
Linköping University | IDA
Master Thesis | Computer Science

Spring 2016 | LIU-IDA/LITH-EX-A--16/047—SE

IMPLEMENTATION AND
EVALUATION OF A CONTINUOUS
CODE INSPECTION PLATFORM

Tomas Melin

Handledare/Tutor, Cyrille Berger, Wang Tiantian, Christian Svedin, Magnus Grimsell
Examinator, Kristian Sandahl

硕士学位论文
Dissertation for Master’s Degree

(工程硕士)
(Master of Engineering)

持续的代码审查平台的实现与评价

IMPLEMENTATION AND EVALUATION OF A

CONTINUOUS CODE INSPECTION PLATFORM

王维

2016 年 9 月

Linköping University

UnUniversity

国内图书分类号：TP311 学校代码：10213

国际图书分类号：681 密级：公开

工程硕士学位论文

Dissertation for the Master’s Degree in Engineering

(工程硕士)

(Master of Engineering)

持续的代码审查平台的实现与评价

IMPLEMENTATION AND EVALUATION OF A

CONTINUOUS CODE INSPECTION PLATFORM

硕 士 研 究 生 ： 你的姓名

导 师 ： HIT 王甜甜 副教授

副 导 师 ： LiU 导师姓名、职称

实 习 单 位 导 师 ： 实习单位导师姓名、职称

申 请 学 位 ： 工程硕士

学 科 ： 软件工程

所 在 单 位 ： 软件学院

答 辩 日 期 ： 2016 年 9 月

授 予 学 位 单 位 ： 哈尔滨工业大学

Classified Index: TP311

U.D.C: 681

Dissertation for the Master’s Degree in Engineering

IMPLEMENTATION AND EVALUATION OF A

CONTINUOUS INSPECTION PLATFORM

Candidate： Tomas Melin

Supervisor： Prof. Wang Tiantian

Associate Supervisors: Prof. Kristian Sandahl, Cyrille

Berger

Industrial Supervisors: Christian Svedin, Magnus Grimsell

Academic Degree Applied for： Master of Science

Speciality： Software Engineering

Affiliation： School of Software

Date of Defense： September, 2016

Degree-Conferring-Institution： Harbin Institute of Technology

Upphovsrätt

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under 25 år

från publiceringsdatum under förutsättning att inga extraordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut

enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning

och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva

detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För

att garantera äktheten, säkerheten och tillgängligheten finns lösningar av teknisk och

administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den

omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt

skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang

som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se förlagets

hemsida http://www.ep.liu.se/.

Copyright

The publishers will keep this document online on the Internet – or its possible replacement

– for a period of 25 years starting from the date of publication barring exceptional

circumstances.

The online availability of the document implies permanent permission for anyone to read,

to download, or to print out single copies for his/hers own use and to use it unchanged for

non-commercial research and educational purpose. Subsequent transfers of copyright cannot

revoke this permission. All other uses of the document are conditional upon the consent of the

copyright owner. The publisher has taken technical and administrative measures to assure

authenticity, security and accessibility.

According to intellectual property law the author has the right to be mentioned when

his/her work is accessed as described above and to be protected against infringement.

For additional information about the Linköping University Electronic Press and its

procedures for publication and for assurance of document integrity, please refer to its www

home page: http://www.ep.liu.se/.

© Tomas Melin

I

摘 要

建立和保持高水平的软件质量可以带来经济利益等诸多好处，然而这是一项

很困难的任务。其中一种防止软件项目质量下降的方法是通过跟踪项目的度量值

和某些属性，来查看项目的属性的变化情况。通过引入持续的代码审查和应用静

态代码分析方法可以实现这种方法。然而，在人们的印象中，这类工具往往具有

较高的误检，因此需要进一步调查实际情况、研究其可行性，这是本文的初始研

究目标。本文在瑞典林雪平的 Ida Infront AB 公司开展了案例研究，调研了该公

司开发人员的意见，并通过访问开发人员，确定持续的代码审查平台 SonarQ ube

的性能。作者对持续的代码审查环境进行了配置，分析了公司的部分产品，进而

确定哪些规则适用于该公司。调查结果表明该工具是高质量并且准确的，还提供

了持续监测代码来观察度量值的趋势和进展等先进功能，例如通过监测环路复杂

度和重复代码等度量值，来防止复杂度和重复代码的增加。通过组合误检压缩、

对 pull requests 的瞬间分析反馈、以及分解和建立给定的条件等特征，使得所实

现的环境成为一种可以降低软件质量保障难度的方式。

关键词：静态代码分析，持续代码审查，SonarQube，软件质量

II

Abstract

Establishing and preserving a high level of software quality is a not a trivial task,

although the benefits of succeeding with this task has been proven profitable and

advantageous. An approach to mitigate the decreasing quality of a project is to track

metrics and certain properties of the project, in order to view the progression of the

project’s properties. This approach may be carried out by introducing continuous code

inspection with the application of static code analysis. However, as the initial common

opinion is that these type of tools produce a too high number of false positives, there

is a need to investigate what the actual case is. This is the origin for the investigat ion

and case study performed in this paper. The case study is performed at Ida Infront AB

in Linköping, Sweden and involves interviews with developers to determine the

performance of the continuous inspection platform SonarQube, in addition to examine

the general opinion among developers at the company. The author executes the

implementation and configuration of a continuous inspection environment to analyze

a partition of the company’s product and determine what rules that are appropriate to

apply in the company’s context. The results from the investigation indicate the high

quality and accuracy of the tool, in addition to the advantageous functionality of

continuously monitoring the code to observe trends and the progression of metrics such

as cyclomatic complexity and duplicated code, with the goal of preventing the constant

increase of complex and duplicated code. Combining this with features such as false

positive suppression, instant analysis feedback in pull requests and the possibility to

break the build given specified conditions, suggests that the implemented environment

is a way to mitigate software quality difficulties.

Keywords : Static Code Analysis, Continuous Code Inspection, SonarQube, Software

Quality

 Thesis for Master’s Degree at HIT and LiU

III

Acknowledgment

For a start, the author would like to thank his supervisors; Kristian Sandahl,

Cyrille Berger and Wang Tiantian for their guidance during the author’s work, it has

been invaluable. Equally important, the author would like to acknowledge Christ ian

Svedin and Magnus Grimsell at Ida Infront AB for the grateful opportunity of

performing the master thesis project at their company. It has been an incredible eye

opening experience in being a part of the company during this project. In addition, the

author would like to communicate his appreciation to the interviewees at Ida Infront

AB who were willing to contribute to this paper by being interviewed and observed as

they performed code reviews in rather spartan conditions. In order for these

interviewees to remain anonymous, their names will not be listed.

The author would also like to express his gratitude towards his companions ,

Daniel Andersson and Robert Krogh, who have guided the author during the

progression of this project in regards to brainstorming and solving problems related to

both the theoretical work and the practical assignment executed at Ida Infront AB.

 Thesis for Master’s Degree at HIT and LiU

IV

Table of Contents

摘 要... I

ABSTRACT... II

CHAPTER 1 INTRODUCTION .. 1

1.1 BACKGROUND .. 2

1.1.1 About the Company ... 2

1.1.2 Context ... 3

1.2 MOTIVATION .. 3

1.3 PURPOSE AND AIM ... 4

1.4 RESEARCH QUESTIONS... 4

1.5 DELIMITATIONS .. 5

1.6 APPROACH .. 5

1.6.1 Literature Study ... 5

1.6.2 Setup ... 6

1.6.3 Rule Configuration .. 6

1.7 MAIN CONTENT AND ORGANIZATION OF THE THESIS 8

CHAPTER 2 THEORETICAL FRAMEWORK ... 10

2.1 METRICS ... 10

2.1.1 Complexity ... 10

2.1.2 Size ... 13

2.1.3 Technical Debt ... 13

2.2 STATIC CODE ANALYSIS .. 14

2.2.1 Static Code Analys is Techniques ... 15

2.2.2 Control Flow Analys is... 15

2.2.3 Alerts .. 16

2.2.4 Tools ... 20

2.3 CONTINUOUS INSPECTION.. 20

2.3.1 SonarQube .. 24

2.4 THE STATUS OF RELATED RESEARCH ... 25

2.4.1 Static Code Analys is Tools ... 25

 Thesis for Master’s Degree at HIT and LiU

V

2.4.2 Continuous Code Inspection ... 26

CHAPTER 3 SYSTEM REQUIREMENT ANALYSIS 28

3.1 THE GOAL OF THE SYSTEM .. 28

3.2 REQUIREMENTS DESIGN PROCESS ... 28

3.3 REQUIREMENTS GATHERING AND ANALYSIS PROCESS 29

3.4 FUNCTIONAL REQUIREMENTS .. 32

3.5 NON-FUNCTIONAL REQUIREMENTS ... 33

3.6 BRIEF SUMMARY .. 33

CHAPTER 4 DESIGN AND DEVELOPMENT OF THE SYSTEM 34

4.1 GENERAL DEVELOPMENT DECISION AND APPROACHES 34

4.1.1 Technical Condition .. 34

4.1.2 Experiment Condition ... 34

4.2 KEY TECHNIQUES... 35

4.3 EVALUATION APPROACH ... 36

4.4 BRIEF SUMMARY .. 37

CHAPTER 5 CASE STUDY .. 38

5.1 OBJECTBASE ... 38

5.2 DATA COLLECTION TECHNIQUES .. 38

5.2.1 Interviews ... 39

5.3 CASES ... 40

5.3.1 Rules ... 41

5.4 RESULTS ... 44

5.4.1 Issue Determination ... 44

5.4.2 Final Questions .. 47

CHAPTER 6 RESULTING SYSTEM AND EVALUATION 49

6.1 RULES ... 49

6.1.1 Supervised Configuration.. 49

6.1.2 Alert Oracle Configuration ... 52

6.2 QUALITY GATES ... 53

6.3 LEAKS ... 54

6.4 BREAKING THE BUILD .. 54

 Thesis for Master’s Degree at HIT and LiU

VI

6.5 PULL REQUEST VIEW ... 55

6.6 SUPPRESSING FALSE POSITIVES... 57

6.7 HISTORICAL AND TREND INFORMATION ... 58

6.8 KEY SYSTEM FLOW CHARTS ... 60

6.9 ANALYSIS RESULTS ... 61

6.9.1 Complexity and Duplication ... 62

6.9.2 Design and Architecture .. 64

6.9.3 Continuous Inspection ... 65

6.10 SYSTEM EVALUATION .. 65

6.10.1 Alert Classification .. 65

6.11 BRIEF SUMMARY .. 67

CHAPTER 7 DISCUSSION ... 68

7.1 RELEVANCE OF THE RESULTING SYSTEM FOR THE INTERNSHIP COMPANY . 68

7.2 METHOD ... 69

7.2.1 Implementation .. 69

7.2.2 Rule Configuration .. 70

7.2.3 Interviews ... 71

7.2.4 Analys is .. 72

7.2.5 References .. 73

7.3 RESULTS ... 73

7.3.1 Implementation .. 73

7.3.2 Rule Configuration .. 74

7.3.3 Interviews ... 74

7.3.4 Analys is .. 75

7.4 THE WORK IN A WIDER CONTEXT... 75

7.4.1 Ethical Aspects... 76

7.4.2 Sustainability Aspects ... 76

CONCLUSIONS ... 77

REFERENCES .. 80

APPENDIX A RULE CONFIGURATION TABLES .. 85

 Thesis for Master’s Degree at HIT and LiU

VII

Table of Figures

Figure 1-1: Demonstrative example of how the monitoring of metrics may look.

 .. 2

Figure 2-1: Program control graph for a simple if- then-else-case....................... 11

Figure 2-2: Program control graph for a simple while- loop case. 11

Figure 2-3: Demonstrative example how to calculate the cyclomatic complex ity

using SonarQube’s guidelines. ... 12

Figure 2-4: The two major aspects of continuous inspection. 23

Figure 2-5: Simplified illustration of the continuous inspection procedure. 23

Figure 2-6: The architecture of SonarQube. .. 25

Figure 3-1: High- level view of the user perspective in the development setup. 29

Figure 3-2: Process diagram of the quality control process. 30

Figure 3-3: Use case diagram from a developer point of view. 31

Figure 3-4: Use case diagram from the continuous inspection platform point of

view. ... 32

Figure 4-1: Flow diagram illustrating the evaluation method. 37

Figure 6-1: Figure representing the pull request view. .. 56

Figure 6-2: Pull request-view of the branch develop that has failed the quality

gate. Containing demonstrative data, not related to previous mentioned numbers. ... 57

Figure 6-3: Pull request-view of the branch develop that passed the quality gate,

with warnings. Containing demonstrative data, not related to previous mentioned

numbers. ... 57

Figure 6-4: Example image of timelines of duplications and lines of code metrics .

 .. 59

Figure 6-5: Time line graph containing three metrics. ... 59

Figure 6-6: History table. ... 59

Figure 6-7: Data flow diagram. .. 61

 Thesis for Master’s Degree at HIT and LiU

VIII

Table of Tables

Table 2-1: Classification table slightly altered from Zimmerman et al. 18

Table 5-1: Table containing the cases with code that SonarQube found to be issues

in a rather narrow scope. ... 43

Table 5-2: Table briefly stating the relationship between each issue and each rule.

 .. 43

Table 5-3: Classification table. .. 45

Table 5-4: Ranking table. ... 46

Table 5-5: Findings table. ... 47

Table 6-1: Results from the supervisor rule investigation. 51

Table 6-2: The number of issues prior to the first investigation. 51

Table 6-3: The number of issues past to the first investigation. 51

Table 6-4: Summarized results from the case study. .. 52

Table 6-5: Ranking for each specific rule. .. 52

Table 6-6: The resulting number of issues of past the alert oracle configuration.

 .. 53

Table 6-7: Code duplication in the entire system. .. 63

Table 6-8: Cyclomatic complexity risk categories for a code unit. 63

 Thesis for Master’s Degree at HIT and LiU

1

Chapter 1 Introduction

Maintaining a high quality software is an objective in many software projects [1],

but the amount of resources that are allocated to achieve this objective may differ .

Software quality is defined as the degree that the software meets the specified

requirements [2]. Where software quality may be further defined using quality

attributes, such as usability or maintainability. To allow quantitative measurement,

quality metrics have also been declared. These metrics determines the level of the

specific quality attribute that has been fulfilled.

Studies have confirmed that a higher software quality has a positive effect on the

overall maintenance costs [3]. The quality of the code has in many cases been approved

by the passing of test cases. While this implies that the code performs all the necessary

tasks, the passing of certain tests does not certify the quality in terms of code

conventions and other types of faults which can escape the conventional testing

procedure.

 Applying static code analysis tools to a code base can be performed in various

ways, where the most common is for developers to have a command, which they run

from their terminal or IDE to control that they follow their pre-decided code

conventions. This approach may seem sufficient to the specific developer and his

contributions, however, given a team of developers whom all contribute to the same

project, the complexity of coordinating the code quality is increased and should be

handled using a different approach. Since the functionality of each static code analys is

tool varies, it is important to be cautious when selecting a tool to deploy for your

setting. The reason for this fact is that defects exist even in thoroughly tested software

written by experienced developers and that it does not require a tremendous amount of

effort to perform an automatic static analysis control to identify these software

anomalies. The source of these issues or defects may be misunderstood concepts or

functionalities in the programming language which may not be detected in

conventional testing [4].

However, solving these bugs in a convenient and productive way is a far more

delicate issue. To solve this issue, a solution is to use a continuous code inspect ion

platform to coordinate several different static code analysis tools. By using continuous

inspection the metrics collected by several static code analysis tools will be presented

 Thesis for Master’s Degree at HIT and LiU

2

in one location where they can be evaluated and compared with previous values making

the software quality more comprehendible and the monitoring becomes manageable to

overview [5]. This is demonstrated in Figure 1-1 that contains graphs of the duplica ted

code and lines of code metrics, combined with latest modification affect.

Figure 1-1: Demonstrative example of how the monitoring of metrics may look.

1.1 Background

This report contains a case study executed in the software development indus try

at the company Ida Infront AB. This chapter is intended to introduce the readers to the

company and the context of which the case study is conducted. This master thesis

project is a part of a Double-degree agreement between Harbin Institute of

Technology(HIT) in Harbin, China and Linköping University(LiU) in Linköping,

Sweden. The author has studied one semester at HIT followed by performing the

master thesis project satisfying the requirements for both universities. Supervisors

from both universities have been included in the thesis process, in addition to

supervisors at Ida Infront AB.

1.1.1 About the Company

Ida Infront AB is a well-established company with many years of experience in

case management, digital archiving and secure communication. The company was

founded in 1984 and has their headquarters in Linköping, Sweden. The customers of

Ida Infront are primarily found within the public sector. Ida Infront helps their

customers to solve their needs by implementing solutions based on their own product

family, iipax. The company has offices in Sweden (Stockholm, Linköping), Norway

(Oslo) and India (Thane). Ida Infront has around 70 employees and is a part of Addnode

Group and this project will be conducted at their office in Linköping, Sweden. In this

thesis, Ida Infront AB will be referred to as the internship company.

 Thesis for Master’s Degree at HIT and LiU

3

1.1.2 Context

The internship company has investigated the opportunities of implementing static

code analysis in their development process but has not found the generated feedback

to be sufficiently comprehensible. They also considered there was a high number of

false positives presented among the anomalies, causing the code inspection process to

require more time and resources than what was initially allocated. Resulting in the lack

of the essential benefit from the static code analysis. Further investigation is needed to

determine the possibilities of implementing static code analysis in their development

process. The code base to be used in the experiments has been in development for more

than fifteen years, which has a tendency to result in a certain amount of legacy code.

The code base is constructed as a plugin-based framework in order to make the

software easy to adapt according to specific customer requirements.

1.2 Motivation

Ensuring that code is of excellent quality is an activity that is complicated to

execute since there are various ways to perform these controls of quality. A well-

known approach is the conventional code review that is executed by a physical person

studying and analyzing the work by another person. Panichella et al. [6] perform a

study where they investigate whether a code review would be improved by the addition

of a static code analysis tool. The results from the study display how the warnings

found in the source code are only reduced slightly for each code review and the overall

percentage of removed warnings were between 6% and 22%. According to the authors

[6], they found that the developers have a tendency to target a certain type of problems

which results in the deletion of between 50% and 100% of these problems. As humans

are not able to investigate a code base in the same sense as a computerized tool,

resulting in the focus of one area or another.

There are several methods for performing manual code reviews. Likewise, there

are also a high number of automatic tools to assist the reviewers. The results of tool

supported code reviews have also been proven to find higher numbers and a more

varying number of anomalies [7], [8].

While it may seem tempting to apply tools in this context to solve the human

errors completely, it is not certain that the tools applied will perform the task as

intended. If the tools are not properly configured, the results may be misleading.

 Thesis for Master’s Degree at HIT and LiU

4

Although, given the correct configuration the output from the tools may indeed be very

useful [6].

Another valuable contribution made by Panichella et al. [6] was the conclus ion

that a higher number of warnings were fixed using static code analysis tools compared

to projects not taking advantage of these tools. Automated static code analysis has also

been proven to be very useful for detecting software anomalies in early phases of

software development [9]. And by using an automatic static analysis tool which detects

and lists anomalies according to a preset prioritization technique, the developers may

focus their anomaly inspection of the areas who they are interested in [9].

1.3 Purpose and Aim

The concept of code reviews is an important step in software development as a

step to verify the code quality while sharing experiences and knowledge among the

employees [10]. To investigate this area further, the author has, in agreement with the

internship company, decided to evaluate and implement a continuous code inspect ion

environment using static code analysis tools. The evaluation will be conducted in terms

of assessing the accuracy of the produced issues of the continuous inspect ion

environment. Additionally, the author has been assigned the task to investigate how

feedback from the continuous inspection environment may be used to improve the

architecture and design of the code base, in addition to provide support during code

reviews.

1.4 Research Questions

To fathom the generated output from a static code analysis environment the values

produced should be evaluated and weighed, to enable the determination of the

usefulness of this output. This is the reason for RQ1(Research Question 1) and RQ2.

To investigate the difference between the implementation of several static code

analysis tools and how they may be implemented in a continuous code inspect ion

environment, RQ3 were constructed.

RQ1. How can the design and architecture of a code base be improved using

output from static code analysis?

RQ2. How may static code analysis be used in order to find defects in the code?

RQ3. How may a continuous code inspection platform be used in an agile

environment to find defects in the code?

 Thesis for Master’s Degree at HIT and LiU

5

In the following chapters and sections, the research questions will be referenced

using the RQX format, where X is the number referencing to a research question.

1.5 Delimitations

This project is limited to investigating how the continuous code inspection tool

SonarQube [11] may be applied to find faults in a software development project, not

focusing on comparing this tool to other continuous inspection tools in similar contexts,

but instead perform an evaluative investigation of the performance of these tools.

The focus of the evaluation resides in the resulting output, in terms of produced

recommendations and specified anomalies rather than an evaluation of the qualitat ive

aspects of the SonarQube software as a product.

The material used in this study is provided by the internship company, result ing

in a highly specific context that the configuration is adapted to. Properties that applie s

in this context may not be applicable to other scenarios where the code based is

constructed differently, such as written in another programming language than Java.

1.6 Approach

During the initial phase of this project, the author produced a planning report that

included a time plan in the form of a Gantt-chart to be used as a continuously updated

planning chart with the purpose of monitoring the status of the writing of this report in

addition to the project executed at the internship company. The planning of this project

included the research presented in this report and the project at Ida Infront, since these

projects were planned as two separate but related tasks with a number of dependencies ,

the scheduling of the assignments had to be carefully considered in order to prevent

accidental halts during the progress of the project.

1.6.1 Literature Study

Previous to the implementation and configuration phase, the author was required

to obtain further knowledge to gain a broader and deeper understanding of the static

code analysis and continuous inspection area. Another essential aim of the literature

study was to educate the author of the available static code analysis and continuous

inspection tools to allow the author to elect the most appropriate tool for the project

along with the most contributing aim of the study. The author considered whether to

continue on previous studies performed by other researchers in similar contexts or

 Thesis for Master’s Degree at HIT and LiU

6

pivot from an existing paper’s conclusion to investigate new possibilities. The

resulting approach was somewhat of a combination, the author chose to perform an

evaluative approach to investigate the usefulness of a static code analysis and

continuous inspection in practice in the setting of the internship company.

To provide the reader with support to replicate the results of this study, the method

phases of this project will be introduced and described.

1.6.2 Setup

The initial phase for this project was the configuration and setup of the SCM

server, automation server and continuous inspection server. In addition to configur ing

the internal settings for each entity, the communication between these three entit ie s

has to work properly. Details for this setup are described further in Chapter 5.

1.6.3 Rule Configuration

The rules that are to be applied in the continuous inspection have to be configured

in the SonarQube interface. There were several steps taken by the author to adapt the

rules, which SonarQube should use to monitor the code base and detect issues to

improve the quality of the code base. The initial step was to perform an analysis on the

entire code base provided. However, due to the large number of alerts detected, the

code base had to be divided into smaller divisions. One of the sources of this large

number of alerts is that the code base provided was huge, containing about two million

lines of code. Another factor, which influences the large amount of found alerts by the

continuous inspection, was that the only previous static code analysis tool, which had

been applied previously in the development process at the internship company, was

Checkstyle [12]. This tool had been configured to control syntactical and esthetica l

rules during development. However, the most significant source to the large number

of alerts is the setting of the SonarQube tool, i.e. the configuration being set to its

default values. Using the default settings of a continuous inspection tool may be

appropriate from start, although, it is highly recommended to configure the platfo rm

according to the context in addition to what type of alerts that are desirable to detect,

in order to make the most out of the platform.

In order to configure the rules to produce alerts in this setting, the author

investigated the packages in the code base. The packages that had the highest number

of alerts were the targets of this investigation. An alternative approach would have

 Thesis for Master’s Degree at HIT and LiU

7

been to choose a module randomly or selected by consultancy by the author’s

supervisor but this approach was deemed less appropriate in the sense of improving

the software quality in this investigation. The modules which contain the highes t

number of alerts were selected and presented to the superviso r who provided feedback

regarding the selection and prioritization of packages. They were investigated furthe r

in order to accomplish as valuable and interesting result as possible. The packages

found to be the most interesting were discussed with the author’s supervisor and

manager. The purpose of this consultation was to be confident that the most appropriate

packages were chosen to be further investigated. These packages would also be used

to perform the rule configuration on. Once the most interesting package had been

decided and selected to perform the rule configuration on, the author performed an

initial rule configuration investigation in order to examine how the tool operated and

what functionalities were available. This investigation consisted of analyzing the

violated rules in SonarQube and what type of issues that were detected. Since some

properties of the code base may be unique and rather specific to the context, this

investigation was followed by an additional investigation performed with the

assistance of the supervisor of this project to ensure that the rule configuration was

executed as accurate as possible to match the actual setting of the code base. An

additional motivation for performing this second investigation in collaboration with

the author’s supervisor, was to be able to adapt the rules to the most accurate setting.

The investigation began with monitoring what alerts were detected, starting with the

alerts ranked as the most severe type by SonarQube [11] and the highest frequency.

For each rule that produced alerts, the alerts were investigated by the author with the

consultancy of his supervisor. To control whether the rule was applicable in its context ,

due to either differentiating coding conventions or properties of the code base which

does not collaborate well with the rules stated in SonarQube.

First, the rule was inspected to check if it was relevant and useful for the

development setting of the company, followed by being estimated whether it would

produce a significant number of false positives. Second, the alerts produced by the rule

were studied and analyzed by determining the conformity of the rule and the produced

alerts. If the rule was deemed useful before beginning the study of the alerts, in addition

to the majority of the alerts were deemed true positives by the author and his superviso r

– the rule was decided to be applicable to the code base. However, if the usefulness of

the rule was uncertain, extra caution was used during the investigation of alerts to

 Thesis for Master’s Degree at HIT and LiU

8

ensure that the decision whether the rule should be applied or not was careful ly

considered.

Once all alerts that were detected had been dealt with, each rule was altered to be

either a Blocker or a Major, depending on their severity for the code base, the phase

of evaluating the found anomalies by using an alert oracle, as introduced by Heckman

et al. [13] and described in this work in Section 2.2.3.1. Where Blocker and Major are

severity rankings in SonarQube and in the configured environment, Blocker are issues

that would fail the build if contained in the contributed code. While Major issues are

issues that would act as warnings to the developers. In this project the alert oracles

have been in the form of developers at the internship company, by performing

interviews using a subset of the alerts found in the static code analysis results. By

selecting a number of alerts that represent blocker and major issues combined with

prioritizing the number of alerts that were more frequent in the analysis, a

representative set of alerts has been established. By applying the FAULTBENC H

process, described in Section 2.2.3.1, to this set of alerts, an evaluation of how well

the static code analysis has performed may be indicated by applying the precision,

recall and accuracy metrics, introduced in Section 2.2.3.1. Next, the alignment and

order of the content in this thesis will be presented.

1.7 Main content and Organization of the Thesis

As this chapter has introduced to the reader to the origin and aim of this thesis ,

this section is intended to guide the reader to this document to enhance the experience

of studying this paper.

Subsequent to this chapter, Chapter 2 Theoretical Framework will present the

fundamental research that is essential to this topic. The chapter may be divided into

three major topics, software quality metrics, static code analysis and continuous

inspection in addition to the presentation of current research that this project is built

upon in addition to compare this paper’s contribution with similar work.

Additionally, Chapter 3 System Requirement Analysis introduces the process of

designing and defining the requirements of the implemented system, in terms of

architecture and functionality.

Next, Chapter 4 Design and Development of the System that is intended to, in

detail, describe the components that are used to compose the built system, in addition

to describing the process of evaluating the constructed system.

 Thesis for Master’s Degree at HIT and LiU

9

Chapter 5 Case Study is destined to describe the context of this project, i.e .

introduce the internship company, Ida Infront AB, in addition to the materia l that will

be subject of the analysis during this project.

Furthermore, Chapter 6 Resulting System and Evaluation contains the detected

results and evaluates these results as described in Chapter 4. In addition to the result ing

system, Chapter 6 also describes the most important functionalities and features of the

implemented environment that are vital components in order to find defects in the code.

Chapter 7 Discussion discusses the previously presented methods and results to

highlight the benefits and drawbacks of the implemented system and the found results

in the analysis partition of the system. This chapter also contains the discussion of the

work in a wider context.

Finally, the Conclusions chapter defines and summarizes the aim and research

objective to at last, state the outcomes and contributions of this work followed by

describing future work approaches.

 Thesis for Master’s Degree at HIT and LiU

- 10 -

Chapter 2 Theoretical Framework

This chapter will describe the contents of the theoretical foundation applied in

this thesis report and set the level of knowledge required to grasp the contents of this

thesis.

As defined by the IEEE Standards Association [14], the concept of software

quality may be described as the capability of a software artifact to comply with stated

and required needs once used in a certain setting. Maintaining a high software quality

in projects is a requirement rather than an option to achieve success in software

development projects. The level of software quality also affects what customers that

are able to keep and attract to a business [15]. Given good software quality,

maintenance activities in most projects cost a significant amount of resources [16].

This results in the opportunity to reduce these costs, as found by Emam [3]. Emam

states that there are a number of evidences which shows that a higher software quality

reduces the maintenance costs during the entire product lifecycle [3].

2.1 Metrics

There are a number of metrics, which have been used to determine the quality

of code bases, however, the focus in this section will reside on the metrics which are

applied and discussed at a later stage in this thesis.

2.1.1 Complexity

The concept complexity is in most occurrences used in terms of an externa l

characteristic, thus including the concept of describing a system as being

psychological complex [17] and measuring a system’s control complexity [18]. This

meaning of the word have influenced the software complexity research to the extent

that the research is implicitly or explicitly aimed towards this focus [17].

In order to solve the issues with extensive time and costs being spent on

maintaining and testing software systems, McCabe attempted to develop a

mathematical approach to resolve the issues with software having a too high number

of control paths [19]. The approach involved dividing the program into vertices and

edges, where vertices are code blocks and edges are branches. The cyclomatic number

 Thesis for Master’s Degree at HIT and LiU

- 11 -

𝑉(𝐺) of a graph 𝐺 with 𝑛 vertices, 𝑒 edges and 𝑝 strongly connec ted

components can be defined as:

 𝑉(𝐺) = 𝑒 − 𝑛 + 2𝑝. (2-1)

A connected component is defined as a component where every vertex is

reachable from every other vertex and a strongly connected component is a connec ted

component with the addition that the graph is directed such that if we add any vertices

or edges to the graph, it is not a connected component anymore [20].

Using Equation (2-1) the following theorem may be stated:

“Theorem 1: In a strongly connected graph G, the cyclomatic number is equal

to the maximum number of linearly independent circuits.” [19]

By applying this theorem to a program and associating it with a directed gra ph

with unique entry and exit nodes, a graph can be constructed to illustrate the

cyclomatic complexity properties. Each code block in the program will be illustra ted

as a node and each arc will be represented branches in the program [19]. By

constructing two smaller examples of program control graphs, which may be viewed

in Figure 2-1 and Figure 2-2, the relationship between the control path and

cyclomatic complexity is easy to detect [19].

Figure 2-1: Program control graph for a simple if-then-else-case.

Figure 2-2: Program control graph for a simple while-loop case.

The cyclomatic complexity of the program control graphs in Figure 2-1 and

Figure 2-2 may be calculated using Equation (2-1) [19]:

Figure 2-1: 𝑉1 = 4 − 4 + 2 = 2

Figure 2-2: 𝑉2 = 3 − 3 + 2 = 2

The graphs that have been constructed are also known as the program contro l

graphs and it is assumed that each node can be reached from the initial node and that

 Thesis for Master’s Degree at HIT and LiU

- 12 -

each node may also reach the exit node. The complexity of a program may be

estimated by computing the number of linearly independent paths [19].

Figure 2-3 is an illustrative example of how cyclomatic complexity may be

calculated for code, the figure depicts how cyclomatic complexity may be calcula ted

for Java code using SonarQube’s metric definition for cyclomatic complexity, as

defined by Racodon [21].

public void process(Car myCar){ // +1
 if(myCar.isNotMine()){ // +1
 return; // +1
 }
 car.paint("red");
 car.changeWheel();
 while(car.hasGazol() && car.getDriver().isNotStressed()){ // +2
 car.drive();
 }
 return;
}

Figure 2-3: Demonstrative example how to calculate the cyclomatic complexity using

SonarQube’s guidelines.

As exhibited in Figure 2-3, the cyclomatic complexity for the Java method

process(Car myCar) is five. This is the result of incrementing the keywords if,

return, while and &&, joint with the fact that each method complexity is initialized

to one. Worth noting though, is that the last return statement does not result in the

increase of cyclomatic complexity, this is not an error but a property of the metric.

There is no definitive limit for when a system’s complexity increases to the

point where it becomes too obscure, however, there are several recommendations to

adhere to. As stated by Fenton et al. [18] when the cyclomatic complexity exceeds

ten in any module, it is probable that problems may occur which implies that the

module in question should be refactored to lower the complexity. There are no

thresholds for when complexity is deemed a too high number for a function, file or

class. According Campbell et al. the complexity of a file should not exceed 60, while

the complexity for methods should not exceed seven in order to keep the code

understandable and maintainable [22, pp. 96–112].

Criticism against the cyclomatic complexity metric has been raised by arguing

that although the complexity measurement constructed by McCabe measures the

complexity of a program, the metric fails to differentiate between the complexit ie s

 Thesis for Master’s Degree at HIT and LiU

- 13 -

of simple cases where single conditions are used instead of multiple conditions in

conditional statements [23].

Similarly, according to Vinju et al. [24], the cyclomatic complexity metric

should be cautiously interpreted, as described in their work:

“[...] when applied to judge a single method on understandability, must be

taken with a grain of salt.”

Vinju et al. have collected empirical data from eight open source Java projects,

that establishes how the metric often may underestimate and overestimate the

understandability of methods.

2.1.2 Size

Measuring the size of a code unit may be performed in several ways, in most

cases the metrics used are lines of code (LOC), number of statements and the number

of blank lines [25].

2.1.3 Technical Debt

There are always several approaches to extend the functionality of a system;

approaches that require less effort and thought in the moment but might result in

difficulties later on when extending the package or class in question. On the other

hand, there are approaches that require more energy and struggle as of now but will

result in a cleaner and significantly more adaptable design. To aid developers to

handle this issue, the metric of technical debt1 , was constructed by applying the

metaphor of assimilating technical debt to financial debt, where inte rest payments

are incurred in the form of performing additional effort in future development due to

choosing to do inexpensive and unclean design choices [26]. As in the financial world,

certain opportunities have to be taken, thus risking resources – similar opportunit ie s

may be taken in software development, e.g. to hit an important deadline or deliver a

certain feature in time. However, unlike the financial variant, technical debt is

challenging to measure effectively – causing the effect of technical debt to be

concealed [26].

1 Technical debt was first introduced by Ward Cunningham (http://c2.com/doc/oopsla92.html).

 Thesis for Master’s Degree at HIT and LiU

- 14 -

2.2 Static Code Analysis

The process of running an analysis on code without executing the code is known

as static code analysis. Compared to conventional testing, this analysis can be

performed without the need to design and construct test cases. In this sense static

code analysis can be viewed as a conventional code review with the modification that

the reviewer (which in most common cases is human) is replaced by a number of

tools using statistic data to evaluate whether the code is containing malformed

statements or breaking conventions stated by rules in the tools. This makes the tools

very useful to apply during the implementation phase to scan the source and byte

code for patterns and anomalies. They also allow the static analysis tools to search

through the code base independently to find hidden backdoors or other errors which

are difficult to detect manually [27].

By using static code analysis tools, the hidden errors can be discovered in the

implementation even before the software has arrived at testing or production [7], [8],

which is very valuable since errors detected earlier in the development process are

less expensive to fix. If defects can be found during the development phase, less

effort has to be put in the testing phase in addition to the system becoming

increasingly more maintainable and the amount of operations are minimized [7].

Static code analysis tools can also be helpful to discover security problems, however ,

one should be cautious to replace the manual code review completely with tool

supported code review, since both kinds of code review find different types of defects.

As these tools use rules and patterns decided by humans, their result should never be

viewed as giving the final answer [7].

Determining the software quality of a module is not always a straightforward

procedure since software quality comes in many different shapes. By using static

code analysis tools to distinguish the difference in software quality between

components, this problem can become significantly easier to handle [8].

 Thesis for Master’s Degree at HIT and LiU

- 15 -

2.2.1 Static Code Analysis Techniques

There are several techniques and methods, which may be applied using static

code analysis tools. To introduce the reader to the various types of methods that are

being applied, the following sections will introduce the most common techniques.

2.2.2 Control Flow Analysis

Several aspects of the code may be investigated by executing an analysis using

tools or manually at several levels of abstraction, such as modules or nodes [28]:

 The execution sequence may be verified to be correct.

 The organization and structure of the code.

 Code statements who are not syntactically reachable.

 Occurrences in the code which requires to be further investigated to inser t

required termination statements.

The output of control flow analysis may produce results in the form of visual and

graphical representations [28].

2.2.2.1 Data Flow Analysis

Accessing variables that have not been set to a value could result in bugs, which

are difficult to find. Data flow analysis investigates whether there are any execution

paths in the software that could retrieve the value of a variable which have not been

initialized [28]. This type of tools often uses the result of the control flow analys is

in addition to read/write access to the variables. As global variables may be accessed

from anywhere, this activity may in some cases become rather complex. Anothe r

example of what types of detections this technique may discover is the act of multip le

writes without intervening reads [28].

2.2.2.2 Information Flow Analysis

Information flow analysis may be used to analyze how the execution of a unit

of code generates dependencies between the input and output of this unit [28]. By

comparing and verifying the dependencies in the specification to the genera ted

dependencies, the opportunity to analyze and trace the output to the input emerges .

This traceability may be very precious in cases where critical output is generated and

the source to that output has to be investigated all the way back to the input from the

software or hardware interface. German [28] states how information flow analys is

may be improved using annotations, i.e. stylized comments to provide documentat ion

 Thesis for Master’s Degree at HIT and LiU

- 16 -

regarding assumptions about functions, variables, parameters and types. By

introducing these annotations, the analysis’s efficiency may be enhanced since it is

given supplementary data related to that portion of the code.

2.2.2.3 Path Function Analysis

Path function analysis may be applied to verify certain properties of a program

[28]. Path function analysis will perform an algebraic manipulation of the source text

without the requirement of a formal specification. By checking the semantics of each

path through a program section or procedure, the analysis produces the relationship

between the input and output of a specific program section and some sophistica ted

tools may even produce expressions, which describe the mathematical relationship

between the input and output. The analysis is executed by iterating through the code

by assigning expressions instead of values to each variable, thus converting the

sequential logic into a set of parallel assignments where the output values are

expressed in the form of input values, making the output easier to interpret. For every

path consisting of the conditions that cause the path to be executed, the tools will

produce an output in addition to the result of executing that path. Path function

analysis is also known as semantic analysis or compliance analysis , where semantic

analysis may be described as revealing exactly what the code does in all known

scenarios for the whole range of input variables for every program section. Although,

the need for human involvement is consistently significant in this technique in

comparing the tool’s output with the specification [28].

2.2.2.4 Byte Code Analysis

In addition to the static code analysis tools analyzing the source code there are

also tools that analyze the compiled byte code. While compilers optimize code, the

byte code may not mirror the source code, however, working on bytecode is

significantly faster which will have a huge impact when having a large code base

[27].

Furthermore, the detected anomalies are not certain to be faults, but rather true

or false detections, which will be referred to as alerts.

2.2.3 Alerts

An important aspect of using static code analysis tools to improve the code base

is how the result is presented to the users, which in many cases are the developers ,

 Thesis for Master’s Degree at HIT and LiU

- 17 -

and by introducing the issues and suggested improvements in a structured and

organized way. The risk by not applying this approach is that the feedback from the

continuous code inspection will be too overwhelming for the users due to the high

number of anomalies found. A related but not equal source which may be the reason

why developers are not using static code analysis tools may be the risk of

experiencing a too high number of false positives, i.e. the tool found an anomaly

which is not an error or a fault [29]. This may result in distrust from the developers

to the static analysis tool that may, given enough time, lead to the developers ignor ing

the output of the static analysis tool. Another possible reason why developers may

avoid or simply ignore static analysis tools can be due to being overloaded with tasks

and assignments, which may cause them to deprioritize the process of solving issues

found by the static analysis tools by considering if the code passes the tests, the code

quality is sufficient.

2.2.3.1 FAULTBENCH Benchmark

Heckman et al. has defined a benchmark named FAULTBENCH to be used for

evaluating the output from static code analysis tools, by prioritizing and classifying

the alerts [13]. The benchmark is created to be used when adaptively evaluating false

positive mitigation techniques, and as stated by Heckman et al. [13] adaptive false

positive mitigation techniques requires the state of the alerts to be recorded after each

inspection. Whereas non-adaptive false positive mitigation techniques would only

require the evaluation of prioritized or classified alerts without fixing or suppress ing

the alerts. The FAULTBENCH process contains an entity that is named alert oracle

which is the entity considered to have the correct answer whether the alert is a true

or false positive and the process is described as follows:

1. Run a static analysis tool against a clean version of the program.

2. Record the original state of the alert set.

3. Prioritize or classify the generated alerts using a false positive mitiga t ion

technique.

4. Either by starting from the top of the prioritized list or randomly electing an

alert classified as important, examine each alert,

a. if the alert oracle considers the alert to be an anomaly – fix the alert

with the specified change. Rerun the static analysis tool if needed.

 Thesis for Master’s Degree at HIT and LiU

- 18 -

b. if the alert oracle states that the alert is a false positive – suppress the

alert.

5. After each alert inspection, record the state of the alert set.

6. Once all alerts have been inspected, evaluate the results using the alert

classification technique.

The next step of the FAULTBENCH benchmark is to predict whether the alerts

are true positives (TP) or false positives (FP). If an alert is classified as a TP when

the alert is a TP, the classification is named a true positive classificat ion (TPC). In

the same way, if an alert is classified as a FP when the alert in fact is an indicat ion

of an anomaly, the classification is correct and a true negative classificat ion (TNC)

has been identified. Similarly, a false positive classificat ion (FPC) is the event where

the model predicts that an alert is a TP while the alert in fact is not an anomaly, i.e.

not an error in the code. And, lastly, a false negative classificat ion (FNC) is when the

model suggests that an alert is a FP when the alert actually is an anomaly [30].

Table 2-1: Classification table slightly altered from Zimmerman et al.

 Anomalies are observed.

 True False

Model

predicts

alerts.

Positive True Positive (TPC)
False Positive

(FPC)
Precision

Negative
False Negative

(FNC)

True Negative

(TNC)

 Recall Accuracy

To judge the quality of the classification model, Zimmerman et al. [31]

recommends the use of the metrics precision, recall and accuracy, as adopted by

Heckman et al. [13] as well and illustrated in Table 2-1, in addition to the following

definitions:

 Precision: defined as the amount of correctly classified anomalies (𝑇𝑃𝐶) out of

all alerts predicted as anomalies (𝑇𝑃𝐶 + 𝐹𝑃𝐶), resulting in the following equation:

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃𝐶

𝑇𝑃𝐶 + 𝐹𝑃𝐶

 (2-2)

The desired value for precision is close to one since it would imply that every

detected anomaly actually was anomalies [31].

 Thesis for Master’s Degree at HIT and LiU

- 19 -

 Recall: defined as the amount of correctly classified anomalies (𝑇𝑃𝐶) out of all

possible anomalies (𝑇𝑃𝐶 + 𝐹𝑁𝐶), leading to the Equation (2-3):

 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃𝐶

𝑇𝑃𝐶 + 𝐹𝑁𝐶

(2-3)

As with the desired value for precision, the desired value for recall is also close

to one, since it would suggest that the detected anomalies are anomalies [31].

 Accuracy: defined as the number of accurate classifications out of all

classifications, resulting in the following expression:

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃𝐶 + 𝐹𝑁𝐶

𝑇𝑃𝐶 + 𝑇𝑁𝐶 + 𝐹𝑃𝐶 + 𝐹𝑁𝐶

(2-4)

The value of accuracy to strive for is one, which would state that the classif ied

model is perfect and that not a single mistake was made during the classificat ion

[31].

 In order to perform a correct interpretation of the measurements, the percentage

of files, which have defects, has to be known. An example, made by Zimmerman et

al. [31] to illustrate the relationship between these measurements, is the case where

80% of the files contains defects and the model classifies 100% of the files to contain

defects. In this scenario, the model has a precision of 80%, recall of 100% and

accuracy of 80% resulting in a model that is not optimal to predict defects, since two

out of the three values are not relatively close to one or, in this scenario 100%. In the

study performed by Zimmerman et al. these three measurements are applied to a

project at file level and package level, resulting in the precision value slightly above

60% in most cases and low recall values (between 18.5% and 33%), at file leve l,

indicating that only a few of the files containing defects were detected. Although, the

precision values are above 60% in most of the cases, implying the correctness of the

analysis, i.e. that there are only few false positives.

 Dealing with this type of errors may not be straightforward, especially since

these numbers of found alerts may be huge, and as the code bases increase in size

and complexity the desire for a solution is growing [5].

 Thesis for Master’s Degree at HIT and LiU

- 20 -

2.2.4 Tools

As described in previous sections, there are several techniques to analyze code

and this section is intended to briefly introduce some of the most common static

analysis tools. Some of these will be applied or mentioned in this paper.

 Checkstyle: Checkstyle is an open source, development and static analysis tool

that attempts to assist the developer to follow a certain code standard or

convention during development. Thus, Checkstyle focuses on the style of your

code, rather than finding the most critical bug [12].

 FindBugs: FindBugs is a static analysis tool that analyzes a project’s byte code

to find bug patterns that may be defined as a code idiom that in most cases is an

error [32]. FindBugs is written in Java and is open source. According to the

developers of the FindBugs tool, less than 50% of all alerts are false warnings.

 PMD: PMD is an open source, static code analyzer that examines Java code for

issues such as: possible bugs, dead code, suboptimal code, overcomplica ted

expressions and duplicate code [33].

As shown by Hovemeyer et al. PMD and Checkstyle focuses on style issues,

causing them to generate a larger number of alerts compared to FindBugs, that is

aimed to find “real” bugs [4].

2.3 Continuous Inspection

As stated by Weimer et al. [5]:

“[...] the desire for a silver bullet is as strong as ever.”

Weimer et al. [5] uses the representation of silver bullet that symbolizes the

solution to the rising problem with code bases increasing in size, complex ity

accumulatively increasing, product cycle times are reducing resulting in a large

portion of software development projects being clogged and having serious issues

with the code quality. The search for a solution for these matters has increased during

recent years and Weimer et al. suggests a candidate to mitigate the previous ly

mentioned issues, continuous code inspection. There is a common belief that by

testing a piece of code, provides the assurance that the code is of high quality, which

is not true. However, testing is essential to verify functionality of a system but there

are some important aspects of testing that states its inefficiency:

 Testing a too complex code base is arduous and in some cases unfeasible.

 Thesis for Master’s Degree at HIT and LiU

- 21 -

 The cost of detecting defects using testing is expensive since several iterations of

locating and mitigating the defects often has to be executed.

 Verifying functionality using testing is challenging, especially when the

functionality to be tested is cluttered behind structural defects.

However, one could question the reason for the code inspection to be continuous,

instead of conventional code inspection. Weimer et al. [34] states the drawbacks of

conventional code inspection in five descriptive points:

 There is a lack of measurable benefit – it is perceived as discussion-forums

causing the contribution to be difficult to quantify.

 There is a tendency for comments to be ignored and modification to be resis ted

due to arguments that it compiles and passes the tests, such as unit tests.

 Defining rules that are interpreted and followed correctly by all individuals may

be challenging.

 Conventional code reviews have a risk of becoming too emotive and

confrontational, which could result in reduced productivity of the team.

 It is common for code reviews to end up focusing on irrelevant issues, instead of

the crucial aspects of the code.

As a solution to the state of a software development project that has evolved to

a project difficult to maintain and extend, Aguiar et al. [35] suggests the continuous

code inspection pattern. The continuous inspection approach is supposed to assist the

team by detecting problems early in the development process in addition to probe

whether the new code complies with the intended architecture and design restr ictions

set by the team.

There are two main aspects of continuous inspection – inspection moment and

inspection type [35], as illustrated in Figure 2-4. The left container represents various

inspection types that may be applied in a continuous inspection approach to

investigate certain properties of the code base and the current quality of the code,

while the right container represents types of inspection moments that the continuous

inspection procedure may apply to collect the information to monitor the code base.

Metrics generation is one of the most commonly applied inspection types; it extracts

various metrics from the source and byte code. By setting thresholds for the metr ic s

for different levels of modules (packages, classes, methods), the measurements may

be used as indicators of when the code has to be refactored. The process of

 Thesis for Master’s Degree at HIT and LiU

- 22 -

constructing coding rules that are used to manage the code base, also known as code

smells detection, may also be applied in this stage. Detecting security flaws in the

form of SQL injection or cross-site scripting is the focus of other inspection types,

called application security checks, which focuses on discovering security

vulnerabilities in the code. Architectural conformance involves inspecting the code

for patterns that violate the set design and architecture rules or bad dependencies.

By introducing this concept in addition to a continuous inspection tool, reports

may be generated to analyze the project’s health and draw attention to any alerts that

are detected by the rules. Tools of this kind may be executed locally on a developer’s

machine or run on a continuous integration server that builds the code at specific

time intervals or on each code commit [35]. To adopt this approach, the requiremen t

of having a knowledgeable individual to maintain the rules as a part of the process in

addition to describing the intended architecture that the rules will uphold , this

approach is illustrated in Figure 2-5. There are various ways to present the genera ted

analysis report; several tools provide a dashboard to monitor the status of the code

and by using a server to maintain the continuous inspection, the server and the build

server may communicate to allow the build to be marked as failed in the event of e.g.

issues thresholds being exceeded. Handling the alerts generated from the continuous

inspection tool may be dealt with using several tactics. Some teams embrace the

tactic of fixing all alerts for the code to be thought of as complete, while an

alternative approach is to rank the alerts in categories, according to their consequence ,

thus allow the adoption of the zero-alerts-policy for only the worst type of category.

 Thesis for Master’s Degree at HIT and LiU

- 23 -

Figure 2-4: The two major aspects of continuous inspection.

Figure 2-5: Simplified illustration of the continuous inspection procedure.

 Thesis for Master’s Degree at HIT and LiU

- 24 -

2.3.1 SonarQube

An example of a continuous code inspection platform is SonarQube which is a

web-based application that handles rule alerts, thresholds, exclusions and settings

[11]. SonarQube is open source and is marketed as a quality management platform.

The overlaying structure of SonarQube may be described as four main

components:

1. SonarQube Server – responsible for starting three major processes:

a. A Web Server for developers and managers to browse quali ty

snapshots of the code base and configure the SonarQube instance.

b. A Search Server based on Elasticsearch2 to enable searching from

the user interface. Elasticsearch is a search server and may be used

to search in all types of documents. It provides scalable search

combined with near real-time search.

c. A Compute Engine Server to process the produced code analys is

reports and storing these in the SonarQube Database.

2. SonarQube Database – used to store the configuration of the specific

SonarQube instance, such as security, plugins and settings, and the

quality snapshots of projects, views, etc.

3. SonarQube Plugin(s) – to allow certain language features, such as SCM,

integration or authentication properties.

4. SonarQube Scanner(s) – to analyze the projects using a build or

continuous integration server.

As may be seen in Figure 2-6, which illustrates the architecture of the

SonarQube platform [11], the relationship between the components 1-4 are visualized.

2 www.elastic.co

 Thesis for Master’s Degree at HIT and LiU

- 25 -

Figure 2-6: The architecture of SonarQube.

2.4 The Status of Related Research

To introduce the stage of the current research in this context this chapter will

present what each study has concluded in addition to state the fundamental ideas that

are the origin of this paper.

2.4.1 Static Code Analysis Tools

Researchers are aware of the fact that static code analysis tools are valuable and

are able to find bugs in different contexts, this has been stated in several papers [4],

[6], [7], [27], [28], [36]–[38]. The compared static analysis tools include evaluations

and comparisons of PMD, Checkstyle, FindBugs, Coverity, FlexeLint, Squale ,

Klocwork, CodePro, AppPerfect, ECS/Java2, Fortify, Splint/LCLint, Gendarme ,

SonarQube and StyleCop among other tools. The evaluations vary in both

thoroughness and level of detail, while some studies focus on investigating and

comparing the functionalities and capabilities for each tool [7], [27], [28], [36], [38],

other studies focus on performing evaluative experiments [4], [6] or retrieving user’s

opinion about static analysis tools [29]. While these studies cover an expansive range

of tools, the common conclusion is that the most appropriate tools recommend the

use of PMD, FindBugs, Checkstyle, SonarQube and Squale in various combinations

 Thesis for Master’s Degree at HIT and LiU

- 26 -

depending on the goal of the tools and application. Even though the evaluations are

thoroughly executed and reported in an adequate sense, the issue of performing the

necessary changes in order to improve the code base remains.

During recent years, there has also been shift of the general opinion of static

code analysis tools, where the reaction no longer is uncharismatic and negative, it

has changed to the far more positive [39].

Given the extensive positive research of static code analysis and its motivat i on

why it should be implemented in every development process, there are also aspects

that needs to be considered when introducing static analysis tools. The most

important aspect to consider, is the extensive amount of false positives which appear

during analysis and that the resources available during development is not sufficien t

to spend time on correcting static code analysis alerts [29]. This characteristic is also

included in this study, i.e. investigating the extensiveness of false positives produced

from static code analysis tools in the context, in which this project is performed.

2.4.2 Continuous Code Inspection

Current research in the static code analysis area have developed several high

quality tools that may be used to execute continuous code quality control to avoid a

decreasing quality level of the code base[40][40][40][40][40][40][40][40][40] .

Examples of these results are the tools ConQAT, Teamscale and SonarQube. Steid l

et al. [40] have also experienced that many companies have included the process of

applying quality measurements to their code. However, due to the pressure of

implementing additional features, the act of maintaining the code according to the

tools, is not prioritized and becomes forgotten [40]. In order to avoid this scenar io ,

the same authors constructed an enhanced quality control process with the importan t

modification of requiring more manual operation than previously described [41]. The

result of their study was the conclusion that software quality analysis cannot be

entirely based on automatic measurements, but that the process of analyzing the

software requires the significant addition of human evaluation and interaction. By

applying this approach to a large number of industry projects there were evidently

measurable, long- term quality improvements [41].

 Thesis for Master’s Degree at HIT and LiU

- 27 -

Merson et al. [35] performed a thorough investigation of how continuous

inspection should be performed and how it should be used with the example of

SonarQube’s features. Evidently, the paper by Merson et al. is related to the

investigation performed in this paper, with the differences that this paper focuses on

applying that to an existing software development process and code base, thus

making this paper a type of realization of the paper by Merson et al. Their paper

includes a comprehensive list of advantages and drawbacks of applying this pattern,

which will be valuable for this study to take into account. Although, what their paper

does not contain are detailed instructions of how the feedback from the pattern in

question may be applied to improve the code quality.

This paper will provide the community with an updated and practica l

contribution of how static code analysis tools perform in combination with

continuous inspection.

 Thesis for Master’s Degree at HIT and LiU

- 28 -

Chapter 3 System Requirement Analysis

Provided the knowledge presented in Chapter 2, the structure of the system that

are to be implemented will be introduced in this chapter, in addition to the architecture

and supportive tools that are required to apply in order to perform the necessary tasks.

Another essential subject in this chapter is the description of the requirements.

3.1 The Goal of the System

The main task to be executed by the system is to perform the static code analys is

in a continuous inspection context, with the goal of improving the code quality and

providing a higher level of quality in future development. This being said, there are

several assignments and tasks that need to be considered, such as:

(1) Assist the developers when taking architectural decisions.

(2) Acting as a supportive tool to find, understand and solve defects in the

code base, during code review and regular development.

3.2 Requirements Design Process

With the goal of producing clear and informative requirements, the main

assignment was initially analyzed thoroughly in order for the author to view the

problem from as many approaches as possible before selecting the one to adapt in this

project. The first considered approach was use to a number of separate static code

analysis tools to perform static code analysis. These tools would analyze the code in

different aspects and would allow a practical comparison of the results of the tools.

The second approach was to use a continuous code inspection tool to allow the

execution of one the two options:

i. Using several tools in combination to perform an extensive analysis by

combining the results from all tools.

ii. Using an advanced tool containing several static code analysis tools to

adapt according to the code base and goals of the analysis.

These two approaches were the most promising approaches of static code analys is .

By performing a careful comparison of these two approaches, in addition to comparing

both alternative options of the second approach, the author concluded that the best

approach was to choose the continuous code inspection with multiple static code

 Thesis for Master’s Degree at HIT and LiU

- 29 -

analysis tools applied in the analysis approach. The motivation for deciding to adapt

this approach originates from current research, that states how the development of the

chosen system has become increasingly active and the tools are becoming

progressively more sophisticated [40]. The selected continuous code inspect ion

platform also supports the collaboration with an automation server and SCM server,

which is very convenient for this system since it will allow the environment

development to progress faster.

Once this approach has been set, the requirements may be collected and defined

in further detail.

3.3 Requirements Gathering and Analysis Process

To achieve an overview of the environment to be constructed and implemented

two diagrams have been constructed. Figure 3-1 describes a high- level view of the

setup from the user’s point of view and Figure 3-2 is a process diagram to represent

and describe the environment from a developer perspective.

Figure 3-1: High-level view of the user perspective in the development setup.

 Thesis for Master’s Degree at HIT and LiU

- 30 -

Figure 3-2 is a modified version of the Enhanced Quality Control Process

designed by Steidl et al. [41] and differs by the removal of the project manager and

quality engineer. The motivation for this adjustment is that this is the case for the

internship company since they do not have a designated person for those assignments

and will not involve the project manager at this level of detail at this time. Starting

from the upper left corner, the developer will perform an implementation in the system;

this system will act as the input to the tool, which performs the analysis of the system.

This tool generates the feedback that is presented at the dashboard of the continuous

inspection platform. The developers interpret this feedback during the development to

provide them with information of how their code base has changed during the sprints ,

giving them a historical feedback review. By using Quality Goals which defines what

aims and achievements to stride for during the projects lifetime will increase the

transparency of the process [41].

Figure 3-2: Process diagram of the quality control process.

To clarify the usages of the system further, two use cases have been constructed ,

which may be seen in Figure 3-3 and Figure 3-4. The first use case illustrates the

functionality for the user, which in this context is the developer. Figure 3-3 illustra te s

the actions that may be taken by the developer during the continuous inspection process.

The first and probably the most obvious action is the event of performing

implementations, i.e. modifying the code base in any way. Next, once this modificat ion

has been stored in the SCM, SonarQube will allow the developer to interpret the

SonarQube dashboards to view the analysis results. These dashboard interpretations

will allow developers to strive for quality goals in their teams or projects, resulting in

 Thesis for Master’s Degree at HIT and LiU

- 31 -

distinct objects to aim for during development. The use of task lists would also allow

the developers to assign specific tasks to developers who are the most appropriate to

solve those kind of issues.

Figure 3-3: Use case diagram from a developer point of view.

The second use case, Figure 3-4, demonstrates the major functionalities provided

by SonarQube. SonarQube may generate analysis reports that are presented to

developers on dashboards. These reports allow developers to continuously monitor and

maintain the quality of the code base. Combining this with the use of quality goals, as

mentioned previously, the developers are given the opportunity to track the quality of

the code base. Another action that SonarQube provides is the retrieval of the code base

from the SCM, i.e. the automatically fetching of the code from, in this case, Bitbucke t

server.

 Thesis for Master’s Degree at HIT and LiU

- 32 -

Figure 3-4: Use case diagram from the continuous inspection platform point of view.

Using these diagrams and information provided by the internship company,

several functional and non-functional requirements may be stated.

3.4 Functional Requirements

FR1. The environment shall present areas where architecture and design improvements

shall be necessary.

FR2. The environment shall allow the developers to detect and study issues, which are

found during the analysis.

FR3. If the requirements, in terms of number of Blocker and Major issues for the

analysis are not met by the code base, the build triggered by the automation server

shall be marked as failed.

FR4. The static code analysis shall only be triggered after a successful build.

FR5. At the event of viewing a pull request in Bitbucket, data from SonarQube analys is

from the branches in the context shall be displayed.

 Thesis for Master’s Degree at HIT and LiU

- 33 -

3.5 Non-functional Requirements

NFR1. The implemented continuous code inspection environment shall be portable

using the virtual machine and require minimal setup settings to transfer from one

machine to another in order to demonstrate the environment.

NFR2. The environment must be able to analyze code written in Java.

NFR3. The continuous code inspection environment shall be adapted to require

minimum effort during the development process.

NFR4. The feedback from the analysis shall be comprehendible and feasible to

implement, given the authors documentation of how to interpret the results.

3.6 Brief summary

This chapter has introduced the main goals of the system, followed by describ ing

the design and gathering process of the system requirements. This chapter has also

illustrated the structure and process of the environment to be constructed. As the

underlying structure and specifications were presented, use cases were constructed to

illustrate the functionality from the user and platform’s point of view. Finally, the

functional and non-functional requirements can be established. Next, the design and

development of the system will be described in detail.

 Thesis for Master’s Degree at HIT and LiU

34

Chapter 4 Design and Development of the System

Within this chapter, the author will describe the design choices and artifacts that

are part of the implemented system. In addition to software that are used by the solution.

4.1 General Development Decision and Approaches

To introduce the reader of this document to the conditions related to the technica l

and experimental circumstances in this project, the next sections will describe the

environments, in terms of tools and items, that the project will use.

4.1.1 Technical Condition

These are the static code analysis tools, which will be used to perform the static

code analysis:

1. SonarQube (Version 5.4), previously known as Sonar [11] – The continuous

code inspection platform which hosts the actual static code analysis tools such as the

above mentioned tools.

a) SonarQube server,

b) SonarQube Scanner also known as SonarQube Runner,

c) Plugins:

i. FindBugs (Version 3.3),

ii. Git (Version 1.1),

iii. Java (Version 3.13),

iv. Java Properties (Version 1.5) and

v. SVN (Version 1.2)

2. FindBugs [32] – a static code analysis tool that will be implemented in

SonarQube by installing the FindBugs plugin.

4.1.2 Experiment Condition

In order for this project to be successful, the implemented environment has to be

able to perform the necessary tasks, which are required in the development process.

This section contains the key technological components, which are vital to the

implementation and the setup for the continuous code inspection environment. Each

component will be listed and described briefly.

1. Atlassian Bitbucket server (Version 4.3.2), previously known as Stash [42] –

is a web-based hosting service aimed for projects which uses the Git revision contro l

 Thesis for Master’s Degree at HIT and LiU

35

system.

a) Sonar for Bitbucket server (Version 1.6.0), previously known as Sonar for

Stash [43] – is a plugin for the above mentioned web-based hosting service which

provides the integration of SonarQube and Bitbucket server.

b) Bitbucket Server Webhook to Jenkins (Version 3.0.1) [44] – is a plugin

for Bitbucket server to allow the Bitbucket server to communicate with a Jenkins

server.

2. Jenkins automation server (Version 1.651) [45] – is a continuous integrat ion

and continuous delivery application which can be used to build and test software

projects.

a) SonarQube Plugin (Version 2.3),

b) Git Plugin (Version 2.4.2) and

c) Maven Integration Plugin (Version 2.12.1).

3. Eclipse IDE [46].

4. Oracle VM Virtual Box (Version 5.0.14r105127) – is a virtualization engine

for x68 hardware.

a) Ubuntu Desktop (Version 15.10).

5. iipax – Code base provided by Ida Infront where one package will be subject

of further investigation, named Objectbase.

4.2 Key Techniques

In order to assemble the environment to perform the static code analysis, severa l

supportive components have to be implemented and configured. The following

sections will describe these supportive components.

 SCM server: To maintain a historical record of the changes made to the code

base and configuration files in the project an SCM server will be constructed .

 Automation server: Once continuous code inspection is implemented in a

production environment the static code analysis should be run as a part of the

software development lifecycle, and should require minimal effort to run once

it has been configured properly. This motivation is the origin to use an

automation server to call the static analysis from.

 Continuous code inspection server: In order to implement the continuous

code inspection environment that performs as the company desires, the rules

used by the static analysis plugin tools in SonarQube require modifications .

The extensiveness of these modifications is difficult to estimate at this time,

since they have not been performed at this stage of the project. However, due

 Thesis for Master’s Degree at HIT and LiU

36

to the complexity and the high number of rules, it is likely that this will be a

challenging issue. This is due to the need to adapt the entire library of rules to

the company’s code base in addition to the creation of new rules. E.g., what

should be allowed but in a certain way and what should not be allowed in their

code base. This is a critical step in this project due to the feedback from the

continuous inspection environment. If the feedback is not accurate and

recommends modifications that are not feasible for the current code base and

the developer is aware of this fact, the environment will lose credibil ity

amongst the developers. Which in turn, may cause the developer to ignore the

feedback from the environment once these events have occurred a number of

times.

 Server Hosting: To enable sufficient portability in the generated environmen t,

the author will use the common approach of having a virtual machine to host

the three servers on, which will allow the author to deploy the resulting system

with all the configured settings adequately.

4.3 Evaluation Approach

With the purpose of investigating the results from the static code analys is

performed on the code base iipax and its packages, the method presented by Plösch et

al. [47] will be adapted and applied in this study. Plösch et al. [47] have constructed a

method for measuring the quality of static code analysis tools in addition to applying

this method to compare a number of these tools. This method may be seen in Figure

4-1. By making some modifications to their approach, the author has constructed his

own version of this method.

The initial step of the method is to decide what rules to be applied in the analys is .

The rules which will be used in the analysis are the rules from the SonarQube Java [48]

and the FindBugs [32] plugins. Since the SonarQube community is currently working

with replacing the FindBugs rules using rules from their own Java plugin, some are

deprecated at this stage, these have been excluded from the analysis by the author in

order to avoid duplicate results.

The next step is to perform the static code analysis on the code base iipax and its

packages. In this context, this includes uploading the code base to the Bitbucket server,

building the project in Jenkins automation server, which sends the result of the

SonarQube scan in a report to the SonarQube server.

 Thesis for Master’s Degree at HIT and LiU

37

By extracting the analysis report and performing an automatic rating on the

severity of each rule violation, the next step can be executed. The issues are also

presented in the web interface of the SonarQube server. The severity levels are divided

into five categories [11], where Blocker is the most severe type of issue:

 Blocker – bug likely to affect the performance of the application.

 Critical – bug that is not as likely to occur which will influence the behavio r

of the application or an issue, which characterizes a security weakness.

 Major – quality weakness that may have significant impact on the developer

productivity.

 Minor – quality weakness that may have a slight impact on the developer

productivity.

 Info – a finding that is not a bug nor a quality flaw, simply useful information.

Once the issues have been presented in the web interface, the manua l

classification may be initiated. This phase consists of determining whether the found

issues should be resolved or not by marking them as true or false positive.

Figure 4-1: Flow diagram illustrating the evaluation method.

However, as stated in the requirements, the issues will be classified using anothe r

scale in this work – ranked as Blocker or Major.

 Blocker – critical issue or bug that needs to be fixed before, will fail the

build.

 Major – potential issue or anomaly that should be dealt with. Major-ranked

issues will not block the build.

If the issue is considered not to be a defect, it will be deactivated.

4.4 Brief summary

This chapter has specified the design and development choices that have been

made during the creation of this system. Each of the components and plugins are briefly

introduced in order to allow the recreation of this project for interested peers. The

evaluation approach is also defined in this chapter to describe the process that will be

used to determine the performance of this system.

 Thesis for Master’s Degree at HIT and LiU

38

Chapter 5 Case Study

This chapter is designated for the case study, which was performed at Ida Infront

AB in Linköping, Sweden. It will present the methodology of the case study in addition

to the results that were found from the data collection techniques. The case study

originates from RQ3 and involves investigating how a continuous inspect ion

environment should be integrated into a software development process. What aspects

of the introduction which are especially important to keep in mind, and what

expectations the developers may have for this new entity in the development process.

As the given code base was huge, in order to be able to go into further detail, the

author was required to decrease the scope of the analyzed code base. This was

performed by, in collaboration with the author’s superviso r and manager, selecting a

package that would be interesting to investigate further. The package that was chosen

was Objectbase.

5.1 Objectbase

This package consists of 89,756 lines of code and contains code that has been in

development since the year 2004, implying that this package may contain legacy code.

As most of the other content in iipax, it is mainly written in Java. The functionality

implemented in Objectbase is very similar to an object-relational mapping, i.e. the

technique to convert data between incompatible type systems in object-oriented

programming languages by creating a virtual object database [49]. As compared with

alternative popular database products, e.g. SQL DBMS, which can only store and

manipulate scalar values organized in tables [49].

5.2 Data Collection Techniques

The initial step of collecting material for the case study was to have discussions ,

to investigate if and how the static analysis processes are performed. This included

having conversations with the author’s supervisor and other members of the team to

gain a sufficient understanding of the processes in this team.

To be confident that the author had interpreted and translated each interviewee

correctly, since each interview was performed in Swedish, the collected material from

each interview was validated. The validation was executed by summarizing the

 Thesis for Master’s Degree at HIT and LiU

39

contents of the interview and sending this material to each interviewee that was

questioned, to give feedback and comments whether their statements were correctly

interpreted.

5.2.1 Interviews

Once the author had gained an initial understanding of the level of knowledge and

to what extent static code analysis is used today – he consulted his supervisor and

manager to discuss what employees would be suitable to interview. The criteria s’ for

the interviewees were flexible, stating that they should have been involved in

implementing the code base that the author would analyze – qualifying a number of

developers to be interviewed at the internship company. Once three developers had

been recommended for interviews, they were contacted to ask if they would be

interested to participate in this study. Fortunately, all recommended interviewees were

able to attain the interview and two hours were dedicated for each interview. The

interviewees were all male, system developers at the company who were working in

the same team.

The interviews contained a simplistic type of manual code inspection, which was

a difficult procedure to estimate, since it was dependent on the individual and the case,

resulting in the creation of a large number of code samples that could be used during

the interviews. 32 code samples were constructed that could be used as interview

material, giving the opportunity to perform as many cases as possible during two hours,

although all cases that were discussed and were used to draw conclusions from, had to

be introduced to all three interviewees.

The interview plan was to present each case to the interviewee and ask him to

perform a code inspection that is normally performed once another developer has

committed and created a pull request to contribute to the code base. This way the author

would be able to compare what is found during a manual code inspection and what a

tool based code inspection could find.

The tools available to the interviewees during their code inspection were very

simplistic – merely a piece of paper with the code including file name and file path.

This humble setup was intended to allow the author to observe the interviewee during

the inspection process thoroughly, since the interviewee would be very exposed

without the tools available in an integrated development environment. Once the

interviewee had been given each case, the author waited and noted the reactions and

 Thesis for Master’s Degree at HIT and LiU

40

stated thoughts by the interviewee, since he had been asked to describe his thoughts

during the interview to ease for the authors note taking.

When the interviewee was satisfied with the inspection, he could state the

anomalies he had found during the inspection, which was noted by the author. Then,

the author presented what anomalies were found by the tool SonarQube during the

code analysis that was made before the interviews. Next, the interviewee was asked

what he thought of these anomalies found by the tool. Whether he agreed, thus making

the anomaly a true positive, or disagreed, making the anomaly a false positive. If the

interviewee did not comprehend the issue, by asking about the problem, the author

described the problem at hand using the rule description provided by the SonarQube

interface, in order to create an as realistic setting as possible. Regardless what the

interviewee thought of the anomaly, they were also questioned about the severity of

the rule, i.e. whether the anomaly should be a

i. Blocker – very severe issue and will cause the build to fail,

ii. Major – indication of code that should be changed but is not critical or

iii. Nothing – a pattern that unnecessary or will not improve the quality of the

code.

In addition to this severity rating, the interviewee was also asked to speculate

whether the rule was applicable in other contexts, in order to gather as much

information as possible about each possible issue and related rule. During each

interview, there were also final questions about the interviewee’s code inspect ion

approach. The final questions involved the interviewee describing how he studied the

code and what properties were investigated of each case. These questions were

expressed using semi-structured questions, as defined by Merton et al. [50].

5.3 Cases

To introduce each case that was treated during all of the interviews, this section

will describe the topic of each case and issue to give the reader a comprehension of

what was this case study included.

As described in previous sections, the author initially constructed 32 interv iew

cases since the time that it takes developers to execute a code inspection was, according

to the author, difficult to estimate. Thus, the author constructed a large number using

the motivation that it is better to prepare too many cases compared to constructing a

too small number. The samples were composed using the mentality that high severity

 Thesis for Master’s Degree at HIT and LiU

41

in combination with high frequency of occurrence were the most important cases to

investigate whether they were accurate or not. The resulting cases that will be

presented in this section are the same cases that have been the source to the conclusions,

which will be mentioned later in this chapter. Moreover, the rules that were affected

by this case study will be described.

5.3.1 Rules

The relationship between each case and issue in this case study may be observed

in Table 5-1, in addition to the code snippet that SonarQube detects as the issue. The

intention of inserting these rather small code snippets is to introduce the context of the

found issue. By combining the information in Table 5-1 with Table 5-2 give detailed

data of what rule is related to what issue may be obtained. Each of the rules origina tes

from the rule set of SonarQube and of the ones that were originally configured and

kept during the rule investigation performed by the author in collaboration with his

supervisor described in Section 1.6.3.

The first rule R1, stated in Table 5-2, endorses the preservation of the origina l

caught exception by logging the original exceptions message and stack trace,

alternatively passing it forward [48]. This rule was highest representative among the

issues and rules since it was also the most frequent of the findings in the analysis of

the code base from start, thus making it captivating to investigate whether it was an

applicable rule or not.

The following rule, R2, checks whether any of the deprecated classes of the Java

API are being used, such as Vector, HashTable, Stack or StringBuffer. The

recommended alternative is to use ArrayList, Deque, HashMap or StringBuilder,

respectively. These classes were made synchronized in order to provide thread-safe ty,

however, synchronization has a significant negative impact on performance, even

when using these classes from a single thread [48]. This rule was interesting to include

for two major reasons, it was the second most frequent violated rule among the rules

and the fact that Objectbase contains a quite large amount of legacy code, making this

type of property interesting to investigate since this rule suggest replacing old Java

API classes with different, newer classes.

The next rule R3 is rather trivial, it states how uncommented code should not be

present in the committed code base.

 Thesis for Master’s Degree at HIT and LiU

42

Moreover, rule R4 is violated when conditional statements are found to be

unconditionally true or false, this would result in the code being always or never

executed, either way is most probably not what the developer of this code intended

[48].

Rule R5 is intended to track either forgotten or overlooked TODO-tags in the

code. While this is not an error per se, it is not the intended use of TODO-tags [48].

Additionally, R6 tracks the use of Throwable.printStackTrace(…) and

recommends the replacement of Loggers, due to two major advantages, Loggers

enables the users to easy retrieve the logs, and the format of the log messages remain

uniform [48].

Another essential rule that is included is R7, declaring that a reference to null

should never be dereferenced or accessed, since this will invoke a

NullPointerException [48]. The consequences of such an exception would, in the

best case, result in abrupt program termination, and in the worst case, could result in

debugging information being exposed [48].

Next, R8 defines the prohibition of returning, breaking etc. from a finally-block

since it would suppress the propagation of any unhandled Throwable that was thrown

in the preceding try- or catch-block [48].

Additionally, R9 outlines the exploration of if/else if-statements that have the

same conditions that could lead to dead code [48]. This issue is likely to occur when

copy/pasting code and might, in the worst case scenario, lead to unexpected behavio r

in the program, while in the best case it would simply induces dead code [48]. Equally

important is R10 that detects what is referred to as dead stores, which may be

alternatively described as useless assignments i.e. assign a value to a variable followed

by an additional assignment, resulting in the first value never to be read [48].

The final rule, R11, defines the maximum number of cyclomatic complexity for

each method using the motivation that complex code may perform poorly and is far

more difficult to understand and maintain [48]. The default value for this rule is the

cyclomatic complexity of 10, which has been applied in this case study.

 Thesis for Master’s Degree at HIT and LiU

43

Table 5-1: Table containing the cases with code that SonarQube found to be issues in a rather

narrow scope.

Case Issue Code

1
1 catch (ConstraintViolationRuntimeException e) {…}

2 catch (ObjectbaseOperationException f) {…}

2
3 private void toStringBuffer(StringBuffer sb){…}

4 catch (IllegalStateException e) { sb.append("<not set>"); }

3 5 //sb.append(" (objectid BIGINT)") PRIMARY KEY)");

4 6 if (tx != null){…}

5 7 // TODO Auto-generated catch block

5 8 e1.printStackTrace();

6 9 plugin.setPartition(partition);

7 10
throw new CommandFailureException("Unable to close and

unlock!");

8 11 else if (tableInfo.isWideTable())

9 12 String fileTable = null;

10 13 public void onInstallation(){…}

Table 5-2: Table briefly stating the relationship between each issue and each rule.

Issue(s) Rule# Rule

1,2,4 R1 Exception handlers should preserve the original exception.

3 R2
Synchronized classes Vector, Hashtable, Stack and

StringBuffer should not be used.

5 R3 Sections of code should not be "commented out".

6 R4
Conditions should not unconditionally evaluate to "TRUE" or

to "FALSE".

7 R5 "TODO" tags should be handled.

8 R6 Throwable.printStackTrace(...) should not be called.

9 R7 Null pointers should not be dereferenced.

10 R8 "return" statements should not occur in "finally" blocks.

11 R9
Related "if/else if" statements should not have the same

condition.

12 R10 Dead stores should be removed.

13 R11 Methods should not be too complex.

 Thesis for Master’s Degree at HIT and LiU

44

5.4 Results

Three interviews were held and the resulting number of cases that were dealt with

was 10, containing 13 issues and involving 11 code rules. The personal development

experience among the interviewees spanned between 20-30 years. The professiona l

time span that the interviewees had been involved in development in the indus try

spanned between 11-27 years. None of the interviewees had used static code analys is

tools frequently, other than minor uses within their team. All of the interviewees had

a positive attitude to the concept of using static code analysis tools as a supportive tool

in code inspection in addition to assist the developer to detect defects in the code.

Furthermore, the interviewees were asked to determine the classification and ranking

of the issues detected by SonarQube.

5.4.1 Issue Determination

Once the interviewees were satisfied reviewing the given case, they were given

the opportunity to present their findings. Once they had presented their findings, the

author stated what SonarQube had found to be defects in that specific case and giving

the interviewee the opportunity to classify and rank the stated defect. If the interviewee

had found the same defect as SonarQube, the finding value was set to Found (F),

otherwise Not Found (NF).

 Thesis for Master’s Degree at HIT and LiU

45

 Classification: Each interviewee was given the choice whether to classify the

detected alert as either a TP or FP, resulting in evident results stating whether they

agree to the issue at hand. The results from the interviews may be observed in Table

5-3 and as the reader may note, interviewee A and interviewee B consider all found

issues to be TPs. Compared to interviewee C that considers all issues except 1, 4 and

10 to be TPs.

Table 5-3: Classification table.

Issue Interviewee A Interviewee B Interviewee C

1 TP TP FP

2 TP TP TP

3 TP TP TP

4 TP TP FP

5 TP TP TP

6 TP TP TP

7 TP TP TP

8 TP TP TP

9 TP TP TP

10 TP TP FP

11 TP TP TP

12 TP TP TP

13 TP TP TP

 Ranking: Each interviewee was also asked to rank the rule, based on the issue

and the properties of the rule to set a recommendation of how severe these type of

issues are. The interviewee were able to choose between Blocker (B), Major (W) and

to deactivate the rule (X) where the letter in parenthesis presents the letter that

represents the rank in Table 5-4.

 Thesis for Master’s Degree at HIT and LiU

46

Table 5-4: Ranking table.

Issue Interviewee A Interviewee B Interviewee C

1 W W W

2 W W W

3 W W B

4 W W X

5 W W W

6 W W W

7 B B W

8 B B B

9 B B B

10 W B W

11 B B B

12 W W B

13 W W W

By studying Table 5-4, there are several remarks to note:

 The interviewees agree on eight of the 13 issue what rank the rule should have.

 Only one occurrence of the rules from all three interviewees that was ranked

as X, i.e. to deactivate the rule.

What should be clarified is that the occurrence of when the interviewee has stated

that he considers the issue to be a FP in addition to claiming that a rule is either a

Blocker or Major; this combination may at first glance appear strange. However, what

makes this combination possible is the fact that the interviewee may consider the

specific occurrence of the rule to be a FP while the interviewee considers the rule to

be of valid content and that it should be applied.

Another essential aspect of these results are whether the issues that were detected

by SonarQube were also discovered by the interviewees.

Finding: As SonarQube would be used as a supportive tool to find potential defects

in the code, SonarQube should detect patterns that may not be detected by

developers. As may be seen in

Table 5-5, four of the 13 issues were found by all interviewees, whereas two of the

issues were not detected by any of the interviewees.

 Thesis for Master’s Degree at HIT and LiU

47

Table 5-5: Findings table.

Issue Interviewee A Interviewee B Interviewee C

1 NF F NF

2 NF F F

3 F NF NF

4 F F NF

5 NF F NF

6 F NF NF

7 F F F

8 F F F

9 F F F

10 NF NF NF

11 F F F

12 F F NF

13 NF NF NF

Next, results from the final questions with the interviewees will be presented fo r

each interviewee.

5.4.2 Final Questions

Interviewee A considers the idea of static code analysis tools to be useful, while

the difficulties to define and rank the issues in categories is obvious. The interviewee

has merely used static code analysis within the team. He also considers that the

warnings detected by static code analysis tools have to be able to be switch off by

using annotations, since there will always be cases where a certain rule is applicab le

to 90% to all cases but has to be able to be suppressed if required. The fact that these

warnings have to be handled in a certain way in order to keep the development

functional is concerning the interviewee. The interviewee thinks that it would be very

useful if the static code analysis tools would assist the developers in finding problems

in the functional part of the code to verify that the code is working as intended. He also

states how interesting it would be if the code analysis tool could assist when taking

design and architecture decisions as well. After this interviewee had performed the

interview, he remained to have a positive attitude for static code analysis tools since

he realized the potential in these tools.

 Thesis for Master’s Degree at HIT and LiU

48

Interviewee B has used SonarQube for a short period of time, he experienced that

there were a lot of noise when using it to analyze the source code. During his

experimentation with SonarQube, he found that it was difficult to integrate with the

build system. He has also used FindBugs to a small extent. The interviewee thinks that

the feature in SonarQube that provides the historical aspect of the code analysis is

interesting, since it provides a useful view to monitor the code modifications over time

to prevent continuously making the code worse. Interviewee B also considers that the

focus of the analysis should be on the new code to be added to the code base, since

there are simply not any resources to spend on the old code that already does as it was

intended. The interviewee used the parable of a black box that delivers the required

output from the required input to represent the legacy code. He also considers the use

of static code analysis to be useful when applied in the development process.

Interviewee C has also used static code analysis tools in his team but not in any

large extent and he is positive towards static code analysis. The interviewee also states

how several cases that have been discussed during the interview, had not been

considered detectable by static code analysis tools and how he has learned that severa l

aspects that he had not thought could be inspected, is actually detectable.

 Thesis for Master’s Degree at HIT and LiU

49

Chapter 6 Resulting System and Evaluation

Once the case study has been performed in addition to the implementation being

completed, the author will present and describe the results of the project. The result ing

system consists of Bitbucket, Jenkins and the most significant entity, SonarQube. The

system fulfills the specified requirements stated in Chapter 3 and features

functionalities such as configured quality gates, leaks, build breaking, pull request

view and suppression of false positives. The following sections will describe these

functionalities as well as the results from the research by the author that define

approaches to configure and design such a system. In addition to these features, the

resulting system is configured according to the results produced from the case study.

6.1 Rules

In order to construct the rules in SonarQube to fit the setting of the internship

company’s setting, three phases were conducted to perform the configuration: an init ia l

investigation, investigation in collaboration with the supervisor and alert oracle

configuration. The results from the initial investigation will not be presented since it

was intended to educate the author of what rules existed and the capabilities of the

environment. The result of the rule configuration is stored in a Quality profile named

iipax-product Profile, where a Quality profile is a set of rules that may be applied to

several projects in the same SonarQube instance. Currently, there are no other sources

of quality profiles other than profiles provided by SonarQube [51].

Furthermore, the results from the subsequent investigations will be presented in

the following sections. The results that will be described will be referred to in the

succeeding sections are based on the same data used in the case study in Chapter 5, i.e.

the package Objectbase.

6.1.1 Supervised Configuration

As the default setting of SonarQube applied the alert ranking described in Section

4.3, which differed from the requested ranking. One of the tasks during this phase was

to rank or deactivate each rule to the ranking requested by the internship company, i.e.

as Blocker or Major in addition to deactivating the rule due to its inapplicability to the

code base. Table 6-1 presents the results from the rule investigation, seven rules ranked

 Thesis for Master’s Degree at HIT and LiU

50

as Blockers, 25 rules ranked as Major and 15 deactivated rules. The raw data for each

rule, including the rule id to provide traceability to SonarQube’s rule database, may be

found in Appendix A. The reason for ranking these rules as described was based on

their applicability in this context, i.e. for the package Objectbase. Although that

package was used as a representative sample the entire code base, named iipax product,

it was carefully selected to be able to demonstrate the properties of the whole project.

The incentive for ranking these rules as described was to minimize the number of FPs,

in addition to adapt the set of rules according to certain properties since Objectbase

consist of a vast amount of legacy code. Furthermore, some properties that are

recommended by the SonarQube tool are not applicable in the context of this instance

of code, since the legacy code contains the use of many old Java classes that have been

replaced by new classes with better performance, but not necessarily making the

current code faulty, but improvable. Another example is the rule stating how “Values

passed to SQL commands should be sanitized”, which had the default ranking Critica l

but was deactivated since, according to the author’s supervisor, there were a vast

amount of occurrences in the code that were not able to do so. If this rule had been

kept, a large number of false positives would have been produced. An additiona l

example to exemplify what type of discussions occurred during this investigation was

the rule stating how “Fields in a "Serializable" class should either be transient or

serializable”. Similar reasoning was used when altering the ranking of this rule from

Critical to Deactivated. That it would produce a large number of positives since there

are a large number of occurrences in the code base that violate this rule, that is not

relevant to check in this partition of the code base, since the effects of this particula r

issue would not be severe, according to the author’s supervisor.

 Thesis for Master’s Degree at HIT and LiU

51

Table 6-1: Results from the supervisor rule investigation.

Default Ranking Current Ranking Nr

Info Blocker 1

Minor Deactivated 8

Minor Major 15

Critical Deactivated 5

Critical Major 8

Critical Blocker 4

Major Deactivated 2

Major Blocker 2

Blocker Major 2

The single rule that was modified from Info to Blocker was the rule regard ing

TODO-tags, named “"TODO" tags should be handled”, describing how TODO-tags

should not exist in the code since, conventionally, TODO-tags are intended for

reminding the developer, who wrote the TODO-tag, to implement further functionality

or edit certain properties. However, TODO-tags should not remain in the production

version of the code, according to the author’s supervisor. This characteristic was

deemed especially important since a TODO-tag indicates that the code is not comple te ,

thus altering the ranking from Info to Blocker.

Prior to this investigation the default mode for all rules were set which resulted

in a large number of issues being produced, as shown in Table 6-2. Once the rules had

been configured in SonarQube, the results appeared in the form of the total number of

detected issues being reduced by 834.

Table 6-2: The number of issues prior to

the first investigation.

Ranking #

Blocker 112

Critical 746

Major 3046

Minor 1110

Info 30

Table 6-3: The number of issues past to the

first investigation.

Ranking #

Blocker 605

Major 3605

Next, the results from the case study described in Chapter 5 will be used to

perform the ranking of the rules.

 Thesis for Master’s Degree at HIT and LiU

52

6.1.2 Alert Oracle Configuration

The data will be used to modify the ranking of the rules is found in Table 5-4, i.e.

the ranking data from the interviews, where the interviewees act as alert oracles. The

summarized results may be found in Table 6-4. Since issue 1, 2 and 4 involve the same

rule and the result form the interviews are of equal results for all occurrences except

one where it is marked as ‘X’, the author deems this rule to be ranked as Major by

adhering to the majority of the interviewees’ judgement. In the event of the

interviewees stating different rankings on the same issue, the ranking that has a

majority has been chosen, as may be seen in the column ‘Majority agreed’ .

Additionally, the column ‘Complete agreement’ states the number of rules that all three

interviewees completely agreed on.

Table 6-4: Summarized results from the case study.

Ranking Complete agreement Majority agreed

(B) Blocker 3 1

(W) Major 4 3

(X) Deactivated 0 0

In turn, this data results in the rules being configured to the corresponding ranking

that may be found in Table 6-5.

Table 6-5: Ranking for each specific rule.

Rule Name Ranking

Exception handlers should preserve the original exception. W

Synchronized classes Vector, Hashtable, Stack and StringBuffer

should not be used.

W

Sections of code should not be "commented out". W

Conditions should not unconditionally evaluate to "TRUE" or to

"FALSE".

W

"TODO" tags should be handled. B

Throwable.printStackTrace(...) should not be called. B

Null pointers should not be dereferenced. B

"return" statements should not occur in "finally" blocks. W

Related "if/else if" statements should not have the same condition. B

Dead stores should be removed. W

Methods should not be too complex. W

 Thesis for Master’s Degree at HIT and LiU

53

As a result, the number of detected issues has changed accordingly to the result ing

numbers presented by Table 6-6. The change involves 547 issues to be ranked as

Majors instead of Blockers.

Table 6-6: The resulting number of issues of past the alert oracle configuration.

Ranking #

Blocker 58

Major 4,152

Next, the introduction of quality gates, including their usages.

6.2 Quality Gates

Quality gates are defined by sets of Boolean conditions that are defined by

measure thresholds. If these conditions are evaluated to false, the gate will be marked

as failed. Examples of these conditions are [11]:

 No new Blocker issues.

 The number of Major issues are less than 100.

Conditions may be based on metrics from categories such as complexity,

documentation, duplication, issues, management, size, technical debt and tests. Thus,

quality gates are able to set thresholds for almost any property of the code base.

When setting the threshold, it is also possible to mark a warning threshold, which

will generate a warning when the value reaches this, in addition to the error thresho ld

that will violate the quality gate if exceeded [11]. It may seem like an appropriate

setting to create one quality gate for all projects. Though, since numerous quality gates

may be constructed and configured accordingly, the gates should be configured to the

appropriate extent of each project [11]. The default quality gate ‘SonarQube way’ is

provided and activated by default.

Though, as of writing this report, the SonarQube report processing on the

SonarQube server is not able to process two conditions defined for the same metric in

the quality gate. This error is identified as the issue SONAR-7276 in the public

repository of SonarQube3 and its estimated release date is in June 3, 2016.

A highly useful feature in this context is the leak property, i.e. to compare the

current value of a property with a previous version of the software.

3 Accessible at https://jira.sonarsource.com/browse/SONAR-7276 .

 Thesis for Master’s Degree at HIT and LiU

54

6.3 Leaks

Leaks may be assimilated to the choice of performing a quick fix or find the

source of the issue. The SonarQube platform attempts to solve the analogous problems

in software development where developers are not aware of what measures are

changing as they perform their modifications [11]. By combining this leak with the

previously described Quality gates, the possibility to fail your quality gate if your code

base had a constant increase in e.g. complexity or lines of code.

The leak period, i.e. the period to be compared with the current status of the code

– may be set in various ways [11]:

 Number of days before analysis. Resulting in the selection of the firs t

available snapshot in that time range.

 A specific date. Also resulting in the selection of the first availab le

snapshot in that time range.

 ‘previous_analysis’ to compare to previous analysis.

 ‘previous_version’ to compare to the previous version in the project

history.

 A specific version, e.g. ‘1.2’ or ‘BASELINE’.

The concept of leaks may also be applied in other contexts, such as affecting your

development process if certain conditions are not passed.

6.4 Breaking the Build

As requested and defined in FR3, that if not the required number of blocker and

major issues are met, the build should be marked as failed in Jenkins. This is made

possible by the installation and configuration of the Build breaker plugin [52].

Build breaker will mark the build as failed if the project either fails its quality gate or

uses a forbidden configuration. The control whether the build will be passed or failed

is performed by the plugin by communicating to Jenkins that the SonarQube server is

currently analyzing that specific build and will poll again in a fixed period of time

(which may be configured). Thus, this plugin does not restrict other builds from being

sent to the same SonarQube server, allowing several builds to be processed. The plugin

uses the SonarQube web service API to first find the analysis id and depending on the

status, either, break the build or wait a pre-set amount of time (assuming the build

status is pending or in progress) [52]. This step is repeated until either the build is

marked as successful, failed or the threshold of maximum query attempts is exceeded,

 Thesis for Master’s Degree at HIT and LiU

55

resulting in a failed build. In the documentation of SonarQube, these parameters are

referred to as

 sonar.buildbreaker.queryInterval and

 sonar.buildbreaker.queryMaxAttempts.

These may be altered in the Admin-settings of the SonarQube server. By install ing

this plugin into SonarQube, the build may be failed in the necessary circumstances. It

may be useful to increase the query interval or the maximum query attempts when

analyzing larger projects. For the entire iipax product code base, the maximum query

attempts may be set to 90 to be sufficient. This value was determined by initially using

the default value, resulting in not being appropriate since the analysis took too long to

execute. Resulting in the experimental increase of maximum query attempts until the

build was successful.

Criticism for breaking the build when using SonarQube has been described by the

creators of SonarQube on their blog [53] and state how the use of Quality gates

(without breaking the build) is recommended. Their arguments for this

recommendation is the new layout of SonarQube (since SonarQube 5.2) that separates

the analyzer and the database causing the analyzer to scan the code and the server-s ide

analyzing the generated results. This is done separately without any communicat ion

between the server and analyzer except the polling to control whether the analysis is

completed [53]. What the Build breaker plugin does, is to recreate this communication,

resulting in the attempted transformation of an asynchronous continuous integrat ion

job into a synchronous job. An additional motivation to apply SonarQube’s approach

would be to minimize the number of ways the Jenkins server may break the build since

there already are a high number of reasons why the Jenkins build may fail [53].

Moreover, the process of keeping track of several branches and being able to

access the analysis data in other places than the SonarQube interface will be presented .

6.5 Pull Request View

In order to make the development and integration work with the introduced

continuous inspection the plugin Sonar for Bitbucket Server [43] was installed in the

Bitbucket server. Sonar for Bitbucket allows the inspection of SonarQube’s metric s

and hunting services in the Bitbucket server pull request-view in addition to the

opportunity to view code violations and duplicate code lines directly in the differentia l

view [43]. The information flow may be visualized as seen in Figure 6-1, where the

 Thesis for Master’s Degree at HIT and LiU

56

Jenkins server still is included in the setup but since it is not relevant in this scenario ,

it is ignored in the figure and in this contextual explanation.

The pull request view applies the information gathered from SonarQube’s quality

gates and controls whether the to-be-merged code contains any issues detected by

SonarQube, including whether these issues violate the quality gates, such as if there

are any blocker issues introduced, which will, using this configuration, fail the build.

Figure 6-1: Figure representing the pull request view.

For instance, the set quality profile contains the Boolean condition:

Blocker issues value is greater than 0 (X)

Where (X) implies that, the metric measured is an error threshold, resulting in a

failed build if this condition is not met, illustrated in Figure 6-2.

 Thesis for Master’s Degree at HIT and LiU

57

Figure 6-2: Pull request-view of the branch develop that has failed the quality gate. Containing

demonstrative data, not related to previous mentioned numbers.

The alternative approach would have been to mark it as (!) which would instead

have resulted in a warning instead of a failed build, e.g.:

Blocker issues value is greater than 0 (!)

Which would result in the outcome presented by Figure 6-3.

Figure 6-3: Pull request-view of the branch develop that passed the quality gate, with warnings.

Containing demonstrative data, not related to previous mentioned numbers.

Equally important to viewing the pull request view is the act of suppressing the

alerts that are false, i.e. false positives.

6.6 Suppressing False Positives

The act of suppressing alerts is vital to a tool’s appliance since one of the major

reasons the use of static code analysis tools are not applied is the high number of false

positives [29]. Thus the procedure of marking alerts as false positive has to be availab le

and be within close range during development, otherwise the threat to the tool being

ignored is evident, due to the common overload for the developers [29]. In SonarQube,

suppressing false positives may be done in various ways; the following are possible

commands to use to suppress alerts in code written in Java:

 Thesis for Master’s Degree at HIT and LiU

58

(1) //NOSONAR will suppress the warnings on that specific line.

(2) @SuppressWarning(“RULEID”) will suppress one rule or

@SuppressWarning({“RULEID:1”},{“RULEID:2”}) to suppress several rules

for a method, class, variable declaration or paramete rs .

@SuppressWarning(“all”) may also be used to suppress all rules the above-

mentioned context. This procedure of suppressing false positives is not possible

to perform at file level, consequently, if a file is to be ignored entirely, the

options of excluding the entire file from analysis should be considered which

might both be performed in the SonarQube graphical interface and in the

sonar-project.properties- file, by using the property

sonar.exclusions=path/to/file/File.java.

(3) Mark the issue as ‘False Positive’ in the SonarQube graphical user interface .

This approach will not be transferred between branches, thus making option (1)

and (2) the more preferable options.

What the author has found during his experimentation and testing is that at least

one rule is not possible to suppress. That rule is ‘Source files should not have any

duplicated blocks’ that detects and notes duplicate blocks of code in the same file or

even in different files. Currently, this rule is not possible to suppress, however, it is

planned to be fixed in SonarQube version 5.6 that is due to be released in June, 2016

[54].

Next, the historical perspective will be introduced how it may be used to find

defects in the code.

6.7 Historical and Trend Information

The ability to track the measurements over time is one of the major benefits of

SonarQube since it offers the ability to monitor the trend of the code base [22]. The

opportunity to measure the trends of various metrics of your code base should not be

overlooked. There are several features available in SonarQube to perform this type of

metric collection, firstly, in the project space view where the key metric is plotted in a

time line graph to illustrate the rate that the metric resides in. An example of this

feature is visible in Figure 6-4 where the duplication and lines of code metric are

plotted. The yellow-shaded partition of Figure 6-4 represents the leak-values, i.e. the

difference between the version of the code to be compared with (the previous version

 Thesis for Master’s Degree at HIT and LiU

59

is the default choice) and the current version. In this scenario, there have not been any

new duplicate code introduced and two new lines of code has been added.

Figure 6-4: Example image of timelines of duplications and lines of code metrics.

Secondly, the time line widget allows for tracking of several metrics combined

over time, and by hovering the mouse pointer over the graph, the version number, in

this case 1.1, will be presented below the date.

Figure 6-5: Time line graph containing three metrics.

Lastly, to track the individual progression of each metric combined with the

comparison of the previous versions the history table feature is available [11]. It also

plots the progression of each metric to allow rapid monitoring to detect if the metric

has only increased for all previous versions.

Figure 6-6: History table.

The last two of these features are customizable widgets that may be configured to

display the appropriate information and scope for each project. These listed features

are features that are required to provide the needed traceability to satisfy the goals of

advanced code inspection and create the conditions to improve the code continuous ly

[5]. Another essential property in quality measurement systems is the ability to monito r

the trend of the analysis, for high- level data of entire projects in addition to detailed

 Thesis for Master’s Degree at HIT and LiU

60

metrics for functions and methods. This feedback, in the code implementation and

inspection processes, will provide the opportunity to detect and perform furthe r

refinements of the code in order to maintain the code quality.

Next, the author will describe the data flow that occurs during system usage.

6.8 Key System Flow Charts

The implemented system is intended to replicate the development process at the

internship company and provide a demonstrative example of how the setup may

function. The intention of this example is to provide the maximum support for

developers to monitor the code base in as many phases of the development as possible .

The data flow diagram, which can be seen in Figure 6-7, represents the environment

implemented by the author. The circles represent processes and the boxes represent

entities, which in this context are the three server entities : Bitbucket, Jenkins and

SonarQube. The initial step of this data flow diagram is that the code is modified ,

followed by a commit and push to the Bitbucket server. Next, a build is scheduled ,

Jenkins retrieves the code from the Bitbucket server and builds the project. If the

project is successfully built (do note that no analysis has been run on the code yet)

Jenkins calls the SonarQube runner that analyzes the code, generates and compresses

an analysis report. The report is uploaded to the SonarQube server that extracts and

computes the quality gate measures. Depending on the result of the quality gate

measures, the build will be failed or successful. This is possible due to the Build

breaker plugin in SonarQube that sets Jenkins in a state of polling the SonarQube

server for a status regarding the quality gate measurement. When the timer in this

plugin expires, or Jenkins receives a response whether the gate is passed or failed, the

build will be marked either as failed or successful.

 Thesis for Master’s Degree at HIT and LiU

61

Figure 6-7: Data flow diagram.

Furthermore, to answer the research questions the author has performed an

extensive study by reviewing existing research and online content. The results of this

investigation will be presented in the following section.

6.9 Analysis Results

This section will describe the content found by the author that will contribute to

answering the research questions to investigate how detects may be found by using

static code analysis and continuous inspection.

 Thesis for Master’s Degree at HIT and LiU

62

6.9.1 Complexity and Duplication

As described in Section 2.1.1, that introduces the concept of using complexity as

a metric to measure the understandability of software. The recommended threshold for

the cyclomatic complexity was stated to be 10 [18], as motivated in Section 2.1.1.

Equally important is the duplicated code measurement that measures the amount of

redundant code, since code that is identical should not be written in more than one

location, instead it should be generalized to be reused [55].

During the author’s research he also found other approaches to deal with

complexity. One additional approach is constructed by Alves et al. [56] that describes

and demonstrates a methodology to derive software metric thresholds form a set of

systems. This approach may be summarized as to first analyze the statistica l

distributions of the raw metrics among the different systems and then determine the

thresholds based on the variability between the systems, resulting in the opportunity

to identify the rarest cases that are of higher risk [56].

In turn, this methodology was applied by Baggen et al. that describe the approach

created by the Software Improvement Group(SIG) that is intended to be used to

improve the maintainability of software [55]. The defined methodology uses a

standardized measurement model that is based on the International Organization for

Standardization(ISO)/International Electrotechnical Commission(IEC) 9126

definition of maintainability and source code metrics [55]. The benchmark repository,

i.e. the origin of the quality model, contains code from 45 different computer languages

with Java, C, COBOL, C#, C++ and ABAP as the most main contributors, in terms of

lines of code.

The result of the methodology is a layered quality model with the intention of

measuring and rating the technical quality of a software system using the quality

characteristics of ISO/IEC 9126 [55]. In this quality model, detailed information about

source code measurements. are introduced for code duplications and cyclomatic

complexity. The presented results are found in Table 6-7 that contains the thresho ld

for code duplication. The left column defines the rating of the code duplication (the

larger number of stars defines a better quality) and the right column defines the

maximum number of percentage of code duplication that the code may have to be

classified as the corresponding rating.

 Thesis for Master’s Degree at HIT and LiU

63

Table 6-7: Code duplication in the entire system.

Rating Duplication

★★★★★ 3%

★★★★ 5%

★★★ 10%

★★ 20%

★ -

As seen in Table 6-7 that contains the threshold for code duplication where the

left column defines the rating of these (the larger number of stars defines a better

quality) and the right column defines the maximum number of percentage of code

duplication that the code may have to be classified as the corresponding rating. As

stated by Juergens et al. [57], strong evidence proves that inconsistent code clones

create a major source of faults. This signifies that cloning may be a substantial problem

during development and maintenance unless special caution is taken to track and

monitor the existing and emerging code clones. One more motivation to adapt the

supervision of code clones, is made by Rattan et al. [58] expresses the fact that if clones

are detected and removed in earlier phases of software development, maintenance costs

will be reduced in the delivered product. Although, properties of certain languages

may also prevent the efficiency of adapting code clone classification [58].

Furthermore, Baggen et al. [55] also defined thresholds for cyclomatic complex ity

in the scope of a code unit that may be defined as a unit that is the smallest mod ule

that may be tested individually, e.g. a Java method or a C function. The result ing

thresholds are found in Table 6-8, where the left column defines the cyclomatic

complexity quantity and the right column defines what risk category is at stake.

Table 6-8: Cyclomatic complexity risk categories for a code unit.

Cyclomatic complexity Risk category

1-10 Low risk

11-20 Moderate risk

21-50 High risk

>50 Very high risk

 Thesis for Master’s Degree at HIT and LiU

64

An important point made by Baggen et al. [55] is that metric thresholds could in

fact be determined by experts and knowledgeable peers, however, the act of calibrat ing

metrics against a large set of real-world systems has some advantages, such as:

(1) The process is more objective.

(2) The process may be executed almost automatically, thus allowing the easy

update of the metrics.

(3) Calibration is realistic since it is created to represent the entire spectrum of

quality achieved by real-world systems.

Hence, when introducing a metric that will be used to measure quality, it is

recommended to adhere to the above-mentioned methodology.

Moreover, as stated by Bouwers et al. [59] the use of software metrics are

convenient for developers and project managers. Bouwers et al. also concludes that it

is important to attach a meaning to each metric to clearly define the meaning and

purpose of having that metric, combined with averting from making the metric the goal.

The act of utilizing several metrics to track various aspects and dimension of your goal

is highly recommended, however, Bouwers et al. states the importance of not having

too many metrics to track simultaneously. The reason for this is to avoid demotivat ing

the team.

6.9.2 Design and Architecture

As research question RQ1 states, one of the aims of this study was to investiga te

how SonarQube can provide feedback on design and architecture of a code base. One

opportunity to receive feedback in this context is the rule ‘Cycles between packages

should be removed’ that detects cyclic dependencies among packages that affects the

maintainability of the modules that are related to these packages [48]. This rule logs a

violation on each source file that has an outgoing dependency that requires to be

eliminated to break the cycle.

Moreover, during the author’s investigation to attempt to use all possible

measures to discover all relevant functionalities in SonarQube he received a response

on a Stack Overflow post from G. Ann Campbell, one of the writers of the book

SonarQube in Action [22]. Campbell stated how the only rule she could think of, that

were applicable to the author’s desires, were the rule mentioned in the previous

paragraph [60]. Although, the author also found a rule in SonarQube, named

‘Inheritance tree of classes should not be too deep’, that detects the inheritance leve l

 Thesis for Master’s Degree at HIT and LiU

65

of classes and if the depth of inheritance exceeds the pre-set maximum parameter the

rule will mark the inheritance as a violation [48]. The default value of this paramete r

is five levels of inheritance. According to the rule description, a too deep inheritance

tree may cause very complex and unmaintainable source code, while inheritance

should not be avoided, it should not be overused either since it can be replaced by

composition in certain contexts [48].

Next, the author presents the results from the analysis in regards to continuous

inspection.

6.9.3 Continuous Inspection

As described in Section 2.3, there is currently no silver bullet to mitigate the

arising difficulty of managing increasingly difficult projects. However, continuous

inspection is close [5]. A reason why, is the opportunity to track and coordinate

software metrics for various context levels and certain thresholds while another is to

provide a centralized tool to coordinate the tracing and definition of code rules.

Moreover, instead of using merely snapshots to track the quality of the code base, the

continuous inspection approach provides the use of trend and history information that

allows the measurement of certain properties over time in addition to the comparison

between versions.

6.10 System Evaluation

This section will, using the results from the case study, describe the results of the

evaluation of SonarQube performed by the author. The evaluation was performed using

a subset of the internship company’s code base. For detailed information of the data

collection of the case study, the author refers to Chapter 5.

6.10.1 Alert Classification

As stated in Section 2.2.3, alerts may be classified as TP, FP, TN and FN to define

their correctness in the analysis. By applying the metrics defined by Zimmerman et al.

[31] the opportunity to evaluate the produced output from SonarQube. The metrics that

will be applied are precision, recall and accuracy, as defined in Section 2.2.3.1. Simila r

to the study performed by Heckman et al. [13], this results of this study will also focus

on what alerts are detected by the tools, instead of the potential issues that are not

detected.

 Thesis for Master’s Degree at HIT and LiU

66

Using the results from the case study, described in Section 5.4 the metrics may be

applied to the collected material. Since the alert oracle in this setting is actually three

interviewees, the author has conducted two versions of each metric to demonstrate the

variation when combining the results from each interviewee since each interviewee’s

output may not be equal to the other two interviewees’ .

Approach A consists of combining each classified alert into one response, e.g. if

two of the interviewees considered issue X to be a TP while the third interviewee

considered issue X to be a FP, approach A will consider the alert oracle to have deemed

issue X to be a TP. In comparison to approach B that will take all individual response

in to account, i.e. given the previous example the author would consider all responses ,

in this case resulting in two TPs and one FP.

 Precision: Given approach A, the precision 𝑝𝐴 may be calculated as:

𝑝𝐴 =
𝑇𝑃𝐶

𝑇𝑃𝐶 + 𝐹𝑃𝐶

=
13

13 + 0
= 1.00.

Resulting in the precision 𝑝𝐴 = 1.00, indicating that all detected alerts are defects.

In contrast to the calculation of 𝑝𝐵:

𝑝𝐵 =
𝑇𝑃𝐶

𝑇𝑃𝐶 + 𝐹𝑃𝐶

=
36

39 + 0
= 0.92.

𝑝𝐵 is, as expected, lower than 𝑝𝐴 . This result points to a far less accurate analys is,

even though still rather accurate. Next, the metric recall will be calculated.

 Recall: As the case with precision, the desired value for recall is also as close

to one as possible, since that would indicate that all found alerts are defects. The

calculation of recall follows:

𝑟 = 𝑟𝐴 = 𝑟𝐵 =
𝑇𝑃𝐶

𝑇𝑃𝐶 + 𝐹𝑁𝐶

=
39

39 + 0
= 1.00

The results indicate that all found anomalies are defects. However, the fact that

this study focuses on the detected anomalies, i.e. the anomalies detected by the tool,

the metrics’ 𝑇𝑁𝐶 and 𝐹𝑁𝐶 contribution becomes obliterated. Thus, the recall metric

should not be solely used to base any conclusion. Subsequently, the metric accuracy

will be calculated next.

 Thesis for Master’s Degree at HIT and LiU

67

 Accuracy: Similar to precision and recall, accuracy measures the property of

how well the model has classified the alerts and accurately measures the number of

correct classifications. Accuracy is calculated in the following expression:

𝑎𝐴 =
𝑇𝑃𝐶 + 𝐹𝑁𝐶

𝑇𝑃𝐶 + 𝑇𝑁𝐶 + 𝐹𝑃𝐶 + 𝐹𝑁𝐶

=
13 + 0

13 + 0 + 0 + 0
= 1.00.

𝑎𝐵 =
𝑇𝑃𝐶 + 𝐹𝑁𝐶

𝑇𝑃𝐶 + 𝑇𝑁𝐶 + 𝐹𝑃𝐶 + 𝐹𝑁𝐶

=
36 + 0

36 + 0 + 3 + 0
= 0.92.

The accuracy metric 𝑎 indicates that all classified alerts are anomalies. However,

the fact stated in previous section is also highly topical in this context since there are

several metrics that are not retrieved in this formula.

6.11 Brief Summary

As this chapter has shown, the resulting system possess many valuable features

and services that may be used to monitor and improve a code base. Comparing the

resulting system with the stated requirements in Chapter 3, the observant may notice

that all requirements are fulfilled. The resulting system is able to determine according

to the set conditions whether to pass or fail the build, in addition to viewing feedback

from the SonarQube server, in the pull request view. By combining these propertie s

with the ability to monitor the history and trend of the code base, the metric monitor ing

of the code base is very likely to be able to improve the quality of the code base.

 Thesis for Master’s Degree at HIT and LiU

68

Chapter 7 Discussion

In this chapter, the author will discuss the possible improvements of the chosen

method of approach and the resulting system. The discussions will revolve around what

phases of the project that should have been performed in another way, to achieve other

results, or to reschedule resources according to assignments in this project.

7.1 Relevance of the Resulting System for the Internship

Company

As described previously in this paper, current research states the importance of

having a maintainable software, to minimize the maintenance and refactoring expenses.

To achieve this in practice, a change has to be made in the development process. The

extent of this change depends on the goals determined by the actor. In this case, the

actor is the internship company and, as their goals of this modification is primarily to

detect defects in the code and to have supportive documentation to initiate design and

architecture refactoring; the modification would require adding an additiona l

component to their software development. To demonstrate how and what is needed to

be changed in the development process, the system that the author has construc ted

mimics their current development process setup, by having Bitbucket and Jenkins

included in the setup with the corresponding settings that is used by the internsh ip

company. The implemented system will act as a template for the internship company

when they will implement their own version of this continuous inspection platfo rm,

SonarQube. Together with this template, the research made by the author will support

the internship company to provide guidelines of how it should be used and what

properties that are important to apply during the development process to monitor and

measure the evolution of the code base. In detail, this report should guide the internsh ip

company to shape SonarQube in terms of what risk level to configure the cyclomatic

complexity rule to, in addition to configuring the rules of the entire rule database.

Next, the approaches taken including their result will be discussed and evalua ted

to highlight what could have been improved in this paper.

 Thesis for Master’s Degree at HIT and LiU

69

7.2 Method

 As in almost every project, there are aspects of the chosen approach to solve the

problem that would have been altered if the author had performed the same project

once more. This section is intended to highlight these aspects of the methods applied

in this project. First, the author will discuss the method applied implementation phase

followed by the method adapted in the implementation phase.

7.2.1 Implementation

The major entities in the implementations: Jenkins, Bitbucket and SonarQube ,

were not familiar to the author, making the installation and configuration more time

consuming than what it should have. During the initial phase of the project, the author

also investigated the use of Docker4 instead of a VirtualBox in order to make the

solution more portable and easier to set up. However, as the images for these three

components were deemed immature to use in this context, the author decided to

implement the use of a VirtualBox instead. The decision could have been settled sooner

in order to maximize the time available for the remaining phases of the project.

However, making this kind of decision rapidly could result in unwanted consequences ,

such as the platform being difficult to port or having other kinds of unwanted propertie s.

This is the motivation for taking the time to decide between these two approaches.

During the beginning of the implementation phase, the author strived towards

mimicking the actual development environment at the internship company to the

highest extent, by using their existing Jenkins and Bitbucket servers and hosting the

SonarQube server in a separate location. This approach ended up being unexecutab le ,

which the author did not discover until a large amount of implementation and testing

had been completed. The reason was that, as the network communication was

configured at the internship company, a server might not initiate communication to a

local machine, i.e. the Jenkins server were not able to communicate to the SonarQube

server to initiate an analysis. The consequences of this configuration in the network

settings at the internship company resulted in the author installing and implementing

his own version of Jenkins and Bitbucket server.

Moreover, the implementation involved a high amount of system integration, in

terms of enabling the communication between the three servers. The method applied

for the system integration is rather straight forward. Since it more or less consisted of

4An open platform for distributed applications for developers and sysadmins. www.docke r.com

 Thesis for Master’s Degree at HIT and LiU

70

installing the servers and attempting to establish the necessary communication, which

according to the author’s experience may not be executed in many ways. Rather than

to perform the necessary configuration in each entity’s settings until each path of

communication is functional. The configuration also involved a large amount of

debugging during the setup, due to communication difficulties between the

components.

Regarding the aspect of replicability for the implementation, the process of

installing the described environment is rather straight forward once it is up and running,

while the configuration is far more advanced. The required configuration functionality

is described in Chapter 6, defining what functionality is required to achieve the same

results.

7.2.2 Rule Configuration

The key aspect of the rule configuration phase that could have been improved is

to increase the initial base of the rules and to what extent they should have been

configured. Doing this would have resulted in a larger set of results to present which

would have, in turn resulted in in a more credible study. However, by adapting this

approach, prolonged interviewing sessions would have been required to question the

interviewees on equivalent material due to the difficulty of estimating the duration of

each interviewee’s manual code inspection time for each case. Consequences of this

approach would have resulted in longer interviews and since it is not certain that the

prolonged interviews will result in different results. Chances are that the extended time,

including the time to prepare and analyze the results, would not have been worthwhile .

An alternative approach that would have been possible to adapt for the rule

configuration would have been for the author to configure the rules using his own

knowledge and making assumptions what would have been suitable for the internsh ip

company. This would have allowed the configuration of a higher number of rules.

Although this approach may sound as a valuable proposition, chances are that the

configured rules including their severity may not correlate to the internship company’s

mindset of what issues are vital and what rules are irrelevant. Considering this possible

outcome, the author argues that his executed approach is preferable, since he has

performed an investigation of how the rules may be configured and examined.

The rules configured consisted of the FindBugs and SonarQube Java rule base s

and as the author found that there are no other sets of rules or quality profiles except

 Thesis for Master’s Degree at HIT and LiU

71

the ones provided by SonarQube [51]. The origin of this subject was a question from

the author’s manager regarding preset quality profiles that would be recommended for

certain types of projects. Although the fundamental concept of having adapted quality

profiles for specific types of code bases is good, the actual fulfillment appears

troublesome since the rules are required to be adapted to specific properties. Although,

SonarSource is currently working with finishing a quality profile refined with certain

security rules [51].

By providing each rule with a unique ID in addition to its original rule ID given

in the SonarQube database the traceability in this study is provided, in turn this

contributes to the reliability.

Following this subsection, the author will discuss the method used during the

interviews.

7.2.3 Interviews

The most controversial element of the method used in the interviews performed

in this study is the fact that the interviewees, who all were developers, were handed

pieces of papers with the code on to review and perform code inspection on. This

setting is very likely to have influenced the results of each interviewee’s detected

anomalies, since the setting that the interviewees were used to, includes the Eclipse

IDE and internet access giving them the possibility to rapidly search for properties that

they found strange or libraries that they had not been exposed to previously. And by

taking away these valuable tools, which are used on daily basis by the developers, they

are left with nothing but their current knowledge of the code.

An alternative approach to this method would have been to provide the

interviewees with their everyday setup to perform the code inspection in. This would

have resulted in a far more natural and realistic setting for the interviewee. However,

it would also have resulted in a context which may not have been equal for all

employees, since some of the interviewees may use special tools or techniques to

perform code inspection that are highly preferable, resulting in an advantage to the

interviewees using this technique or tool. This approach would also have resulted in

the evaluation of the code inspection setup rather than the code inspection performed

by the interviewee. Additionally, the time span of the code inspection for each case

would have been affected, as the author already had set the two-hour limit for each

interviewee, there is a risk by adapting this approach. The risk is that each interviewee

 Thesis for Master’s Degree at HIT and LiU

72

would have used more time since they had the tools as they have in their day-to-day

profession. Although, given these tools, the degree of limitation is stricter, resulting in

a more limited environment for the interviewee. In turn, this results in a limited degree

of inspection that may be executed by the interviewee.

Another essential point is the fact that the interviewees were not entirely honest

during the interview. Scenarios that may have occurred is how they have had a poor

experience with other static code analysis tools that have resulted in a bad attitude to

other types of tools. However, this is a situation the author should consider but have

no power to control other than to act neutral when asking questions to influence the

interviewee as little as possible.

Moreover, the notion of requesting the interviewees to perform a conventiona l

code inspection in the previously mentioned context may seem rather theoretical since

the interviewees are asked to identify any anomalies they detect in each case and

imagine that it is the same code inspection process that is performed daily. In

comparison to the actual code inspection that is truly accomplished each day, e.g.

during each pull request, this code inspection is somewhat unrealistic.

By performing a validation of the results of each interview, as described in

Section 5.2, the results from the interviews may be considered approved by each

interviewee. Next, the discussion about the analysis that has been performed to

investigate how the feedback from static code analysis and continuous inspection may

be applied to find defects in the code.

7.2.4 Analysis

After examining the core functionality of SonarQube and its plugins, the author

had gained an extensive understanding of what aspects of feedback that SonarQube

focuses on. Using this understanding, the author investigated what current research has

found of the core functionalities of SonarQube, such as code duplication and various

metrics. As this approach is based on the functionality of SonarQube, rather than a

complete open investigation of how code may be improved, the approach is restric te d

from start to this functionality. In some sense, this is a drawback since some results

are not able to be included. However, as the purpose of this paper is to evaluate the

performance and result of SonarQube’s functionalities and abilities, the restrict ions are

tolerated.

 Thesis for Master’s Degree at HIT and LiU

73

7.2.5 References

During the implementation of this system, as the author experienced issues, he

posted questions on the internet forum Stack Overflow to find answers to problems

that he encountered in addition to explore whether certain features that were availab le

or whether they would be available in the future. As the author posted questions, he

received responses from the crew at SonarSource, the developers of SonarQube and

the languages product owner at SonarSource, who is also the author of SonarQube in

Action [22]. This feedback from the Stack Overflow community has been very

valuable during the development and debugging.

Furthermore, the majority of the references in this paper are scientific articles that

are considered trustworthy and credible. In addition to these articles there are also web

sources revolving around SonarQube and its rules. These sources are not necessar i ly

as credible and as qualitative. These sources are required to describe the rules that are

used in the development of the implemented system and during the rule configuration.

Following this section, the discussion of the results of this study.

7.3 Results

With the intention of highlighting specific results that are prominent, the results

will be discussed in the order of appearance that correlates to the previous section.

7.3.1 Implementation

As stated in the introduction of this chapter, the implemented environmen t

represents the setting the internship company would use, to introduce continuous code

inspection in their development process.

The environment implements the key functionality of observing the history and

trending of code metrics, in order to detect and mitigate the increasingly complex code

base, before it has resulted in a project that is arduous to maintain. The performance

of the implementation is not optimal in terms of analysis speed, but this is not the main

focus of this work. Since the essential aim is to investigate how to gain the larges t

amount of feedback from this type of continuous inspection environment.

Next, the results from the rule configuration will be discussed.

 Thesis for Master’s Degree at HIT and LiU

74

7.3.2 Rule Configuration

As stated in Section 6.1.2, there are 11 rules that have had their ranking confirmed

during this process and the resulting number of rules that have been affected of the

alert oracle configuration may appear rather low. However, as stated in Section 7.3.2,

any alternative approach would not, according to the author, have had a significant

result. Furthermore, considering this result the rules have been successfully verified

and construct a valuable basic framework to start from, when creating the production

version of the continuous code inspection version.

Judging by the results mentioned in Section 6.10.1, from the precision metric both

variants 𝑝𝐴 and 𝑝𝐵, indicate that the performance of the analysis is very exact. By

looking at the values of recall and accuracy as well, they may at the first glance look

highly promising, however, as the formulas are investigated further, the terms 𝐹𝑁𝐶

and 𝑇𝑁𝐶 are zero in all occurrences. This indicates that the results of these formulas

should be handled with caution. Nevertheless, the result of precision remains persistent.

Succeeding the results from the rule configuration are the results from the

interviews.

7.3.3 Interviews

The results from the interviews in terms of the classification was surprisingly

positive results since all except three issues were deemed as TP. This signifies that the

interviewing process was well carried out, since it was the same interviewee that

classified the FPs. This implies that he had another opinion than the other two

interviewees what was a TP or FP, at least on those three issues.

As the results indicate from the ranking made during the interviews, the

interviewees agree on eight of thirteen issues what rank the rule for that specific issue

should have. While there was only one occurrence where the interviewee judged the

rule to be deactivated. These results indicate how the interviewees agree on the

majority of the issues at hand. This bodes well since developers in some sense have to

agree on the same rules and ranking in order for this type of continuous inspection to

work smoothly. Additionally, the results also represent how the interviewees agree to

the vast majority that these anomalies are defects.

Finally, the results in regards to findings, whether each interviewee detected the

same issues that SonarQube detected. As four of the thirteen issues were found by all

interviewees and only two were not found by any interviewee, this also bodes well for

 Thesis for Master’s Degree at HIT and LiU

75

the implementation of SonarQube. The reason why is that SonarQube were able to

detect anomalies that the interviewees did not. This indicates that the tool analyzes the

code in a different way. Although, this is not a revolutionary statement . Nevertheless ,

it is extremely valuable results to indicate that the tools are useful as a support to assist

the developer.

Following the discussion of the interview results, is the discussion of the analys is

results.

7.3.4 Analysis

The results of the analysis partition of this project are focused into three points .

Firstly, complexity and duplication. The found results are a part of a quality model that

is intended to measure the technical quality of software systems [55]. Even though this

data is standardized and general, it should be valid starting points for settings

thresholds in SonarQube to monitor the code duplications and complexity during

development. An alternative would be to use their method, defined by Alves et al. [56],

to construct these metrics, i.e. to collect metric data from several of the internsh ip

company’s projects to calculate the metrics for the specific context. This approach may

seem cumbersome but may be worthwhile to consider if the metrics from the quality

model, mentioned in Section 6.9.1, are not applicable.

Regarding the design and architectural aspect, SonarQube seems to fall short in

this topic, as described in Section 6.9.2, where there are two rules to focus on this.

However, during the author’s research he has found that SonarQube has implemented

features in order to attempt to support developers in analyzing the design and

architecture but they have resulted in being difficult to grasp and generating too many

FPs [60]. This indicates the difficulty of implementing functionality, that are designed

to analyze the design and architectural aspects, that works well.

Moreover, the following section, including its subsections will discuss this work

in a wider context involving ethical and sustainable aspects.

7.4 The Work in a Wider Context

To describe the additional aspects of this work in terms of humane and

environmental point of views, the following sections will present the plausible effects

that this work could have to each area.

 Thesis for Master’s Degree at HIT and LiU

76

7.4.1 Ethical Aspects

The continuous inspection environment implemented in this project interacts with

developers during and after development. This will result in the environment being

continuously configured and adapted by the developers. If the environment is not

configured properly and critical bugs are not caught, as the system previously was

configured to do, could result in the developers being blamed for the error.

A similar scenario might occur in the context where the environment fails to catch

the critical defects that are either similar to other defects that it detects, or defects that

are unheard of. The consequences of this event are similar to the previously described

scenario, that the developers are blamed for the unrecognized defect.

An additional situation that may occur once this environment has been active in

the development environment for a period is that the developers have grown

accustomed to the continuous inspection and start to rely entirely on the continuous

code inspection environment instead of combining manual and automatic code review.

Consecutively, this could result in the scenario where developers start to depend on

the environment instead of using it as a tool, which is not the intention.

Now that the ethical aspects have been discussed, the sustainability aspects of this

work will be discussed.

7.4.2 Sustainability Aspects

In regards to the sustainability aspects of this work, the goal is to improve the

produced software quality of substantially the internship company in addition to

investigating this topic from a more general point of view. Given even the slightes t

frequency improvement in finding defects in the code, would in turn result in a higher

software quality. This would allow the developers to spend less time on finding defects

to instead implement new features and improve the system’s functionality, resulting in

enhanced systems and decreases in expenses during development and debugging.

 Thesis for Master’s Degree at HIT and LiU

77

Conclusions

The main purpose of this project was to investigate how the concept of static code

analysis may be used as a supportive tool during code reviews in the internsh ip

company. The steps taken to perform this investigation were to carry out an evaluat ion

of the continuous inspection platform SonarQube that uses static code analysis to

perform its inspection. In addition to the functionality provided by SonarQube, a

plugin that is based on PMD and Checkstyle have been included in the implemented

environment, as well as the FindBugs plugin that is also based on FindBugs structure

and properties. Using this implemented environment, an evaluation was conducted to

examine the performance of the environment. The evaluation consisted of performing

analysis on a package of the code base provided by the internship company, named

Objectbase, to inspect what type of alerts that were detected. These results were then

used as material for interviews where the interviewees acted as alert oracles, to

empirically determine the severity and legitimate of the found issues and rules. As the

determination had been executed and processed the author could compute metrics to

be able to assess the performance of the tool.

To regulate the aim and direction of this study, three research questions were

composed. RQ1 focuses on the potential improvements that may be detected and issued

by the introduction of static code analysis, while RQ2 and RQ3 aim to analyze how

static code analysis and continuous code inspection may be applied to find defects to

improve the code quality.

The result of the implementation is a continuous inspection environment that

mimics the development environment at the internship company by using the identica l

components by adapting the implementation according to the functional and non-

functional requirements.

By using the complexity metrics and thresholds, along with the rules mentioned

in Section 6.9.2, implemented in SonarQube the author is confident that the executed

static code analysis will be able to assist the developers to detect and improve the

design and architecture of the code. Having that said, RQ1 has been answered.

Furthermore, the answer to RQ2 is not as straight forward, since the question states the

strive to find defects in the code and a static code analysis tool may end up with a large

quantity of defects, in the tool’s opinion. While the actual number of defects is

 Thesis for Master’s Degree at HIT and LiU

78

significantly smaller. The source of the variation of these values often resides in the

fact that the tool generates FPs, thus the answer to this question is related how to

differentiate the TPs from the FPs. The solution is to apply an easy-to-adapt rule

database to allow users to configure and track the change of the rules, compared to e.g.

running on the default set of rules locally. Although, there will always be cases where

certain rules do not apply to all detected cases and requires the functionality of

suppressing the FPs and as described in Section 6.6, SonarQube provides three ways

of suppressing FPs detected. While this way of managing the FPs is not optimal and

imperfect, the author considers this functionality satisfactory to achieve this goal since

it allows the suppression of certain rules, in specific contexts and the suppression of

all rules on specific lines.

Equally important, RQ3 states the query of how to use continuous inspection to

find defects in the code. As found by the author in this study, SonarQube provides the

ability to combine the execution of static code analysis tools with a centralized rule

database to track the rules for entire teams and projects. SonarQube also provides

several features to support the introduction of continuous inspection in an agile

development process. These include viewing the SonarQube results in the pull request

view, blocking the build if the quality gate is failed and allowing the tracking of trends ,

history of metrics and issues. Moreover, the precision metric indicates how well the

performance of SonarQube is, causing the credibility of static code analysis and

continuous inspection to increase. Since the data set used to perform the rule

configuration represents the most frequent and highest severity of the detected issues ,

the results of the static analysis should be representable. Combining this with the

positive attitude of the interviewees in addition to SonarQube finding defects that were

not discovered by the interviewees, the trustworthiness is stalwart.

Therefore, the author is confident in stating that, the introduction of a continuous

code inspection environment is profitable, even though, a reasonable amount of

configuration is required to be able to gain this turnover.

 Thesis for Master’s Degree at HIT and LiU

79

Future Work

As the aim of this work was to investigate whether the use of a continuo us code

inspection environment would be able to detect defects and track the software quality,

an apparent approach of future work would be to implement this environment, in terms

of a production implementation for the internship company. This environment would

adapt the stated metric thresholds for the introduced software quality metrics .

Combined with performing a thorough rule configuration for their entire iipax product

in addition to tuning the rule framework according to certain aspects that are

appropriate to the specific project settings.

An additional future work proposition, is the extension of the SonarQube project

in terms of developing a plugin to perform measurements that are currently not

available using SonarQube but still are valuable metrics. A suggestive proposition for

this line of future work, would include the investigation of what type of architectura l

metrics are the most appropriate for such an implementation followed by the

implementation of the plugin to collect and display the metrics.

 Thesis for Master’s Degree at HIT and LiU

80

References

[1] R. Plösch, H. Gruber, C. Korner, and M. Saft, “A Method for

Continuous Code Quality Management Using Static Analysis,” 2010 Seventh Int.

Conf. Qual. Inf. Commun. Technol., pp. 370–375, 2010.

[2] Ieee, IEEE Standard Glossary of Software Engineering Terminology ,

vol. 121990, no. 1. 1990.

[3] K. El Emam, The ROI from Software Quality. 2005.

[4] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM SIGPLAN

Not., vol. 39, no. 12, p. 92, 2004.

[5] C. Weimer and F. Bolger, “Continuous Code Inspection - Advanc ing

software quality at source,” PRQA White Pap., pp. 1–8, 2013.

[6] S. Panichella, V. Arnaoudova, M. Di Penta, and G. Antoniol, “Would

static analysis tools help developers with code reviews?,” 2015 IEEE 22nd Int.

Conf. Softw. Anal. Evol. Reengineering, pp. 161–170, 2015.

[7] J. Novak, A. Krajnc, and R. Zontar, “Taxonomy of static code

analysis tools,” MIPRO, 2010 Proc. 33rd Int. Conv., 2010.

[8] N. Nagappan and T. Ball, “Static analysis tools as early indicators of

pre-release defect density,” Proceedings. 27th Int. Conf. Softw. Eng. 2005. ICSE

2005., pp. 580–586, 2005.

[9] S. Heckman and L. Williams, “A systematic literature review of

actionable alert identification techniques for automated static code analysis,” Inf.

Softw. Technol., vol. 53, no. 4, pp. 363–387, 2011.

[10] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of

modern code review,” Proc. - Int. Conf. Softw. Eng., pp. 712–721, 2012.

[11] “Documentation - SonarQube-5.4 - SonarQube.” [Online]. Availab le :

http://docs.sonarqube.org/display/SONARQUBE54/Documentation. [Accessed :

09-May-2016].

[12] “checkstyle – Checkstyle 6.15.” [Online]. Availab le :

http://checkstyle.sourceforge.net/. [Accessed: 18-Feb-2016].

[13] S. Heckman and L. Williams, “On Establishing a Benchmark for

Evaluating Static Analysis Alert Prioritization and Classification Techniques , ”

Proc. Second ACM-IEEE Int. Symp. Empir. Softw. Eng. Meas., pp. 41–50, 2008.

 Thesis for Master’s Degree at HIT and LiU

81

[14] IEEE Standards Association, “Systems and software engineering —

Vocabulary ISO/IEC/IEEE 24765:2010,” Iso/Iec/Ieee 24765:2010, pp. 1–418,

Dec. 2010.

[15] N. Godbole, “Software quality assurance: Principles and practice, ”

Alpha Sci. Int’l Ltd., 2004.

[16] Standish Group, “Chaos Demographics,” 2004 Third Quart. Res. Rep.,

2004.

[17] J. S. DAVIS and R. J. LEBLANC, “A Study of the Applicability of

Complexity Measures,” IEEE Trans. Softw. Eng., vol. 14, no. 9, pp. 636–638,

1988.

[18] N. Fenton and J. Bieman, Software Metrics: A Rigorous and Practical

Approach, Third Edit. CRC Press, 2014.

[19] T. J. McCabe, “A Complexity Measure,” IEEE Trans. Softw. Eng.,

vol. SE-2, no. 4, pp. 308–320, 1976.

[20] K. Ruohonen, “Graph Theory,” Univ. Turku, p. 108, 2013.

[21] D. Racodon, “Metrics - Complexity,” SonarQube Documentation ,

2015. [Online]. Availab le :

http://docs.sonarqube.org/display/SONAR/Metrics+-+Complexity. [Accessed :

17-Jun-2016].

[22] G. A. Campbell and P. P. Papapetrou, SonarQube in Action. Manning

Publications Co., 2013.

[23] G. J. Myers, “An Extension to the Cyclomatic Measure of Program

Complexity,” SIGPLAN Not., vol. 12, no. 10, pp. 61–64, 1977.

[24] J. J. Vinju and M. W. Godfrey, “What does control flow really look

like? Eyeballing the cyclomatic complexity metric,” Proc. - 2012 IEEE 12th Int.

Work. Conf. Source Code Anal. Manip. SCAM 2012, pp. 154–163, 2012.

[25] L. Rosenberg and L. Hyatt, “Software quality metrics for object-

oriented environments,” Crosstalk Journal, April, vol. 10, no. 4, pp. 1–6, 1997.

[26] M. Fowler, “TechnicalDebt,” 2003. [Online]. Availab le :

http://martinfowler.com/bliki/TechnicalDebt.html. [Accessed: 15-Apr-2016].

[27] A. G. Bardas, “Static code analysis,” J. Inf. Syst. Oper. Manag., vol.

5, no. 2, 2011.

[28] A. German, “Software static code analysis lessons learned,” Crosstalk,

no. November, pp. 13–17, 2003.

 Thesis for Master’s Degree at HIT and LiU

82

[29] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why dont

software developers use static analysis tools to find bugs?,” Proc. 2013 Int. Conf.

Softw. Eng., pp. 672–681, 2013.

[30] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and

M. a S. E. I. T. on Vouk, “On the value of static analysis for fault detection in

software,” Softw. Eng. IEEE Trans., vol. 32, no. 4, pp. 240–253, 2006.

[31] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for

eclipse,” Proc. - ICSE 2007 Work. Third Int. Work. Predict. Model. Softw. Eng.

PROMISE’07, 2007.

[32] “FindBugsTM - Find Bugs in Java Programs.” [Online]. Availab le :

http://findbugs.sourceforge.net/. [Accessed: 18-Feb-2016].

[33] “PMD.” [Online]. Available: https://pmd.github.io/. [Accessed: 18-

Feb-2016].

[34] S. Wagner, F. Deissenboeck, M. Aichner, J. Wimmer, and M.

Schwalb, “An evaluation of two bug pattern tools for Java,” Proc. 1st Int. Conf.

Softw. Testing, Verif. Validation, ICST 2008, pp. 248–257, 2008.

[35] E. Guerra, A. Aguiar, P. Merson, and J. Yoder, “Continuous

Inspection: A Pattern for Keeping your Code Healthy and Aligned to the

Architecture,” p. 13, 2013.

[36] K. Daimi, S. Banitaan, and K. Liszka, “Examining the Performance

of Java Static Analyzers,” Proc. Int. Conf. Softw. Eng. Res. Pract. (SERP). Steer.

Comm. World Congr. Comput. Sci. Comput. Eng. Appl. Comput., p. 7, 2003.

[37] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh,

“Using Static Analysis to Find Bugs,” IEEE Softw., vol. 25, no. 5, pp. 22–29,

2008.

[38] P. Tomas, M. J. Escalona, and M. Mejias, “Open source tools for

measuring the Internal Quality of Java software products. A survey,” Comput.

Stand. Interfaces, vol. 36, no. 1, pp. 244–255, 2013.

[39] A. Bessey, D. Engler, K. Block, B. Chelf, A. Chou, B. Fulton, S.

Hallem, C. Henri-Gros, A. Kamsky, and S. McPeak, “A few billion lines of code

later,” Commun. ACM, vol. 53, no. 2, pp. 66–75, 2010.

[40] F. Deissenboeck, E. Juergens, B. Hummel, S. Wagner, B. M. y

Parareda, and M. Pizka, “Tool Support for Continuous Quality Control,” IEEE

Softw., vol. 25, no. 5, pp. 60–67, 2008.

 Thesis for Master’s Degree at HIT and LiU

83

[41] D. Steidl, F. Deissenboeck, M. Poehlmann, R. Heinke, and B. Uhink-

Mergenthaler, “Continuous Software Quality Control in Practice,” in 2014 IEEE

International Conference on Software Maintenance and Evolution, 2014, pp.

561–564.

[42] “Bitbucket — Server.” [Online]. Availab le :

https://bitbucket.org/product/server. [Accessed: 18-Feb-2016].

[43] Mibex Software GmbH, “Sonar for Bitbucket Server | Atlass ian

Marketplace.” [Online]. Availab le :

https://marketplace.atlassian.com/plugins/ch.mibex.stash.sonar4stash/server/ov

erview. [Accessed: 18-Feb-2016].

[44] Nerdwin15 LLC, “Bitbucket Webhook to Jenkins | Atlass ian

Marketplace.” [Online]. Availab le :

https://marketplace.atlassian.com/plugins/com.nerdwin15.stash-stash-

webhook-jenkins/server/overview. [Accessed: 18-Feb-2016].

[45] “Jenkins.” [Online]. Available: https://jenkins-ci.org/. [Accessed: 18-

Feb-2016].

[46] “Eclipse desktop & web IDEs.” [Online]. Availab le :

https://eclipse.org/ide/. [Accessed: 18-Feb-2016].

[47] R. Plösch, A. Mayr, G. Pomberger, and M. Saft, “An Approach for a

Method and a Tool Supporting the Evaluation of the Quality of Static Code

Analysis Tools,” Proc. SQMB 2009 Work. held conjunction with SE 2009 Conf.

Publ. as Tech. Rep. TUM-I0917 Tech. Univ. Munich, no. 1, pp. 37–44, 2009.

[48] “Java Plugin - Plugins - SonarQube.” [Online]. Availab le :

http://docs.sonarqube.org/display/PLUG/Java+Plugin. [Accessed: 23-Mar-

2016].

[49] “What is Object/Relational Mapping? - Hibernate ORM.” [Online] .

Available: http://hibernate.org/orm/what- is-an-orm/. [Accessed: 29-Apr-2016].

[50] R. K. Merton and P. L. Kendall, “The Focused Interview,” Am. J.

Sociol., vol. 51, no. 6, pp. 541–557, 1946.

[51] “Are there any default set of rules for SonarQube other than the

default rules from the Sonar Java plugin? - Stack Overflow.” [Online]. Available :

https://stackoverflow.com/questions/36429227/are-there-any-default-set-of-

rules- for-sonarqube-other-than- the-default-rules- fr. [Accessed: 18-May-2016].

[52] SonarQubeCommunity, “SonarQube Build Breaker Plugin,” 2016.

 Thesis for Master’s Degree at HIT and LiU

84

[Online]. Available: https://github.com/SonarQubeCommunity/sonar-build-

breaker. [Accessed: 09-May-2016].

[53] O. Gaudin, “SonarQubeTM » Why You Shouldn’t Use Build Breaker. ”

[Online]. Available: http://www.sonarqube.org/why-you-shouldnt-use-build-

breaker/. [Accessed: 10-May-2016].

[54] J. A. De Oliveira, E. M. Fernandes, and E. Figueiredo, “Evaluation of

Duplicated Code Detection Tools in Cross-Project Context.”

[55] R. Baggen, J. P. Correia, K. Schill, and J. Visser, “Standardized code

quality benchmarking for improving software maintainability,” Softw. Qual. J.,

vol. 20, no. 2, pp. 287–307, 2012.

[56] T. L. Alves, C. Ypma, and J. Visser, “Deriving metric thresholds from

benchmark data,” IEEE Int. Conf. Softw. Maintenance, ICSM, 2010.

[57] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code

clones matter?,” Proc. - Int. Conf. Softw. Eng., pp. 485–495, 2009.

[58] D. Rattan, R. Bhatia, and M. Singh, Software clone detection: A

systematic review, vol. 55, no. 7. Elsevier B.V., 2013.

[59] E. Bouwers, J. Visser, and A. van Deursen, “Getting what you

measure,” Commun. ACM, vol. 55, no. 7, p. 54, 2012.

[60] “java - Receive feedback from SonarQube in regards to design and

architecture - Stack Overflow.” [Online]. Availab le :

http://stackoverflow.com/questions/35983244/receive-feedback-from-

sonarqube- in-regards-to-design-and-architecture. [Accessed: 12-May-2016].

 Thesis for Master’s Degree at HIT and LiU

85

Appendix A Rule Configuration Tables

Raw results from the supervisor rule investigation.

Rule ID Default Ranking New Ranking

1 squid:S1135 Info Blocker

2 squid:S1181 Blocker Major

3 squid:S2095 Blocker Major

4 squid:S1166 Critical Blocker

5 squid:S00112 Critical Major

6 squid:S2696 Critical Deactivated.

7 squid:S1948 Critical Major

8 squid:S2077 Critical Deactivated

9 squid:S1148 Critical Blocker

10 squid:S1989 Critical Major

11 squid:S2142 Critical Deactivated

12 squid:S2386 Critical Deactivated

13 squid:S2184 Critical Major

14 squid:S2885 Critical Deactivated

15 squid:S1872 Critical Major

16 squid:S2068 Critical Major

17 squid:S1163 Critical Blocker

18 squid:S1862 Critical Blocker

19 squid:S106 Critical Deactivated

20 squid:S1149 Major Blocker

21 squid:CommentedOutCodeLine Major Blocker

22 squid:S1186 Major Deactivated

23 squid:S135 Major Deactivated

24 squid:S1197 Minor Major

25 squid:S00117 Minor Deactivated

26 squid:S1488 Minor Deactivated

27 squid:S1488 Minor Deactivated

28 squid:S00122 Minor Major

29 squid:S1213 Minor Major

 Thesis for Master’s Degree at HIT and LiU

86

30 squid:S1905 Minor Major

31 squid:Modif iersOrderCheck Minor Major

32 squid:S1214 Minor Major

33 squid:S1659 Minor Major

34 squid:UselessImportCheck Minor Deactivated

35 squid:S1125 Minor Major

36 squid:S1170 Minor Major

37 squid:S00100 Minor Deactivated

38 squid:S1192 Minor Major

39 squid:RedundantThrowsDeclarationCheck Minor Deactivated

40 squid:S1153 Minor Major

41 squid:S1301 Minor Major

42 squid:S2065 Minor Major

43 squid:S1873 Critical Major

44 squid:S2275 Critical Major

45 jproperties:separator-convention Minor Deactivated

46 jproperties:key-naming-convention Minor Deactivated

47 jproperties:line- length Minor Major

48 jproperties:empty- line-end-of-f ile Minor Major

 Thesis for Master’s Degree at HIT and LiU

87

Rule ID-Name Linking table.

Rule ID Rule name

squid:S1166 Exception handlers should preserve the

original exception.

squid:S1149 Synchronized classes Vector, Hashtable, Stack

and StringBuffer should not be used.

squid:CommentedOutCodeLine Sections of code should not be "commented

out".

squid:S2583 Conditions should not unconditionally evaluate

to "TRUE" or to "FALSE".

squid:S1135 "TODO" tags should be handled.

squid:S1148 Throwable.printStackTrace(...) should not be

called.

squid:S2259 Null pointers should not be dereferenced.

squid:S1143 "return" statements should not occur in

"finally" blocks.

squid:Modif iersOrderCheck Related "if/else if" statements should not have

the same condition.

squid:S1854 Dead stores should be removed.

squid:MethodCyclomaticComplexity Methods should not be too complex.

