be generalised to other live systems. To achieve as high level of authentic-
ity, user activity have to be simulated in the network. This can for example be realised either
by using scripts located inside the virtual environment or using so called artificial users that
read emails, surf the web, and install software.

In the case of CRATE the user activity is simulated using scripts placed within the net-
work. A more desirable solution would involve the user agents running outside the virtual
environment and interact with the system thought the virtualization API by using virtual
hardware adapters for peripherals such as mouse and keyboards. In order for the agent to
plan and evaluate what actions to perform, information about the environment is needed.
By using computer vision to analyse screenshots taken from the environment the agent can
figure out what programs that are currently running, providing a information basis for its
decisions.

OpenCV is a software library that contains software used for computer vision [2]. The
library contains algorithms used for face recognition, object tracking, image analysis tools,

1https://en.wikipedia.org/wiki/Cyberwarfare
2https://github.com/blog/1981-large-scale-ddos-attack-on-github-com

2

https://en.wikipedia.org/wiki/Cyberwarfare
https://github.com/blog/1981-large-scale-ddos-attack-on-github-com

1.2. Aim

etc. In this thesis template matching implemented in OpenCV will be examined to determine
if it is a suitable technique for the agent to use as sensors.

1.2 Aim

The study’s main goal is to provide analysis of the suitability and reliability of template
matching used in GUI environment for localization and identification of objects. For this
purpose a prototype agent will be developed. The agent shall be able to extract information
about the graphical user interface from screenshots using template matching.

1.3 Research questions

1. Can template matching be used to reliably identify elements in a graphical user inter-
face?

2. Can a virtual user agent use this data in order to reliably navigate the environment?

3. What is the performance of the developed agent in terms of computational time?

1.4 Delimitations

The final purpose of the agent architecture is to be able to run a large (potentially thousands)
amount of them simultaneously in order to simulate user activity a large scale virtual net-
work. This study is on the other hand aimed at evaluate the reliability of template matching
and the performance of the agent in terms of computational time and will thereby not focus
on questions about running multiple instances concurrently.

3

2 Theory

The theoretical background for study is split into the following sections: digital image pro-
cessing, intelligent agent design and the statistical analysis methods used in this thesis.

2.1 Digital Image Processing

Feature Detection

A Feature is a part of an image or a pattern that has a certain characteristic making it iden-
tifiable. This can be a complete object such as a ball or part of an object such as the corner
of a building. Feature matching is a technique that can be used for object identification and
tracking across multiple images [2].

Common techniques used for feature matching involves transforming interesting regions
of an image to a structure that the computer can understand and compare [2]. Some of the
common approaches involves identifying the following aspects of an image:

• Corners

• Edges

• Blobs

4

2.1. Digital Image Processing

Figure 2.1: Example of an
image corner.

Figure 2.2: Example of an
image edge.

Figure 2.3: Example of an
image blob/region.

In digital image processing a corner is defined as a point in an image where there is a
high degree of intensity variance in at least two directions. Example of an image corner can
be viewed in figure.2.1. Edges requires only a high degree of intensity variance in a single
direction as can be observed in figure.2.2. Blobs or regions are areas in an image isolated by
corners and edges. An example of a blob can be observed in the example figure.2.3.

Scale Invariant Feature Transform

Scale Invariant Feature Transform (SIFT) is used to detect corners in images that are indepen-
dent of affine transformation such as translation, scaling, rotation, and illumination. The
algorithm was created by David. G. Lowe in 1999 [3]. These properties makes the algorithm
attractive for identifying and tracking objects in a 3D environment where the perspective of
an object is changing. The algorithm is split up into the following steps.

• Create a scale space from the image.

• Apply Difference of Gaussians to the scale space.

• Find key points.

• Remove low-contrast key points and edge-points.

• Index the remaining key points.

• Generate (features) from the key points.

The first step, generating a scale space involves generating progressively blurred and scaled
images of the source image using Gaussian Blur.

L(x, y, σ) = G(x, y, σ) ˚ I(x, y) (2.1)

Where L(x, y, σ) is the blurred image, x, y is the point in the image, σ specifies the amount of
blur to apply and G(x, y, σ) is the Gaussian Blur function:

1
2πσ2 e´(x2+y2)/2σ2

(2.2)

The Gaussian function is convoluted over the source image I(x, y). This procedure is repeated
for each scale level.

The next step involves applying a Difference of Gaussians function to the scale space in
order to find scale-invariant key points. The Difference of Gaussians is defined as identical

5

2.1. Digital Image Processing

images with different strengths of Gaussian Blurs applied, subtracted from each other, leaving
only the edges in the image.

G(x, y, σ1)´ G(x, y, σ2) =
1

?
2π

(
1
σ1

e´(x2+y2)/2σ2
1 ´

1
σ2

e´(x2+y2)/2σ2
2) (2.3)

The local extremium in the resulting image are considered key points. For each key-point
candidate, the local extremium is approximated using Taylor Expansion applied on the area
around the targeted key point.

D(x) = D +
BDT

Bx
x +

1
2

xT B
2D
Bx2 x (2.4)

where x = (x, y, σ)T is the offset from the key point. The suitability of the approximated
extremium x̂ is determined by taking the derivative of the function 2.4 with regards to x and
look for points where D1(x) = 0 resulting in x̂ = ´B

2D´1

Bx2
BD
Bx . If the offset x̂ is larger than 0.5 in

any direction, the extreme point lies closer to another candidate point and the approximation
is performed for that point instead. If the offset x̂ is lower than 0.03 it is discarded as a low
contrast key point.

The next step involves removing all edge-points. This is done because edge-points are
not robust enough features to be included in the matching procedure. Algorithmically this is
performed by calculating the eigenvalues for the second-order Hessian Matrix:

H =

[
Dxx Dxy
Dxy Dyy

]
(2.5)

In practice only the ratio r = α
β of the eigenvalues α and β where α ą β is precise enough for

this purpose. The ratio:

R =
(Dxx + Dyy)2

DxxDyy ´D2
xy

(2.6)

can because of its equivalence with (r + 1)2/r be used to calculate the ratio of the eigenval-
ues without first calculating the values respectively. If r is larger than (rth + 1)2/rth given a
threshold rth the key point is kept, otherwise rejected.

After this step only the key points determined robust enough are left. The next step in
SIFT focuses on assigning an orientation to each key point. This will make the key points
rotation invariant. The orientation is decided by analysing the intensity-gradient around
each key point according to the following function:

m(x, y) =
b

(L(x + 1, y)´ L(x´ 1, y))2 + (L(x, y + 1)´ L(x, y´ 1))2 (2.7)

θ(x, y) = atan2(
L(x, y + 1)´ L(x, y´ 1)
L(x + 1, y)´ L(x´ 1, y)

) (2.8)

where m(x, y) is the magnitude and θ(x, y) is the direction of the gradient. A histogram is
created with each bin representing 10 degrees, resulting in 36 bins in total. Each neighbouring
sample around a key point is added to the histogram and weighted by its magnitude and a
Gaussian circular window 2.4 where the weights are reduced the further from the middle,
with a scale of 1.5 that of the key point. Once the histogram is filled, values at least 80% of
the peak value are selected. These are the dominant orientations of the key point. For each of
these values a key point with the same scale as the original is assigned to the value. This is
done because each key point cannot have more than one dominant orientation.

6

2.1. Digital Image Processing

Figure 2.4: Example of a Gaussian Window with the size of 128.

The final step in the algorithm involves creating feature descriptors. The descriptors
should be as invariant to luminance shift and perspective change as possible. First a 16x16
window around the key point is defined and subdivided into 4x4 windows. Within each of
these 4x4 windows the magnitude and orientation gradients are calculated and put into a his-
togram of 8 bins with each bin representing 45 degrees. Each point added to the histogram
is weighted with a Gaussian function with σ = 1/2 width of the window. All values in the
histogram get turned into a vector and then normalised. The resulting vector is very distinct
and can be used to reliably identify the same or similar key points in different images.

Harris Corner Detection

Harris Corner Detection[4] as described by Harris and Stephens as an algorithm used for find-
ing corners in images. The algorithm builds on the Moravec corner detector algorithm [5] and
consists of the following steps:

First the intensity gradient in all directions from a given point (u, v) is calculated. To do
this the following function is defined as the following set of equations:

E(u, v) =
ÿ

x,y
w(x, y)[I(x + u, .y + v)´ I(x, y)]2 (2.9)

where w(x, y) is the weighted window function using a Gaussian window and [I(x + u, y +
v)´ I(x, y)]2 is the squared difference in intensity between two points.

For corner detection the E(u, v) should be large as possible and for this Tailor Expansion is
performed with Iu and Iv as partial derivatives of I:

I(x + u, y + v) « I(x, y) + Iu(x, y)u + Iv(x, y)v (2.10)

producing the approximation:

E(u, v) =
ÿ

x,y
w(x, y)[Iu(x, y)u + Iv(x, y)v]2 (2.11)

which can be written in the matrix form

E(u, v) « [u, v]M
[

u
v

]
(2.12)

where M is equal to:
ÿ

x,y
w(u, v)

[
Ix Ix Ix Iy
Ix Iy Iy Iy

]
(2.13)

Ix and Iy are the intensity gradient in x and y directions. Now let λ1 and λ2 be eigenvalues of
M and the scoring function, used for determining if an window contains a corner be:

R = det(M)´ k(trace(M))2 (2.14)

where det(M) = λ1λ2 and trace(M) = λ1 + λ2. If both λ1 and λ2 both are large and λ1 „ λ2
the window contains a corner.

7

2.1. Digital Image Processing

Feature matching

Brute-force matcher

Brute-force matcher [6] performs feature matching for each feature from one image against
all features extracted from a second image. The distance is calculated using a distance metric

such as euclidean distance |x| =
b

řn
k=1 x2

k or hamming distance
řk

i=1 (xi ´ yi) where x, y P t0, 1u
for binary feature descriptors.

Fast Library for Approximate Nearest Neighbours

FLANN [7] or Fast Library for Approximate Nearest Neighbour is a library used in OpenCV
to perform feature matching using the approximate nearest neighbour function with the k-d tree
data structure. FLANN can use the same distance metrics as brute-force matching but also in-
corporates an optimised data structure to minimise the search time. FLANN is commonly
used when large sets of features needs to be searched and brute-force matching isn’t an op-
tion.

Template Matching

For situations where looking for static objects that does not significantly change appearance
in between images Template Matching can be used [8, 2]. The way it works is by sliding an
image (template) of an object over a large image that might contain said object. For each
position of the template a value representing the similarity between the template and the
underlying region of the larger image is recorded. The similarity-measures implemented in
OpenCV are the following:

• Cross Correlation

• Squared Difference

• Cross coefficient correlation

The next sections will explain the different similarity measures in a more elaborate way.

8

2.1. Digital Image Processing

Figure 2.5: Reference screenshot

Figure 2.6: Reference template. For the sake of presentation the template in figure 2.6 has
been scaled up. During testing it was the same size as the Firefox icon in the screenshot.

Cross Correlation

As with all the similarity-measures, OpenCV has implementations of both the regular and
normalised variant [2, 8]. For an in-depth explanation of how normalisation cross correla-
tion can be efficiently perform, J. P. Lewis have an excellent paper where the technique is
explained [9].

The regular cross correlation algorithm used in OpenCV is defined as the following func-
tion:

ÿ

x1,y1
(T(x1, y1) ¨ I(x + x1, y + y1)) (2.15)

where T(x1, y1) is the specific pixel of the template and I(x + x1, y + y1) is the corresponding
pixel on the image. The x and y of I are the location on the image where the window is
located.

Normalised version:
ř

x1,y1 (T(x1, y1) ¨ I(x + x1, y + y1))
b

ř

x1,y1 T(x1, y1)2 ¨
ř

x1,y1 I(x + x1, y + y1)2
(2.16)

9

2.1. Digital Image Processing

Figure 2.7: Result from Normalised cross correlation applied to 2.5 with tem-
plate 2.6. Brighter means better match.

Squared Difference

The most significant difference between cross correlation and squared difference is that the
squared difference algorithm results in the best match where the similarity score is close to
zero instead of as high as possible [2, 8].

ÿ

x1,y1
(T(x1, y1)´ I(x + x1, y + y1))2 (2.17)

Normalised version:
ř

x1,y1 (T(x1, y1)´ I(x + x1, y + y1))2

b

ř

x1,y1 T(x1, y1)2 ¨
ř

x1,y1 I(x + x1, y + y1)2
(2.18)

10

2.1. Digital Image Processing

Figure 2.8: Result from normalised squared difference applied to 2.5 with
template 2.6. Darker means better match.

Cross coefficient correlation

Cross coefficient correlation subtract the average pixel value from each pixel that is compared,
resulting in a dampening of each pixels contribution and a smaller standard deviation in the
result matrix [2, 8].

ÿ

x1,y1
(T1(x1, y1) ¨ I1(x + x1, y + y1)) (2.19)

where T1(x1, y1) and I1(x + x1, y + y1) is equal to

T(x1, y1)´ 1/(w ¨ h) ¨
ÿ

x2,y2
T(x2, y2) (2.20)

I(x + x1, y + y1)´ 1/(w ¨ h) ¨
ÿ

x2,y2
I(x + x2, y + y2) (2.21)

w and h are the height and width of the template image. The I1 and T1 functions are the
average pixel value of the template and subsection of the image respectively.

Normalised version:
ř

x1,y1 (T
1(x1, y1) ¨ I1(x + x1, y + y1))

b

ř

x1,y1 T1(x1, y1)2 ¨
ř

x1,y1 I1(x + x1, y + y 1)2
(2.22)

11

2.1. Digital Image Processing

Figure 2.9: Result from normalised cross coefficient correlation applied to 2.5
with template 2.6 . Brighter means better match.

Canny Edge Detect

Canny Edge Detect is an algorithm described by Canny [10] as a method for finding contours
in images. Canny uses a convolution matrix which is a small convoluted over the image. The
convolution operation with a kernel size of 3 can be seen in equation 2.23.

a b c
d e f
g h i

 ˚
1 2 3

4 5 6
7 8 9

 = (i ˚1)+ (h ˚2)+ (g ˚3)+ (f ˚4)+ (e ˚5)+ (d ˚6)+ (c ˚7)+ (b ˚8)+ (a ˚9)

(2.23)
The first pass involves a convolution kernel weighted from a Gaussian blur function:

K =
1

159

2 4 5 4 2
4 9 12 9 5
5 12 15 12 5
4 9 12 9 4
2 4 5 4 2

 ˚ A (2.24)

where A is 5x5 window of the target image.
After the Gaussian blur has been performed two more kernels are used. The kernels are

used as weights. The operation is called a Prewitt operator [11].

Gx =

´1 0 +1
´2 0 +2
´1 0 +1

 ˚ K (2.25)

Gy =

´1 ´2 ´1
0 0 0
+1 +2 +1

 ˚ K (2.26)

12

2.2. Intelligent Agents

The result is a gradient from which the angle of an edge can be extracted. The angle is
rounded to 0, 45, 90, or 135 degrees.

G =
b

G2
x + G2

y (2.27)

θ = atan2(
Gy

Gx
) (2.28)

Figure 2.10: The result of applying Canny edge detect on 2.5.

Sikuli

Sikuli is a GUI testing automation software tool [12]. It uses OpenCV to analyse screenshots
and interacts with the GUI environment using the Java’s Robot class. On the Windows op-
erating system, there exists a native scripting language to control GUI:s called AutoIT [13].
Because of the platform dependency of this scripting language, Sikuli can be seen considered
a platform independent GUI scripting system.

Sikuli uses an extension of the OpenCV template matching algorithm in order to identify
GUI objects [14]. To allow for detection of the same object but with different scales a technique
called image pyramids is implemented. By using image pyramids 1 the framework gains a
certain level of template size invariance.

2.2 Intelligent Agents

Within Artificial Intelligence an Intelligent Agent is a system that in some regards can operate
autonomously, usually based on a given task and with regards to the environment around
the agent. Russel and Norvig (2014) [15] groups intelligent agents into five categories:

• Simple reflex agents that only take the current sensory input as basis for its decisions.

1http://docs.opencv.org/2.4/doc/tutorials/imgproc/pyramids/pyramids.html

13

http://docs.opencv.org/2.4/doc/tutorials/imgproc/pyramids/pyramids.html

2.3. Statistical analysis

• Model-based reflex agents that contains an internal model of the environment. This
results in an agent that can take previous actions into account when reasoning.

• Goal-based agents does not have static decision-making systems but instead evaluates
possible actions in order to find one that moves it closer to a goal state.

• Utility-based agents improve further from the goal-based agents by not only thinking
in world states as goal or not goal but are also able to quantify how much of a goal a
certain state is and the probability that that state moves them further towards a goal
state.

• Learning agents explores the state space and construct an internal model based on the
findings. Exploration can be performed autonomous or through the help of a supervi-
sor.

These categories represent an increasing scale of complexity in the agent model architecture.
In this project the model-based agent will serve as framework. It has to be able to make basic
decisions based on given information and has to be somewhat adaptable. It only has to be
able to perform pre-defined tasks and perform simple state space traversal. The agent com-
plexity increases when it has to interact with the GUI of the virtual environment. It should
be able to find the correct GUI elements such as buttons and text fields. Even in scenarios
where target elements are partially obstructed. Taking theses specification into account the
agent will land somewhere between a model-based agent and a goal-based.

2.3 Statistical analysis

Binary classifier

Binary classifier is a classifier that given an input signal, outputs either a ’true’ or a ’false’ [16].
When evaluating a binary classifier an analysis tool called confusion matrix may be used. A
confusion matrix represents all the possible classifications on one axis and the true outcomes
on the second. Table 2.1 shows the confusion matrix of a binary classifier.

Predicted Positive Predicted Negative
Actual Positive True Positive (Tp) False Negative (Fn)

Actual Negative False Positive (Fp) True Negative (Tn)

Table 2.1: Confusion Matrix for a binary classifier where the X-values are what the classifier
gave as output and the Y-values are the actual value of the input.

Common metrics for evaluating a binary classifier is to calculate different rations from the
confusion matrix give the problem studied [16]. If it is important for the classifier to correctly
predict true results the true positive rate, as defined in 2.29 can be used.

Tp
Tp + Fn

(2.29)

The true positive rate indicates the ratio of correctly positively identified cases in relation to the
incorrectly negatively identified cases. In medical testing this would constitute the ratio of
people with a disease in relation to all who has the disease [17]. The true positive rate is often
called sensitivity or recall [17, 16].

The true negative rate is defined as the equation 2.30.

Tn
Tn + Fp

(2.30)

14

2.3. Statistical analysis

which is defined as the ratio of correctly negatively identified cases in relation to all negative
cases. In medical testing this ratio would constitute all people who don’t have a disease in
relation to all who are incorrectly diagnosed as carrying a disease [17].

In some scenarios the precision of a classifier is of interest. Precision of a classifier is defined
as the equation 2.31:

Tp
Tp + Fp

(2.31)

indicating the ratio of correctly identified positive cases in relation to the incorrectly identified
negative cases. In medical testing this ratio would be the same as the ratio of people correctly
identified as sick in relation to the people incorrectly identified as sick.

To examine the overall performance of a binary classifier accuracy can be used. Accuracy
is defined as the equation 2.32.

Tp + Tn
Tp + Fp + Tn + Fn

(2.32)

in terms of medicine accuracy constitutes the ratio of correctly diagnosed people in relation to
the incorrectly diagnosed ones.

Receiver operating characteristic

Receiver operating characteristic plot (henceforth referred to as a ROC-curve) is a graphical
way of representing the performance of a binary classifier with regards to a specific threshold
value [16]. A ROC-curve is plotted with the sensitivity on the Y-axis and the false positive
rate calculated by 1´ speci f icity on the X-axis. ROC-curves provide the relationship of the
sensitivity and the false positive rate of a binary classifier given a specific values of the binary
classifier discrimination threshold. An example of a ROC-curve can be observed in figure
2.11. The green line in 2.11 indicates the result of a uniformly random binary classifier.

Figure 2.11: Example of a ROC-curve with a green reference line.

15

2.3. Statistical analysis

Area under ROC-curve
ROC-curves can be used for performance comparison of multiple binary classifiers by

using the area under each respective binary classifiers curve [18, 19]. The area under a ROC-
curve (referred to as AUC can be retrieved by calculating the integral under the curve. The
AUC may be in the range area P Rt0´ 1uwhere 0 means only incorrectly classified cases and
1 means only correctly classified cases. 0.5 is the value that would be expected of a uniform
stochastic binary classifier.

Logistic Regression

Most of the data analysed in this project are categorical and binary while the predictor vari-
ables are both ordinal, nominal, and continuous. As a result of the outcome data being bi-
nary, linear regression is not a suitable analysis method. Instead logistic regression will be
used [20]. In simple linear regression we try to find a linear estimator optimally fitting a spe-
cific data set. This means we try to find a linear function with the least summarised distance
between the data set and the fitted line.

Y = β0 + β1x + ε (2.33)

When we try to find a best fitted model for binary data we instead try to find a function
whereas the predicted mean outcome of the dependent variable is a linear function of the
independent variable. For this purpose the logit function, described in equation 2.3 can be
used:

p(x) =
eβ0+β1x

1 + eβ0+β1x (2.34)

By relating the value of x to the probability p(x) through the logit function the odds of p(x) =
true for the different values of x can be calculated using:

p(x)
1´ p(x)

= eβ0+β1x (2.35)

In most cases β0 and β1 are estimated using the maximum likelihood function [20].

16

3 Method

This chapter is segmented into two parts. The first describes the method used to test template
matching algorithms and their reliability in synthetic GUI environments. The second part
presents how template matching will be used to determine state of the environment. Feature
matching strives to find features robust to different kinds of image noise that might occur
when you are tracking objects in the real world. In GUI environment many objects have a
very similar look. The signature difference between two GUI objects are often lesser than the
noise threshold for many feature matching algorithms. Most feature detectors are designed
for 3D environments where the objects changes perspective and you very rarely have 100%
percent of an object represented without noise in a single picture. Because of these reasons
this thesis will not attempt to use feature detection for feature matching and instead focus on
template matching. In figure 3.1 an example of the similarity between typical GUI objects.

Figure 3.1: Example of the difference between buttons in a GUI environment.

3.1 Evaluation of template matching algorithms

In OpenCV the function for template matching returns a result matrix where each element
represent the correlation value for that position of the template. For cross correlation and
coefficient correlation you want the element of the result matrix with the highest value. For
squared difference you want the lowest. The position for the best potential match is compared
to the actual position of the true match for each test case. If the best potential result falls
within the bounds of the true answer the test case is considered a pass. Only the normalised
versions of the template matching algorithms are tested because the state identification test
3.5 requires results between 1 and 0 in order to determine positive/negative matches.

Each test case consists of two images. The first image is the templates that should be found
in the second image, containing a screenshot. The correct area of the screenshot portraying
the object will be compared to the most likely location provided by template matching. If the

17

3.1. Evaluation of template matching algorithms

mid point of the area returned by template matching is located within the correct area the test
is considered a pass.

Three different pre-processing image filters are used for this study. The first is plain
greyscale (referred to as GRAYSCALE) and the default filter used for template matching, the
second is based on the canny edge-detect algorithm (referred to as CANNY) described in the
theory and the final is a colour washing filter designed and implemented specifically for this
study which removes all colour from an screenshot that isn’t in the template (referred to as
FLUSH). An example of FLUSH can be observed in the figure 3.2

Figure 3.2: Result image after the FLUSH image filter have been applied. The template used
are 2.6

The implementation of FLUSH can be viewed as the following code snippet. The code
is simplified to better showcase the algorithm. To view the full implementation used in this
study, please see the source code.

18

https://github.com/sci10n/OpenCVTests/tree/master/

3.2. Template Localization - General Reliability

Listing 3.1: Simplified code of how the FLUSH image filter is implemented.

void f l u s h _ i m a g e _ f i l t e r (matrix screenshot , matrix templ)
{

s c r e e n s h o t _ g r a y s c a l e = c o n v e r t _ t o _ g r a y s c a l e (screenshot) ;
template_graysca le = c o n v e r t _ t o _ g r a y s c a l e (templ) ;
map<uchar , bool> lookup_table ;
for (uchar element : template_graysca le)
{

lookup_table [element] = t rue ;
}
for (i n t x = 0 ; x < screenshot . columns ; ++x)

for (i n t y = 0 ; y < screenshot . rows ; ++y)
{

i f (lookup_table . contains_key (s c r e e n s h o t _ g r a y s c a l e . get_element (x , y)))
{

screenshot . set_element (x , y , { 0 , 0 , 0 }) ;
}

}
}

3.2 Template Localization - General Reliability

This study aims to find out what environmental nose impacts template matching’s ability to
correctly localise a template.

The focus is on the reliability of template matching in general GUI environment and are
therefore OS independent. For the same reason the partially obstructed templates are gen-
eralised from actual possible overlaps in the GUI environment (mouse pointer for example)
to an amount of the feature obscured. This test also ties to find the average success rate of
template matching given the different parameters.

Independent variables and values that will be examined

1. Pre-processing {GRAYSCALE, EDGE (CANNY), FLUSH }

2. Algorithm {CCORR, CCOEFF, SQDIFF }

3. Colour variance {-90, -45, 0, 45, 90 }

4. Brightness variance {0.25, 0.5, 1.0, 2.0, 4.0}

5. Obstruction {0, 25, 50, 75}

6. Template size variance {0.50, 0.75, 1.0, 1.5, 2.0}

7. List of templates

8. Template generality {extracted - same, extracted - similar, internet}

Pre-processing
The pre-processing parameter represents the three different colour filters which has been

described in the theory and the method.
Algorithm
The algorithm parameter represents the three different template matching algorithms de-

scribed in the theory in section: 2.1.
Colour variance

19

3.2. Template Localization - General Reliability

The colour variance parameters represents the screenshots colour wheel offset. In figure 3.3
exemplifies how the different values for this parameter would alter the test case.

Figure 3.3: Example of how colour variance affects a image for the values -90, -45, 0, 45. 90
degrees respectively

Brightness variance
The brightness variance parameter represents a specific scalar value which all the elements

in the screenshot matrix is multiplied with. This results is a change of brightness in the
screenshot compared to the source image. Example of this effect can be seen in figure 3.4.

Figure 3.4: Example of how brightness variance affects an image for the values 0.25, 0.5, 1.0,
2.0, 4.0 respectively

Obstruction The obstruction is included to emulate situations where objects are partially
obstructed, for example with a mouse pointer. Instead of using multiple templates repre-
senting different amount of obstruction, the obstruction will be created during run-time by
placing a colour filled circle in the middle of the used template. The value of this parameter
indicates the size of the white circle where the radius is calculated as radius = width/2 ˚ value
where value is the value of the parameter.

Figure 3.5: Example of how obstruction affects a image for the values 0, 25, 50, 75 respectively

Template size variance
In many scenarios, the object you are looking for aren’t guarantee to be the same size as

your template. As a result will we be testing how well template matching can handle this.
As with the parameter 3.2 the size of the templates will be generated during run-time. This
parameter can be observed in figure 3.6

20

3.3. Template Matching - Robustness between Operating System Versions

Figure 3.6: Example of how template size variance affects a image for the values 0.25, 0.50, 1.0,
2.0, 4.0 respectively

3.3 Template Matching - Robustness between Operating System Versions

This test aims to provide answers to how version change for an OS affects reliability of tem-
plate matching. The test will only take place between the Windows version 10 and 7. This
because there was a significant change in GUI aesthetics between Windows 7 and 10. This
test is not targeted towards identifying image noise sensitivity (as in the previous test) for
the template matching algorithms and more towards stylistic change in the templates. There-
fore inducing colour, brightness, size or obstruction is not a priority. The screenshots already
provide that kind of modification.

Independent variables and values that will be examined

1. Pre-processing {GRAYSCALE, EDGE (CANNY), FLUSH }

2. Algorithm {CCORR, CCOEFF, SQDIFF }

3. Version of template {Windows 7, 10 }

4. Version of environment {Windows 7, 10 }

5. List of templates

3.4 Template Matching - Computational Time

This study aims to provide answer to the question about how the agent will perform in re-
gards to computational time. The times will be measured while running all the other tests.

3.5 State Identification

The agent architecture will follow similar design to that of a model-based agent as proposed
by Russel and Norvig (2003). The architecture is designed with two primary purposes: pro-
vide structure for the agent to perform the tasks designated to it and to supply the data the
agent needs to make its decisions. For this purpose a model based on classical search will
be used whereas each state is represented as a set of templates that should be present in the
environment. The states are linked together with the actions required to take the agent form
one state to another.

21

3.5. State Identification

Figure 3.7: Modular overview of the proposed agent.

For the purpose of this thesis, only the matcher and state representation modules are eval-
uated. States are defined as a set of objects to be positively identified in the environment and
the actions leading from a specific state to another.

Figure 3.8: Structural definition of a state

Evaluation of the state identification reliability will be done through synthetic testing sim-
ilar to how template matching were evaluated. First a set of screenshots and states will be
defined. Each screenshot will represent a set of states known to be true. The agent will be
asked to find the different states the different screenshots and decide if the state exists or not.
The result is compared to the true answer and if the answers are the same the test case will
be evaluated as a ’pass’. This tests aims to answer if the agent can (reliably) use template
matching algorithms as base for its decisions.

22

4 Results

4.1 Template Localization - General Reliability

The result data from to study Template Localization - General Robustness is analysed through
logistic regression and displayed as scatter-plots with mean predicted probability on the y-axis
and the different categories of each parameter on the x-axis. The mean predicted probability
indicates the mean probability of a positive (true) result of the independent variable. All tests
are grouped by pre-processing image filter. The lines are interpolated for the mean predicted
probability plots to better visualise the relationship between the different categories.

Figure 4.1: Prediction regression model for
experiential data.

In figure 4.1 a ROC-curve over how well the regression model fits the data set. The AUC is
equal to 0.74. A perfect model fit would result in a AUC of 1.0, and a random model fit would
result in a AUC of 0.5.

23

4.1. Template Localization - General Reliability

Figure 4.2: Mean predicted probability for the
independent variable template generality. 1 is
good and 0 is bad.

Figure 4.3: Mean predicted probability for the
independent variable algorithm. 1 is good and
0 is bad.

Figure 4.2 shows the mean predicted probability of a positive result given the different
generalities of templates. Figure 4.3 shows the mean predicted probability of a positive result
given the different template matching algorithms used in the testing.

Figure 4.4: Mean predicted probability for
the independent variable colour variance. 1 is
good and 0 is bad.

Figure 4.5: Mean predicted probability for
the independent variable brightness variance.
1 is good and 0 is bad.

Figure 4.4 shows the mean predicted probability of a positive result given the difference
in colour variance between the screenshot and template. The higher the value, the higher
probability of it resulting in a correct result. Figure 4.5 shows the mean predicted probability
of positive identification when the brightness of the screenshot is varied. The higher the
value, the higher probability of it resulting in a correct result.

24

4.1. Template Localization - General Reliability

Figure 4.6: Mean predicted probability for
the independent variable obstruction. 1 is
good and 0 is bad.

Figure 4.7: Mean predicted probability for the
independent variable template size variance. 1
is good and 0 is bad.

Figure 4.6 the mean predicted probability of positive identification when the template is
obstructed to a certain percent. The higher the value, the higher probability of it resulting
in a correct result. Figure 4.7 shows the mean predicted probability of positive identification
when the size of the template is offset by a given scale. The higher the value, the higher
probability of it resulting in a correct result.

Template

generality Algorithm Image Filter

Colour

variance

Brightness

variance Obstruction

Templat

e size

varianc

e

Mean

success

rate

of

case

s

1 extracted TM_CCOEFF_NORMED FLUSH 0% 1.0 0% 1.0 1.00 41

2 extracted TM_CCOEFF_NORMED GRAYSCALE 45% 0.25 0% 1.0 1.00 41

3 extracted TM_CCOEFF_NORMED GRAYSCALE 90% 1.0 0% 1.0 1.00 41

4 extracted TM_CCOEFF_NORMED GRAYSCALE 0% 0.25 0% 1.0 1.00 41

5 extracted TM_CCOEFF_NORMED GRAYSCALE 0% 0.5 0% 1.0 1.00 41

6 extracted TM_CCOEFF_NORMED GRAYSCALE 0% 1.0 0% 1.0 1.00 41

7 extracted TM_CCOEFF_NORMED GRAYSCALE 45% 0.25 0% 1.0 1.00 41

8 extracted TM_CCOEFF_NORMED GRAYSCALE 45% 0.5 0% 1.0 1.00 41

9 extracted TM_CCOEFF_NORMED GRAYSCALE 45% 1.0 0% 1.0 1.00 41

10 extracted TM_CCORR_NORMED GRAYSCALE 0% 0.25 0% 1.0 1.00 41

11 extracted TM_CCORR_NORMED GRAYSCALE 0% 0.5 0% 1.0 1.00 41

12 extracted TM_CCORR_NORMED GRAYSCALE 0% 1.0 0% 1.0 1.00 41

13 extracted TM_CCORR_NORMED GRAYSCALE 45% 0.25 0% 1.0 1.00 41

14 extracted TM_CCORR_NORMED GRAYSCALE 45% 0.5 0% 1.0 1.00 41

15 extracted TM_CCORR_NORMED GRAYSCALE 45% 1.0 0% 1.0 1.00 41

16 extracted TM_SQDIFF_NORMED GRAYSCALE 45% 1.0 0% 1.0 1.00 41

17 extracted TM_SQDIFF_NORMED GRAYSCALE 0% 1.0 0% 1.0 1.00 41

18 extracted TM_SQDIFF_NORMED GRAYSCALE 45% 1.0 0% 1.0 1.00 41

19 extracted TM_CCOEFF_NORMED FLUSH 90% 1.0 0% 1.0 0.98 41

20 extracted TM_CCOEFF_NORMED GRAYSCALE 45% 0.5 0% 1.0 0.98 41

Case Summaries

Table 4.1: Top 20 parameter configurations in terms of mean success rate. Mean success rate is
the key column where 1 is good and 0 is bad.

25

4.2. Template Localization - Robustness between Operating System Versions

Table 4.1 shows the top 20 best parameter configurations in terms of accuracy. The column
mean success rate shows the accuracy of said parameter configuration and # of cases shows the
amount of test cases that have been tested for each configuration.

4.2 Template Localization - Robustness between Operating System
Versions

In this section the result from the second study concerning the robustness of localising tem-
plates over different versions of an operating system is presented. The results are the means
success rates given different independent variables used in the study.

Case Summaries

Algorithm Image Filter

Mean
Success

rate # of cases

1

2

3

4

5

6

7

8

9

TM_CCOEFF_NORMED GRAYSCALE 71 38

TM_CCORR_NORMED GRAYSCALE 66 38

TM_SQDIFF_NORMED GRAYSCALE 63 38

TM_CCORR_NORMED CANNY 58 38

TM_CCOEFF_NORMED CANNY 55 38

TM_SQDIFF_NORMED CANNY 53 38

TM_CCOEFF_NORMED FLUSH 47 38

TM_CCORR_NORMED FLUSH 32 38

TM_SQDIFF_NORMED FLUSH 32 38

Page 1

Table 4.2: Mean success rate in terms of accuracy over all configurations of algorithms and
image filters. mean success rate is the key column. 1 is good and 0 is bad.

Table 4.2 shows the performance of localising template cross OS version. The key column
to examine is the mean Success rate column which indicates the accuracy for that set of param-
eter values. The # of cases indicates how many different test cases are tested using the relevant
parameter configuration.

4.3 Template Matching - Computational Time

This section focuses on presenting the mean computational time required by the different
pre-processing filters and template matching algorithms used in the study.

26

4.4. State Identification

Figure 4.8: Mean computational time for image filter and algorithm. Values closer to zero is
good.

The result can be viewed in the figure 4.8 where the different template matching algo-
rithms are presented on the x-axis and the mean computational time on the y-axis. The data
is grouped by pre-processing image filters and the lines are interpolated to provide a easier
visualisation of the data.

4.4 State Identification

This section focuses on displaying the result of the study testing the agents ability to discern
what states the world currently inhabits. The result is shown as scatter-plots over the different
threshold-variables tested and the algorithms used in the study. All data is grouped by the
pre-processing image filter used in the study and lines are interpolated to better visualise the
result.

Figure 4.9: Mean success rate for the inde-
pendent variable template Accept threshold. Y-
values close to 1 are good and values close to
0 is bad.

Figure 4.10: Mean success rate for the in-
dependent variable state accept threshold. Y-
values close to 1 are good and values close to
0 are bad.

Figure 4.9 displays the mean success rate in terms of accuracy of the agent correctly identify
the current states existing in the environment. Higher values are better. Figure 4.10 displays
the mean success rate of the agent correctly identifying states given the amount of templates

27

4.4. State Identification

in a state that needs to be positively identified. The ratio is calculated the same way as 4.9
with the formula presented in the equation mentioned above.

Figure 4.11: Mean success rate for the independent variable algorithm. Y-values close to 1 is
good and values close to 0 are bad.

Figure 4.11 displays the mean success rate of the agent correctly identifying states given
the amount of templates in a state that needs to be positively identified.

Algortihm Image Filter

State Accept

threshold

Template Accept

threshold

Mean

Success rate # of cases

1 TM_CCOEFF_NORMED GRAYSCALE 80 99 1.00000 324

2 TM_CCOEFF_NORMED GRAYSCALE 100 99 1.00000 324

3 TM_CCOEFF_NORMED GRAYSCALE 80 98 1.00000 324

4 TM_CCOEFF_NORMED GRAYSCALE 100 98 1.00000 324

5 TM_CCOEFF_NORMED GRAYSCALE 80 97 1.00000 324

6 TM_CCOEFF_NORMED GRAYSCALE 100 97 1.00000 324

7 TM_CCOEFF_NORMED GRAYSCALE 80 96 0.99690 324

8 TM_CCOEFF_NORMED GRAYSCALE 100 96 0.99690 324

9 TM_CCORR_NORMED GRAYSCALE 80 99 0.99380 324

10 TM_CCORR_NORMED GRAYSCALE 100 99 0.99380 324

11 TM_SQDIFF_NORMED GRAYSCALE 80 99 0.99380 324

12 TM_SQDIFF_NORMED GRAYSCALE 100 99 0.99380 324

13 TM_SQDIFF_NORMED GRAYSCALE 80 98 0.99380 324

14 TM_SQDIFF_NORMED GRAYSCALE 100 98 0.99380 324

15 TM_CCOEFF_NORMED GRAYSCALE 80 95 0.99380 324

16 TM_CCOEFF_NORMED GRAYSCALE 100 95 0.99380 324

17 TM_CCOEFF_NORMED GRAYSCALE 80 94 0.99380 324

18 TM_CCOEFF_NORMED GRAYSCALE 100 94 0.99380 324

19 TM_CCOEFF_NORMED GRAYSCALE 80 93 0.99380 324

20 TM_CCOEFF_NORMED GRAYSCALE 100 93 0.99380 324

Case Summaries

Table 4.3: Top 20 parameter configurations. Mean success rate is the key column and values
close to 1 is good and values under 0.95 are bad.

Table 4.3 shows the best 20 parameters configurations achieved in this study. The key
column to examine is the mean success rate column which indicates the accuracy for that set of
parameter values. The # of cases indicates how many different test cases are tested using the
relevant parameter configuration.

28

5 Discussion

In this study we explored whether artificial agents simulating user activity in a virtual net-
work could use computer vision algorithms in order to perform actions such as interacting
with the environment and determining the state of the GUI environment. The study focused
on evaluating the computer vision algorithm template matching combined with different im-
age filters in order to determine their suitability for the task with a focus on reliability.

Evaluation of template matching were subdivided into four main studies. The first study
aimed at evaluating what type of image noise reduced the algorithms ability to localize a
given object in the environment. This study also served a secondary purpose, to provide
insight into what is required from both the algorithms and the environment to provide a
reliable result.

The second study presented real scenarios where objects were to be localized over the
bounds of operating system versions. The purpose of this study was to provide support for
the first study by not simulating image noise and instead provide real scenarios.

Although no maximum-computation time were given as requirement for the study, it was
of interest to analyse this aspect of template matching and the image filters. This was analysed
in the third study.

The fourth and final study targeted the agent’s ability to determine what state the envi-
ronment inhabited at a given moment. States were defined as set of objects that had to exist
in the environment for the state to be considered true and that the environment has to be in a
temporally stable state.

5.1 Object Localization

The result of the first study were evaluated by using logistic regression the regression model
fitted the data with an accuracy of 74%, which can be seen in figure 4.1.

Noise Robustness

Robustness to image noise was one of the main aspects of the problem that we wanted to
analyse in this thesis. In the following paragraphs the result showcased in the figures under
section "Template Localization - General Reliability" will be discussed and analysed.

29

5.1. Object Localization

In this study four primary image noises were tested: colour variance, brightness variance,
partial obstruction, and template scale variance.

The logistic regression result for colour variance can be viewed in the figure 4.4. The result
indicates that no colour variance results in the best object localization results and progres-
sively worsens the more variance that is introduced. Varying the colour clockwise on the
colour wheel results in a better result but the difference is less than 1% and can be considered
not statistically significant.

The result of testing brightness variance can be seen in the figures 4.5. Similar result to
colour variance can be observed where the further from the "zero variance" value. The plot
indicates that doubling the brightness is generally better than halving it and should result in
only about 0.8% decreased performance compared to no variance. Reducing the brightness
to a fourth perform on average 1% better than not reducing the brightness to a half.

Obstruction was tested by generating filled white circles on the templates which in turn
was used for the object localisation. The result this parameter affected the result can be seen
in figures 4.6. Inspection of said figure indicates that no obstruction results in the best mean
value with a mean predicted probability of 0.2. Adding 25% of obstruction to the template
reduces the accuracy with less than 1% but after this the performance decreases down to 0.14
in predicted probability at 75% obstruction.

Figure 4.7 showcases the effect template scale variance had on the study. The result points
to template scale variance being the most significant image noise factor where even a slight
deviation of size between template and screenshot results in a significant lowered probability
of success. There is a significant peak at the value for "no variance" and at the first sample
value in each direction the result quickly drops down to about 10% predicted probability.

Algorithms and Image Filters

Figure 4.3 displays the three different template matching algorithms grouped by the three
image filters. TM_CCOEFF_NORMED performed the best with TM_CCORR_NORMED and
TM_SQDIFF_NORMED both about 2% worse.

All the results from the logistic regression analysis has been grouped by image filter and
the same trend can be observed with all the figures. FLUSH performs on average 5% worse
than the other two. GRAYSCALE performed on average less than 1% worse than CANNY.

Template Generality

Templates extracted from the same screenshot it was tested on performed better than both
templates extracted from similar screenshots and templates downloaded from the internet.
This can be observed in figure 4.2. Template extracted from the same screenshot performed
about 4-5% better than the other alternatives.

Best cases

The table 4.1 where similar result to what the regression model predicted can be views. The
best possible parameter configuration results in a 100% success rate. This requires the template
scale offset to equal to 0, colour shift either 45% or 0%, luminance shift offset to be equal to 0, and
no template obstruction. In the logistic regression result CANNY performed slightly better than
GRAYSCALE viewed over the entire data set but the table indicates the best results are caused
by GRAYSCALE this indicates that CANNY performs on average better when there’s noise in
the image but worse if the noise is kept at a minimum.

Cross OS versions

In table 4.2 the result from testing object localization between two versions of the same op-
erating system can be seen. The operating system and version chosen were Windows with

30

5.2. Computational Time

version 7 and 10 where the graphical difference dramatically changed. The motivation of
this is to provide a realistic "worst" case scenario compared to most operating systems. Win-
dows 10 also uses a minimalistic design common in many modern applications in contrast
to the previous gradient-heavy design [21, 22]. No configuration of image filter and tem-
plate matching algorithm results in close to 100% success rate. The best configuration is
TM_CCOEFF_NORMED with GRAYSCALE. This is the same configuration which was ob-
served in the larger object localization study.

Method

The result achieved in this study fits well into other studies done in the area. The GUI automa-
tion tool-kit Sikuli presented in the theory uses TM_CCOEFF_NORMED as primary matching
method [23]. Sikuli compensates for the template size variance by producing image pyra-
mids. Indicating that the authors also encountered significant problems with size variance of
objects.

The object localisation study was performed on already extracted screenshots and tem-
plate. This fact could skew the result either by not representing a good enough cross section
of the possible scenarios that might occur during run-time. Care was taken into using screen-
shots and template from as a diverse set of scenarios as possible. Windows 7 was chosen as
the base OS because it represent a GUI style that is still very popular today even tough the
minimalistic style of Windows 10 and material design has gained momentum the last couple
of years.

5.2 Computational Time

Figure 4.8 shows the mean computational time for each template matching algorithm
grouped by image filter. There were small difference in computational time between the
template matching algorithms, at most 0.01 seconds. Between the image filters however the
difference was significant with edge-detect performing in at about half the time of greyscale-
matching, colour flushing required an order of magnitude more computational time. The
easiest explanation of this is that the image flush filter were implemented for this thesis and
therefore not optimized in the same way as the other two.

Method

The measurements for the study were taken at the same time as the state identification study
was performed. The timer started right before the call to the matcher module was performed
and stopped right after the return of said function. The function itself has a high likelihood
of not being implemented optimally but the result shouldn’t be many 100th of a seconds off.
In total there were 65 samples for each configuration of algorithm and image filter providing
an adequate ground for calculating mean computational time.

5.3 State Identification

The final study provided three graphs and one table. The graphs presented the different
threshold values used by the agent to determine if a state existed in a given environment or
not. The result in figure 4.9 indicates that a small difference (less than 3%) between the objects
representation in the environment and the template used can result in a 100% success rate.
According to figure 4.10 at least 60% of the templates defining a state has to be positively
identified in order to provide a close-to 100% success rate. The different template matching
algorithms displayed in figure 4.11 also affected the result with cross coefficient correlation
outperforming the other two. To achieve

31

5.4. Method

Method

Due to time constraints the colour washing image filter couldn’t be tested on the final study.
If it was included this project would go on for several weeks more than the time dedicated.
Taking into account the first and second study, it’s likely that it would perform similar to
greyscale. The fact that such a limited selection of operating systems and colour themes tested
could skew the result from what to expect in a generic scenario. Also the fact that many
templates were extracted from the screenshots tested could result in a higher than average
result.

The screenshots and template were once again extracted from pre-fetched screenshots
and in this case many states were defined as multiple steps in the same software process. The
idea behind this was that it would present a worst-case scenario where many states have very
similar templates. As default Sikuli considers a template to be found if the similarity measure
(template accept threshold) is above 0.7. This contrasts to this study where nothing can be
guaranteed lover than 0.96. A possible explanation is that Sikuli isn’t designed to look for a
full database filled with template and more towards looking for specific objects defined by
the programmer/tester.

5.4 Method

The best approach to implementing and testing of the agent prototype would be to create a
virtual network and test the agent in a real scenario. With the artificial simulation used in this
thesis practical problems such as latency, time, and unexpected environmental behaviour is
hard to emulate. If more time were allocated to the project more algorithms could be studied.
The values selected for each testing parameter are picked to present trends in the matching
algorithm on a broad scale. Because the screenshots and templates are arbitrarily picked
and from a very limited number of GUI environments for this project the results might not
be representative for all OSes and GUI environment. The choice of Windows was based on
the fact that the VM environment that this work was evaluated for primarily uses Windows
guests.

5.5 Reproducibility & Repeatability

The algorithms used were based on OpenCV version 2.4.9 and uses the C++ variant of the
library.

All raw data, including template, screenshots and test cases are available to the public.
Using the same agent code, and test cases the result would be exactly the same as in this
thesis. The source is published in order to allow for others to continue work on the project.

5.6 Ethical aspects

The virtual agent prototype developed in this project will be used to manage virtual com-
puter networks. The technology developed in this project can be adapted for other virtual
network systems where integrity of the virtual environment or a general management solu-
tion is desired. For example Docker 1 is a container utility to sandbox computer environment
where there might be a desire to manage the containers without contaminating the virtual
environment with scripts and management software.

The agent prototype is developed for a virtual environment where cyberwarfare training
is taking place. Although the agent technology is generic it isn’t hard to imagine militariza-
tion and deployment of the agent technology outside training environments.

1https://www.docker.com/

32

https://github.com/sci10n/OpenCVTests/tree/master/

5.7. Future Work

5.7 Future Work

As mentioned in the discussion, the clearest way to go forward with this study is to fully
implement the agent system presented in the method and do field testing. The focus of this
study was targeted at evaluating the reliability of template matching to localise and identify
objects in a GUI environment. Digital image processing is a large field with many algorithms
and techniques such as feature matching and colour histogram based tracking [24, 2] that
might provide a more reliable solution than template matching to the problem addressed in
this thesis. Because of the modularity of the agent frameworks support of other technologies
can be used for the computer vision information gathering part. Template matching is not
confined to only OpenCV and other libraries could also be of interest to study.

In this study a GUI state was defined as a set of templates. Testing this approach only
involved examine the amount of templates positively identified in each state. This is a very
simple way of reasoning about the state of the GUI environment and it would be of interest
to examine more complex reasoning such as machine learning or inference [15].

33

6 Conclusion

In this thesis reliability of using computer vision as sensory system for a intelligent agent
designed to manage a virtual computer environment has been evaluated. We present pos-
sible computer vision techniques that might provide a solution to the problem and decided
on template matching as an interesting algorithm to examine. The examination was split up
into four steps. The first involved template matchings reliability of localizing known objects
(GUI elements) in a GUI environment, the second examination step involved measuring the
time requirement for the different image filters and algorithms used, and the third step in-
volved examining reliability of the algorithms in identifying whether objects are present in
an environment.

Given the result and discussion, the final answer to the three research questions are as
follow:

• Can template matching be used to reliably identify element in a graphical user interface?

Given a high degree of similarity between the object in the environment and the tem-
plate used, reliability closing on 100% accuracy can be achieved. This indicates that
template matching can be used to reliably localize and identify elements in a typical
GUI environment.

• Can a virtual user agent use this data in order to reliably navigate the environment?

By defining an agent state as a set of objects that have to be positively identified in
the environment, and a high degree of similarity between the objects and templates, a
virtual user agent can use template matching to reliably navigate the environment.

• What is the performance of the developed agent in terms of computational time?

On average the computational time of the template matching algorithms land on the same
hundredth of a second for a single image pass, with TM_SQDIFF_NORMED taking on
average one hundredth of a second longer. When factoring in image filter CANNY the
total computational time lands around 1 tenth of a second, GRAYSCALE results in 2
tenth of a second, and FLUSH around 5 seconds.

34

Bibliography

[1] CRATE - Cyber Range and Training Environment. http : / / www . foi . se /
sv / Var - kunskap / Informationssakerhet - och - Kommunikation /
Informationssakerhet/Labb-och-resurser/CRATE/. Accessed 8 Feb. 2016.

[2] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision with the OpenCV
library. O’Reilly Me-dia, Inc, 2008.

[3] David G. Lowe. “Distinctive image features from scale-invariant keypoints”. In: Inter-
national journal of computer vision 60.2 (2004), pp. 91–110.

[4] Chris Harris and Mike Stephens. “A combined corner and edge detector.” In: Alvey
vision conference. Vol. 15. Citeseer. 1988, p. 50.

[5] Hans P. Moravec. Obstacle avoidance and navigation in the real world by a seeing robot rover.
Tech. rep. DTIC Document, 1980.

[6] Brute Force Matcher. http://docs.opencv.org/master/dc/dc3/tutorial_
py_matcher.html. Accessed 23 June. 2016.

[7] FLANN - Fast Library for Approximate Nearest Neighbour. http://www.cs.ubc.ca/
research/flann/. Accessed 23 June. 2016.

[8] Template Matching — OpenCV 2.4.12.0 documentation. http://docs.opencv.org/2.
4/doc/tutorials/imgproc/histograms/template_matching/template_
matching.html. Accessed February 8, 2016.

[9] John P. Lewis. “Fast template matching”. In: Vision interface. Vol. 95. 120123. 1995,
pp. 15–19.

[10] John Canny. “A computational approach to edge detection”. In: Pattern Analysis and
Machine Intelligence, IEEE Transactions on 6 (1986), pp. 679–698.

[11] Judith MS. Prewitt. “Object enhancement and extraction”. In: Picture processing and Psy-
chopictorics 10.1 (1970), pp. 15–19.

[12] Tom Yeh, Chang Tsung-Hsiang, and Robert C. Miller. “Sikuli: using GUI screenshots
for search and automation”. In: Proceedings of the 22nd annual ACM symposium on User
interface software and technology. ACM. 2009, pp. 183–192.

[13] Jason Brand and Jeff Balvanz. “Automation is a breeze with autoit”. In: Proceedings of
the 33rd annual ACM SIGUCCS conference on User services. ACM. 2005, pp. 12–15.

35

http://www.foi.se/sv/Var-kunskap/Informationssakerhet-och-Kommunikation/Informationssakerhet/Labb-och-resurser/CRATE/
http://www.foi.se/sv/Var-kunskap/Informationssakerhet-och-Kommunikation/Informationssakerhet/Labb-och-resurser/CRATE/
http://www.foi.se/sv/Var-kunskap/Informationssakerhet-och-Kommunikation/Informationssakerhet/Labb-och-resurser/CRATE/
http://docs.opencv.org/master/dc/dc3/tutorial_py_matcher.html
http://docs.opencv.org/master/dc/dc3/tutorial_py_matcher.html
http://www.cs.ubc.ca/research/flann/
http://www.cs.ubc.ca/research/flann/
http://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/template_matching/template_matching.html
http://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/template_matching/template_matching.html
http://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/template_matching/template_matching.html

Bibliography

[14] GitHub.com/sikuli/sikuli. https://github.com/sikuli/sikuli/tree/master.
Accessed February 10, 2016.

[15] Stuart Russell and Peter Norvig. “Artificial Intelligence A modern approach”. In:
(2014).

[16] Tom Fawcett. “An introduction to ROC analysis”. In: Pattern recognition letters 27.8
(2006), pp. 861–874.

[17] Douglas G. Altman and J. Martin Bland. “Diagnostic tests. 1: Sensitivity and speci-
ficity.” In: BMJ: British Medical Journal 308.6943 (1994), p. 1552.

[18] James A. Hanley and Barbara J. McNeil. “The meaning and use of the area under a
receiver operating characteristic (ROC) curve.” In: Radiology 143.1 (1982), pp. 29–36.

[19] Andrew P. Bradley. “The use of the area under the ROC curve in the evaluation of
machine learning algorithms”. In: Pattern recognition 30.7 (1997), pp. 1145–1159.

[20] Jay Devore. Probability and Statistics for Engineering and the Sciences. Cengage Learning,
2015.

[21] What is Windows Aero? http://windows.microsoft.com/sv-se/windows-
vista/what-is-windows-aero. Accessed June 4, 2016.

[22] Windows 10 Design: Getting the balance right. https : / / blogs . windows . com /
windowsexperience/2015/04/29/windows- 10- design- getting- the-
balance-right/. Accessed June 4, 2016.

[23] Chang Tsung-Hsiang, Tom Yeh, and Robert C. Miller. “GUI testing using computer
vision”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM. 2010, pp. 1535–1544.

[24] Wenmiao Lu and Yap-Peng Tan. “A color histogram based people tracking system”. In:
Circuits and Systems, 2001. ISCAS 2001. The 2001 IEEE International Symposium on. Vol. 2.
IEEE. 2001, pp. 137–140.

36

 https://github.com/sikuli/sikuli/tree/master
http://windows.microsoft.com/sv-se/windows-vista/what-is-windows-aero
http://windows.microsoft.com/sv-se/windows-vista/what-is-windows-aero
https://blogs.windows.com/windowsexperience/2015/04/29/windows-10-design-getting-the-balance-right/
https://blogs.windows.com/windowsexperience/2015/04/29/windows-10-design-getting-the-balance-right/
https://blogs.windows.com/windowsexperience/2015/04/29/windows-10-design-getting-the-balance-right/

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Aim
	Research questions
	Delimitations

	Theory
	Digital Image Processing
	Intelligent Agents
	Statistical analysis

	Method
	Evaluation of template matching algorithms
	Template Localization - General Reliability
	Template Matching - Robustness between Operating System Versions
	Template Matching - Computational Time
	State Identification

	Results
	Template Localization - General Reliability
	Template Localization - Robustness between Operating System Versions
	Template Matching - Computational Time
	State Identification

	Discussion
	Object Localization
	Computational Time
	State Identification
	Method
	Reproducibility & Repeatability
	Ethical aspects
	Future Work

	Conclusion
	Bibliography

