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Abstract

Cavity filters are a necessary component in base stations used for telecommunication.
Without these filters it would not be possible for base stations to send and receive signals
at the same time. Today these cavity filters require fine tuning by humans before they can
be deployed. This thesis have designed and implemented a neural network that can tune
cavity filters. Different types of design parameters have been evaluated, such as neural
network architecture, data presentation and data preprocessing. While the results was not
comparable to human fine tuning, it was shown that there was a relationship between error
and number of weights in the neural network. The thesis also presents some rules of thumb
for future designs of neural network used for filter tuning.
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1 Introduction

Base stations are used for mobile phone communication. The base stations receive signals
from mobile phones and retransmit received signals to the intended recipient or to a base
station closer to the recipient. This wireless communication could be phone conversations,
text messages or internet traffic. This communication is increasing, and also becoming a more
and more central part of our society. Therefore it is important that the systems that support
this communication are as cheap as possible and can be deployed quickly, when the existing
infrastructure fails. This thesis will look into automating the fine tuning of filters used in base
stations.

1.1 Motivation

A base station needs to be able to send and receive signals at the same time. Different signals
are sent at the same time, but at different frequencies. By using a filter that removes some
frequencies and lets other frequencies through, the different signals can be separated and
handled individually.

As an illustration of this, consider a person trying to communicate in Morse code by play-
ing a C on a piano. At the same time, another person wants to communicate in Morse by
playing an A on the same piano. The difference between a C and an A is that they have
different frequencies. So in order to understand any of these messages a listener could use a
filter that removes all notes except C or A, depending on which message they want to listen
to.

A filter in a base station would work in much the same way, removing all frequencies
except the frequency of the signal or signals it is responsible for. It is important that the filters
used in base stations are capable at separating signals that are close in the frequency band as
this increases the amount of data the base station can handle simultaneously.

Today these filters need to be fine tuned after they have been produced. This is because the
production method is not exact enough. Instead the filters are designed in a way that makes
it possible to adjust which frequencies will be let through. Every year several thousands of
these filters are produced and each of them has to be manually fine tuned by a human expert,
which can take more than 40 minutes. This makes the fine tuning process a bottleneck during
production.
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1.2. Aim

A RBS 2206 [26] which is a radio base station developed by Ericsson, can use up to three
filters that needs this type of fine tuning. Each of theses filter is in turn able to handle about
24 simultaneous users.

1.2 Aim

The aim of this thesis project is to train a neural network to fine tune a 5-pole cavity filter.
Michalski [14] have also trained neural networks to fine tune cavity filters, and many of their
findings will be used as guidance in this thesis. The thesis will also look into what can be done
to improve the results, by comparing different back-propagation algorithms, neural network
architectures and how the input data can be transformed before it is used to train the neural
network. Finally a few rules of thumb, for how to design a neural network to tune a filter will
be presented.

1.3 Research questions

The following questions will be used to guide the work in this thesis. The questions will be
answered in section 5.1.

• Can a neural network fine tune a 5-pole cavity filter to meet its specification?
A filters specification is usually based on how well it removes unwanted frequencies,
and also how much of the desired frequencies’ energy is preserved after it has passed
through the filter. A low energy, in terms of sound, would mean quiet. The frequen-
cies that the filter should not remove should keep as much of its energy as possible.
Similarly unwanted frequencies should lose as much as possible of their energy.

A specification usually explains how much of the unwanted frequencies’ energy have
to be removed, as well as how much of the wanted frequencies’ energy can be allowed
to be lost.

Michalski [14] trained a neural network to fine tune a 6-pole and a 11-pole cavity filter.
Later Michalski [15] managed to improve the method enough for the filters to not need
further fine tuning. Is it possible to use these findings to train a neural networks to fine
tune a 5-pole cavity filter?

• How does the architecture of the neural network affect performance?
Will the back-propagation algorithm used by Michalski [14] be the best choice for a 5-
pole cavity filter as well, or will a different back-propagation algorithm work better?
What effect does the number of hidden nodes and the transfer function have on the
performance?

• How can the data be presented to the neural network to improve performance?
Often the data used to train neural networks is preprocessed in some ways to improve
performance. Can performance be improved by transforming the input data to the
neural network in a different way than Michalski [14] did?

• Can the number of examples needed to reach a certain error be estimated? Michalski
[14] presented a function for estimating the number of examples needed in order to keep
the same error, when the output space changed. As will we shown later, this function
does not work well on smaller filters. Can a better estimation be made?

1.4 Delimitations

Under normal circumstances a filter may have more than 8 poles, and several cross couplings.
However, in this thesis a solution for a 5-pole band-pass filter without cross couplings will
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1.4. Delimitations

be developed. Normally cavity filters are connected in pairs. In this thesis a single filter that
is connected to another tuned filter will be used. The neural network will be developed with
the neural network tool in Matlab, and the neural network will be designed using built in
functions only, which puts some limitations on what can and can not be done.
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2 Theory

This chapter will start with a short description of how a cavity filter works in section 2.1.
Section 2.2 contains a description of the manual techniques available for fine tuning these
cavity filters. In section 2.3 automation techniques others have tried are presented. Section
2.4 has an overview of relevant machine learning techniques. Lastly, in section 2.5, a more in
depth description of techniques that are used in this thesis will be described.

2.1 Microwave cavity filter

(a) An ideal low pass filter lets low frequencies
through but not high.

(b) An ideal band-pass filter blocks frequencies
that are too low or too high.

Figure 2.1: Amplitude characteristics of a low pass and band-pass filter.

A common way of designing band-pass filters is by starting with a low pass filter (figure
2.1a) and then transforming it to a band-pass filter (figure 2.1b). This can be done by changing
every inductor to an inductor and capacitor connected in series, and each capacitor into a ca-
pacitor and inductor connected in parallel (a LC-circuit). The LC-circuit is also called resonator
[19].

If an inductor is connected to a charged capacitor as in figure 2.2, the capacitor will dis-
charge. This will cause a current through the inductor until the capacitor has been discharged.
This current will create a magnetic field in the inductor. As the capacitor discharges, the cur-
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2.1. Microwave cavity filter

Figure 2.2: Example of a simple LC-circuit.

rent will become weaker and weaker. When the current decreases, the magnetic field will to.
According to Lenz’s law [11], the change in the magnetic field will create an induced current
that opposes this change. That is the induced current will move in the same direction as the
current from the capacitor in order to prevent the magnetic field from decreasing. This extra
current will charge the capacitor with a voltage opposite what it had before. This will result
in an oscillation that is mathematically equivalent to that of a weight on a spring [11].

If the band-pass filter has a bandwidth that is less than 10% of the centre frequency, the
LC-circuit can not be realized. Instead a different technique is used where a number of LC-
circuits are coupled. This way the magnetic field of each resonator is allowed to affect the
neighbouring resonators magnetic field. In cavity filters this coupling is usually done with
an inductor [19]. An example of a filter circuit can be seen in figure 2.3.

Figure 2.3: Example of a circuit equivalent to a cavity filter.

Figure 2.4: When the distance between the screw and the rod changes, the capacitance
changes as well.

A cavity filter consists of one or several cavities connected together. In each cavity a
cylindrical rod is placed. The cavity and rod acts as a LC-circuit [24]. The cavity and rod is
also called a pole. A magnetic field will surround each rod and affect neighbouring rods in
other cavities.

A cavity or pole is tuned by changing the length of the rod, which changes the inductance,
or by changing the distance between the rod and the walls or lid of the cavity which changes
the capacitance [24]. When the capacitance or inductance is changed, the resonance frequency
also changes. A resonance frequency [11] in a LC-circuit is the frequency of the oscillating
current in the circuit where the current reaches its maximum value. For a different frequency
the maximum value of the current is not as large as the currents maximum value for the
resonance frequency. By changing the resonance frequency, a different frequency of the input
signal will be let through the LC-circuit with least loss of energy.
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2.1. Microwave cavity filter

One method for tuning the filter is to have a screw placed over the rod. When the distance
between the screw and the rod changes, so does the capacitance [24]. Figure 2.4 illustrates this
situation.

Figure 2.5: The screw in the wall opening acts as an inductor.

Between some poles or cavities is a wall with an opening (figure 2.5). The wall will prevent
the magnetic field of the poles from passing through the wall. If a wall does not have an
opening, the magnetic fields of two poles on either side of this wall will not interfere. The
bigger the opening in a wall is the more the poles will be coupled, that is, the more the poles
magnetic fields affect each other. In some designs a screw is inserted in the opening [24].
This screw will act as an inductor (just like the cavities). The longer the screw the higher the
coupling is. This screw can also be turned to change the coupling between resonators. In
practice the position of these coupling screws have often been set beforehand so that a tuner
should not have to change them. The coupling screws only need to be tuned if something is
wrong with the filter, for example if the mould has been used so many times that its size have
changed.

A high coupling between the poles will make the electromagnetic signal pass through the
poles without losing a lot of energy. The energy that has been lost is called insertion loss. A
high coupling will also lead to a filter that is hard to fine tune. if the coupling between the
poles is low, the filter will be easier to tune, but the insertion loss will be higher.

Vector Network Analyser

Figure 2.6: Example of two-port electrical network.

An electric network can be classified based on how many connections it has. These con-
nections often come in pairs, where each pair shares current and voltage (see figure 2.6).

A cavity filter is a type of two-port electric network. One of the ports in the cavity filter is
used as the input port and the other port is used as the output port. When the filter is being
used, the signal that should be filtered will be sent into the filter via the input port, and the
resulting filtered signal can be read from the output port.

Each pair, or port, has its own incident and reflection variable (a1 and b1 for port 1, and a2
and b2 for port 2) as depicted in figure 2.7.

They are related in the following way:#
b1 = S11a1 + S12a2

b2 = S21a1 + S22a2
(2.1)
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2.2. Manual techniques for fine tuning cavity filters

Figure 2.7: Two-port electrical network with incident and reflection variables.

S11, S12, S21 and S22 are called scattering parameters [23].
These scattering parameters can be measured by a Vector Network Analyser or VNA. The

scattering parameters or S-parameters take on different values for different frequencies and
can therefore be seen as functions of frequency. Figure 2.8a and 2.8b shows a vector network
analyser that displays the S-parameters S11 (blue) and S21 (yellow). S11 and S21 are complex,
but usually viewed in a logarithmic format as in figure 2.8a and 2.8b. The complex values are
converted to dB with the following formula [9]:

magnitude(S) = 20 � Log10(
b

Re(S)2 + Im(S)2) dB (2.2)

2.8a shows an example of a well tuned 5-pole filter and figure 2.8b shows a frequency
response from a slightly detuned 5-pole filter. The difference between the tuned and detuned
filter is that there is an extra “lump” on S21 for the detuned filter, and the width of the flat
region of S21 is shorter compared to the tuned filter. In a tuned filter S11 should consist of a
number of arches with about the same height, in the frequency region where S21 is flat, as is
the case in the tuned filter in figure 2.8a.

S11 measures how much of the sent signal gets reflected back to the input port. S21 mea-
sures the insertion loss, that is, how much of the sent signal’s energy have been lost during
its way through the filter. More specifically S21 measures how much of the sent sent signal
reach the output port. A filter specification is usually based on S11 and S21. For example a
requirement could be that S11 is at least 17dB lower than what was sent in, in the pass band
region. This would mean that very little of the sent signal is reflected back to the input port.
A requirement on the S21-signal could be that the output signal can not be more than 1.2dB
lower than what was sent in, in the pass band region. This would mean that most of the sent
signal reach the output.

The S-parameter that will be looked at in this thesis is S11. S11 is also called the input
reflection coefficient [23]. The reason only S11 will be used in this thesis is because Michalski
[14] only used S11 and the advice that can be taken from their results is based on using S11
only.

predictions based on what has happend earlierrevious

2.2 Manual techniques for fine tuning cavity filters

Lindner and Biebl [13] describe a process of fine tuning a coupled cavity filter. They devel-
oped the method by looking at how experts fine tune these filters. This process can be divided
into the following seven steps:

Step 0: Before starting the tuner should pre tune the filter so that all reflection poles are
recognizable as dips on the S11 plot. This is a requirement to use the described method. A
reflection pole is a place in the S11 frequency response where very little of the energy at that
frequency gets reflected back. These reflection poles are recognised by the γ-shaped dips they
cause in the S11 frequency response. In figure 2.8a a number of theses dips can bee seen.

Step 1: in the VNA, S11 should be displayed in linear format as the logarithmic format
will give a misleading view on the sensitivity of the tuning elements. S21 should still be
displayed in logarithmic format.
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2.2. Manual techniques for fine tuning cavity filters

(a) A VNA showing S11 (blue) and S21 (yellow) on a well tuned filter.

(b) A VNA showing S11 (blue) and S21 (yellow) on a detuned filter.

Figure 2.8: Two examples of frequency response from a filter.

Step 2: The goal of this step is to have all dips in S11 as low and equal as possible.
To achieve this make sure to only use one half of the tuning elements and the associated
couplings.

Step 3: Make all the curves in S11 symmetric around the centre frequency of the band-
pass region. Make sure to only tune the resonators in a symmetric fashion. That is, tune each
symmetric pair of resonators the same amount and in the same direction. Do not tune the
couplings.

Step 4: Tune the filter to have the desired centre frequency by adjusting all resonators the
same amount. Sometimes step 2 needs to be repeated because the couplings are frequency
sensitive.

Step 5: Make the filter have the desired bandwidth. This is done by tuning the cou-
plings. Start by tuning them the same amount, and by tuning the input and output coupling
symmetrically. Do not tune the cross couplings

Step 6: Change the height of the ripple (that is, the arches between the dips in S11) with
the couplings so that they are even. If the input and output couplings are tuned, retune
the adjacent resonators. At this step the filter should have the correct return loss, ripple
bandwidth and centre frequency. As an example, look at the arches in the S11 frequency
response in figure 2.8a. In the band-pass region the arches are fairly even.

Step 7: Tune the cross couplings so that the transmission zeros are at the right frequencies.
The transmission zeros can be seen as the two dips in the S21 frequency response in figure 2.8a
on either side of the band-pass region. At these two frequencies no energy is transmitted. This
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2.3. Automated techniques

Figure 2.9: An example of two 5-pole filters. The two filter have a shared antenna on the left,
but different band-pass regions. The screw are used to tune the filter and the screw nuts will
lock the screws once the filter is tuned.

step will slightly detune the adjacent resonators, and these may therefore need to be retuned.
To do this, repeat step 2-7 until the filter fulfils its specification.

The process could be used on filters with one or several cross couplings and with a differ-
ent number of poles. The process itself is simple to use and does not require a lot of experi-
ence.

Note [19] shows how the time domain can be used when fine tuning a filter. When looking
at the time domain response a correctly tuned filter will have one dip in the time domain
response per resonator. By tuning the filter from the outside in, i.e. starting by tuning the
outermost resonators and then moving inwards, one can see when each resonator is correctly
tuned by making sure the corresponding dip is as low as possible.

2.3 Automated techniques

With fuzzy logic [25] a variable with continuous values can be divided into overlapping re-
gions or sets. Each value can belong to several sets to different degrees.

For example, if one were to classify days as either "sunny" or "cloudy" a day that was
partially cloudy would belong to both sets. If it were fairly cloudy it would belong to the
cloudy set more than it belonged to the sunny set. The sum of how much a value belongs to
all sets should be one. For example a partially cloudy day could belong to the the sunny set
with the value 0.2 and to the cloudy set with the value 0.8. In other words that day would be
20% sunny and 80% cloudy

A function is used to determine how much a particular value belongs to a fuzzy set. For
example this function could be triangular with the top at the centre of the region. Figure 2.10
shows some example triangular functions for four fuzzy sets. X is the variable that has been
divided into fuzzy sets and Y is a value indicating how much a value belongs to a particular
set.

If both input and output variables are divided into fuzzy sets, one can create a mapping
from input sets to output sets. Once this have been done, output values for a given set of
input values can be calculated by taking into account how much the input values belongs to
different fuzzy sets. This way the output from the algorithm can take any value in the output
space, rather than just a few discrete values.

Miraftab and Mansour [17] used a Fuzzy Logic Controller (FLC) as a replacement for a
human tuner. This controller was made up by several small Fuzzy Logic Systems (FLS).

10



2.4. Machine learning

Figure 2.10: Triangular functions for four fuzzy sets

When creating a FLS a human expert is asked to fine tune a filter. The S11 frequency
response of the filter and its comparison to the desired S11 frequency response is the input
for the FLS. The human expert will then create an output in the form of a change made to
a particular parameter. The human output to a specific input is recorded and saved as a
input/output pair in a FLS. A number of FLS are created this way by giving the human
expert a number of different starting scenarios.

When the machine is then used to auto tune a new filter it will treat each FLS as a fuzzy
set. It will selects the fuzzy set that the input scenario is most similar to. This set corresponds
to a FLS that then select an appropriate tuning instruction given the input. Applying this
instruction will generate a new scenario. This is then repeated until the filter meets its spec-
ification or a number of iterations have been made without reaching the filters specification.
In the second case the current scenario is given to a human expert that will tune the filter
manually. This tuning will then be turned into a new FLS.

Michalski [14] describes a method where a neural network is used to fine tune a cavity
filter. Neural networks will be described in more detail in section 2.5. When training the
network a measurement from a VNA (Vector Network Analyser) was used together with a
vector indicating how much each screw had been modified from their correct position. As
output the network would return how much each screw should be turned. The tests of the
neural network were successful although not good enough for making the filter completely
tuned. Only one filter was used, both for gathering example data, and for evaluating the
neural network.

Michalski [15] later used the same neural network and trained it on several filters in an
attempt to minimize the generalisation error. When more filters were used the neural network
managed to tune a new filter so well that it did not need further fine tuning.

Zhou, Duan, and Huang [27] use expert tuners to generate data pairs that consists of a
vector of how much each screw have been turned, and the corresponding change in the cou-
pling matrix, which can be generated from the S-parameters. These data points are then used
to create a model of the relationship between the coupling matrix and the screw deviation
with least square support vector regression (LSSVR). With this model it is possible to esti-
mate the current screw positions given the filter response and also to estimate the position
the screws should have to get the desired filter response.

2.4 Machine learning

An agent is anything that can perceive its environment, through sensors, and also act in the
environment via actuators [21]. An agent can be a robot, perceiving the world through a
camera. The actuators could be wheels allowing it to move about. An agent could also be
a computer program, that senses its environment through input parameters and act upon
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2.4. Machine learning

this environment with return values. In this thesis the agent is the program that implements
a neural network. The environment is the filter, which the program can sense through the
frequency response from the VNA. The program can control the environment by deciding
which screws will be turned.

People that work in the field of machine learning, try to make agents learn from expe-
rience. The agent is using data to draw conclusions on how the environment works. One
reason for creating a learning agent is that it is not necessary to anticipate all possible inputs,
which is not always possible to do. Another reason is that it is not always evident how a
problem can be solved. With learning an agent can find a solution to a previously unsolved
problem.

Three types of learning exists, and will be presented below. Which type is used depends
on what kind of feedback the agent have access to [21].

Supervised learning

In supervised learning, data that consists of input/output pairs are used. The goal is to
find a function that can map from a given input to a correct output, using the input/output
examples during training [21].

An example could be trying to recognize faces in images. The agent would be given an
input in the form of an image that may or may not contain a face, and as output whether this
image contain a face or not. The agent will then try to find a pattern in the examples, so that
it can correctly classify images it has never seen before [2].

Reinforcement learning

In the reinforcement model, an agent is placed in an environment which the agent perceives
with input signals. The agent can change the state of the environment with actions. In each
time step the agent will perform an action and then receive some input that indicates the
current state as well as a reward for the state transition. The agent’s goal is to maximize its
reward over time [8].

Figure 2.11: The agent should learn to find the goal in the grid map

For example, if an agents goal is to find the goal position on a grid map (see figure 2.11),
the states would be the positions in the map. The actions would be the possible moves the
agent could make in each state i.e. up, down left and right (note that not all actions will be
available in all states) The reward could be the inverse of the distance to the goal position. As
the agent tries to move around the map it will learn a policy that maps states to actions such
that following this policy will maximize the agents reward.

For the reinforcement model to work, the environment does not have to be deterministic.
That is, taking the same action in the same state does not have to lead to the same new
state or reward. The environment does however need to be stationary. This means that the
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2.5. Neural networks

probabilities of a state transition or reward to happen given an action have to stay the same
[8].

Unsupervised learning

In unsupervised learning the agents task is to find patterns in data. Since there is no "answer"
to the data, no feedback is given to the agent. Common problems in this area is cluster-
ing data, such as trying to divide the provided data into groups based on how similar they
are[21].

2.5 Neural networks

Artificial Neural Networks (ANN) are inspired by biological neural networks. ANNs can
find patterns in non-linear data, and is robust against error. They can also be updated if
the environment changes. ANNs are among other things, useful for classification problems,
clustering, and function approximation [1]. ANNs do not need a model of the environment
to work, but they require a large training set.

Normally these neurons are organized into layers where each neuron is connected to all
neurons in the succeeding and preceding layer. The input received by a particular neuron
is converted to the neuron’s output via a transfer function. This output will be input to the
neurons in the next layer.

Figure 2.12: example of neural network

Figure 2.12 shows an example of a neural network organized in layers, and those neurons
input connections. Each input connection has an associated weight wl

ji where l indicates that
the weight is in layer l and j is the neuron it connects to in layer l and i is the neuron in the
previous layer (layer l � 1). The net signal a neuron receives is calculated as:

Sl
j =

Nl�1̧

i=1

(wl
jix

l�1
i ) (2.3)

where Nl�1 is the number of neurons in layer l� 1 and xl�1
i is the output from neuron i in

layer l� 1. This net signal Sl
j is then used as input to the neurons transfer function σ(S) . The

transfer function maps S to a real value in a bounded interval. A common choice for transfer
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function is a sigmoid function [1]. A sigmoid function [4] returns a value from a bounded
interval, for all values between [�8,8], and has a positive derivative at all points. Some
example sigmoids can be seen in figure 2.14a and 2.14b.

A neural network is trained by incrementally adjusting the weights in the network, until
the desired output is received.

ANNs can have different topologies and functions for updating the weights. The archi-
tecture and update function used in an ANN will affects its performance in different tasks.
A Kohonen network [18] or self organizing map, can be used for analysing high dimensional
data. It is a unsupervised learning method, that can be used for pattern recognition, clus-
tering and classification. Adaptive Resonance Theory (ART) [1] networks are also trained
by unsupervised learning. When the network is presented with a new pattern it will either
match it to a previously stored similar pattern or store it as a new pattern if no stored pattern
was similar enough. They can be used for pattern recognition and classification.

Other examples of networks are Hopfield networks [6], counter propagation networks [5]
and recurrent networks [1], where some neurons output are sent to itself or to neurons in a
preceding layer.

The most common ANN architecture however, is a feed forward network that uses the
back-propagation (BP) algorithm. It can among other things be used for data modelling,
forecasting and pattern recognition. The back-propagation network consists of several layers
[1]: one input layer, one or several hidden layers and one output layer. Each neuron in the
input layer represents one input variable, and each neuron in the output layer represents one
output variable. The number of hidden layers and the number of hidden neurons in those
layers may vary. If no hidden layer is used, the ANN can not handle non-linear mapping
between input and output values.

Back-propagation networks use supervised learning. The input layer will receive some
input that is fed forward to the first hidden layer. Each layer will send their output forward
until it reaches the output layer which will produce the networks collective output. An error
is calculated based on the difference between the networks output and the desired output.
This error is back propagated to all layers starting with the output layer and moving backwards.
This back-propagation algorithm will be described below.

(a) An example network with one input
and one output signal.

(b) An example network with one input,
one bias and one output signal.

Figure 2.13: Example networks with bias

A common feature in back-propagation networks are bias. A bias is a neuron that will
always have 1 as its output. The reason for having such neurons is that it makes it possible
for a neuron that receives this signal as input, to move their transfer function "sideways". so
that it is not centred around 0. As an example consider a network with one input neuron and
one output neuron (figure 2.13a). The output of the network is calculated as sigmoid(w0 � x).
When the weight w0 changes, the "steepness" of the output signal will change as is shown in
figure 2.14a. If a bias neuron is added so that the network look like in figure 2.13b, the output
will instead be calculated as sigmoid(w0 � x +w1 � 1). Figure 2.14b shows how the output will
change with different values for w1.

As figure 2.14b shows, the bias weight allows the output curve to be shifted to the left or
right. This can help improve the results on some problems.
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(a) A sigmoid function for different values of w0.
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(b) An sigmoid function for different values of w1.

Learning representation by back-propagation error

A weight wl
ji is updated from its previous state (t-1) with the following equation:

wl
ji(t) = wl

ji(t� 1) + ∆wl
ji(t) (2.4)

where ∆wl
ji(t) is the change that will be made to the weight. Using the modified delta rule

this change is calculated as:

∆wl
ji(t) = Lr

δE
δwl

ij
+ µ∆wl

ji(t� 1) (2.5)

where Lr is the learning rate, δE
δwl

ij
is the derivative of the error with respect to the weight that is

being updated, µ is the momentum coefficient and ∆wl
ji(t� 1) is the change made to the weight

the previous update.
Lr controls the update step size. If it is too large the ANN will oscillate around the solution

because the change to the weights is so big that the correction overshoots the goal. If Lr is to
small the training will be slow because the improvement after each iteration is small.

The momentum term µ will help direct the search by adding a part of the previous updates
magnitude and direction to the current update. if µ is large the ANN is less inclined to getting
stuck in a local minima, but the risk of overshooting the solution is increased. if µ is small the
training will take more time and the ANN is more likely to end up in a local minima.

Assuming the error function is defined as the sum of squared errors:

E =
1
2

Ņ

k=1

(xk � yk)
2 (2.6)

the error derivative can be written as:

δE
δwl

ij
= δl+1

k � xl�1
i (2.7)

For the output layer δl+1
k will be calculated as [1]:

δl+1
k = (xl

j � yj)σ
1(S) (2.8)

and for the other layers:

δl+1
k = σ1(S)

Nl+1̧

k=1

(δl+1
k wl+1

kj ) (2.9)
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xl
j is the output from output neuron j and yj is the desired output for output neuron j,

δl+1
k is the weight change made to neuron k in the succeeding layer, and σ1(S) is the first

derivative of the transfer function. In order to calculate δl
j , the δ value for all the connection

links in the succeeding layer must be calculated. Because of this, the weight change is first
calculated for the output layer, then for the last hidden layer and so on, such that the weight
change is made backwards, from the output layer to the input layer. This is why it is called
back-propagation.

Other back-propagation algorithms

The following back-propagation algorithms are described because they will be compared
with the method chosen by Michalski [14]. The reason for this is that these back-propagation
algorithms have performed well for others with similar problems.

Conjugate gradient [12] is an update method that uses a linear search to decide the step
size. A descent direction is picked (for example the gradient direction). Then the minimum
value along this line is found, using linear search. From that point a new line search will be
done in the conjugate direction. The conjugate direction is a direction such that the gradient
direction does not change if one follows it, only the gradients length will change. (see figure
2.14). The reason for choosing the conjugate direction for the next line search is that doing
so will not remove the improvement made in the previous update. For quadratic functions,
it can be proved that conjugate gradient search will converge within N steps, where N is the
number of variables.

Figure 2.14: The red arrows indicate gradients, and the black arrows are two conjugate di-
rections. As can be seen on the image, the gradient direction does not not change on the
conjugate direction of the first search direction.

In RPROP [22], unlike in most back-propagation algorithms, the size of the update in a
weight is not dependent on the size of the gradient. Instead the step size is determined by the
sign of the gradient. If the sign of the gradient has not changed since the previous update,
the step size is increased. If the sign has changed, the step size is decreased. Each weight will
have its own step size that is updated by the sign of that weights gradient.

Schiffmann, Joost, and Werner [22] have evaluated a number of different back-
propagation update algorithms. In their experiments they find that using the back-
propagation algorithm with momentum performs very well. The only algorithms that per-
formed better was those that used a local learning rate. That is, each weight in the network
had their own learning rate variable. The best performing algorithm that also exists in the
Matlab neural network toolbox is RPROP. It was less then 0.5% worse than the best perform-
ing algorithm.

Data and Training

Some of the collected data needs to be used for evaluating how well the ANN will work on
data that it has not seen before. Therefore the data should be divided into three subsets:
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• Training.
The training data is used for updating the weights in the network.

• Test.
The test set is used to check the networks response to new data and is not used to update
the weights. The goal is to find parameter values that leads to the smallest error in the
test set.

• Validation.
The validation set is used to further confirm the networks accuracy. Unlike the test set,
the validation set is not used for optimizing the network, but rather to see how well the
network performs on data it has neither seen nor been optimized for.

It is important to make sure that the data in all three subsets covers the entire problem
domain, and that the three datasets do not contain the same examples.

When presenting examples to the ANN there exists two methods that could be used in
combination or alone: example-by-example training (EET) or batch training (BT).

In EET the weights are updated after each example. Every example will be presented over
and over, until the error is low enough or after a certain amount of iterations. Then the second
example will be presented the same way.

If BT is used all training examples will be presented one after another before the weights
are updated. The error will be calculated as the average over all examples.

EET is less likely to get stuck in a local minima compared to BT, but a bad first example
may lead the search in a bad direction. BT’s advantage is that it will have a more representa-
tive measurement of the necessary weight change and a better estimate of the error gradient
[1].

Schiffmann, Joost, and Werner [22] found that all variants of EET outperform batch train-
ing on their classifying problem. Using EET will usually yield results faster[12], especially on
large data sets. Because larger data sets often are redundant EET can achieve the same results
as batch without having to do as many calculations.
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3 Method

In this chapter the methodology used for gathering results will be described. Section 3.1
will summarize the method used by Michalski [14], as this method will largely be used in
this thesis as well. Section 3.2 will go through some environmental factors that will affect
decisions and results. Section 3.3 will describe how the neural network was designed in this
thesis as well as take up differences between this work and the work by Michalski [14]. Lastly
section 3.5 will explain how the data used for training was gathered.

3.1 The method used by Michalski

The automation methods described in section 2.3 all require data to be gathered from the filter
to use as learning examples. The method described by Michalski [14] is however the only one
that does not require expert tuners to gather the data. The method also treats the filter as a
"black box" the developer does not need to understand. For this thesis experts tuners were
not available for data gathering, and the time limit did not allow for acquiring a thorough
understanding of the filter. Therefore the method used by Michalski [14] should be a good
choice.

Michalski [14] used a neural network to create a mapping from a filter’s S11 frequency
response to how much each screw deviates from its tuned position. This is done by collecting
data pairs where the input example is a filter characteristic S11(x) and the output example is
how much each screw deviates from its tuned position. Given some filter characteristic, the
neural network should output how much each screw position need to change for the filter to
be tuned. This is similar to what an expert tuner does when they use the filter characteristics
to determine which screw to turn and how much.

The output space has one dimension for each screw. The origin of this space is defined as
the tuned filter. The maximum deviation is defined to be�K for each screw, which makes the
length of each dimension 2K.

Michalski [14] set the maximum screw deviation to �360�, and each screw adjustment is
made in steps of �18�. The unit [u] is defined as number of screw adjustments. For example, a
screw deviation of 36� can be written as a deviation of 2u.

The value of K can be calculated as 360
18 = 20u.

The procedure used for gathering examples for the neural network was as follows:
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1. Start with a correctly tuned filter.

2. Read the tuned filters screw positions. This will be used to calculate the difference in
screw positions when the filter has been detuned.

3. Randomly detune the filter with the following formula:

W(j) = W0(j) + δW(j) (3.1)

where
δW(j) = RND[2 � K]� K (3.2)

K is as explained earlier the maximum screw deviation as measured in values of u. W(j)
is the position of screw j, and RND[X] a function that returns a random integer value
between 0 and 1.

4. Read the corresponding S11-parameter of the now detuned filter.

5. Store the S11-parameter as an input example and the screw adjustment as an output
example. The output examples need to be normalized.

6. Repeat from point 3 until enough learning samples have been gathered.

The same procedure will be used to gather data in this thesis. The only exceptions is that
Michalski [14] gathered data with a robot and that the input examples were not normalized.
In this thesis the data is gathered by hand, and the input examples are normalized. The effect
manual data gathering have on performance will be discussed in chapter 5.

The neural network that was trained by Michalski [14] was a feed forward network with
three layers. There were 512 input neurons, and 50 hidden neurons. Two filters of different
sizes were used, so the number of output neurons was 6 or 11 depending on which filter was
being used.

A feed forward neural network will be used in this thesis as well, but the number of input
nodes and hidden nodes to use will be determined experimentally.

Michalski et al. [16] calculated that the number of input points necessary for the neural
network to learn is:

L = 2(N + 1) (3.3)

where N is the number of tunable elements. The input values are complex and therefore two
neurons need to be used per input value.

These results will be taken into account when deciding which values for number of input
nodes will be selected.

Michalski [15] trained a neural network on 5 filters. After this the neural network was
able to properly tune a filter it had not seen previously. In this thesis only one filter will be
used due to time and resource constraints. The effects of this will be discussed in chapter 5

3.2 Environment

As was explained in section 2.1 There are 4 scattering parameters that can be measured by the
VNA. Each parameter varies with the frequency and is complex. The VNA can sample up to
1601 points for each scattering parameter at a selected frequency range. The filter used in this
thesis is supposed to only let through signals with a frequency between 1.850 GHz and 1.910
GHz.

Michalski [14] used 256 sample points (and consequently 512 input neurons), but later
Michalski et al. [16] presents a formula that shows that as few as 12 sample points should be
enough to learn a mapping from frequency response to screw deviations on a 5-pole filter.
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Since the VNA will sample 1601 points the number of data points needs to be reduced before
they are presented to the neural network. Section 3.5 will explain how this was done in more
detail.

When tuning filters, experts usually chose to view a wider frequency range than the filter
is supposed to work on. This is because it helps detect poles whose resonance frequencies
are outside the intended range and because the band-pass region may become shifted during
the fine tuning process. As was explained in section 2.1, a poles resonance frequency is the
frequency which the pole will let through best. These resonance frequencies should all be
inside the band pass region. In general, experienced tuners view a smaller frequency range
than novice tuners. If the range used is too small, it is hard to adjust large errors, since the
poles that are badly placed may be outside the viewed range. If the range is to big, small
changes can not be detected because the sampling is not dense enough.

The range used as input for the neural network was 1.79 GHz to 1.96 GHz. Normally
human tuners select a range that suits them. In general experienced tuners selects a smaller
range than novice tuners. Since Michalski [14] did not mention what frequency range was
used in their project, the range used in this thesis was selected in accordance to advice from
a person with experience in tuning filters.

The requirements on a filter are usually placed on S11 and S21. Therefore these are the
parameters looked at by experts. When the filter is designed, it is made sure that the filters
frequency response far outside the band-pass region is acceptable when the filter is tuned.
Therefore there is no need for a tuner to look far outside the band-pass region.

S11 and S21 have complex values, but they are usually viewed in a logarithmic scale. The
complex values of S11 and S21 are converted to a logarithmic scale measured in dB with the
following function [9]:

magnitude(S) = 20 � Log10(
b

Re(S)2 + Im(S)2) dB (2.2)

Michalski [14] only used the S11-parameter and did not convert the measurements to log-
arithmic scale. I will try both using S11 as Michalski [14] did and also to use S11 in logarithmic
format as expert tuners do today.

When gathering data the screw deviation was always a multiple of 18�. The neural net-
works output is continuous, so it should still be able to handle input where the screw devi-
ation is not in multiples of 18�. However it is possible that some pattern are lost because of
how the data was sampled. For example, The neural network should have a hard time with
deviations much smaller than 18� since it has not seen any such examples. In practice an
expert tuner should need to be able to make smaller adjustments than 18�.

The step size in screw deviation has been chosen to be the same as for Michalski [14],
as that value was found to work well for them. An issue with smaller step sizes is that the
measurement error would be more significant with smaller step sizes. Using the same step
size as Michalski [14] will also help make the results more comparable.

3.3 Set-up

E =
Ļ

l=1

Ņ

n=1

|oln � aln|
LN

(3.4)

Since the different update algorithms have their own parameters that need to be selected,
this section is organized into three subsections. Section 3.3 will go through the parameter
choices and design decisions that are common to all three update algorithms. Section 3.3-3.3
will explain the parameter choices that are specific for the different update algorithms as well
as motivate why these particular update algorithms were selected.
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Shared parameter choices and design decisions

• Transfer function σ(S):
For transfer function both a logarithmic sigmoid and a tanh sigmoid function will be
used. A logarithmic sigmoid maps input values to values between 0 and 1, and a tanh
sigmoid maps input to values between -1 and 1. Michalski [14] do not mention which
transfer function was used, but the sigmoid function is the most common choice [1],
therefore a sigmoid function will be used. The normalization made by Michalski [14]
fits a logarithmic sigmoid, but LeCun et al. [12] suggest that a sigmoid centred around
0 is a better choice so that will be tried as well.

• Number of hidden neurons:
Michalski [14] states that the number of hidden neuron used was 50, but also that the
number of neurons should be chosen experimentally. Therefore between 20 and 80
hidden neurons will be tested. Presumably, there should not be a large difference in
what number of hidden neurons suits the filter used in this thesis and the filters used
by Michalski [14].

• The ratio between the training, test and validation subset:
70% of the gathered data will be used for training, and 15% for the test and validation
set respectively. The suggestions found by Basheer and Hajmeer [1] is that 20 to 35
percent of the data should be used for testing and evaluation. The values picked in
this thesis is within this range and the default values used by Matlab’s neural network
toolbox.

• Number of data points gathered:
Michalski [14] found that more than 500 data points did not improve the results signif-
icantly for them. Since the manual data gathering in this thesis should mean that the
examples are not as good as those gathered by Michalski [14], a few more data points
(700 to be exact) were gathered for this problem. The data was copied and noise was
added to the copies in order to increase the number of data points. Adding noise also
tends to increase the neural networks robustness for measurement errors. In the end,
2800 data points were available for training and evaluation.

• Batch training or EET:
Michalski [14], does not mention whether batch training or EET was used. Schiffmann,
Joost, and Werner [22] and LeCun et al. [12] found that update algorithms trained with
EET performed better than all update algorithms trained with batch training.

The conjugate gradient update algorithm only works with batch training. To make the
update algorithms results more comparable, and also to save computing time most of
the tests where done using batch training. The iteration of examples for EET training
had to be implemented manually, making training with EET much slower than batch
training where the entire training procedure already existed in the toolbox.

• Error function:
From the description by Michalski [14] it is clear that they used mean absolute error, as
their error function. This will be used in this thesis as well, as it will simplify compar-
isons.

• Bias:
Michalski [14] did not mention having any bias, but bias will still be used in this thesis
for the hidden and output neurons. This bias makes it possible to shift the sigmoid
function, which allows the neurons to learn more functions.
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• Number of input variables:
The number of input variables can be changed by changing how many data points from
the S-parameters are used. As was mentioned in section 3.1, Michalski et al. [16] found
that the number of input points necessary for the neural network to learn is

L = 2(N + 1) (3.3)

N is the number of tunable elements. Since the data points are complex two neurons
per point is needed. Michalski et al. [16] also found that using more input neurons than
necessary, up to some point, decreases training time. Therefore between 24 to 204 input
neurons will be tested.

The more input neurons are used, the more complex patterns should be findable in the
data, but the more redundant information should be found as well. If the input is too
large the network should have trouble learning well because there are so many weights
to optimize, whereas to few input neurons should mean that there are not enough pat-
terns in the data to learn from.

In the Matlab tool-kit a number of stopping criteria can be defined for batch training. If
any of the following is true the training will stop.

• Number of epochs have reached 1000.

• The error function is 0 for the training set.

• The gradient of the back-propagation algorithm is less than 1E�7.

• The validation error has increased 6 times in a row.

The exact values of the different stopping criteria can be changed. The values stated in the
list are the values used in this thesis. An epoch is one iteration of presenting all examples to
the neural network. For batch training all the examples will be presented once and then the
weights of the neural network will be updated based on the total error. With EET the neural
network will be updated after each example, and when all examples have been presented the
epoch is finished.

For EET training no built in stopping criteria exist, instead the following stopping criteria
has been implemented:

• Number of epochs have reach 800.

• The test error has increased 6 times in a row.

• The test error has not decreased more than 0.1 in the last 100 epochs.

Back-propagation with momentum

The general update function that was presented in section 2.5 is:

wl
ji(t) = wl

ji(t� 1) + ∆wl
ji(t) (2.4)

wl
ji is the weight being updated and ∆wl

ji the change that is made to the weight. How this
change is calculated depends on the update algorithm.

For back-propagation with momentum, the change update ∆wl
ji is calculated as:

∆wl
ji(t) = Lr

δE
δwl

ij
+ µ∆wl

ji(t� 1) (2.5)
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where Lr is the learning rate, δE
δwl

ij
is the error derivative with respect to the weight that is

being updated. µ is the momentum coefficient and ∆wl
ji(t� 1) is the change made to the weight

the previous update.
The back-propagation with momentum algorithm was used by Michalski [14] and will

therefore be tested in this thesis as well. The following parameter choices have been made
for the neural network using back-propagation with momentum as its update algorithm.

• Learning rate Lr:
In general, the lower the learning rate the better. A learning rate that is too large will
cause the network to miss a solution by overstepping it. However if the learning rate
is to low, the learning time will be longer. The default value in Matlab is 0.01, and
according to Basheer and Hajmeer [1], common suggestions are in the range 0 to 1.
In this thesis 0.001, 0.01 and 0.1 will be tested, as there is an order of magnitude in
difference between the values. This should make the results from using each value
differ noticeably.

• Momentum coefficient µ:
If the momentum coefficient is too low, the risk of finding a local minima is increased,
and the training will take more time. If the momentum coefficient is too high, the risk of
ending up in a local minima is reduced, but the risk of overshooting the global minima
is increased. Using a µ ¡ 1 may cause instability in the search. The Matlab default
value is 0.9. In order to get a wide range of values 0.1, 0.5 and 0.9 will be tested.

RPROP

Just as for back-propagation with momentum the update formula for RPROP is:

wl
ji(t) = wl

ji(t� 1) + ∆wl
ji(t) (2.4)

Unlike back-propagation with momentum RPROP only uses the sign of the error gradient
when deciding the size of its weight change update ∆wl

ji. As mentioned in section 2.5 RPROP

makes use of a weight update ∆l
i j(t) which is increased when the current error gradient has

the same sign as the previous error gradient. Each weight in the network has its own weigh
update ∆l

i j(t), which is updated as follows [20]:

∆l
i j(t) =

$''&
''%

η+ � ∆l
ij(t� 1) if δE(t�1)

δwij
�

δE(t)
δwij

¡ 0

η� � ∆l
ij(t� 1) if δE(t�1)

δwij
�

δE(t)
δwij

  0

∆l
ij(t� 1) else

(3.5)

η+ and η� are the increase and decrease factors. The weight update ∆l
i j(t) will then decide

the change update ∆wl
ji in the following way:

∆wl
ji =

$'''''''&
'''''''%

�∆l
ij(t� 1) if δE(t�1)

δwl
ij
�

δE(t)
δwl

ij
  0

�∆l
ij(t) if δE(t)

δwl
ij
¡ 0

+∆ij(t) if δE(t)
δwl

ij
  0

0 else

(3.6)

Verbalized, ∆wl
ji will be negative if the error gradient is positive (meaning the error has

increased) and the weight will be decreased. If the error gradient is negative, the weight
will increase. If the error gradient have changed sign since the last step, the previous weight
update will be reverted ( as per the first case in 3.6). This will undo the previous update. If
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this happens, the gradient is bound to change its sign in the next turn. In order to avoid this
double “backtracking”, ∆l

i j(t) should not be changed in the in the succeeding step.
In the tests performed by Schiffmann, Joost, and Werner [22] RPROP was the best per-

forming update algorithm, that was also available in Matlab’s neural network tool-kit. There-
fore it will be tested in this thesis. The following parameter choices was made for RPROP:

• Learning rate Lr:
For RPROP the learning rate changes depending on the sign of the gradient. However
a starting learning rate will still need to be set. The starting learning rates that will be
tested are 0.001, 0.01 and 0.1 as there is an order of magnitude in difference between the
values. This should make the results from using each value differ noticeably.

• increase factor η+ and decrease factor η�

Riedmiller and Braun [20] recommends using 0.5 for η� and 1.2 for η+. In this thesis
η� was set to 0.5 and for η+ the values 1.1, 2 and 5 is tested. η+ has to be larger than 1,
and in order to test a wide range of values, some values had to be very large. η� will
not be tested in order to save computing time.

Conjugate gradient

As explained in 2.5, the conjugate gradient algorithm works by selecting a direction and
doing a line search to find a minimal point along that direction. A new direction is selected
such that moving in that direction will not destroy the updates done earlier.

Conjugate gradient was the update algorithm recommended by LeCun et al. [12]. They
recommend it when the training set is not large or when the neural network is used for func-
tion approximations rather than for classification. Since both of these conditions are true for
the problem in this thesis, conjugate gradient will be tested as an update algorithm. There are
no parameters that will be set for the conjugate gradient update algorithm other than those
parameters that are shared for all update algorithms.

3.4 How many examples are needed?

Michalski [14] presents the density function 3.8. They also state that for the generalisation
error to stay at a certain level when changing the search space, the density must stay the
same. The volume of the search space is:

V = (2K)N (3.7)

where N is the number of dimensions of the search space and 2K is the length of each
dimension. On a filter N corresponds to the number of tunable screw in that filter and K is
the maximum number of screw deviations. In both this thesis and in the work by Michalski
[14], the maximum screw deviation is �360� and each adjustment was made in steps of 18�.
Since 360

18 = 20, K is 20 as well.
The density function presented by Michalski [14] is calculated by dividing the number of

learning examples with the volume of the search space:

d0 =
L0

(2K)N (3.8)

Michalski [14] also derives equation 3.9 which can be used to estimate the number of
examples needed to keep the same generalisation error when the number of dimensions in
the output space increases.

L = L0(2K)(Nnew�Nknown) (3.9)
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3.5. How the examples were gathered

L is the number of examples needed for the new output space. Nknown is the number of dimen-
sions in the “old” output space, where it is already known how many examples are needed
to reach a desired generalisation error. Nnew is the number of dimensions in the “new” out-
put space, for which we want to estimate the number of examples needed to reach a certain
generalisation error. L0 is the number of examples used to reach the desired generalisation
error on the “old” output space with Nknown dimensions.

Michalski [14] then creates a test for determining the number of learning vectors needed
before the generalisation error stops improving. They used a filter with N = 6 tuning ele-
ments.They collected 2000 learning vectors for the test case. The experiments showed that
using more than 500 learning vectors, did not improve performance. As was mentioned ear-
lier, K = 20 both in the work byMichalski [14] and in this thesis.

With these results it is now possible to use equation 3.9 to estimate the number of learning
examples needed for the filter used in this thesis:

L = 500(2 � 20)(Nnew�6) (3.10)

The filter used in this thesis will have 5 tunable elements so the number of learning ele-
ments can be estimated as:

L = 500(2 � 20)(�1) = 12.5 (3.11)

Clearly the size of the search space is not the only thing that affects the number of learning
vectors needed.

Michalski [14] did not test equation 3.9 in the article, and from the description it is clear
that equation 3.9 was intended to be used when increasing the search space, not decreasing
it.

3.5 How the examples were gathered

The data will be gathered by connecting a filter with a VNA. The procedure is as follows:

1. A random screw deviation is determined by using the following Matlab formula:

s = rand(1, 5) � (2 � k)� k;

screw = int64(s);

The function will generate random integers between �20u and 20u. Since the example
outputs given to the neural network are in the unit u, the output produced by the neural
network will also be in the unit u.

2. The screws are manually turned according to the generated values and the resulting
S11-parameter is saved.

This procedure will be repeated until enough data has been gathered. The VNA will save
1601 points on the S11-parameter graph. To use this as input the data points will be reduced
with the following algorithm:

N = f loor(len/numElements); (3.12)

s11 = s11(1 : N : len); (3.13)

s11 = s11(1 : 1 : numElements); (3.14)

Where len is the length of S11, and numElements is the number of elements S11 should
be reduced to. It is worth noting that if the number of elements desired can not be selected
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3.5. How the examples were gathered

evenly, the rightmost sample point will be removed until the desired number of elements
have been selected. The purpose of this was to make the algorithm as simple as possible.
Since the points removed will be outside the band-pass, they should be less interesting than
points inside the band-pass.

The Matlab tool-kit contains methods for preprocessing data before it is used in the neural
network. A function that maps the input and output values to values between 0 and 1 will be
used when the transfer function is a logarithmic sigmoid. When a tanh sigmoid is used the
input and output values will be normalized to have zero mean and a standard deviation of 1
in accordance to the recommendations given by LeCun et al. [12].
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3.5. How the examples were gathered
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4 Result

Section 4.1, will explain how to interpret the results. In Section 4.2-4.7 the effects of different
design parameters will be presented. Section 4.8 will look at what the gathered data can tell
about how many examples are needed to learn to tune a filter. Lastly, in section 4.9 the results
in this thesis are compared to those of Michalski [14].

4.1 Understanding the results

As explained in section 3.1, the maximum screw deviation is �360� and each screw adjust-
ment is made in steps of �18�. The unit [u] is defined as number of screw adjustments. For
example, a screw deviation of 36� can be written as a deviation of 2u. The maximum screw
deviation, measured in u is 20. The output of the neural network is also measured in u. As a
consequence of this, the error will also be measured in u. An error of 4u in this case, would
mean that on average, the neural network will make a guess that is 4u(= 72�) from the cor-
rect value for each screw. All the output examples given to the neural network was made
in integer values. That is, an output example can not have the value 2.3 or 5.7, since these
values are not integers. The neural network outputs floating point values, and therefore it
may output 2.3 or 5.7, even though these values could never be correct.

In order to evaluate how good a result is, it can help to compare it to how good a program
that randomly selects a value between �20u and 20u for each screw would be. In order to
calculate this it is necessary to know how likely each “distance” from the correct answer is.

There are only two ways to guess 40u from the right answer (by guessing -20 when the
answer is 20, and by guessing 20 when the answer is -20). Figure 4.1a illustrates this. The
red circle at -20 is 40u away from the red circle at 20 and the other way around. There are no
other ways of placing circles so that the circles are 40u away from each other.

There are four ways to guess 39u from the right answer, as is illustrated by figure 4.1b.
The two red circles are 39u away from each other and the two blue circles are also 39 steps
away from each other. As the illustration shows, there are therefore four ways to be 39 steps
from the right answer.

There are six ways to guess 38u wrong. Figure 4.1c illustrates this scenario. the two green
circles are 38u from each other. The same is true for the two blue circles and the two red
circles.
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4.1. Understanding the results

(a) There are two ways to guess 40u wrong.

(b) There are four ways to guess 39u wrong.

(c) There are six ways to guess 38u wrong.

Figure 4.1: theses figure illustrates in how many different ways a guess can be 40u, 39u and
38u from the right answer

This pattern, where the number of ways to guess increases by two each time the error
decreases by one, continues all the way down to guessing 1u wrong from the right answer,
which can be done in 80 different ways. The only exception is guessing exactly right which
can only be done in 41 different ways (one way for each value).

By adding 2 + 4 + 6 + ... + 78 + 80 + 41 together we get the total number of different
guesses.

In order to get the mean absolute error we also have to calculate the total “distance” we
get from all these different guesses and divide by the number of guesses. That is, calculate

40 � 2 + 39 � 4 + 38 � 6 + ... + 2 � 78 + 1 � 80 + 0 � 41
2 + 4 + 6 + ... + 78 + 80 + 41

� 13.7u (4.1)

This means that a program with an error rate close to 14u is pointless since simply random
guessing would be just as good.

The method used for calculating the error is mean absolute error. The error is calculated
according to this function:

E =

L°
j

N°
i
|targetij � outputij|

L � N
(4.2)

N is the number of tunable elements (five in this thesis). L is the number of examples.
As was explained in section 2.5 the examples should be divided into three sets. One that

is used for training, and two sets that is used for evaluating the neural network. The first
evaluation set, the test set, is used to see what error the neural network has on examples it
has not seen before. When training the neural network, the goal is to make sure that the error
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4.2. Back-Propagation Algorithm

Update algorithm Transfer
function

Data type Input
neurons

Hidden
neurons

best error

Back-propagation
with momentum

logarithmic
sigmoid

complex 144 50 2.57

RPROP logarithmic
sigmoid

complex 164 80 2.09

Conjugate
gradient (twice as
many examples)

logarithmic
sigmoid

complex 124 70 1.44

Table 4.1: The table shows which design decisions led to the best result for each update algo-
rithm, as well as what the best validation error was.

on the test set is as low as possible. The second evaluation set, the validation set, is used to see
what error the neural network has on examples it has neither seen before nor been optimized
to perform well on. All the errors shown in the results will be validation error, except for the
error regarding EET training. Generalization error (that is the error from the first evaluation
set, the test set), will be used instead, as validation error was not implemented for EET.

In table 4.1 the best design for each update algorithm is presented as well as the best
validation error achieved for that update algorithm.

4.2 Back-Propagation Algorithm
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Figure 4.2: Comparison between back-propagation with momentum, RPROP and conjugate
gradient. Logarithmic sigmoid was used.

In figure 4.2 three different update algorithms are compared. In the figure, the validation
error after different number of epochs is shown. An epoch is one iteration of presenting
all learning examples to the network and using the total error to update the weights in the
neural network. A figure 4.2 shows, the conjugate gradient update method performed best
and back-propagation with momentum performed worst.

The parameters and neural network architecture that lead to the best result were used for
each of the update algorithm. All neural networks were trained with batch training.
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4.3. Example-by-example training

4.3 Example-by-example training
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Figure 4.3: Comparison between a logarithmic and tanh sigmoid as transfer function when
training with EET. Back-propagation with momentum was used as update algorithm

Figure 4.3 shows the result of using EET when training the neural network. The neural
network used back-propagation with momentum as its update algorithm and for transfer
function, both a logarithmic sigmoid and a tanh sigmoid was tested. For the figure the com-
bination of parameters that lead to the best result was selected. As figure 4.3 shows, a tanh
sigmoid did not perform well compared to a logarithmic sigmoid. EET in combination with
a logarithmic sigmoid however worked well. The best generalisation error was 1.36 which is
slightly lower than the best validation error (1.44). Normally one can expect the generalisa-
tion error to be slightly larger than the validation error. However as will be shown later, the
best validation error was achieved with twice as many input examples.

4.4 Number of hidden neurons

When gathering data for the performance of the conjugate gradient update algorithm, differ-
ent numbers of input neurons and hidden neurons were tested. In figure 4.4 a box plot shows
how the number of hidden neurons affects the error. Each result from a particular number
of hidden neurons has a different number of input neurons. The logarithmic sigmoid was
used as the transfer function in all neural networks. The best value as well as the best median
value was achieved with 70 hidden neurons. That group also had the widest span between
the 25th percentile and 75th percentile, which indicates that the number of input neurons
have a larger effect on the results for this group than for other groups.

4.5 Number of input neurons

When testing the effect of changing the number of input neurons, conjugate gradient was
used as the update algorithm. The logarithmic sigmoid was used as the transfer function.
The number of hidden nodes used was 70. These parameters were selected because this
combination yielded the best result for the conjugate gradient update algorithm. In all other
experiments the number of input neurons varied between 12 and 102, with increments of 10.
In this case the number of input neurons varied from 11 to 1601, with increments of 10.
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4.5. Number of input neurons
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Figure 4.4: A box plot of how the number of hidden neurons affect the error. The red line in
each box is the median value in that group. the top and bottom line of the box is the 75th
respective 25th percentile of the group. The two black lines above and below the box is the
maximum and minimum value of that group. The red crosses are outliers. Some outliers
have been removed in order to better present the data
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Figure 4.5: This figure shows the relation between the error and the number of input neurons
in the neural network.

In figure 4.5 there is no apparent connection between number of input neuron and the
error. Some input sizes result in a very large error, but this could just be a result of a bad
weight initialization.

However, if one removes the extremely large errors in figure 4.5, as have been done in
figure 4.6, one can see that there is some pattern in the data. Somewhere between 200 and
1000 input neurons gives the best performance.
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4.6. Type of input
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Figure 4.6: This figure shows the relation between the error and the number of input neurons
in the neural network, when outliers have been removed.

4.6 Type of input

S11 has a complex value for each frequency. In order to visualize S11, each complex value is
converted to a logarithmic format with the following function:

magnitude[dB] = 20 � Log(
a

Re2 + Im2) (2.2)

These converted points are then plotted against the frequency (An example can be seen in
figure 2.8a).
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Figure 4.7: Comparison between logarithmic and complex input

As was explained in section 3.2, human experts view S11 in a logarithmic format when
fine tuning. Therefore it would be interesting to see if presenting the input in this format
would be beneficial for the neural network as well.

Figure 4.7 shows the difference between using logarithmic input and complex input for
the three different update algorithms. For both the complex and the logarithmic case the
transfer function that yielded the best error was selected. The number of input neurons and
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4.7. Transfer function

the number of hidden neurons was also chosen based on which combination had the best
result. All neural networks were trained with bath training.

Figure 4.7 shows that using complex values give better results than using logarithmic
values, regardless of which update algorithm is used. While it is not shown in figure 4.7, the
best transfer function for both complex and logarithmic input was a logarithmic sigmoid.

4.7 Transfer function

When comparing the transfer functions, the combination of number of input neurons and
number of hidden neurons that performed best was used. All neural networks were trained
with batch training.

Figure 4.8 shows the effect of using a logarithmic sigmoid and a tanh sigmoid for the three
different update algorithms. As was explained in section 3.3, LeCun et al. [12] suggests using
a sigmoid centred around 0. The results shows that a logarithmic sigmoid as the transfer
function performs better in all three cases, despite the suggestions of LeCun et al. [12].
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Figure 4.8: Comparison between a logarithmic sigmoid with range [0, 1] and a tanh sigmoid
with range [-1. 1]

4.8 How many examples are needed?

Michalski [14] presented a function that relates the number of examples needed with the size
of the output space. As was shown in section 3.3, this approximation does not work well for
a smaller filter. The results in this thesis and the results by Michalski [14] can not be used
together and therefore it is not possible to estimate a better approximation between number
of examples and output size.

Instead lets look at the data that can be gathered to see what conclusions can be drawn
from them.

As was shown in figure 2.12, for each connection between two neurons, there is an asso-
ciated weight wl

ij. Since the goal of training a neural network is to find a suitable value for
each weight it can be interesting to see if the number of weights in the neural network affects
the error. The number of weights in a neural network can be calculated with the following
formula:

weights = input � hidden + hidden � output (4.3)
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4.8. How many examples are needed?

In figure 4.9 the number of input neurons and hidden neurons have been varied to create
neural networks with a different number of weights. The conjugate gradient update algo-
rithm was used in combination with a logarithmic sigmoid as the transfer function. The best
validation error achieved for a different number of weights in the neural network is shown,
after outliers have been removed.
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Figure 4.9: This figure shows the relation between the error and the number of weights in the
neural network

As figure 4.9 shows, the error goes down as the number of weights increases. There is
also more variation in the error when the number of weights is lower. although this could be
because there are fewer neural network with many weights.
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Figure 4.10: This figure shows the relation between the error and the number of examples for
three different values for the number of weights in the neural network.

Figure 4.10 shows how the validation error is affected by the number of examples used.
The conjugate gradient update algorithm was used with a logarithmic sigmoid. In order to
test up to 5600 examples it was necessary to also increase the number of examples that have
had noise added to it. Basheer and Hajmeer [1] suggests that the number of learning examples
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4.9. How the results compare to Michalski

should increase if the number of weights in the neural network increases. Therefore it can be
interesting to see how the error for neural networks with a different amount of weights will
change when the number of examples used is changed.

The three neural networks with the smallest, largest and median number of weights is
shown in figure 4.10 after outliers have been removed. Neural networks with a different
number of weights had a similar result to those shown in figure 4.10.

Figure 4.10 shows that increasing the number of examples improves the error, regardless
of how many weights the neural network has. It is also clear that the more examples are
added the less the error improves regardless of the number of weights used. Figure 4.10 also
shows that a neural network with more weights will reach a lower error, as the number of
examples increases, compared to a neural network with fewer weights.
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Figure 4.11: This figure shows the relation between the error and the number of examples.
Three different values for the number of input neurons in the neural network is shown.

Figure 4.11 was created with the same data set as figure 4.10, but this time the data was
ordered based on the number of input neurons. The graphs show the mean value of all neural
networks with that number of input neurons. As can be seen, varying the amounts of input
neurons only has a small effect on the error. The difference does not appear to change much
when the number of examples increases either.

Figure 4.12 has also been created with the same dataset as figure 4.10 and 4.11. The data
has now been ordered based on the number of hidden neurons. The graph shown in figure
4.12 shows the mean value for all neural networks with that amount of hidden neurons.

Adding more hidden neurons has a larger effect on the error than adding more input
neurons does. It also looks like adding more examples improves the error more, when more
hidden neurons are used, even though the gain is not very large.

The best validation error (1.44) was achieved with the data set used to create figure 4.10,
4.11 and 4.12.

4.9 How the results compare to Michalski

In order to compare the results in this thesis with the results of Michalski [14], one first has
to make sure that the errors are calculated in the same way. Michalski et al. [16] introduces
a generalisation error that is said to be the same as the one introduced by Michalski [14].
It is also shown that the error is measured in units of u, just like the error in this thesis.
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4.9. How the results compare to Michalski
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Figure 4.12: This figure shows the relation between the error and the number of examples.
Three different values for the number of hidden neurons in the neural network is shown.

However, the error function presented by Michalski [14], (assuming the variable used in the
error formula has the same meaning as it had earlier in the article) should be in the unit 2K �u.
The intended unit is not shown explicitly. Kacmajor and Michalski [7] does not explicitly
state the unit used for the error, but from the units used when calculating the error one can
conclude that the error is measured in units of u. In that article the authors also compare their
results with the results by Michalski [14] and by comparing the figures made by Kacmajor
and Michalski [7] and by Michalski [14] it does not seem like the values have been converted
in any way. Based on this it will be assumed that all errors presented by Michalski [14] and
Michalski et al. [16] are in the unit u.

Michalski [14] did not calculate the validation error for their neural network, instead they
calculated the generalisation error. The difference between the two errors is that the neural
network is optimized to have the lowest generalisation error, and validation error is used to
see how well the neural network perform on examples it has not been optimized for. Michal-
ski [14] managed to get a generalisation error for a 6-pole filter that was slightly below 0.5u,
and for a 11-pole filter the generalisation error was slightly below 1.5u. In this thesis the best
validation error achieved was (1.44u) which is very similar to the error Michalski [14] had for
the 11-pole filter.
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5 Discussion

Section 5.1 will try to answer the research questions presented in 1.2. In section 5.2 issues with
the chosen method will be evaluated. In section 5.3 potential future work will be discussed,
and finally section 5.4 contains a conclusion of the results and the work in a wider context.

5.1 Result

• Can a neural network fine tune a filter to meet its specification?

The lowest error achieved in this thesis is not small enough to be used in a commercial
product, but it is small enough to show that the method itself works.

Michalski [14] had a generalisation error for a 6-pole filter that was slightly below 0.5u.
For an 11-pole filter the generalisation error was slightly below 1.5u. This was not
enough to completely tune the filter. Michalski [15] later showed that using more filters
was enough to tune the filters to meet their specification. The best error (1.44u) achieved
in this thesis is worse than the result for the 6-pole filter it is most comparable to. While
the filter used in this thesis was smaller and therefore should be easier to tune, there are
a number of reasons for why the error was still worse than that of Michalski [14]:

– Michalski [14] explains that in their work the examples were gathered using a
robot, whereas in this thesis the data was gathered by hand. This means that the
data in this thesis likely contains wrongly labelled examples, and that the measure-
ment error is larger, both of which should decrease performance. The number of
examples used are also fewer, although the number of examples have been based
on what Michalski [14] found to be enough.

– In order to make sure a given result could be generated again, the random genera-
tor in Matlab (which was used to set the initial weights in the neural network) was
set to a default value. Training several neural networks with randomly initialized
weights and then selecting the network that performed best, is one way to improve
the results. Michalski [14] does not mention doing so, but that does not mean that
they did not.
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5.1. Result

– In this work the validation error was used for all tests except when testing EET,
where generalisation error was used. Michalski [14] only used generalisation er-
ror when evaluating their results. In general the validation error should be slightly
higher than generalisation error. In this work the difference between generalisa-
tion error and validation error has been on the scale of 0.1

Despite these drawbacks it was still possible to reach a relatively low error, which shows
that the method used by Michalski [14] is feasible for more filter that those tested in their
work.

• How does the architecture of the neural network affect performance?

Update algorithm
Figure 4.2 showed that conjugate gradient was the best update algorithm for this prob-
lem. The figure also showed that both conjugate gradient and RPROP performed better
than back-propagation with momentum, as the results by LeCun et al. [12] and Schiff-
mann, Joost, and Werner [22] suggested.

Transfer function
The results shown in figure 4.8 is more unexpected. Against the advice from LeCun et
al. [12] a positive sigmoid performs better for all update algorithms tested. It is possible
that which transfer function is better varies with the update method. Another reason
for the result could be that with the tanhsig transfer function the data was normalized to
have a zero mean and a standard deviation of 1, whereas the data was mapped between
0 and 1 when using the logsig transfer function. It is possible that in this particular case
mapping all values to have a range within the transfer function is a better choice, even
though LeCun et al. [12] suggest otherwise.

Number of input neurons
The effect of varying the number of input neurons is small but noticeable. From figure
4.5 it is clear that between 200-1000 input neurons performs best, even if the variation
is still big.

Number of hidden neurons
In figure 4.4 the effect of varying the number of hidden neurons was shown. There is a
tendency that more hidden neurons is better. It was also shown that, with the exception
of 70 hidden neurons, the span between the 25th percentile and 75th percentile was
fairly small despite a change in number of input neurons. This shows, together with
figure 4.6, that the number of input neurons does not have an as large effect on the
results as the number of hidden neurons

Number of weights
Figure 4.10 and figure 4.9 both shows that increasing the number of weights in the neu-
ral networks improves the performance. Figure 4.10 also shows that the benefits of
using more weights is not visible until enough examples have been added. In theory a
larger neural network should be able to generalize at least as well as a smaller neural
network. The larger neural network could “emulate” a smaller neural network by set-
ting some weights to zero. Given enough time, a larger neural network should therefore
either perform better than a smaller neural network or set its weights in such a way that
it performs very similarly to a smaller network.

Function 4.3, which shows how to calculate the number of weights in a neural network,
can be rewritten as:

W = hidden(input + output) (5.1)
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5.1. Result

5.1 shows more clearly that in order to change the number of weights as much as pos-
sible, the smaller value of hidden and (input + output) should be increased. This can
explain why there were a clear correlation between validation error and more hidden
neurons, while no clear correlation was found between the validation error and the
number of input neurons.

In figure 4.4 between 20 and 80 hidden neurons were tested and the number of input
neurons varies between 24 and 204. In other words, the number of hidden neurons were
fairly close to the number of input neurons. This meant that increasing the number of
hidden neurons would increase the number of weights in the network noticeably. In
figure 4.6 the number of input neurons varies between 22 and 3202. For the larger
values, the number of hidden neurons is so small comparatively, that increasing the
number of input neurons will barely affect the number of weights. This means that an
increase in number of hidden neurons in figure 4.4 is related to a similar increase in
number of weights to a larger degree than an increase in number of input neurons in
figure 4.6.

• How can the data be presented to the neural network to improve performance?

Preprocessing
As figure 4.7 shows, using complex data is better than using logarithmic data, despite
the fact that the logarithmic format suits human experts best. The reason for this is prob-
ably that the complex format contains more information than the logarithmic format,
which combines the real and imaginary values into one new value. This is detrimen-
tal to a neural network but beneficial to a human that prefers data that can be easily
visualized.

Training type
Generalisation error was used when testing EET. In all other cases validation error was
performed. I general the validation error should be slightly higher than the generalisa-
tion error. However the difference between generalisation error and validation error in
the tests using batch training was on the order of 0.1. Therefore the generalisation er-
ror for training with EET (1.36) should still be somewhat comparable to the validation
error used with batch training. Figure 4.3 showed that using back-propagation with
momentum, trained with EET performs comparable to the conjugate gradient update
algorithm trained with batch training and twice as many examples (which had an val-
idation error of 1.44 ). This is in accordance with LeCun et al. [12] who explained that
when using EET, one will often get the same result, but with fewer calculations. Schiff-
mann, Joost, and Werner [22] found that algorithms trained with EET performed better
than algorithms trained with batch. It is not certain if that was the case in this thesis as
well, as generalisation error was used in the EET case, but it is fairly certain that back-
propagation with momentum will perform better if trained with EET rather than batch,
since the difference in generalisation error was about 0.1.

According to LeCun et al. [12], EET can handle slowly changing functions. For exam-
ple functions changing because of machine wear and tear. This should be useful for a
neural network that tunes filters. The mould that is used when casting the filters will
change after being used many times. This affects the filters being cast, and changes
how the filters needs to be tuned. With EET it would be possible to add examples from
new filters that have been tuned by humans after the neural network have been de-
ployed. This way the neural network can learn how the tuning needs to change, when
the mould changes.

• Can the number of examples needed to reach a certain error be estimated?
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5.1. Result

Effect of number of tuning parameters
Michalski [14] got a much worse generalisation error on an 11-pole filter (c.a. 1.5u)
compared to a 6-pole filter (c.a. 0.5u). Which suggest that the size of the output space
have a large effect on the performance.

However, none of the results in this thesis indicates that changing the size of the neu-
ral network by slightly increasing the number of output neurons would have a large
negative effect on the error results. This suggests that it is the complexity of the filter,
rather than the size of the neural networks output space, as Michalski [14] suggested,
that decides what amount of examples will be needed to reach a certain error.

I have learned from expert tuners that the more poles a filter have, the harder it is to
fine tune it. This may not have to do with increasing the number of screws in itself,
but rather because the relationship between the frequency response and the screws po-
sitions is more complex compared to a filter with fewer poles. Even though each pole
have its own resonance frequency, one can not identify an individual pole by looking at
the frequency response, because the response at a particular frequency will depend on
all the poles. For a filter with fewer poles, moving the resonance frequency of one pole
should therefore have a larger and “easier” to understand effect, compared to a filter
with many poles.

Another thing I learned about cavity filters was that for a human tuner, the challenge
when tuning a filter, is making sure that the poles are in the correct order. That is, plac-
ing the poles such that the pole that is supposed to have the lowest resonance frequency,
actually does have the lowest resonance frequency, and so on. Once the poles have been
“sorted” in this way, it is relatively easy to tune the filter so that it fulfils its specification.
Before the poles have been placed in the right order, the frequency response is usually
bad, and might not improve much until all poles are placed in the correct order. This
could explain why it is much harder for a neural network to learn a filter with more
tuning parameters, even though the number of tuning parameters is not much larger.
The number of ways the poles could be ordered is N!, where N is the number of poles,
or tuning parameters. If the reason a filter with more tuning parameter are harder to
tune, is mostly because it is harder to find the correct ordering of the poles, the number
of examples needed, should have to increase with the number of permutations of pole
ordering.

Effect of changing neural network size
Figure 4.10 shows that the error rate exponentially decays as the number of examples
increases. The figure also shows that a neural network with more weights will achieve
a smaller error if enough examples have been used. From this, one can learn that if
the error stops improving, despite adding more examples, adding more weights to the
network might improve the error. In this particular problem, it was possible to select
both the number of hidden neurons, and the number of input neurons. Figure 4.11 and
4.12 shows how the error rate varies with the number of examples for neural networks
with different number of input neurons and hidden neurons. In figure 4.11 we can
again see that the error decays exponentially as the number of examples increases. The
number of input nodes does not seem to have an as large effect on the error as the
number of weights did in figure 4.10.

Figure 4.12 also shows that the error decays exponentially with the number of examples,
and that the number of hidden nodes does not appear to have a large effect on the error.
20 hidden neurons gives a slightly worse result than using 50 or 80 hidden neurons,
which have very similar errors. This is probably because too few hidden neurons makes
it harder for the neural network to learn. It is also worth noting that the difference in
weight is very large in figure 4.10, while the difference is not so large in figure 4.11 and
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4.12. It is possible that the difference in error would have been larger if the difference in
number of input neurons and hidden neurons had been larger.

These results further support the conclusion that the number of weights is more impor-
tant to the error rate than the number of hidden neurons or input neurons alone.

Summary
What the results have said so far is that, in general, increasing the number of weights in
the neural network will decrease the error. But in order to take advantage of the extra
weights, the number of examples may need to be increased. If increasing the size of the
neural network does not improve the error, adding more examples should help.

If each neural network architecture was tested several times with different weight ini-
tializations, together with even larger neural networks, it might be possible to estimate
how much lower the error would be if the number of examples stayed the same, but
the number of weights increased. It might also have been possible to estimate how
many examples would be needed before the error stops improving, given the number
of weights stay the same.

5.2 Method issues

The main issue in this work is the quality and size of the data. The data had to be gathered
by hand and this set a limit to how much data could be gathered and also on how exact the
measurements were. Michalski [14] recommended selecting the value u (how many degrees
one step change in the screws position is) experimentally. However, this was not possible,
since there was not enough time to gather enough data points to do that. Instead the choice
was made to use the same value for u as Michalski [14] did (18�). It would have been inter-
esting to see if the neural network would produce better results with a smaller u. But as long
as the data is gathered by hand it is not possible to have a much smaller u, than 18�, because
the measurement error would be to big.

Only one filter was used when gathering data. But as is shown by Michalski [15], using
more than one filter to train the neural network was necessary to tune the filter well enough
to not need further fine tuning. The reason for only using one filter was that only one filter
was available for use, and also that there were not enough time to gather learning samples
from more than one filter.

The quality of the data and the number of filters used in this thesis meant that it was never
possible to reach an error low enough to be useful as a commercial product.

The number of examples gathered was based on the findings by Michalski [14] on how
many examples could be removed without affecting performance. Basheer and Hajmeer [1]
suggests adding noise to data in order to make the network more robust towards measure-
ment error. Because of this noise was added so that 2800 examples were used to train the
networks. Basheer and Hajmeer [1] also mention suggestions on how many examples are
needed to train a network successfully. Two suggestions are an example to weight ratio of
more than 4, and more than 10. If the examples with added noise counts as examples, the
example to weight ratio would be between [0.17� 4.8] depending on the number of input
and hidden neurons. The best performing network had a ratio of 0.45. Therefore it is possible
that not only better quality data, but simply more data could improve the results as well.

Other than increasing the number of examples, it might also have been worthwhile to
consider different frequencies of the S11-graph. It seems reasonable to assume that the most
interesting aspect of S11 are those values within the band-pass region. In this thesis a slightly
wider range was used.

Lastly the time limit had an effect on the results as well. If there had been more time
available it would have been possible to test more back-propagation algorithms. A more ex-
haustive pre-study could also have yielded different suggestions as to what back-propagation
algorithms should have been tested first.
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5.3 Further work

The most obvious thing to be done is to try to gather higher quality data and see if that
improves the performance. This could be done by using a motor to turn the screws automat-
ically. A motor would be able to rotate the screws more precisely than a human can. The
risk of mismatching input examples and output examples would also be lower if the data
gathering was automatic.

More examples should also help improve performance. Although it is worth noting that
the filter may get worn out if the screws are turned too often, this would make the measure-
ments less reliable, especially if the neural network is supposed to be used for tuning new
filters.

Aside from improving the data there are a number of techniques that could be added to
this work as well:

• Kim and Guest [10] describes how to change the back-propagation algorithm to accept
complex values. Using this method would cut the number of input neurons in half and,
unlike in this thesis, the real and imaginary parts of a data point would not be treated
as two unrelated variables by the neural network. This should mean that patterns in
the data are easier to find for the neural network.

• I have been told that a human tuner should look at both S11 and S21 when tuning. It
would be interesting to see if S21 is more useful as input than S11 and if using both
S11 and S21 would improve the results. This could be especially interesting to use in
combination with the complex back-propagation algorithm. When looking at a VNA,
I have found the changes in S21 to be more subtle than the changes in S11, but this
does not mean that a neural network will have a harder time finding patterns in the S21
graph.

• Kacmajor and Michalski [7] have tried combining a neural network with fuzzy logic.
They reported a 20% improvement compared to the results by Michalski [14]. It would
be interesting to see what design choices could have been made differently and how
they affect the result.

• A human expert can both handle a filter where the screw deviation is much larger
than 360� and correctly adjust a filter where the screw deviation needed are very small.
Rather than increasing the output space, one could train several neural networks with
different screw deviation sizes. This way a filter could first get a “rough” tuning from
a neural network using a large screw deviation, and then a finer tuning from a neural
network, that uses a smaller screw deviation. The second neural network would also be
able to assume that the maximum error for a screw is much smaller than the previous
neural network.

• More experienced human tuners often chose to view a smaller frequency range com-
pared to a novice tuner, when tuning a filter. Evaluating the effect of using different
frequency ranges could be interesting. If the frequency range is small, some misplaced
poles may be outside the frequency ranged looked at. But unless the pole is very far
away from the viewed frequency range, it should still have an effect on the frequency
response in the viewed range. One example to test could be only using the band-pass
range as input. In this range S21 should be as “flat” as possible without having a too
low value. This might be something a neural network can learn easily.

• The requirements of S11 and S21 differ depending on whether the frequency is inside the
band-pass region or outside it. Therefore one approach could be to divide the input so
that not all hidden nodes receives input from all input nodes. Maybe it would be better
to use different hidden neurons for the input values from the band-pass frequencies
and the input values from the frequencies outside the band-pass.
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• If it is possible to train a neural network to estimate the screw deviation for all screws
in a filter, it should also be possible to train a neural network to estimate the screw
deviation of a single screw. A different approach to this problem could be to train one
neural network per screw. If each network is allowed to “specialize” on one particular
screw, the end result might be better.

• The output examples used in this thesis only had discrete values, but the neural net-
works output was continuous. It would have been possible to use the neural network
as a classifier instead. If one neural network per screw was used, each possible step
adjustment could be treated as a class, and the neural network would then have to
determine which class its screw belonged to.

• Something that this thesis did not answer, is how the error would change if a smaller
step change than 18� was used. If u was defined to be for example 9� How would the
error change? If the error stayed the same, that is, the best error achieved was still 1.44u,
the filter tuning would be better, since an average error of 1.44u would translate to an
average error of 1.44 � 9 = 12.96�.

5.4 Conclusion

This thesis was not able to reach a low enough error for the neural networks tuning to be
enough on its own. However it has been able to show that the results achieved by Michalski
[15] should be reproducible on filters with a different amount of tunable elements than the
filters used by Michalski [15] in their work.

It has also been discussed that the method for estimating the number of examples needed,
that were presented by Michalski [14] did not make a good estimation for the filter used in
this thesis. Instead it has been suggested that it is the complexity of the filter (which depends
on the number of tunable elements) rather than the size of the output space that decides what
number of examples is necessary to reach a certain error.

The main work in this thesis however was comparing the effect of different design param-
eters, a summary of the results regarding the design are presented below:

• Update algorithm
For the architecture of the neural network, it was found that conjugate gradient was the
best update algorithm for this problem and that it should be used in combination with
a logarithmic sigmoid transfer function. A logarithmic sigmoid as transfer function
performed best on all the update algorithm used.

• Neurons
When it comes to the number of neurons, there does not seem to be a clear connection
between validation error and number of input neurons. There is a correlation between
more hidden neurons and a lower validation error, but this may have been caused by
hidden neurons being closely related to the number of weights in the experiments per-
formed. Increasing the number of weights in the network was shown to improve the
validation error.

• Training
When training the neural network, using EET rather than batch training is likely to
be preferred. This improved the back-propagation with momentum update algorithm
enough to perform comparable to the conjugate gradient update algorithm, while also
using half as many examples. This suggests that EET should be used if the update
algorithm allows it, and also that it may be worthwhile to change update algorithm if it
does not support EET.
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• Data preprocessing
Presenting the neural network with complex input examples was shown to be far supe-
rior to presenting the input examples in logarithmic format. This is probably because
the logarithmic format combines the real and imaginary values into one new value, and
thus reducing the amount of information.

From the results the following rules of thumb for training a neural network to fine tune a
cavity filter can be presented:

• When the error stops improving, add more weights to the neural network, If this does
not help, add more examples.

• As suggested by Schiffmann, Joost, and Werner [22] one should train the neural net-
work with EET. If this is not possible, conjugate gradient should be used as the update
algorithm as was suggested by LeCun et al. [12].

• The input examples should be presented in complex rather than logarithmic format as
this preserves more information.

The work in a wider context

Today filters are tuned by human experts. This would soon change if a product that could
tune these filters automatically was available, as the filters could then be produced faster for
a lower price. This work is a part of an ongoing change where human work is automated and
done by computers and robots.

Frey and Osborne [3] explains that in the past few decades, the computerization has lead
to a reduction in middle income jobs, as computers have been able to perform more and
more routine tasks. Instead the workers have moved to low-skilled, low-income jobs and
high-skill, high-income jobs. The authors further predicts that more and more low-skill, low-
income jobs will be replaced by computers and robotics. People working in those field will
instead have to find jobs requiring creative and social skills.

A future without mundane and dangerous jobs would of course be a good thing. How-
ever we do not yet know how the transition into such a future will work, nor if the human
workforce will be able to pick up new skills fast enough. It is not hard to find articles pre-
dicting a future where robots are taking all our jobs, leaving the vast majority unemployed.
In these scenarios, very few people, if any, will be able to benefit from the automation. Of
course these doomsday descriptions about automation have existed since before the indus-
trial revolution [3], and may very well be as true now as they were then.
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