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Abstract

This thesis investigates logical formalizations of Castelfranchi and Falcone’s
(C&F) theory of trust [9, 10, 11, 12]. The C&F theory of trust defines trust
as an essentially mental notion, making the theory particularly well suited for
formalizations in multi-modal logics of beliefs, goals, intentions, actions, and
time.

Three different multi-modal logical formalisms intended for multi-agent sys-
tems are compared and evaluated along two lines of inquiry. First, I propose
formal definitions of key concepts of the C&F theory of trust and prove some
important properties of these definitions. The proven properties are then com-
pared to the informal characterisation of the C&F theory. Second, the logics
are used to formalize a case study involving an Internet forum, and their perfor-
mances in the case study constitute grounds for a comparison. The comparison
indicates that an accurate modelling of time, and the interaction of time and
goals in particular, is integral for formal reasoning about trust.

Finally, I propose a Horn fragment of the logic of Herzig, Lorini, Hübner, and
Vercouter [25]. The Horn fragment is shown to be too restrictive to accurately
express the considered case study.
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Abstract in Swedish: Sammanfattning

I den här uppsatsen undersöker jag logiska formaliseringar av Castelfranchi och
Falcones (C&F) teori om tillit [9, 10, 11, 12]. C&F definierar tillit som en form
av mental attityd, vilket gör teorin väl lämpad för att formaliseras i multimodala
logiska system som tar trosföreställningar, m̊al, intentioner, handlingar och tid
i beaktning.

Tre s̊adana logiska system presenteras, jämförs och utvärderas. Jag definierar
viktiga begrepp ur C&Fs teori, och bevisar egenskaper hos dessa begrepp. Egen-
skaperna jämförs sedan med de informellt definierade egenskaperna hos C&Fs
tillitsteori. De logiska systemen används därefter för att formalisera ett testsce-
nario, och systemen jämförs med testscenariot som utg̊angspunkt. Jämförelsen
visar att en noggrann modellering av interaktionen mellan tid och agenters m̊al
är viktig för formella tillitsmodeller.

Slutligen definierar jag ett Horn-fragment av Herzig, Lorini, Hübner och
Vercouters [25] logik. Horn-fragmentet visar sig vara för restriktivt för att for-
malisera alla delar av testscenariot.

Nyckelord: tillit, modallogik, multiagentsystem, Horn-fragment
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Chapter 1

Introduction

Trust is important in all kinds of social situations where any sorts of agents—
human or artificial—interact. Such situations include, for instance, human-
computer interaction, multi-agent systems (MAS), and Internet communications
like Internet forums, chat rooms, and e-commerce.

There are many approaches to trust found in the literature. One of the
most widely used is the approach proposed by Gambetta, where trust is defined
as the particular level of subjective probability with which a trusting agent
assesses that another agent will perform a certain task [22, p. 217]. According
to this approach, trust is no more than the result of repeated interaction between
a trusting agent and a trusted agent; iterated experiences of the trusted agent’s
success strengthen the trusting agent’s trust, while iterated failures decrease the
amount of trust.

In this thesis, I will adopt another approach, proposed by Castelfranchi and
Falcone (hereafter referred to as C&F). They have developed a cognitive theory
of trust (referred to as the C&F theory), where trust is defined in terms of beliefs
and desires (see [9, 10, 11, 12]). Thus, trust is essentially a mental notion. In
order to trust someone or something Y , one has to believe that Y is capable
of doing what one needs and wants to be done, and one has to believe that Y
actually will do it; Y ’s behaviour has to be predictable.

This position lays focus on trust as an attitude directed at possible trustees,
rather than mere subjective probability or risk assessment, which makes the
theory easily embedded in a belief-desire-intention (BDI) framework [6, 8, 21].
BDI frameworks, in turn, are particularly well suited for modal logical formal-
izations.

The topic of this thesis is such formalizations of the C&F theory using modal
logic.

1.1 Goals and structure of thesis

This thesis is written with a two-fold purpose. The first is to compare and
evaluate three proposed logical formalisms, all intended to formalize the C&F
theory of trust. This is done both by direct comparison of how well the three
logics capture key aspects of the C&F theory, and by comparison of how well
the logics perform in a proposed scenario.

Nygren, 2015. 1



2 Chapter 1. Introduction

The second purpose is to define a Horn fragment of one of the logics, and
investigate whether the Horn fragment is expressive enough to formalize said
scenario. Horn fragments of logics are important in practical applications, for
example in logic programming and deductive databases.

Chapter 2 will introduce the reader to the C&F theory of trust. Chapter 3
presents the three considered logics. The chapter highlights important proper-
ties of the three logics, which are then compared and evaluated in relation to
the C&F theory of trust. There is also a short introduction to modal logic. In
Chapter 4, a case study is developed with the purpose of highlighting specific
properties of the logics in relation to an experimental scenario. In Chapter 5,
the general Horn fragment of one of the logics is defined. The Horn fragment is
then used to formalize the scenario presented in Chapter 4, in order to indicate
that the logic could be used as an implementable theoretical framework for rea-
soning about trust. The final chapter contains conclusions and ideas for further
research. An appendix containing a short survey of propositional logic is also
included.



Chapter 2

The C&F theory of trust

In this chapter, I will pursue a detailed description of the C&F theory, but first,
the concepts of agents and multi-agent systems will be presented.

2.1 Agents, mental attitudes, and interactions

The C&F theory is developed, not only as a BDI theory, but also within a multi-
agent system framework (see [44] and [45] for introductions to MAS).

An agent is an “individual entity capable of independent action” [16, p. 51].
In a broad sense, this includes humans as well as software systems.

I will consider agents with mental attitudes; in particular, agents that are
capable of beliefs, goals, and intentions.1 These are integral concepts in the
theory of practical reasoning (see e.g. [6, 21]), and the starting point for the
C&F theory.

The beliefs of an agent correspond to the information the agent has about
its environment, including information regarding other agents. The goals of an
agent are the circumstances that the agent would choose (or, the circumstances
that the agent prefers to bring about). Intentions are a “special consistent
subset of an agent’s goals, that it chooses to focus on for the time being” [21,
p. 4].

2.1.1 Multi-agent systems

Multi-agent systems (MASs) are

computational systems in which a collection of loosely coupled au-
tonomous agents interact in order to solve a given problem. As this
problem is usually beyond the agents’ individual capabilities, agents
exploit their ability to communicate, cooperate, coordinate, and ne-
gotiate with one another [21, p. 1].

1I will use the term ‘goal’ instead of ‘desire’; however, I will use the abbreviation BDI
(belief-desire-intention), as it is the conventional term. It should also be noted that there are
many theories of practical reasoning; for instance, Bratman [6] takes intentions to be first-
class citizens in agency, while the logical formalizations considered in the later chapters of this
thesis reduce intentions to preferred actions. I will not dwell on this distinction here.

Nygren, 2015. 3



4 Chapter 2. The C&F theory of trust

Note that this definition is (deliberately) inexact. This is because there are
many competing definitions of MASs found in the literature. For my purposes
here, it suffices to note that MASs are systems of interactive agents. C&F
argue that most kinds of social interactions requires some kind of delegation2—
letting other agents do things for you and acting on behalf of other agents—and
that delegation more or less require trust in many cases [9]. Thus, trust is an
absolutely integral part of MASs.

It should be noted that, even though MASs concern computer science appli-
cations and the C&F theory is developed within a MAS framework, much of the
theory is abstract and interdisciplinary, and applies to, for instance, inquiries
about human trust reasoning.

2.2 Trust as a five-argument relation

According to the C&F theory, trust is a five-argument relation. The five argu-
ments are [12, p. 36]:

• A trusting agent X. X is necessarily a cognitive, intentional agent (see
Section 2.2.1). I will often refer to the trusting agent as the truster.

• An entity Y (object or agent) which is the object of the truster’s trust. Y
will often be referred to as the trustee.

• A goal gX of the truster. It will be useful to think of the goal gX as a
logical formula representing a certain state of affairs.

• An action α by which Y possibly can bring about a certain state of affairs,
represented by formulas in a set P of which the goal gX is an element.

• A context C under which X considers trusting Y .

The context component will usually be omitted in order to simplify the
presentation. The context is still important for the theory, so alternative ways
of incorporating it in the trust relation will be considered.

Following C&F, I will use the predicate

TRUST(X,Y, gX , α, C)

or, when the context is omitted,

TRUST(X,Y, gX , α)

to denote the mental state of trust.

The five arguments in the trust relation will be analysed in more detail
below.

2See e.g. [17, 18].
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2.2.1 The truster and the trustee

The trusting agent is necessarily a cognitive, intentional entity. This means that
the truster is capable of having mental attitudes: beliefs, intentions, and goals
[21]. Since trust by definition consists of beliefs and goals, an entity incapable
of beliefs and goals is also incapable of trust.

The trustee is not, unlike the truster, necessarily an intentional entity. This
becomes clear when one considers uses of ‘trust’ like in the sentence “I trust
my alarm clock to wake me up at 6 p.m.” or when one trusts a seemingly
rickety chair to hold one’s weight. The trustee can thus be either another agent,
or an object like an alarm clock (see [15] and Section 2.3.3 below on trust in
intentional versus trust in non-intentional entities.)

2.2.2 The goal component

The C&F theory stresses the importance of the goal-component in the notion of
trust. Basically, a truster cannot trust a trustee without the presence of a goal:
when X trusts Y , X trusts Y for doing that and that, or trusts Y with that and
that, etc.

It will be useful to think of the goal gX as a logical formula representing a
certain preferred state of affairs.

The goal component is necessary, since it distinguishes trust from mere fore-
seeing or thinking. Following C&F [11], the combination of a goal and a belief
about the future is called a positive expectation. This means that X both wants
gX to be true (has the goal gX) and believes that gX will be true. Thus, trust is
a positive expectation rather than a neutral belief about the future, i.e. a fore-
cast.

A goal need not be an explicit goal of the truster; it need not be a goal
which X has incorporated in her active plan. Thus, the notion ‘goal’ as used in
this context differs from the common language use, where ‘goal’ often refers to
a “pursued external objective to be actively reached” [12, p. 46]. C&F [12, p. 46]
use the following example of a case where the goal of a truster X is not explicit.
An agent X can trust another agent Y to pay her taxes, but X might not have
the explicit goal of Y paying her taxes. However, if X learns that Y is in fact
not paying her taxes, X might be upset and angry with Y. According to C&F,
that X in fact has the goal of Y paying her taxes is the reason why X would
be upset with Y . This example also highlights the fact that goals need not be
pursued goals. An agent X can have goals which she does not pursue or wish
to pursue.

Thus, a goal exists even before it is made explicit and active. In summary,
the following are the important properties of the goal component [12, p. 47].

• Every instance of trust is relative to a goal. Before deciding to trust and
delegate to a trustee, possible trustees are evaluated in relation to a goal,
that is not yet active or pursued.

• When a truster decides to trust and delegate to a trustee, the goal becomes
pursued: an active objective in the truster’s plan.

Even though the goal could be the only consequence of a certain action, in
many cases the action in question results in several effects. Thus, the goal gX
is considered to be an element of the set P of results of an action: gX ∈ P .
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The fact that every action potentially results in several side effects, apart
from the desired goal state, complicates the analyses of particular cases. There-
fore, in order to simplify the analyses of formalizations, this detail will often be
ignored.

2.2.3 The action component

The action α is the action which X believes can bring about the desired state of
affairs P with gX ∈ P . The action is a causal interaction with the world which
results in a certain state of affairs; after α has been performed, the formulas in
a set P holds.

2.2.4 The context

The context in the above trust relation is the context or scenario where Y is
a candidate for X’s trust, and where the external factors allow Y to perform the
required action. The context is important, since different contexts can produce
different trust-relations. For example, under normal circumstances, X might
trust Y with an action α and a goal gX to a high degree, but under extreme
circumstances, for example if Y has to act in a war zone, X might trust Y to
a smaller degree.

The analysis of the context component can be further refined by distinguish-
ing between two kinds of contexts [12, p. 83]: The context of X’s evaluation,
and the context in which Y performs α. The first kind of context, the evalua-
tion context, involves such considerations as the mood of X, her social position,
her evaluation of Y ’s social position, her beliefs, etc. The second kind of con-
text, the execution context, involves things such as the physical environment
in which Y performs α, the social environment; including form of government,
norms, social values, etc.

When formalizing the C&F theory logically, the context component will
often be omitted as an argument in the trust relation. Instead, other ways to
(partially) incorporate the context can be used, or one can assume a specific
context.

Castelfranchi et al. [13] use internal and external preconditions, in the sense
that X can only trust Y if the internal preconditions and external preconditions
for Y to perform the required action are fulfilled. For example, if Bob trusts
Mary to shoot Bill, then Bob believes that, for example, Mary’s arm is not
paralysed, Mary’s eyes are apt for aiming etc. (these are examples of internal
preconditions, that is, things that are internal to the trustee), and Bob believes
that no one will block Mary’s shooting by knocking the gun out of her hand, no
obstacle will be in the way, etc. (these are examples of preconditions that are
external to the trustee).

2.3 Trust as a layered notion

Trust in C&F theory is a layered notion, which means that the different notions
associated with trust are embedded in each other. As mentioned earlier, trust is
essentially a mental notion, but the concept of ‘trust’ can also be used in contexts
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Core trust

Reliance

Delegation

Figure 2.1: The layered stages of trust.

like “intending to trust” or “decide to trust”. According to C&F theory, there
are three different stages of trust [12, pp. 36, 64–65]:

• Trust is essentially mental, in the sense that it is an attitude towards
a trustee; it is a certain belief or evaluation about the trustee’s capability
and willingness to perform a certain task in relation to a goal. In short,
trust in this most basic sense is a disposition of a truster towards a trustee.
I will follow C&F and refer to this part of the trust concept as core trust.

• Trust can also be used to describe the decision or intention to delegate
an action to a trustee. This is a mental attitude, just like the above
core trust. This dimension actually involves two very similar but distinct
notions: reliance and decision to trust.

• It can also be the actual delegation of an action, the act of trusting
a trustee with an action. This is a result of the above decision; the de-
cision has here been carried out. This part of the trust relation is called
delegation.

The embedded relation between these three parts of the notion of trust is
illustrated in Figure 2.1.

2.3.1 Trust as act and trust as mental attitude

As seen above, in common language ‘trust’ is used to denote both the mental
attitude of trust and the act of trusting, the delegation. According to C&F
theory, core trust and reliance trust are the mental counterparts to delegation [9,
11]. This means that core trust and reliance trust are strictly mental attitudes,
preceding delegation.

Trust as positive evaluations and as positive expectations

According to C&F [12, p. 43], every case of trust involves some attribution of
internal skills to the trustee. When these attributions, or evaluations, of the
trustee are used as a basis for the decision of trusting and/or delegating, the
positive evaluations form the basis of core trust.3

The positive evaluations in trust involves two important dimensions:

3Note that these evaluations are relative to a goal of the truster: “Y is good for...”.
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• Competence (capability). The competence dimension involves attribution
of skills, know-how, expertise, knowledge, etc.; that is, the attribution of
internal powers relevant to a certain goal and a certain action to a trustee
Y .

• Predictability and willingness (disposition). This dimension consists of
beliefs about the trustee’s actual behaviour, rather than beliefs about her
potential capability of performing an action. It is an evaluation about how
the trustee will behave: not only is Y capable of performing α, but Y is
actually going to do α.

For X to trust Y , X should have a positive evaluation of Y ’s capability in
relation to gX and α, as well as a positive evaluation of Y ’s actual behaviour
in relation to gX and α. However, trust should not be understood as com-
pletely reducible to positive evaluations; such a move would completely ignore
the motivational aspect, i.e. the goal component. So, more or less explicit and
intentional positive evaluations are necessary for trust, but not sufficient. One
can, for example, have a positive evaluation of an agent Y , without necessarily
having trust in Y .

C&F state that trust is a positive expectation about the future. The positive
evaluations are used as a base for making predictions about the behaviour of
the trustee, and therefore also about the future. However, predictions and
expectations are not synonyms; an expectation is a prediction that is relevant
for the agent making the prediction, and the predicting agent wants to verify
the prediction: she is “waiting in order to know whether the prediction is true
or not.” [12, p. 54] Thus, a positive expectation is a prediction about the future
in combination with a goal: when X trusts Y with α and gX , X both wants gX
to be true, and believes that it will be true thanks to Y ’s performance of α.

A positive evaluation of Y ’s willingness in relation to a certain task α (“Y
is going to perform α”) is merely a prediction of Y ’s behaviour if the goal-
component is missing; if the performance of α (or preventing the execution
of α) is not a goal for the agent doing the evaluation, then X has a neutral
expectation about the future world-state.

It is also important to note the quantitative aspect when talking about trust
as positive expectations (see also Section 2.4.) This becomes clear when one
considers sentences like “I hope that Y does α” and “I trust that Y does α.”
Both sentences can be said to be positive expectations about the future. How-
ever, there is, according to C&F [12, p. 60], a difference in degree. When I trust
that Y will perform α, I am quite certain that α actually will be performed (and
thus realizing my goal g), while when I hope that Y will perform α, my positive
evaluations about Y are uncertain; I am not actively counting on Y to perform
α.

Core trust

As we have seen, the most basic notion in the trust relation is the core trust.
I will now further develop the analysis of this notion. Core trust is, as said,
a mental attitude, a belief or evaluation of a trustee’s capability and intention
of performing a certain task. Thus, core trust can be defined in the following
way: A truster X has core trust towards (trusts) a trustee Y if and only if
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1. X has the goal gX ,

2. X believes that

(a) Y , by performing an action α, can bring about the state of affairs P
with gX ∈ P ,

(b) Y has the capability to perform α,

(c) Y will perform α.

Core trust is “here-and-now” trust, in the sense that the truster trusts the
trustee in relation to an active goal—a goal that is had by the truster “here-and-
now”—and an action which the trustee can and will perform in the near—or in
any case definitive—future. As Herzig et al [25, pp. 12–13] point out, weakening
the definition of trust by only requiring that Y performs α eventually raises
problems with for example procrastination.

This also means that core trust is a realization of en evaluation of a trustee
in relation to a goal that is (has become) active. An evaluation can, however,
be done in relation to a not yet active goal. Such an evaluation is called a trust
disposition.

Trust disposition

As seen, core trust is trust “here-and-now”: if a truster has core trust in a trustee
in relation to an action α and a goal g, the truster expects the trustee to perform
α in the near future. However, this notion does not capture the nature of all
trust relations. C&F claim that one also has to consider trust dispositions [12,
p. 68]. The notion of core trust is an actualization (realization) of a trust
disposition.

Consider the following example. A manager X wants to recruit a new em-
ployee. The decision to appoint a particular employee Y is based on trust; if
X appoints Y , X trusts that Y will perform all required tasks. Recruiting an
employee is (most typically) a long term investment, and as such it should be
based on a broad evaluation of the trustworthiness of the employee in relation
to several tasks and goals. In addition, the manager probably wants to recruit
someone who is flexible and capable of performing several tasks to accomplish
goals that are not relevant at present time, but might become relevant in the
future.

When considering the above example, it becomes clear that the trust re-
lations underlying the manager’s decision to employ a certain agent Y cannot
only be of core trust type; the manager also considers her evaluation in relation
to potential goals.

C&F does not precisely define the notion of trust disposition. However,
they state that it is a property of trust dispositions that they can underlie
core trust [12, p. 68]. Using the pseudo logical notation from Figure 2.2, the
evaluation underlying a trust disposition can be expressed as the two beliefs

BelX(CanDoY (α))

and

BelX(k →WillDoY (α) ∧Afterα(P ))
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where k is the circumstance that activates Y ’s performance of α to ensure P . k
is something like “X asks Y to...” or “if such-and-such happens...”, etc.

From the above two beliefs, the belief that k holds, and the goal that gX ∈ P ,
the truster X moves from a trust disposition to actual core trust.

Reliance trust

First of all, for X to rely on Y , X has to believe that she is dependent on Y
(i.e. X holds a dependence belief ) to realize her goal gX [11].

The dependence belief can take several forms: it could be a strong depen-
dence belief, which means that X believes that gX cannot be realized without
the help of Y , or it could be a weak dependence belief, where X believes that
gX can be realized without Y , for example if X herself performs the required
action α, but the delegation of the α to Y fits better into X’s overall plan. That
gX is to be realized by Y ’s action, instead of X performing the action herself,
is not exclusive; there is at least a third possibility: that the action α could be
performed by another agent Z. Thus, C&F states that in order to decide to
delegate an action α to any other agent, X must form the goal that she does
not wish to perform α herself. Furthermore, X wishes Y to perform α, and
not any other possible trustee. In summary, a truster X relies on a trustee Y
if X decides to pursue the goal gX through Y , rather than bringing it about
herself, and does not search for alternative trustees [9]. Thus, reliance trust can
be defined in the following way: A truster X has reliance trust towards (relies
on) a trustee Y , if and only if

1. X has the goal not to perform action α,

2. X has the goal to let Y perform action α,

3. X believes X is dependent on Y .

In Figure 2.2, the ingredients of core trust and reliance trust is represented
and simplified with some pseudo logical notation.

Delegation

Delegation is necessarily an action, something which causally interacts with
the world to produce a certain state of affairs. According to C&F theory, core
trust and reliance are the mental counterparts to delegation, which underlie and
explain the act of trusting [11, 9].

The relationship between core trust, reliance and delegation

If a truster X actually delegates an action to a trustee Y , then (usually) X has
the mental attitudes of core trust and reliance trust, and if X has the core and
reliance trust attitudes towards Y in relation to a certain goal and action, then
(usually) X delegates to Y .

Under ideal conditions, i.e. conditions where a truster X freely decides to
trust without the interference of external constraints, the following holds [12,
p. 38]: X relying on Y implies X having core trust in Y and X delegating to Y
implies X relying on Y .
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GoalX(g)

BelX(Afterα(P )) with g ∈ P

BelX(CanDoY (α))

BelX(WillDoY (α))

(Capability or competence)

(Disposition)

Core trust

BelX(DepXY (α))

GoalX(¬WillDoX(α))

GoalX(WillDoY (α))

(Dependence)

Reliance trust

Figure 2.2: The ingredients of core trust and reliance trust.

In most cases, however, agents do not act under ideal conditions. For ex-
ample, under normal circumstances, every truster has the external constraint
of not being able to evaluate all possible trustees. There can also be extreme
circumstances, where actual delegation is prohibited, or X is forced to delegate.
Thus, X could delegate to Y without trusting (as core trust and decision to
trust) Y , and decide to trust Y without delegating to Y .

Extreme circumstances can be handled by the model by acknowledging that
the decision to delegate implies the decision to rely on, which implies having
core trust. So, under “normal” circumstances, core trust is necessary but not
sufficient for reliance, and reliance is necessary but not sufficient for delegation.
This also means that reliance must carefully be distinguished from decision to
trust.

Decision to trust

In the above section, it was shown that reliance is a distinct notion from the
decision to trust. In C&F theory, the decision to trust involves the mental
attitudes of core trust, together with the decision to make use of a trustee as
a part in an overall plan. Decision to trust can be defined as [13, p. 64]: X
decides to trust Y if and only if

1. X has core trust in Y ,

2. X relies on Y .
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2.3.2 The difference between trust, distrust, mistrust and
lack of trust

There are important differences between the concepts of distrust, mistrust and
lack of trust [12, 34, 42, 43]. First, there is a difference between ¬TRUST(X,Y, gX , α),
which is the negated trust predicate, and lack of trust. Lack of trust is, accord-
ing to C&F [12, p. 119] when a truster has no positive or negative evaluation of
a trustee. The truster simply does not know if she trusts or distrusts the trustee.
Thus, lack of trust must be defined as a lack of belief about the trustee’s capa-
bility and predictability.

The concept of distrust is grounded in evaluations that show the trustee’s
incapability or unwillingness in relation to a certain goal and action; which
means that the definition of distrust must include a belief about Y ’s incapability
or unwillingness to perform α.

Further, the concept of mistrust is grounded in a negative evaluation of the
trustee; the truster believes that the trustee is capable and willing to do the
opposite of the truster’s goal. In broader terms [12, p. 118], the trustee Y is
capable and willing, is good and powerful, but for the wrong things (i.e. the
opposite of X’s goals).

It is important to stress that, even though neither distrust, mistrust or lack of
trust equates with ¬TRUST(X,Y, gX , α), trust and distrust, trust and mistrust,
and trust and lack of trust are mutually exclusive, i.e. one cannot both trust
and distrust another agent, etc. [43].

2.3.3 Trust in intentional and non-intentional entities

Recall that the trusting agent must be an entity capable of mental attitudes,
while the object of trust need not be capable of mental attitudes. It could,
however, be argued that even a simple device such as an alarm clock is an
entity capable of (basic) mental attitudes. At least, one often ascribes such
attitudes to certain entities. For example, it seems perfectly natural to say “my
alarm clock believes that the time is 7 p.m.”.

Thus, there might not be a meaningful distinction between, for example,
trust in humans and trust in alarm clocks, at least not on the most basic level
of core trust. Indeed, according to the C&F theory, all instances of core trust
are grounded in evaluations about willingness and capability, independently of
the object of trust. There is no principal difference between trust in agents and
trust in entities that are not agents.4

In the following formalizations of the C&F theory, I will focus on trust in
agents, which is why the willingness dimension will be expressed in terms of
intentions.

2.4 Quantitative aspects

In previous sections, trust has been analysed from a qualitative point of view.
However, it is a basic fact that trust can be graded. For example, X might

4It is important to stress that this is a property of core trust ; more complex forms of social
trust might put further requirements on trusting agents, for example the capacity for higher
order mental attitudes.
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trust Y to a certain degree in relation to gX , and trust Z to a certain degree.
Then, when deciding which agent she should rely on, X can compare the degree
of trust in Y and Z, and then choose who she should rely on based on that
comparison.

C&F [9] claim that there is a strong coherence between their cognitive def-
inition of trust and the degree or strength of trust. The definition of trust as
a conjunction of the truster’s goal and beliefs about the trustee’s capability and
willingness allows a quite natural analysis of strength of trust; in trust relations,
different levels of uncertainty of X’s attribution of properties to Y leads to dif-
ferent levels of trust in Y . This can be illustrated by considering some common
language uses of the components in the trust definition: “I am certain that Y
can perform α”, “I have reasonable doubt about Y ’s willingness to perform α,
but Y is the only one that is competent enough.” If one is certain about Y
capability, as in the first example, one is more inclined to trust Y ; the risk of
Y failing to perform α is considered to be very small. In the second example,
the trust in Y is probably quite low; there is a significant risk that Y will never
perform α.

According to C&F [9], the degree of trust is a function of the beliefs about
the trustee’s capability and willingness: The stronger the belief, the greater the
trust. This can also be put as the degree of trustworthiness of Y in relation to
α: Stronger beliefs of X about Y ’s capability and willingness to do α, makes X
consider Y more trustworthy in relation to α [12].

The notation DoTXY α is introduced as the degree of X’s trust in Y about α,
and DoCX denotes the degree of credibility of X’s beliefs, where “credibility”
means the strength of X’s beliefs [9, 10]. It is now possible to express the degree
of X’s trust in Y about α as a function of the degree of credibility of X’s beliefs
about Y (using the pseudo logical notation from Figure 2.2):

DoTXY α = DoCX(Afterα(g))∗
DoCX(CanDoY (α)) ∗DoCX(WillDoY (α)) (2.1)

By using a utility function, measuring the utility of not delegating versus dele-
gating an action to Y , the trust threshold—the threshold for when core trust in
Y is strong enough to motivate a decision to trust and/or delegating to Y—can
be decided.

An agent X has three choices in every situation involving a goal gX and
an action α [12, p. 102]: to try to achieve gX by performing α herself, or to
delegate the achievement of gX by delegating to another agent the task α, or
to do nothing relative to gX . For the sake of simplicity, I will ignore the third
choice; to do nothing at all relative to gX .

The following notation is introduced [12, p. 102]:

• U(X)p+ , the utility of X’s successful performance of α and the following
achievement of gX ,

• U(X)p− , the utility of X failing to perform α and the following achieve-
ment of gX ,

• U(X)d+ , the utility of a successful delegation of the performance of α to
achieve gX to another agent Y ,
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• U(X)d− , the utility of failure in delegating α to an agent Y in order to
achieve gX

Following Expected Utility Theory (see, for example, [7]), in order to delegate,
the expected utility of doing so must be greater than the expected utility of not
delegating. The following inequality captures this; in order to delegate, it must
hold that (where 0 < DoTXY α < 1, 0 < DoTXXα < 1 and DoTXXα denotes
the degree of X’s trust in herself relative to α) [12, p. 103]:

DoTXY α ∗ U(X)d+ + (1−DoTXY α) ∗ U(X)d− >

DoTXXα ∗ U(X)p+ + (1−DoTXXα) ∗ U(X)p− (2.2)

From (2.2), the threshold for delegating can be written as

DoTXY α > DoTXXα ∗A+B (2.3)

where

A =
U(X)p+ − U(X)p−

U(X)d+ − U(X)d−
(2.4)

and

B =
U(X)p− − U(X)d−

U(X)d+ − U(X)d−
(2.5)

The analysis presented here allows for the comparison of trust in different
trustees. It also allows for a trust threshold to be calculated, which shows if
a particular case of trust is sufficient for reliance and delegation.

2.4.1 Quantitative aspects and logical formalizations

In some logical formalizations of the concept of trust, trust is seen as binary: ei-
ther X trusts Y or X does not trust Y (see for example [5, 25].) However, some
authors incorporate a quantitative aspect in their logics. As seen above, degree
of trust is a function of the credibility of the beliefs making up the positive
evaluation of the trustee. This basic principle can be incorporated in a modal
logic by introducing graded belief operators. Hübner and Demolombe [30] have
extended a modal logic formalizing binary trust from containing only ungraded
belief operators Beli, to containing graded operators Belki (other logics formal-
ising the concept of graded mental attitudes are presented in [13, 20]). In the
original logic, Beliϕ reads “agent i believes ϕ to be true”, while Belki ϕ reads
“agent i believes ϕ with strength k.”



Chapter 3

Trust logics: Formalizing
the C&F theory of trust

This chapter introduces modal logic as a way to formalize the C&F theory of
trust. Modal logic offers a natural way to reason about mental states of agents,
which makes it a useful tool for reasoning about cognitive aspects of trust. Three
different trust logics—the logic of Herzig, Lorini, Hübner, and Vercouter [25], the
logic of Demolombe and Lorini [14, 29], and the logic of Bonnefon, Longin, and
Nguyen [5], all developed to capture aspects of the C&F theory, are reviewed.

Since the C&F theory is vast and complex, only certain key concepts are
considered in the formalizations. The concepts considered are the basic notion
of core trust, the concepts of distrust, mistrust, and lack of trust. The concept
of trust disposition is also considered. The notions of reliance and decision to
trust are not considered; the reason for this is primarily the complexity of the
dependence belief, which could take a large number of forms, involved in reliance
trust. I have also decided not to address the quantitative aspects. As mentioned
in Chapter 2, the context argument in the trust relation will be omitted.

Also, the goal state is simplified, in that the formalizations will not consider
the possible side effects of an action: I will treat the goal g as the only result
of an action, instead of considering the world-state set P , of which the goal g
is an element. That is, with the pseudo logical notation from Figure 2.2, I will
consider

Afterα(g),

instead of
Afterα(P ) with g ∈ P.

The first section of this chapter contains a short introduction to modal logic,
and is intended to provide the reader with the necessary tools to understand
the later formalisms.

3.1 A short introduction to modal logic

Modal logic stems from the work of philosophers who needed a tool for reasoning
about philosophical (and linguistic) concepts like belief and knowledge (doxas-
tic and epistemic logics), time (temporal and tense logics), actions (dynamic

Nygren, 2015. 15
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logics), and moral concepts like permission and obligation (deontic logics). In
research on intelligent agents and multi-agent systems (abbreviated MAS), one
often assumes that intelligent agents have mental attitudes, like beliefs, desires,
and intentions. In addition, one has to be able to reason about agents’ men-
tal attitudes and actions over time. Modal logics are particularly well fit to
reason about these things. In particular, modal logic both enables reasoning
about properties of intelligent agents and the environment in which they act. If
these properties are expressed as logical formulas in some inference system, then
modal logics can be part of intelligent agents’ own reasoning capabilities [33,
p. 761].

In this section, I will provide the reader with the necessary understanding
of modal logic, especially in relation to multi-agent systems (MAS) (the reader
unfamiliar with basic propositional logic can find a short survey in Appendix
A).

3.1.1 Mono-modal logics

A mono-modal logic contains only one modality. Typically, mono-modal logics
revolve around the operator 2, which on a neutral reading means “it is necessary
that...”. Depending on the kind of concept one would like to formalize, the
modal operator 2 is subject to differences in intuitive meaning, axioms and
inference rules, and governing semantic constraints.

The following definition gives the language of a basic propositional mono-
modal logic [36, p. 3].

Definition 3.1.1. With a nonempty set of atomic propositions ATM = {p, q, r...}
and the connectives ¬, ∨, and 2, the following syntax rules recursively give the
language of the logic:

ϕ ::= p | ¬ϕ |ϕ ∨ ϕ |2ϕ.

The above expression govern what kind of sentences can be considered as well-
formed formulas (hereafter referred to simply as formulas): if ϕ is a formula,
then ϕ is an atomic proposition, or a negated formula, or a disjunction of two
formulas, or a formula under the modal operator 2.

The intuitive, neutral meanings of the connectives ¬, ∨, and 2 are:

• ¬ϕ: it is not the case that ϕ;

• ϕ ∨ ψ: ϕ or ψ;

• 2ϕ: ϕ is necessarily true.1

1As mentioned before, 2 can have many other meanings.
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The following abbreviations are introduced:

> def
= p ∨ ¬p;

⊥ def
= ¬>;

ϕ ∧ ψ def
= ¬(¬ϕ ∨ ¬ψ);

ϕ→ ψ
def
= ¬ϕ ∨ ψ;

ϕ↔ ψ
def
= (ϕ→ ψ) ∧ (ψ → ϕ);

3ϕ
def
= ¬2¬ϕ;

with the intuitive meanings:

• >: true;

• ⊥: false;

• ϕ ∧ ψ: ϕ and ψ;

• ϕ→ ψ: if ϕ, then ψ;

• ϕ↔ ψ: ϕ, if and only if ψ;

• 3ϕ: it is possible that ϕ is true.2

With these definitions in place, several logics can be constructed. For ex-
ample, if the 2 operator is interpreted as meaning “it is known that ...”, the
following axiom should intuitively hold:

(Tax) 2ϕ→ ϕ

meaning that what is known is true.
A variety of different systems can be obtained by combining different axioms.

However, there are several axioms that apply to a wide range of different modal
systems. First, modus ponens,

(MP) from ` ϕ and ` ϕ→ ψ, infer ` ψ3

is a rule of derivation in every modal logic. Second, many modal systems share
the axiom

(K) 2ϕ ∧2(ϕ→ ψ)→ 2ψ

and the necessitation rule

(Nec) from ` ϕ, infer ` 2ϕ.

The necessitation rule is a derivation rule; if ϕ is a theorem of the system in
question, then one can infer 2ϕ. This is intuitively right; every tautology is
necessarily true.

In the following sections, I will talk about normal modal systems. The
definition of a normal modal logic runs as follows [36, p. 32]:

2Note that the meaning of 3 is related to the meaning of 2.
3` ϕ expresses that ϕ is a theorem. When expressing that a formula ϕ is a theorem of

a specific logic (which most often is the case), the expression `S ϕ, where S is the name of
the logic in question, is used.
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Definition 3.1.2. A modal logic S is normal if

• each instance of K is in S;

• S is closed under Nec.

The following is a useful theorem that holds in any normal modal logic. The
theorem says that 2-type operators can be distributed over conjunction, and
that 3-type operators can be distributed over disjunction. The expression `S ϕ
is used to denote that a formula ϕ is a theorem of the modal system S.

Theorem 3.1.1. If S is a normal modal logic, then:

(a) `S 2(ϕ ∧ ψ)↔ 2ϕ ∧2ψ;

(b) `S 3(ϕ ∨ ψ)↔ 3ϕ ∨3ψ;

(c) `S 2ϕ ∨2ψ → 2(ϕ ∨ ψ);

(d) `S 3(ϕ ∧ ψ)→ 3ϕ ∧3ψ.

This theorem is proven in e.g. [36, pp. 7–8, 31]. The converses of Theo-
rems 3.1.1(c) and 3.1.1(d), i.e. 2(ϕ∨ψ)→ 2ϕ∨2ψ and 3ϕ∧3ψ → 3(ϕ∧ψ),
are not valid.

Note that the basic monomodal logic would have been essentially the same
if the 3-operator had been treated as basic, in the sense that it had been given
in the syntax rules instead of the 2-operator.4 The 2-operator could then have

been defined as 2ϕ
def
= ¬3¬ϕ. An operator which is defined in terms of another

operator in the same way in which the 3-operator is defined (i.e. 3ϕ
def
= ¬2¬ϕ)

is called a dual to the operator occurring on the right hand side of the definition.
The following theorem states a useful property of dual modal operators in any
normal modal logic.

Theorem 3.1.2. If S is a normal modal logic, then:

(a) `S ¬2ϕ↔ 3¬ϕ;

(b) `S ¬3ϕ↔ 2¬ϕ.

A proof of this theorem can be found in [36, pp. 9–10].

Substitution of logically equivalent formulas is valid in any normal modal
logic.

Theorem 3.1.3. For any normal modal logic S, if ϕ′ is exactly like ϕ except that
an occurrence of ψ in ϕ is replaced by ψ′, then if `S ψ ↔ ψ′, then `S ϕ↔ ϕ′.

The proof can be found in [36, pp. 8–9].

4In fact, both the 2-operator and the 3-operator could have been given in the syntax rules,
again resulting in essentially the same logic.
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Semantics

All logics that will be presented in this thesis have possible world semantics. The
idea behind the concept of possible worlds stems from the works of logician (and
philosopher) Saul Kripke—therefore, possible world semantics is also known
as Kripke semantics. Previously, I gave the 2-operator and the 3-operator
the intuitive meanings “It is necessary that ...” and “it is possible that ...”,
respectively. Philosophically, necessity is often interpreted as truth in all possible
worlds, where a possible world is a world differing in some respects from the
actual world. For example, one can maintain, it is possible that Barack Obama
could have been a logician, instead of a politician, even though Barack Obama
actually is a politician. Using the concept of a possible world, this possibility
is expressed as “There is a possible world where Barack Obama is a logician”.
Possible world semantics is a way to implement the idea of necessity as truth in
all possible world in a formal semantics.

As seen, modal logics can take various forms depending on which axioms
is assumed to govern the modal operators. Even when the 2-operator is in-
terpreted as meaning “It is necessary that ...”, different axioms can describe
different aspects of necessity. Therefore, the idea of truth in all possible worlds
must be relativised in some way. In possible world semantics, this is done by re-
stating the claim of truth in all possible worlds to truth in all accessible worlds.
The idea is that some worlds is accessible from the world where a formula is
evaluated, while other worlds might be inaccessible.

Formally, possible world semantics revolve around a non-empty set of possi-
ble worlds W (the elements in W are also called points, states, situations, times
etc., depending on the interpretation of the logic) on which a binary accessibility
relation R is defined. W and R make up a Kripke frame 〈W,R〉.

Definition 3.1.3. A (Kripke) model is a triple M = 〈W,R, V 〉, where 〈W,R〉
is a Kripke frame and V is a function V : ATM → 2W assigning to each atomic
proposition p ∈ ATM a subset V (p) of W , consisting of worlds where p is true.

Now, it can be defined what it means for a formula ϕ to be satisfied in
a model M at a world w ∈W , abbreviated M,w � ϕ.

Definition 3.1.4. For any world w ∈ W in the model M , the following holds
(here, the abbreviation “iff” is used to express “if and only if”):

• M,w � >;

• M,w 2 ⊥ (2 is an abbreviation for “not �”);

• M,w � p iff w ∈ V (p);

• M,w � ¬ϕ iff M,w 2 ϕ;

• M,w � ϕ ∨ ψ iff M,w � ϕ or M,w � ψ;

• M,w � ϕ ∧ ψ iff M,w � ϕ and M,w � ψ;

• M,w � ϕ→ ψ iff M,w 2 ϕ or M,w � ψ;

• M,w � ϕ↔ ψ iff (M,w � ϕ iff M,w � ψ);

• M,w � 2ϕ iff M,v � ϕ for every v such that (w, v) ∈ R;
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• M,w � 3ϕ iff there is a v such that M,v � ϕ and (w, v) ∈ R.

If a formula ϕ is satisfied at every world w in a model M , ϕ is said to be
globally satisfied in the model M (abbreviated M � ϕ), and a formula ϕ is said
to be valid (abbreviated � ϕ) if it is globally satisfied in every model M . Finally,
ϕ is said to be satisfiable if there exists a model M and a world w in M such
that M,w � ϕ [3, p. 4].

Note that a formula preceded by the 2-operator, i.e. a formula 2ϕ, is true
when the formula ϕ is true in every accessible world. Because of this condition,
modal operators like the 2-operator, i.e., operators whose semantics “quantify”
over all accessible worlds, are called universal modal operators. A modal opera-
tor with semantics like the 3-operator, are called an existential modal operator.
This is because if a formula 3ϕ is true, then there exists an accessible world
where ϕ is true.5

In order to “match” the semantics to the relevant axiomatics, different se-
mantic constraints are placed on the accessibility relation R. It can be proven
that Axioms K and Nec are valid without any special restrictions on the ac-
cessibility relation R (see [36, p. 46] for a proof). For other Axioms to be valid,
further constraints on R might be needed. For example, for the Axiom Tax to
be valid, it has to be the case that, for every model M and every world w in
M , if 2ϕ is satisfied at w, ϕ must be satisfied at w. The constraint on R in this
case is reflexivity :

Definition 3.1.5. The relation R on W is reflexive if and only if for all w ∈W ,
(w,w) ∈ R.

If R is reflexive, then every world w is accessible from itself; by Defini-
tion 3.1.4, 2ϕ is true in a world w if ϕ is true at every world accessible from w.
Since w is accessible from itself, 2ϕ cannot be true at w unless ϕ is true at w
as well.6

The modal system KD45

In this section, the modal system KD45 , which is a standard logic of belief, will
be presented and discussed. The syntactic primitive of the logic is a nonempty
set of atomic propositions ATM = {p, q, ...}. The following syntax rules recur-
sively give the language of the logic KD45 :

ϕ ::= p | ¬ϕ |ϕ ∨ ϕ | Bϕ.

The above expression means that a formula ϕ is one of the following: an atomic
proposition, or a negated formula, or two formulas connected by the connective
∨, or a formula under the operator B. The operator B is a 2 type modal operator,
with the intuitive meaning “it is believed that...”. The usual connectives and
the constants > and ⊥ are defined in the same way as above.

The logic KD45 is governed by a set of axioms and corresponding semantic
constraints. First, let me state the axioms [33, p: 995]:

5The reader familiar with first-order predicate logic can note a parallel to universal and
existential quantifiers (∀ and ∃).

6Note that this is not a proof of the correspondence between Axiom Tax and the reflexivity
of the accessibility relation R. In most cases, the correspondence is not straightforward,
and complicated proofs are used to formally prove that there is a correspondence between
syntactical axioms and semantic constraints.
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(PC) all theorems of propositional logic;

(K) (Bϕ ∧ B(ϕ→ ψ))→ Bψ;

(D) ¬(Bϕ ∧ B¬ϕ);

(4) Bϕ→ BBϕ;

(5) ¬Bϕ→ B¬Bϕ;

(MP) from `KD45 ϕ and `KD45 ϕ→ ψ, infer `KD45 ψ;

(Nec) from `KD45 ϕ, infer `KD45 Bϕ.

Axiom K allows for deduction, and captures the intuitive principle that if it
is believed that if ϕ then ψ, then if ϕ is believed, ψ is believed as well. Axiom D
guarantees that beliefs cannot be inconsistent; a rational reasoner cannot both
believe ϕ and ¬ϕ. Axioms 4 and 5 are principles of introspection; what is
believed is believed to be believed, and what is not believed is believed to not
be believed. Axioms MP and Nec are the inference rules of the logic. The
Axiom MP (modus ponens) is straightforward. Axiom Nec says that if ϕ is
a theorem, then ϕ is believed; in other words, all tautologies are believed to be
true.

Thus, KD45 is a normal modal logic. If the Axioms 4 and 5 are left out,
the resulting system is called KD .

The semantics of KD45 is a possible world semantics as defined in Defin-
tions 3.1.3 and 3.1.4. The above axioms result in semantic constraints that have
to be placed on the accessibility relation R; for the axioms to become valid, R
must be serial, transitive and euclidean [33, p. 994]. For Axiom 4 to become
valid, R must be transitive:

Definition 3.1.6. The relation R on W is transitive if, for w, v, u ∈W , (w, v) ∈
R and (v, u) ∈ R, then (w, u) ∈ R.

For Axiom 5 to become valid, R must be euclidean:

Definition 3.1.7. The relation R on W is euclidean if, for every w, v, u ∈ W ,
(w, v) ∈ R and (w, u) ∈ R, then (v, u) ∈ R.

For Axiom D to become valid, R must be serial :

Definition 3.1.8. The relation R on W is serial if, for every w ∈ W , there is
a v ∈W such that (w, v) ∈ R.

3.1.2 Multi-modal logics for multi-agent systems

Mono-modal logics can be combined to form multi-modal systems (for an ad-
vanced treatment of combining modal logic, see [28]). Often, intelligent agents
are thought to have mental attitudes; their behaviour is modelled after their be-
liefs, goals, intentions, etc., and how those mental attitudes change over time [33,
p. 992]. As seen in the previous section, the modal logic KD45 enables reason-
ing about an agent’s beliefs. There are also a wide range of modal logics dealing
with, for instance, knowledge, goals, obligations, etc. Meyer and Veltman argue
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that, when formalizing the mental attitudes underlying the behaviour of intelli-
gent agents, mono-modal logics are not that interesting per se; it is the dynam-
ics—how different logics interact—over time that are interesting [33, p. 992].
Modal logics for intelligent agents can also be extended to several agents, re-
sulting in logics suitable for multi-agent systems.

Multi-agent systems (MAS) studies intelligent agents acting in relation to
each other. A logic for MAS thus needs to allow reasoning about mental at-
titudes and actions of several agents in parallel. As mentioned, things get in-
teresting when several modal logics are combined in different ways. In order
to simplify the presentation, I have chosen to focus the following discussion on
a KD45 type modal logic, extended to a set of agents.

Extension of a modal logic to a set of agents is most often accomplished by
introducing indexed modal operators in the language of the logic [26, pp. 764–
765]. The syntactic primitives for such a KD45 type modal logic for several
agents consist not only of a nonempty set ATM = {p, g, ...} of atomic proposi-
tions, but also of a nonempty, finite set of agents, AGT = {i1, i2, ..., in}. I will
use variables i, j, k, ... to denote agents. The language of the logic is the same
as for KD45 , but instead of one single operator B, there are operators Bi, where
i ∈ AGT . Biϕ intuitively means “agent i believes that ϕ is true”. Thus, the
logic includes one belief operator for each agent in AGT . All operators Bi are
governed by the axiom schema for KD45 (see Section 3.1.1).

The semantics of the logic is a possible world semantics, closely resembling
the usual semantics for KD45 . A model 〈W,R, V 〉 is a couple, with W being
a set of possible worlds and V a valuation function, as usual, and R is a function
such that R : AGT → W ×W maps every agent i to a binary serial transitive
euclidean relation Ri between possible worlds in W . Thus, R can be seen as
a collection of relations Ri, one relation for each agent in AGT . One could also
say that a model F is a tuple 〈W,R1, R2, ..., Rn, V 〉, where n is the number of
agents in AGT . The set of worlds w′ such that (w,w′) ∈ Ri are the set of all
worlds compatible with agent i’s beliefs at world w.

Truth of Biϕ in a model M at a world w (abbreviated M,w � Biϕ) resembles
that of KD45 ; M,w � Biϕ if and only if M,w′ � ϕ for all w′ such that (w,w′) ∈
Ri.

I will now proceed to explain how one can combine a logic of belief like the one
discussed above, with a logic of choices. The presentation here is loosely based
on that of Demolombe and Lorini [14], and should not be seen as a complete
logic; rather it is an example of how axioms and semantic constraints could be
defined to capture interactions between beliefs and choices.

The basic operator of the logic of choice is Choicei, with the intuitive mean-
ing “agent i has the chosen goal ...” or “agent i wants ... to be true”. The
choice logic is a KD type logic, which means that it is governed by the following
two axioms:

(KChoice) (Choiceiϕ ∧ Choicei(ϕ→ ψ))→ Choiceiψ;

(DChoice) ¬(Choiceiϕ ∧ Choicei¬ϕ)

and closed under MP and

(NecChoice) from ϕ, infer Choiceiϕ.
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Axiom DChoice says that an agent’s choices cannot be inconsistent; an agent
cannot both have the chosen goal that ϕ and the chosen goal that ¬ϕ.

Now, beliefs and choices interact in certain ways. Typical principles govern-
ing the interactions of choices and beliefs are the following principles of intro-
spection with respect to choices:

(4Choice, Believe) Choiceiϕ→ BiChoiceiϕ;

(5Choice, Believe) ¬Choiceiϕ→ Bi¬Choiceiϕ.

These two axioms say that what is chosen by an agent i is believed by i to be
chosen, and what is not chosen is believed not to be chosen.

A model in the combined logic is a tuple M = 〈W,R,C, V 〉, where W is
a set of possible worlds, V is a valuation function, and R is a collection of
binary serial transitive euclidean relations Ri on W for each i ∈ AGT , just
like above, while C is a collection of binary serial relations Ci on W for each
i ∈ AGT . The set of worlds w′ such that (w,w′) ∈ Ci are the set of worlds
which are compatible with agent i’s choices at world w. All relations Ci need
to be serial for Axiom DChoice to become valid.

For Axioms 4Choice, Belief and 5Choice, Belief to become valid, the following
semantic constraints are defined [14]. For every i ∈ AGT and w ∈W :

S1 if (w,w′) ∈ Ri, then, for all v, if (w, v) ∈ Ci then (w′, v) ∈ Ci;

S2 if (w,w′) ∈ Ri, then, for all v, if (w′, v) ∈ Ci then (w, v) ∈ Ci.

3.2 Herzig, Lorini, Hübner, and Vercouter’s logic

In this section, the logic HHVL developed by Herzig, Lorini, Hübner, and Ver-
couter [25] will be presented. In the same paper, they also extend the logic
HHVL in order to enable reasoning about reputation. I will only focus on the
aspects related to the C&F theory as presented in Chapter 2.

3.2.1 Syntax

The syntactic primitives of the logic are: a nonempty finite set of agents AGT =
{i1, i2, ..., in}; a nonempty finite set of actions ACT = {e1, e2, ..., ek}; and
a nonempty set of atomic propositions ATM = {p, q, ...}. Variables i, j, ... de-
note agents, and variables α, β, ... denote actions.

The language of the logic is given by the following syntax rules:

ϕ ::= p | ¬ϕ |ϕ ∨ ϕ | Gϕ | Afteri:αϕ | Doesi:αϕ | Beliϕ | Choiceiϕ

where p ∈ ATM , i ∈ AGT , and α ∈ ACT . The usual connectives (∧,→,↔)
and true and false (> and ⊥) are defined as in Section 3.1.1.

The intuitive meanings of the operators are as follows:

• Gϕ: ϕ will always be true;

• Afteri:αϕ: immediately after agent i does α, ϕ will be true;7

7Note that the logic models time as a discreet sequence of time points. Thus, that ϕ is
true immediately after some performance of an action by an agent means that ϕ is true at
the next time point (see [2] for a further discussion of the discreetness of time).
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• Doesi:αϕ: agent i is going to do α and ϕ will be true afterwards;

• Beliϕ: agent i believes ϕ;

• Choiceiϕ: agent i has the chosen goal ϕ.

The following abbreviations are introduced:

G∗ϕ
def
= ϕ ∧ Gϕ;

Capablei(α)
def
= ¬Afteri:α⊥;

Intendsi(α)
def
= ChoiceiDoesi:α>;

Fϕ
def
= ¬G¬ϕ;

F∗ϕ
def
= ¬G∗¬ϕ;

Possiϕ
def
= ¬Beli¬ϕ.

The intended meanings of the abbreviations are as follows:

• G∗ϕ: ϕ is true now and will always be true;

• Capablei(α): i is capable of doing α;

• Intendsi(α): i intends to do α;

• Fϕ: ϕ will eventually be true;

• F∗ϕ: ϕ is true now or will be true sometimes in the future;

• Possiϕ: according to i, ϕ is possible.

Axiomatics

The following are the axioms of the logic HHVL [25]:

(PC) all theorems of propositional logic;

(KBel) (Beliϕ ∧ Beli(ϕ→ ψ))→ Beliψ;

(DBel) ¬(Beliϕ ∧ Beli¬ϕ);

(4Bel) Beliϕ→ BeliBeliϕ;

(5Bel) ¬Beliϕ→ Beli¬Beliϕ;

(KChoice) (Choiceiϕ ∧ Choicei(ϕ→ ψ))→ Choiceiψ;

(DChoice) ¬(Choiceiϕ ∧ Choicei¬ϕ);

(4Choice) Choiceiϕ→ BeliChoiceiϕ;

(5Choice) ¬Choiceiϕ→ Beli¬Choiceiϕ;

(KAfter) (Afteri:αϕ ∧ Afteri:α(ϕ→ ψ));→ Afteri:αψ;

(KDoes) (Doesi:αϕ ∧ ¬Doesi:α¬ψ)→ Doesi:α(ϕ ∧ ψ);
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(AltDoes) Doesi:αϕ→ ¬Doesj:β¬ϕ;

(KG) (Gϕ ∧ G(ϕ→ ψ))→ Gψ;

(4G) Gϕ→ GGϕ;

(HG) (Fϕ ∧ Fψ)→ (F(ϕ ∧ Fψ) ∨ F(ψ ∧ Fϕ) ∨ F(ϕ ∧ ψ));

(IncAfter, Does) Doesi:αϕ→ ¬Afteri:α¬ϕ;

(IntAct1) (ChoiceiDoesi:α> ∧ ¬Afteri:α⊥)→ Doesi:α>;

(IntAct2) Doesi:α> → ChoiceiDoesi:α>;

(WR) Beliϕ→ ¬Choicei¬ϕ;

(IncG, Does) Doesi:αϕ→ Fϕ;

(OneStepAct) Doesi:αG
∗ϕ→ Gϕ;

(MP) from `HHVL ϕ and `HHVL ϕ→ ψ, infer `HHVL ψ;8

(NecBel) from `HHVL ϕ, infer `HHVL Beliϕ;

(NecChoice) from `HHVL ϕ, infer `HHVL Choiceiϕ;

(NecG) from `HHVL ϕ, infer `HHVL Gϕ;

(NecAfter) from `HHVL ϕ, infer `HHVL Afteri:αϕ;

(NecDoes) from `HHVL ϕ, infer `HHVL ¬Doesi:α¬ϕ.9

8`HHVL ϕ denotes that ϕ is a theorem of HHVL.
9Note that Doesi:α is an existential modal operator. That is why the Axioms KDoes and

NecDoes look different than usual; however, these axioms mean that Doesi:α is a K type
logic, with an existential modal operator as basic instead of its universal dual.

To see this, assume that 3 is a normal existential modal operator, with its dual defined as

usual as 2ϕ
def
= ¬3¬ϕ. Assume that the schema 3ϕ∧¬3¬ψ → 3(ϕ∧ψ) is an axiom. Then:

3¬ϕ ∧ ¬3¬ψ → 3(¬ϕ ∧ ψ) ≡ 3¬ϕ ∧ 2ψ → 3(¬ϕ ∧ ψ)

≡ ¬3(¬ϕ ∧ ψ)→ ¬(3¬ϕ ∧ 2ψ)

≡ ¬3¬(ϕ ∨ ¬ψ)→ ¬3¬ϕ ∨ ¬2ψ
≡ 2(ψ → ϕ)→ (2ψ → 2ϕ)

≡ 2ϕ ∧ 2(ϕ→ ψ)→ 2ψ.

Note also that the schema 3ϕ ∧ ¬3¬ψ → 3(ϕ ∧ ψ) is a theorem in normal modal logics:

2ϕ ∧ 2(ϕ→ ¬ψ)→ 2¬ψ ≡ 2(ϕ→ ¬ψ)→ (2ϕ→ 2¬ψ)

≡ ¬3¬(¬ϕ ∨ ¬ψ)→ (¬2ϕ ∨ 2¬ψ)

≡ ¬3(ϕ ∧ ψ)→ (¬2ϕ ∨ ¬3ψ)

≡ ¬3(ϕ ∧ ψ)→ ¬(2ϕ ∧3ψ)

≡ 3ψ ∧ 2ϕ→ 3(ψ ∧ ϕ)

≡ 3ψ ∧ ¬3¬ϕ→ 3(ψ ∧ ϕ).
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3.2.2 Semantics

A frame F in the logic is a tuple 〈W,A,B,C,D,G〉, where A,B,C,D,G are
defined below. For the sake of convenience, all relations on W are seen as
functions from W to 2W . Thus, for every relation in the collections of relations
A,B,C,D, and G, the expression Ai:α(w) denotes the set {w′ : (w,w′) ∈ Ai:α},
etc.

• W is a nonempty set of possible worlds.

• A is a collection of binary relations Ai:α on W for every agent i ∈ AGT
and action α ∈ ACT . Ai:α(w) is the set of worlds w′ that can be reached
from w through i’s performance of α.

• B is a collection of binary serial transitive euclidean relations Bi on W for
every i ∈ AGT . Bi(w) is the set of worlds w′ that are compatible with i’s
beliefs at w.

• C is a collection of binary, serial relations Ci on W for every i ∈ AGT .
Ci(w) is the set of worlds w′ that are compatible with i’s choices at w.

• D is a collection of binary deterministic10 relations Di:α on W for every
i ∈ AGT and α ∈ ACT . If (w,w′) ∈ Di:α, then w′ is the unique actual
successor world of w, that is actually reached from w by the performance
of α by i.

• G is a transitive connected11 relation on W . G(w) is the set of worlds w′

which are future to w.

If Di:α(w) 6= ∅, then Di:α is defined at w. Similarly for every Ai:α: if
Ai:α 6= ∅, then Ai:α is defined at w. When Di:α(w) = {w′}, then i performs α
at w, resulting in the next state w′. When w′ ∈ Ai:α(w), then, if i performs α at
w, this might result in w′. Hence, if w′ ∈ Ai:α(w), but Di:α(w) = ∅, then i does
not perform α at w, but if i had performed α at w, this might have resulted in
the outcome w′.

The following are the semantic constraints on frames in the logic. For every
i, j ∈ AGT , α, β ∈ ACT , and w ∈W :

S1 if Di:α and Dj:β are defined at w, then Di:α(w) = Dj:β(w);

S2 Di:α ⊆ Ai:α;

S3 if Ai:α is defined at w and Di:α is defined at w′ for all w′ ∈ Ci(w), then Di:α

is defined at w;

S4 if w′ ∈ Ci(w) and Di:α is defined at w, then Di:α is defined at w′;

S5 Di:α ⊆ G;

S6 if w′ ∈ Di:α(w) and v ∈ G(w), then w′ = v or v ∈ G(w′);

10A relation Di:α is deterministic iff for every w ∈W , if (w,w′) ∈ Di:α and (w,w′′) ∈ Di:α,
then w′ = w′′ [25, p. 219].

11The relation G is connected iff, for every w ∈ W : if (w,w′) ∈ G and (w,w′′) ∈ G, then
(w′, w′′) ∈ G or (w′′, w′) ∈ G or w′ = w′′ [25, p. 219].
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S7 Ci(w) ∩Bi(w) 6= ∅;

S8 if w′ ∈ Bi(w), then Ci(w) = Ci(w
′).

Constraint S1 says that every world can only have one successor world; i.e. there
can only be one next world for every world w. Constraint S2 says that if a world
w′ is the successor world to w, then w′ must be reachable from w. Constraints S3
and S4 guarantee that there is a relationship between agents’ choices and their
actions. Constraint S5 guarantees that every world w′ resulting from an action
α performed by i at w is in the future of w. Constraint S6 captures that
there is no third world between a world w and the outcome w′ of an action
performed at w. Thus, Di:α(w) = {w′} can be considered to be the next state
of w. Constraint S7 captures the principle that an agent i’s choices must be
compatible with her beliefs. Finally, Constraint S8 captures the principle of
introspection with respect to choices: agents are aware of their choices.

Models M of the logic are couples 〈F, V 〉, where F is a frame, and V is
a function which associates each world w ∈ W with a set V (w) of atomic
propositions that are true at world w ∈W .

For every model M , world w ∈ W and formula ϕ, the expression M,w � ϕ
means that ϕ is true at world w in model M . The truth conditions for atomic
propositions and the usual connectives are defined as in Section 3.1.1. The
remaining truth conditions for the logic are the following:

• M,w � Gϕ iff M,w′ � ϕ for all w′ such that (w,w′) ∈ G.

• M,w � Afteri:αϕ iff M,w′ � ϕ for all w′ such that (w,w′) ∈ Ai:α.

• M,w � Doesi:αϕ iff there is a w′ ∈ Di:α(w) such that M,w′ � ϕ.

• M,w � Beliϕ iff M,w′ � ϕ for all w′ such that (w,w′) ∈ Bi.

• M,w � Choiceiϕ iff M,w′ � ϕ for all w′ such that (w,w′) ∈ Ci.

A formula ϕ is said to be HHVL-satisfiable if there exists a model M and
a world w in HHVL such that M,w � ϕ.

3.2.3 Formalizing the C&F theory

Herzig et al. [25] make a distinction between occurrent trust and dispositional
trust, somewhat corresponding to the distinction between core trust and trust
disposition in the C&F theory (see Chapter 2, Section 2.3.1). Occurrent trust
corresponds to the concept of core trust, and is formally defined in HHVL as:

Definition 3.2.1.

OccTrust(i, j, α, ϕ)
def
=ChoiceiFϕ

∧ Beli(Intendsj(α) ∧ Capablej(α) ∧ Afterj:αϕ).

Occurrent trust is the “here-and-now” trust in a trustee in relation to an
active and pursued goal of the truster. However, as pointed out by C&F, it
is possible to evaluate a trustee in relation to a potential goal (see Chapter 2,
Section 2.3.1). It might be useful to recall an example of dispositional trust.
I might trust a local bookstore with providing me a particular book in the future,
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if it ever were to become my goal of owning that particular book. That is, at
present time, it is not a goal of mine of owning a particular book, but given
certain circumstances (I might for example have a vague idea about possibly
writing an essay on a topic in the future, and if I want to write that essay,
I believe that I need a particular book covering the relevant topic) the potential
goal of owning the book becomes an active and pursued goal of mine. In such
a case, a concept of dispositional trust is needed; I can trust that if I want to
write the essay, the local bookstore will provide me with the needed book.

Herzig et al. provides precise definitions of the concepts of potential goal
and dispositional trust, which captures the main points of C&F’s discussion of
the matter.

Formally, a potential goal is defined in HHVL as:

Definition 3.2.2.

PotGoali(ϕ, k)
def
= Possi(F

∗(k ∧ ChoiceiFϕ)).

So an agent i has the potential goal ϕ under circumstances k if and only if i
believes it to be possible that she wants ϕ to be true at some point in the future
when circumstances k hold.

The informal definition of dispositional trust runs as follows [25, p. 227]:
agent i is disposed to trust agent j with the performance of α in relation to the
goal ϕ under circumstances k, if and only if:

1. i has the potential goal ϕ under circumstances k;

2. i believes that always, if i has the goal ϕ and k holds, then

(a) j, by performing α, will bring about ϕ;

(b) j will be capable to perform α;

(c) j will intend to do α.

Formally, dispositional trust is defined as:

Definition 3.2.3.

DispTrust(i, j, α, ϕ, k)
def
= PotGoali(ϕ, k)

∧ BeliG∗((k ∧ ChoiceiFϕ)→ (Capablej(α) ∧ Intendsj(α) ∧ Afterj:αϕ)).

Herzig et al. do not provide formal definitions of distrust, mistrust and lack
of trust. These concepts are, as seen in Chapter 2, important for the C&F theory
of trust. I propose the following definitions, and then prove some properties of
them.

First, the concept of distrust is informally defined in the C&F theory as the
conjunction of a goal of the truster, and the truster’s beliefs about the trustees
lack of intention, or lack of capability, or lack of opportunity to perform the
action relevant for the accomplishment of the truster’s goal. Formally, distrust
is defined as:

Definition 3.2.4.

DisTrust(i, j, α, ϕ)
def
=ChoiceiFϕ

∧ Beli(¬Intendsj(α) ∨ ¬Afterj:αϕ ∨ ¬Capablej(α)).



3.2. Herzig, Lorini, Hübner, and Vercouter’s logic 29

The concept of mistrust is informally defined in the C&F theory as the
conjunction of a goal of the truster, and the truster’s belief that the trustee is
capable and willing to accomplish the opposite of the truster’s goal. Formally,
this is defined in the logic in the following way:

Definition 3.2.5.

MisTrust(i, j, α, ϕ)
def
=ChoiceiFϕ

∧ Beli(Capablej(α) ∧ Intendsj(α) ∧ Afterj:α¬ϕ).

Lack of trust is, as seen in Chapter 2, the lack of belief about a trustee’s
capability and willingness. Thus, lack of trust can formally be defined as:

Definition 3.2.6.

LackTrust(i, j, α, ϕ)
def
=ChoiceiFϕ

∧ ¬Beli(Intendsj(α) ∧ Capablej(α) ∧ Afterj:αϕ).

The concept of dispositional trust as presented in Chapter 2 and formalized
in this section can be extended to a capture a concept of dispositional mistrust.
This is in accordance with the C&F theory, where dispositional trust is analysed
as an evaluation of a trustee relative to a potential goal; dispositional mistrust
in a trustee is a negative evaluation of the trustee’s intentions. I propose the
following definition of dispositional mistrust:

Definition 3.2.7.

DispMisTrust(i, j, α, ϕ)
def
= PotGoali(ϕ, k)

∧ BeliG∗((k ∧ ChoiceiFϕ)→ (Capablej(α) ∧ Intendj(α) ∧ Afterj:α¬ϕ)).

The remaining part of this section contains a number of theorems stating
formal properties of the defined concepts.

By the axioms IncAfter, Does, IntAct1, and IntAct2, the following theo-
rem can be proven [25, p. 222]:

Theorem 3.2.1. Let i ∈ AGT and α ∈ ACT . Then

`HHVL Capablei(α) ∧ Intendsi(α)↔ Doesi:α>.

This theorem highlights an important property of the relation between the
operators Afteri:α and Doesi:α.

Theorem 3.2.2. Let i ∈ AGT and α ∈ ACT . Then

`HHVL Afteri:αϕ ∧ Doesi:α> → Doesi:αϕ.

Proof. Assume the opposite, i.e. Afteri:αϕ ∧ Doesi:α> ∧ ¬Doesi:αϕ.
By Axiom IncAfter, Does, it holds that `HHVL Afteri:αϕ→ ¬Doesi:α¬ϕ.
Thus, the initial assumption implies ¬Doesi:αϕ∧¬Doesi:α¬ϕ, which in turn,

by standard principles of propositional logic and distribution of the normal,
existential operator Doesi:α over disjunction, is equivalent to ¬Doesi:α(ϕ∨¬ϕ).
But the last formula is equivalent to ¬Doesi:α>.

Hence, the assumption implies a contradiction (i.e. Doesi:α>∧ ¬Doesi:α>),
which proves the theorem.
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The following theorem is proven by Herzig et al. [25, p. 224], and highlights
some interesting properties of occurrent trust.

Theorem 3.2.3. Let i, j ∈ AGT and α ∈ ACT . Then:

(a) `HHVL OccTrust(i, j, α, ϕ)→ BeliDoesj:αϕ;

(b) `HHVL OccTrust(i, j, α, ϕ)→ BeliFϕ;

(c) `HHVL OccTrust(i, j, α, ϕ)↔ BeliOccTrust(i, j, α, ϕ);

(d) `HHVL Beli¬Capablej(α)→ ¬OccTrust(i, j, α, ϕ);

(e) `HHVL Beli¬Intendsj(α)→ ¬OccTrust(i, j, α, ϕ);

(f) `HHVL Beli¬Afterj:αϕ→ ¬OccTrust(i, j, α, ϕ);

(g) `HHVL BeliAfterj:α¬ϕ→ ¬OccTrust(i, j, α, ϕ).

The following theorem states some interesting properties of the notions of
mistrust and distrust.

Theorem 3.2.4. Let i, j ∈ AGT and α ∈ ACT . Then:

(a) `HHVL MisTrust(i, j, α, ϕ)→ BeliDoesj:α¬ϕ;

(b) `HHVL MisTrust(i, j, α, ϕ)→ BeliF¬ϕ;

(c) `HHVL DisTrust(i, j, α, ϕ)→ ¬OccTrust(i, j, α, ϕ);

(d) `HHVL MisTrust(i, j, α, ϕ)→ ¬OccTrust(i, j, α, ϕ).

Proof.
(a) First, by Definition 3.2.5,

`HHVL MisTrust(i, j, α, ϕ)→ Beli(Capablej(α) ∧ Intendj(α) ∧ Afterj:α¬ϕ)

is a theorem. The right hand side of the implication is, by Theorem 3.2.1,
Axiom KBel, and Axiom NecBel equivalent to Beli(Afterj:α¬ϕ ∧ Doesj:α>),
which yields the theorem

`HHVL MisTrust(i, j, α, ϕ)→ Beli(Afterj:α¬ϕ ∧ Doesj:α>).

Second, by Theorem 3.2.2, it holds that:

`HHVL Afterj:α¬ϕ ∧ Doesj:α> → Doesj:α¬ϕ.

By Axioms NecBel and KBel, it is concluded that

`HHVL Beli(Afterj:α¬ϕ ∧ Doesj:α>)→ BeliDoesj:α¬ϕ,

from which the theorem follows.

(b) By Axiom IncG, Does, `HHVL Doesj:α¬ϕ → F¬ϕ is a theorem. With
NecBel and KBel, it follows that `HHVL BeliDoesj:α¬ϕ→ BeliF¬ϕ. The the-
orem follows from this and Theorem 3.2.4(a).
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(c) Assume the opposite, i.e. DisTrust(i, j, α, ϕ) ∧ OccTrust(i, j, α, ϕ). First,

`HHVL DisTrust(i, j, α, ϕ)→ Beli(¬Intendsj(α)∨¬Capablej(α)∨¬Afterj:αϕ)

by Definition 3.2.4.
Second,

`HHVL Beli(¬Intendsj(α) ∨ ¬Capablej(α) ∨ ¬Afterj:αϕ)

→ ¬Beli(Intendsj(α) ∧ Capablej(α) ∧ Afterj:αϕ)

by standard principles of propositional logic and Axiom DBel. Now,

`HHVL OccTrust(i, j, α, ϕ)→ Beli(Intendsj(α) ∧ Capablej(α) ∧ Afterj:αϕ)

by Definition 3.2.1. Hence, the initial assumption is contradicted, and the the-
orem holds.

(d) First, `HHVL MisTrust(i, j, α, ϕ) → BeliAfterj:α¬ϕ by Definition 3.2.5
and Axiom KBel. From this and Theorem 3.2.3(g), the theorem follows.

Theorem 3.2.5. Let i, j ∈ AGT and α ∈ ACT . Then

`HHVL OccTrust(i, j, α, ϕ ∧ ψ)→ OccTrust(i, j, α, ϕ) ∧ OccTrust(i, j, α, ψ).

Proof. Assume OccTrust(i, j, α, ϕ ∧ ψ). This implies, by Definition 3.2.1 and
distribution of the normal universal operators Beli and Afterj:α over conjunc-
tion,

ChoiceiF(ϕ ∨ ψ) ∧ BeliDoesj:α> ∧ BeliAfterj:αϕ ∧ BeliAfterj:αψ.

The formula ChoiceiF(ϕ ∧ ψ) implies Choicei(Fϕ ∧ Fψ), since F is a normal
existential operator. By distribution of Choicei over conjunction, it holds that

ChoiceiF(ϕ ∧ ψ)→ ChoiceiFϕ ∧ ChoiceiFψ.

Hence, the following formulas are valid:

OccTrust(i, j, α, ϕ ∧ ψ)→ ChoiceiFϕ ∧ Beli(Doesj:α> ∧ Afterj:αϕ)

and

OccTrust(i, j, α, ϕ ∧ ψ)→ ChoiceiFψ ∧ Beli(Doesj:α> ∧ Afterj:αψ),

which proves the theorem.

The converse of this theorem, i.e.

OccTrust(i, j, α, ϕ) ∧ OccTrust(i, j, α, ψ)→ OccTrust(i, j, α, ϕ ∧ ψ),

is not valid since Fϕ∧Fψ → F(ϕ∧ψ) is not a theorem. This is evident from the
fact that F is a normal existential operator.
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Informally, it could be the case that a truster i trusts a trustee j with
achieving ϕ by performing α, and trusts j with achieving ψ by performing α,
but it is not necessarily a goal of i that ϕ and ψ are true at the same time.
For example, i might have the goal of having money so she can pay for her
daughter’s education, and the goal of her daughter having a good education. i
thinks that borrowing money from j will ultimately lead to the achievement of
both goals, but not at the same time. Borrowing money from j will provide
i with money, and thus the first goal is achieved at one time, and borrowing
money from j will, ultimately, ensure that i’s daughter has a good education
sometime in the future.

Theorem 3.2.6. Let i, j ∈ AGT and α ∈ ACT . Then

`HHVL DispTrust(i, j, α, ϕ, k) ∧ ChoiceiFϕ ∧ Belik → OccTrust(i, j, α, ϕ).

See [25, p. 228] for a proof of this theorem.
The next theorem states the corresponding property of dispositional mis-

trust.

Theorem 3.2.7. Let i, j ∈ AGT and α ∈ ACT . Then

`HHVL DispMisTrust(i, j, α, ϕ, k) ∧ ChoiceiFϕ ∧ Belik → MisTrust(i, j, α, ϕ).

Proof. First, the left hand side of the implication in the theorem implies

ChoiceiFϕ ∧ Beli(ChoiceiFϕ ∧ k)∧
BeliG

∗((k ∧ ChoiceiFϕ)→ (Capablej(α) ∧ Intendj(α) ∧ Afterj:α¬ϕ)).

The formula Beli(ChoiceiFϕ ∧ k) is obtained from Axiom 4Choice and distri-
bution of Beli over conjunction.

The above formula implies

ChoiceiFϕ ∧ Beli(k ∧ ChoiceiFϕ)∧
Beli((k ∧ ChoiceiFϕ)→ (Capablej(α) ∧ Intendj(α) ∧ Afterj:α¬ϕ))

by the definition of G∗. From the above formula, it follows that ChoiceiFϕ ∧
Beli(Capablej(α) ∧ Intendj(α) ∧ Afterj:αϕ) by the use of Axiom KBel.

MisTrust(i, j, α, ϕ) then follows by Definiiton 3.2.5.

3.3 Demolombe and Lorini’s logic

Demolombe and Lorini [14, 29] have developed a logic (here called DL) with the
aim of formalizing aspects of the C&F theory. The formalism presented here is
based on their articles [14, 29].

3.3.1 Syntax

The syntactic primitives of the logic are: a nonempty, finite set of agents
AGT = {i1, i2, ..., ik}; a nonempty finite set of actions ACT = {e1, e2, ..., el};
and a nonempty set of atomic propositions ATM = {p, q, ...}. Variables i, j, ...
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denote agents, and variables α, β, ... denote actions. The language of the logic
is given by the following syntax rules:

ϕ ::= p | ¬ϕ |ϕ ∨ ϕ | Afteri:αϕ | Doesi:αϕ | Beliϕ | Goaliϕ | Obgϕ,

where p ∈ ATM , i ∈ AGT , and α ∈ ACT . The usual connectives (∧,→,↔) and
true and false (> and ⊥) are defined as in Section 3.1.1. The intended readings
of the operators are as follows, where p ∈ ATM , i ∈ AGT , and α ∈ ACT :

• Afteri:αϕ: after agent i has performed action α, ϕ holds;

• Doesi:αϕ: agent i does action α, and ϕ is true afterwards;

• Beliϕ: agent i believes ϕ to be true;

• Goaliϕ: agent i prefer (has the goal) ϕ to be true;

• Obgϕ: it is obligatory that ϕ.12

The following abbreviations are defined:

Cani(α)
def
= ¬Afteri:α⊥;

Inti(α)
def
= GoaliDoesi:α>;

Xϕ
def
=

∨
i∈AGT ,α∈ACT

Doesi:αϕ,

with the intuitive readings:

• Cani(α): agent i is capable of doing action α;

• Inti(α): agent i intends to do action α;

• Xϕ: ϕ will be true at next time.13

12This operator is supposed to express obligation as a social or moral concept. It should
not be mistaken for a property of the logic itself—if ϕ is obligatory, it does not mean that
ϕ must be true. Consider a short example. Assume that it is obligatory to call the police if
someone is committing a robbery. This is expressed in the logic as Obg(robbery → callpolice).
I will not make use of the operator Obg in the following formalization of the C&F theory. It is
included here for the sake of completeness; I want to stay as close as possible to the original
formalism.

13The expression
∨i=n
i=1 Ai is an abbreviation for A1 ∨ ... ∨ An [2, p. 32]. If∨

i∈AGT ,α∈ACT Doesi:αϕ is true, then at least one of the formulas Doesi:αϕ is true for some
i ∈ AGT and α ∈ ACT ; basically, it means that there is some performance of an action
α ∈ ACT by an agent i ∈ AGT , such that ϕ is the result of the performance. Thus, the
expression has some resemblance with the existential quantifier ∃ in predicate logic. However,
since DL is an extension of propositional logic without quantifiers, instead of quantifying over
possibly infinite domains, finite disjunctions are used (note that both AGT and ACT are fi-
nite). Note also that the logic models time discreetly. The definition of the next time operator
X satisfies Xϕ ↔ ¬X¬ϕ, which is a standard property in temporal logic [2, p. 239]. Note also
that the definition of the operator X is possible because of the Axiom Active, which ensures
that there always is a next world.
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Axiomatics

The following are axioms of the logic DL:

(PC) all theorems of propositional logic;

(KBel) (Beliϕ ∧ Beli(ϕ→ ψ))→ Beliψ;

(DBel) ¬(Beliϕ ∧ Beli¬ϕ);

(4Bel) Beliϕ→ BeliBeliϕ;

(5Bel) ¬Beliϕ→ Beli¬Beliϕ;

(KGoal) (Goaliϕ ∧ Goali(ϕ→ ψ))→ Goaliψ;

(DGoal) ¬(Goaliϕ ∧ Goali¬ϕ);

(KObg) (Obgϕ ∧ Obg(ϕ→ ψ))→ Obgψ;

(DObg) ¬(Obgϕ ∧ Obg¬ϕ);

(KAfter) (Afteri:αϕ ∧ Afteri:α(ϕ→ ψ))→ Afteri:αψ;

(KDoes) (Doesi:αϕ ∧ ¬Doesi:α¬ψ)→ Doesi:α(ϕ ∧ ψ);

(WR) Goaliϕ→ ¬Beli¬ϕ;

(PIntr) Goaliϕ→ BeliGoaliϕ;

(NIntr) ¬Goaliϕ→ Beli¬Goaliϕ;

(BelObg) Obgϕ→ BeliObgϕ;

(AltAct) Doesi:αϕ→ ¬Doesj:β¬ϕ;

(Active)
∨
i∈AGT ,α∈ACT Doesi:α>;

(IncAct) Doesi:αϕ→ ¬Afteri:α¬ϕ;

(IntAct1) (Inti(α) ∧ Cani(α))→ Doesi:α>;

(IntAct2) Doesi:α> → Inti(α);

(MP) from `DL ϕ→ ψ and `DL ϕ, infer `DL ψ;

(NecBel) from `DL ϕ, infer `DL Beliϕ;

(NecGoal) from `DL ϕ, infer `DL Goaliϕ;

(NecObg) from `DL ϕ, infer `DL Obgϕ;

(NecAfter) from `DL ϕ, infer `DL Afteri:αϕ;

(NecDoes) from `DL ϕ, infer `DL ¬Doesi:α¬ϕ.
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3.3.2 Semantics

Frames in the logic are tuples F = 〈W,R,D,B,G,O〉, where the following hold:

• W is a nonempty set of possible worlds.

• R is a collection of binary relations Ri:α on W for every i ∈ AGT and
α ∈ ACT . For every world w ∈ W , if (w,w′) ∈ Ri:α, then w′ is a world
that can be reached from w through the performance of α by i.

• D is a collection of binary relations Di:α on W for every i ∈ AGT and
α ∈ ACT . For every world w ∈ W , if (w,w′) ∈ Di:α, then w′ is the next
world from w, which will be reached through i’s performance of α.

• B is a collection of binary relations Bi on W for every i ∈ AGT . For any
world w ∈ W , if (w,w′) ∈ Bi, then w′ is a world that is compatible with
i’s beliefs at world w.

• G is a collection of binary relations Gi on W for every i ∈ AGT . For any
world w ∈ W , if (w,w′) ∈ Gi, then w′ is a world that is compatible with
i’s goals at world w.

• O is a binary relation on W. For any world w ∈ W , if (w,w′) ∈ O, then
w′ is an ideal world at world w.

All operators of type Beli are KD45 modal operator, all operators of type
Goali, and the Obg operator are KD modal operators. Afteri:α and Doesi:α
satisfy the axioms and rules of inference of the modal system K.

The special semantic constraints for frames are the following [14]. For every
w ∈W , i, j ∈ AGT , and α, β ∈ ACT :

S1 if (w,w′) ∈ Di:α and (w,w′′) ∈ Dj:β , then w′ = w′′;14

S2 there are i ∈ AGT , α ∈ ACT , and w′ ∈W , such that (w,w′) ∈ Di:α;

S3 if (w,w′) ∈ Di:α, then (w,w′) ∈ Ri:α;

S4 if, for all (w,w′) ∈ Gi, there are w′′, v such that (w′, w′′) ∈ Di:α and (w, v) ∈
Ri:α, then there is v′ such that (w, v′) ∈ Di:α;

S5 if there is v′ such that (w, v′) ∈ Di:α, then, for all (w,w′) ∈ Gi, there is w′′

such that (w′, w′′) ∈ Di:α;

S6 there is a w′ such that (w,w′) ∈ Bi and (w,w′) ∈ Gi;

S7 if (w,w′) ∈ Bi, then, for all v, if (w, v) ∈ Gi, then (w′, v) ∈ Gi;

S8 if (w,w′) ∈ Bi, then, for all v, if (w′, v) ∈ Gi, then (w, v) ∈ Gi.

Models in the logic are couples M = 〈F, V 〉, where F is a frame, and
V : ATM → 2W is a valuation function, where V (p) denotes the set of worlds
w ∈W where p is true. The expression M,w � ϕ denotes that ϕ is true at world
w in model M . Truth conditions for atomic propositions, the usual connectives,
and the constants > and ⊥ are defined as in Definition 3.1.4. The remaining
truth conditions are the following:

14This is the deterministic property of relations.
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• M,w � Afteri:αϕ iff M,w′ � ϕ for all w′ such that (w,w′) ∈ Ri:α;

• M,w � Doesi:αϕ iff there is a world w′ such that M,w′ � ϕ and (w,w′) ∈
Di:α;

• M,w � Beliϕ iff M,w′ � ϕ for all w′ such that (w,w′) ∈ Bi;

• M,w � Goaliϕ iff M,w′ � ϕ for all w′ such that (w,w′) ∈ Gi;

• M,w � Obgϕ iff M,w′ � ϕ for all w′ such that (w,w′) ∈ O.

If there exists a model M and a world w in M where a formula ϕ is satisfied, ϕ
is said to be DL-satisfiable.

3.3.3 Formalizing the C&F theory

The formal translation of core trust is:

Definition 3.3.1.

ATrust(i, j, α, ϕ)
def
= GoaliXϕ ∧ Beli(Afterj:αϕ ∧ Canj(α) ∧ Intj(α)).

Demolombe and Lorini do not provide definitions of the concepts of distrust,
mistrust, and lack of trust. I propose the following definitions.

Definition 3.3.2.

DisTrust(i, j, α, ϕ)
def
= GoaliXϕ ∧ Beli(¬Afterj:αϕ ∨ ¬Canj(α) ∨ ¬Intj(α)).

Definition 3.3.3.

MisTrust(i, j, α, ϕ)
def
= GoaliXϕ ∧ Beli(Afterj:α¬ϕ ∧ Canj(α) ∧ Intj(α)).

Definition 3.3.4.

LackTrust(i, j, α, ϕ)
def
= GoaliXϕ ∧ ¬Beli(Afterj:αϕ ∧ Canj(α) ∧ Intj(α)).

I will end this section by stating a few theorems of DL.

Theorem 3.3.1. Let i ∈ AGT and α ∈ ACT . Then

(a) `DL Inti(α) ∧ Cani(α)↔ Doesi:α>;

(b) `DL Doesi:α> ∧ Afteri:αϕ→ Doesi:αϕ;

(c) `DL X(ϕ ∧ ψ)↔ Xϕ ∧ Xψ.

Proof.
(a) First, the implication from left to right holds by Axiom IntAct1.

Second, by Axiom IncAct, `DL Doesi:α> → ¬Afteri:α⊥. By the definition
of Cani(α), this is equivalent to `DL Doesi:α> → Cani(α). Axiom IntAct2
states that Doesi:α> → Inti(α). Thus, the implication from right to left holds.

(b) Assume the opposite, i.e. `DL Doesi:α> ∧ Afteri:αϕ ∧ ¬Doesi:αϕ.
By Axiom IntAct, `DL Afteri:αϕ→ ¬Doesi:α¬ϕ.
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The assumption thus implies ¬Doesi:αϕ ∧ ¬Doesi:αϕ, which, by standard
principles of propositional logic and distribution of Doesi:α over disjunction
(Doesi:α is a normal existential modal operator) is equivalent to ¬Doesi:α(ϕ ∨
¬ϕ).

But ϕ ∨ ¬ϕ is equivalent to >, and the assumption thus implies Doesi:α>∧
¬Doesi:α>, which is a contradiction. Hence, the theorem is proven.

(c) First, the implication from left to right is proved.
Assume that X(ϕ ∧ ψ). By the definition of X, the formula X(ϕ ∧ ψ) is

equivalent to ∨
i∈AGT ,α∈ACT

Doesi:α(ϕ ∧ ψ),

that is, there is some combination of i ∈ AGT and α ∈ ACT such that
Doesi:α(ϕ∧ψ). Since Doesi:α is a normal existential operator, this implies that
Doesi:αϕ∧ Doesi:αψ is true. This, by the definition of X, means that Xϕ∧ Xψ is
true, so `DL X(ϕ ∧ ψ)→ Xϕ ∧ Xψ.

Second, the implication from right to left is proved.
Assume Xϕ ∧ Xψ, which is equivalent to∨

i∈AGT ,α∈ACT

Doesi:αϕ ∧
∨

j∈AGT ,β∈ACT

Doesj:βψ.

So there is one formula Doesi:αϕ ∧ Doesj:βψ, for i, j ∈ AGT and α, β ∈ ACT ,
that is true.

By Axiom AltAct, Doesi:αϕ∧Doesj:βψ implies Doesi:αϕ∧¬Doesi:α¬ψ, which
in turn, by Axiom KDoes implies Doesi:α(ϕ ∧ ψ). By the definition of X, this
implies X(ϕ ∧ ψ).

Hence, `DL Xϕ ∧ Xψ → X(ϕ ∧ ψ).

The following theorem is proven by Demolombe and Lorini [29].

Theorem 3.3.2. Let i, j ∈ AGT and α ∈ ACT . Then

`DL ATrust(i, j, α, ϕ)→ BeliXϕ.

The following theorem highlights interesting properties of trust, distrust,
and mistrust.

Theorem 3.3.3. Let i, j ∈ AGT and α ∈ ACT . Then:

(a) `DL Beli¬Canj(α)→ ¬ATrust(i, j, α, ϕ);

(b) `DL Beli¬Intj(α)→ ¬ATrust(i, j, α, ϕ);

(c) `DL Beli¬Afterj:αϕ→ ¬ATrust(i, j, α, ϕ);

(d) `DL BeliAfterj:α¬ϕ→ ¬ATrust(i, j, α, ϕ);

(e) `DL DisTrust(i, j, α, ϕ)→ ¬ATrust(i, j, α, ϕ);

(f) `DL MisTrust(i, j, α, ϕ)→ ¬ATrust(i, j, α, ϕ).
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Proof.
(a) First, `DL ATrust(i, j, α, ϕ) → BeliCanj(α) by Definition 3.3.1. Second,
`DL BeliCani(α)→ ¬Beli¬Canj(α) by Axiom DBel. The theorem then follows
from contraposition.

(b) The proof is similar to that of (a). By Definition 3.3.1 and Axiom DBel

`DL ATrust(i, j, α, ϕ) → ¬Beli¬Intj(α), to which the theorem is the contra-
positive.

(c) Again, the same kind of proof is used as in (a) and (b).
`DL ATrust(i, j, α, ϕ) → ¬Afterj:α¬ϕ holds by Definition 3.3.1 and Ax-

iom DBel, from which the theorem follows by contraposition.

(d) Assume that the opposite hold, i.e. `DL BeliAfterj:α¬ϕ∧ATrust(i, j, α, ϕ).
From Definition 3.3.1,

`DL ATrust(i, j, α, ϕ)→ Beli(Afterj:αϕ ∧ Canj(α) ∧ Intj(α)).

This, together with Theorem (a) yields

`DL ATrust(i, j, α, ϕ)→ Beli(Afterj:αϕ ∧ Doesj:α>).

Theorem (b) states that

`DL Afterj:αϕ ∧ Doesj:α> → Doesj:αϕ.

With Axioms NecBel and KBel, `DL Beli(Afterj:α∧Doesj:α>)→ BeliDoesj:αϕ.
From the above, it can be concluded that

`DL ATrust(i, j, α, ϕ)→ BeliDoesj:αϕ.

By Axiom IncAct, `DL Afterj:α¬ϕ→ ¬Doesj:αϕ, and by Axioms NecBel and
KBel, it follows that `DL BeliAfterj:α¬ϕ→ Beli¬Doesj:αϕ. By Axiom DBel,
`DL Beli¬Doesj:αϕ→ ¬BeliDoesj:αϕ.

Thus, it follows from all of the above that

`DL BeliAfterj:α¬ϕ ∧ ATrust(i, j, α, ϕ)→ ⊥,

from which it follows that the theorem holds.

(e) By Definition 3.3.2,

`DL DisTrust(i, j, α, ϕ)→ Beli(¬Afterj:αϕ ∨ ¬Canj(α) ∨ ¬Intj(α)).

The right hand side of the implication is equivalent to

Beli¬(Afterj:αϕ ∧ Canj(α) ∧ Intj(α))

by standard principles of propositional logic.
By Axiom DBel,

`DL Beli¬(Afterj:αϕ ∧ Canj(α) ∧ Intj(α))

→ ¬Beli(Afterj:αϕ ∧ Canj(α) ∧ Intj(α)).
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Hence,

`DL DisTrust(i, j, α, ϕ)→ ¬Beli(Afterj:αϕ ∧ Canj(α) ∧ Intj(α)).

By Definition 3.3.1,

`DL ATrust(i, j, α, ϕ)→ Beli(Afterj:αϕ ∧ Canj(α) ∧ Intj(α)).

All the above leads to `DL DisTrust(i, j, α, ϕ) ∧ ATrust(i, j, α, ϕ) → ⊥, from
which the theorem follows by contradiction.

(f) First, form Definition 3.3.3, `DL MisTrust(i, j, α, ϕ) → BeliAfterj:α¬ϕ,
from which the theorem follows by use of Theorem 3.3.3(d).

By using the Theorem (c), the following theorem can be proved.

Theorem 3.3.4. Let i, j ∈ AGT and α ∈ ACT . Then

`DL ATrust(i, j, α, ϕ) ∧ ATrust(i, j, α, ψ)↔ ATrust(i, j, α, ϕ ∧ ψ).

Proof. The implication from right to left is proved first.
Assume that ATrust(i, j, α, ϕ∧ψ). This implies, by Definition 3.3.1 and dis-

tribution of the normal universal operators Beli and Afterj:α over conjunction,

GoaliX(ϕ ∧ ψ) ∧ Beli(Doesi:α> ∧ BeliAfterj:αϕ ∧ BeliAfterj:αψ.

By Theorem (c), and distribution of Goali and Beli over conjunction, it
follows that

ATrust(i, j, α, ϕ ∧ ψ)→ GoaliXϕ ∧ Beli(Doesj:α> ∧ Afterj:αϕ)

and

ATrust(i, j, α, ϕ ∧ ψ)→ GoaliXψ ∧ Beli(Doesj:α> ∧ Afterj:αψ),

which proves the theorem from right to left.
Now, the implication form left to right is proved.
Assume that ATrust(i, j, α, ϕ) ∧ ATrust(i, j, α, ψ). This implies, by Defini-

tion 3.3.1 and distribution of the normal universal operators Beli and Afterj:α
over conjunction

Goali(Xϕ ∧ Xψ) ∧ BeliDoesj:α> ∧ BeliAfterj:α(ϕ ∧ ψ).

This, together with Theorem (c), shows that

`DL ATrust(i, j, α, ϕ) ∧ ATrust(i, j, α, ψ)→
Goali(ϕ ∧ ψ) ∧ Beli(Doesj:α> ∧ Afterj:α(ϕ ∧ ψ)),

which proves the theorem.
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3.4 Bonnefon, Longin, and Nguyen’s logic

In their paper [5], Bonnefon, Longin, and Nguyen construct a logic (here de-
noted BNL) with the purpose of reasoning about emotions, like fear, anger, and
disappointment, in relation to trust (see also their earlier paper [4]). I will only
consider the logic in relation to the C&F theory, and thus ignore the formaliza-
tions of emotions.

3.4.1 Syntax

The syntactic primitives of the logic are: a nonempty finite set of agents, AGT =
{i1, i2, ..., in}; a nonempty finite set of atomic events EVT = {e1, e2, ..., ep}; and
a nonempty set of atomic propositions ATM = {p, q, ...}. Agents are denoted
with variables i, j, k, .... The expression i1 : e1 ∈ AGT ×EVT denotes an event
e1 intentionally caused by agent i1; such events are called actions. Variables
α, β, ... denote actions. The language of the logic is given by the following syntax
rules:

ϕ ::= p | i:α-happens | ¬ϕ |ϕ ∨ ϕ | Xϕ | X−1ϕ | Gϕ | Beliϕ | Choiceiϕ | GrdIϕ,

where p ∈ ATM , i:α ∈ AGT × EVT , i:α-happens ∈ ATM for each i:α ∈
AGT × EVT , and I ⊆ AGT . The usual connectives (∧,→,↔) and true and
false (> and ⊥) are defined from ¬ and ∨ as in Section 3.1.1.

The operators have the following readings:

• i:α-happens: agent i is just about to perform action α;

• Xϕ: ϕ will be true at the next time;

• X−1ϕ: ϕ was true at the previous time;

• Gϕ: ϕ is true from now on;

• Beliϕ: agent i believes ϕ to be true;

• Choiceiϕ: agent i wants ϕ to be true;

• GrdIϕ: ϕ is publicly grounded between agents in I.15

15Bonnefon et al. [5] assert that the operator GrdI is a common belief operator. This
is quite a broad characterisation, since there are several ways to express mutual beliefs in
a group of agents. In the most basic sense, a common belief ϕ in a group I of agents is just
the conjunction of the individual agents’ beliefs that ϕ holds. However, the GrdI operator
used here is more close to the concept of grounded information presented and discussed by
Gaudou, Herzig, and Longin [23], where the fact that it is grounded in a group I of agents
that ϕ holds does not imply individual beliefs that ϕ holds for every agent in I. Section 3.4.4
contains further discussions on this topic (see also e.g. [23, 41]).
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The following abbreviations are defined:

i:α-done
def
= X−1i:α-happens;

Happensi:αϕ
def
= i:α-happens ∧ Xϕ;

Afteri:αϕ
def
= i:α-happens→ Xϕ;

Donei:αϕ
def
= i:α-done ∧ X−1ϕ;

Fϕ
def
= ¬G¬ϕ;

Goaliϕ
def
= ChoiceiF(Beliϕ);

Intendiα
def
= ChoiceiFi:α-happens;

Capableiα
def
= ¬Afteri:α⊥;

Possibleiϕ
def
= ¬Beli¬ϕ;

with the intended readings:

• i:α-done: agent i has done action α;

• Happensi:αϕ: agent i is doing action α, and ϕ will be true next;

• Afteri:αϕ: ϕ is true after the execution of α by i;

• Donei:αϕ: agent i has done action α, and ϕ was true at the previous time;

• Fϕ: ϕ will be true at some future time;

• Goaliϕ: agent i has the goal that ϕ be true;

• Intendiα: agent i intends to do action α;

• Capableiα: agent i is capable of doing action α;

• Possibleiϕ: agent i believes ϕ to be possible.

Axiomatics

The following are the axioms of BNL:

(PC) all theorems of propositional logic;

(1) i:α-happens↔ Xi:α-done;

(2) Xϕ↔ ¬X¬ϕ;

(3) ϕ↔ XX−1ϕ;

(4) ϕ↔ X−1Xϕ;

(5) Gϕ↔ ϕ ∧ XGϕ;

(6) G(ϕ→ Xϕ)→ (ϕ→ Gϕ);

(7) Gϕ→ Afteri:αϕ;
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(8) Happensi:αϕ→ Afterj:βϕ;

(9) Afteri:αϕ↔ ¬Happensi:α¬ϕ;

(KBel) (Beliϕ ∧ Beli(ϕ→ ψ))→ Beliψ;

(DBel) Beliϕ→ ¬Beli¬ϕ;

(4Bel
′) Beliϕ↔ BeliBeliϕ;16

(5Bel
′) ¬Beliϕ↔ Beli¬Beliϕ;

(KChoice) (Choiceiϕ ∧ Choicei(ϕ→ ψ))→ Choiceiψ);

(DChoice) Choiceiϕ→ ¬Choicei¬ϕ;

(4Choice
′) Choiceiϕ↔ BeliChoiceiϕ;

(5Choice
′) ¬Choiceiϕ↔ Beli¬Choiceiϕ;

(KGrd) (GrdIϕ ∧ GrdI(ϕ→ ψ))→ GrdIψ);

(DGrd) GrdIϕ→ ¬GrdI¬ϕ;

(4Grd
′) GrdIϕ↔ GrdIGrdIϕ;

(5Grd
′) ¬GrdIϕ↔ GrdI¬GrdIϕ;

(MP) from `BNL ϕ→ ψ and `BNL ϕ, infer `BNL ψ;

(NecBel) from `BNL ϕ, infer `BNL Beliϕ;

(NecChoice) from `BNL ϕ, infer `BNL Choiceiϕ;

(NecGrd) from `BNL ϕ, infer `BNL GrdIϕ.

3.4.2 Semantics

A frame F in the logic is a 4-tuple 〈H,B,C,G〉, where:

• H is a set of stories, represented by a sequence of time points. Each time
point is represented by an integer z ∈ Z. A time point z in a story h is
called a situation, and is denoted <h, z>.

• B is the set of all relations Bi such that Bi(h, z) denotes the set of stories
believed to be possible by agent i in the situation <h, z>.

• C is the set of all relations Ci, such that Ci(h, z) denotes the set of stories
h chosen by agent i in situation <h, z>.

• G is the set of all GI such that GI(h, z) denotes the set of stories which
are grounded between the agents in group I in the situation <h, z>.

16Note that this axiom differs from the usual 4-type axioms in a KD45 logic, in that it uses
an equivalence ↔ instead of en implication →; hence the name 4Bel

′ instead of 4Bel.
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The following are the semantic constrains of the logic. All accessibility relations
Bi ∈ B are serial, transitive, and euclidean. All accessibility relations GI ∈ G
are serial, transitive, and euclidean. All accessibility relations Ci ∈ C are serial.
For every z ∈ Z, if h′ ∈ Bi(h, z), then Ci(h, z) = Ci(h

′, z); if agent i believes
that the story h′ is possible from the story h, then i’s preferred stories from
h and h′ are the same. In short, this means that agents are aware of their
preferences; all agents believe what they prefer. A model M for the logic is
a couple 〈F, V 〉, where F is a frame and V is a function which associates each
proposition p with a set V (p) of couples (h, z) where p is true.

Truth conditions are defined as follows:

• M,h, z � p iff (h, z) ∈ V (p);

• M,h, z � Xϕ iff M,h, z + 1 � ϕ;

• M,h, z � X−1ϕ iff M,h, z − 1 � ϕ;

• M,h, z � Gϕ iff M,h, z′ � ϕ for every z′ ≥ z;

• M,h, z � Beliϕ iff M,h′, z � ϕ for every (h′, z) ∈ Bi(h, z);

• M,h, z � Choiceiϕ iff M,h′, z � ϕ for every (h′, z) ∈ Ci(h, z);

• M,h, z � GrdIϕ iff M,h′, z � ϕ for every (h′, z) ∈ GI(h, z).

Truth conditions for the usual connectives and the constants> and⊥ are defined
similar to Definition 3.1.4 (i.e. M,h, z � ϕ ∧ ψ iff M,h, z � ϕ and M,h, z � ψ,
etc.).

3.4.3 Formalizing the C&F theory

In the logic BNL, Bonnefon et al. [5] define the following concept of trust:

Definition 3.4.1.

Trusti,j(α,ϕ)
def
=Goaliϕ ∧ BeliAfterj:αϕ
∧ BeliCapablejα ∧ BeliIntendjα ∧ Grd{i,j}j:α-happens.

This definition is supposed to correspond to the informal definition of core
trust in the C&F theory. However, the additional clause Grd{i,j}j:α-happens is
added, expressing that a truster i can only trust a trustee j if it is grounded
between them that j is going to perform action α.

Bonnefon et al. [5] argue for the adding of the Grd clause in the trust defi-
nition with a variant of the following example. Suppose that a burglar breaks
into an office building with the goal of stealing money from the boss’s office. In
another room in the building, the boss’s secretary is busy filing reports. The
burglar wants the secretary to stay in the other room, since it makes his steal-
ing possible. The burglar believes that the secretary is capable of staying in
the other room, and also that it is the secretary’s intention of doing so. Thus,
according to the C&F definition of core trust, the burglar has core trust in the
secretary in relation to the action of staying in the other room and the goal of
stealing the money. However, Bonnefon et al. [5] argue that one should be re-
luctant to say that the burglar actually trusts the secretary; the burglar merely
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relies on her. This is because there is no agreement between the burglar and
the secretary that the secretary will stay in the other room when the burglar
empties the safe.

The concept of distrust is defined in the following way:

Definition 3.4.2.

DisTrusti,j(α,ϕ)
def
= Goaliϕ

∧ (Beli¬Afterj:αϕ ∨ (PossibleiAfterj:αϕ ∧ Beli¬Intendjα)).

The following are theorems of BNL.

Theorem 3.4.1. Let i, j ∈ AGT and α ∈ EVT . Then:

(a) `BNL Beli¬Afterj:αϕ→ ¬Trusti,j(α,ϕ);

(b) `BNL Beli¬Intendjα→ ¬Trusti,j(α,ϕ);

(c) `BNL Beli¬Capablejα→ ¬Trusti,j(α,ϕ);

(d) `BNL DisTrusti,j(α,ϕ)→ ¬Trusti,j(α,ϕ).

Proof.
(a) The proof is by contradiction. Assume that the opposite holds, i.e.

`BNL Beli¬Afterj:αϕ ∧ Trusti,j(α,ϕ).

By definition 3.4.1, `BNL Trusti,j(α,ϕ)→ BeliAfterj:αϕ, and by Axiom DBel,
`BNL BeliAfterj:αϕ → ¬Beli¬Afterj:αϕ. Thus, the initial assumption leads
to a contradiction, and hence the theorem holds.

(b) The proof is similar to that of (a). Assume the opposite, i.e.

`BNL Beli¬Intendjα ∧ Trusti,j(α,ϕ).

The following holds by Definition 3.4.1: `BNL Trusti,j(α,ϕ)→ BeliIntendjα.
By Axiom DBel, `BNL BeliIntendjα → ¬Beli¬Intendjα, which contradicts
the assumption, so that the theorem holds.

(c) The proof is similar to the proofs of (a) and (b). Assume the opposite
of the proposed theorem:

`BNL Beli¬Capablejα ∧ Trusti,j(α,ϕ).

The following are theorems of BNL: by Definition 3.4.1,

`BNL Trusti,j(α,ϕ)→ BeliCapablejα,

and by Axiom DBel

`BNL BeliCapablejα→ ¬Beli¬Capablejα.

Thus, the assumption leads to a contradiction, which shows that the theorem
holds.
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(d) Assume the opposite, i.e. `BNL DisTrusti,j(α,ϕ)∧Trusti,j(α,ϕ). First, by
contraposition of (a), `BNL Trusti,j(α,ϕ)→ ¬Beli¬Afterj:αϕ. The following
holds by Definition 3.4.2:

`BNL DisTrusti,j(α,ϕ)

→ (Beli¬Afterj:αϕ ∨ (PossibleiAfterj:αϕ ∧ Beli¬Intendjα)).

Hence, since Beli¬Afteri:αϕ ∧ ¬Beli¬Afteri:αϕ is a contradiction, under the
assumption it must hold that

`BNL DisTrusti,j(α,ϕ) ∧ Trusti,j(α,ϕ)

→ PossibleiAfterj:αϕ ∧ Beli¬Intendjα.

But, by contraposition of (b), it holds that

`BNL Trusti,j(α,ϕ)→ ¬Beli¬Intendiα,

which leads to a contradiction, and hence, the theorem holds.

3.4.4 Groundedness

In BNL, the concept of trust is defined (Definition 3.4.1) as

Trusti,j(α,ϕ)
def
=Goaliϕ ∧ BeliAfterj:αϕ
∧ BeliCapablejα ∧ BeliIntendjα ∧ Grd{i,j}j:α-happens.

This definition is in important aspects different from the definition of core trust
proposed by C&F, in that it requires a kind of agreement between the truster
and the trustee; it has to be grounded between them that the truster is about
to perform the relevant action.

I have two lines of criticism of the above definition. The first questions
whether it is necessary to publicly ground that the trustee will do the required
action in order to be trusted. The second questions the particular use of the
GrdI operator in relation to the C&F theory.

First, consider this common language example of how the word ‘trust’ is
sometimes used. Suppose that I have to leave my apartment in a hurry, and
will not be back in a couple of days. I have a cat who needs to be fed every day.
Luckily, my roommate will be home during my absence and is able to feed the
cat. If I come home and find that my roommate has not fed the cat, I might
say “But I trusted you!”. Even though there is no agreement between me and
my roommate that she would feed the cat during my absence, I trust her with
the task. Thus, there can be trust without an agreement.

Second, the GrdI operator goes against the idea of defining trust as the
strictly mental counterpart to delegation. According to C&F theory, core trust
is a mental notion, consisting of a truster’s beliefs. Bonnefon et al. state that
their operator GrdI is a mutual belief operator. Informally, the most basic idea
of a mutual belief in a group I of agents i, j, ..., k, means that each agent in
the group believes a proposition to be true. Thus, if the idea of mutual belief
between a truster and a trustee is introduced as part of the definition of core
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trust, core trust is no longer a strictly mental concept of the truster, since it
would take into account beliefs of the trustee as well. Doing so would be to go
against one of the main claims of the C&F theory.

Bonnefon et al.’s operator GrdI does however not express such a basic sense
of mutual belief. The operator GrdI is more akin to the concept of mutual
belief as developed in Gaudou, Herzig, and Longin [23], where some piece of
information ϕ can be publicly grounded in a group I of agents without the need
for every agent in I to agree on the truth of ϕ. According to Gaudou, Herzig,
and Longin,

Groundedness is an objective notion: it refers to what can be ob-
served, and only to that. While it is related to mental states because
it corresponds to the expression of Intentional states, it is not an In-
tentional state: it is neither a belief nor a goal, nor an intention.
[23, p. 3]

Thus, even though groundedness need not be constructed as mutual belief in the
basic sense, and accordingly incorporate the trustee’s beliefs in the core trust
definition, it is still in conflict with the chief claim of the C&F theory that trust
is a strictly mental notion of the truster.

The groundedness condition in Bonnefon et al.’s definition of trust also limits
the generality of the concept of trust. Even though my focus in this essay is trust
in intentional agents, it is an important aspect of the C&F theory that trust
in intentional and trust in non-intentional objects essentially are of the same
kind. The groundedness condition limits the applicability of the trust-concept
to cases of trust in intentional agents.

3.4.5 Intention and action

When comparing the three formalisms, it becomes clear that the logic of Bon-
nefon et al. has weak semantic constraints governing the interaction of opera-
tors, and accordingly, few interaction axioms, in comparison with the logic of
Herzig et al. and the logic of Demolombe and Lorini. This leads to certain
complications when the logic is evaluated with respect to how well it formalizes
the C&F theory.

In HHVL and DL, respectively, the following are theorems:

`HHVL OccTrust(i, j, α, ϕ)→ BeliFϕ;

`DL ATrust(i, j, α, ϕ)→ BeliXϕ;

expressing that if one trusts someone with performing an action to reach a goal,
then one expects that the goal will hold in the future. These properties of the
logics HHVL and DL capture the claim of the C&F theory that if one trusts
a trustee, one has a positive expectation that one’s goal will be true. A positive
expectation is the combination of a prediction about the future, and the desire
that the prediction will hold (see Chapter 2). A similar principle holds in BNL.

Theorem 3.4.2. Let i, j ∈ AGT and α ∈ EVT . Then

`BNL Trusti,j(α,ϕ)→ BeliXϕ.
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However, this theorem turns out to be slightly problematic in relation to the
C&F theory.

The following lemma is used in the proof of Theorem 3.4.2.

Lemma 3.4.1. Let i, j ∈ AGT and α ∈ EVT . Then

`BNL Afterj:αϕ ∧ Capablejα→ Xϕ.

Proof. First, assume that Afterj:αϕ ∧ Capablejα is true. By the definitions of
Afterj:α and Capablej (see Section 3.4.1), this is equivalent to

(j:α-happens→ Xϕ) ∧ ¬(j:α-happens→ X⊥).

Second, by standard principles of propositional logic, the following formula is
equivalent:

(j:α-happens→ Xϕ) ∧ j:α-happens ∧ ¬X⊥.

The formula ¬X⊥ is equivalent to X> by Axiom 2 and the definitions of > and
⊥ (see Section 3.1.1), so the following formula is true under the assumption:

(j:α-happens→ Xϕ) ∧ j:α-happens ∧ X>.

By standard properties of propositional logic, it holds that

(j:α-happens→ Xϕ) ∧ j:α-happens ∧ X> → Xϕ.

Consequently, the above shows that

`BNL Afterj:αϕ ∧ Capablejα→ Xϕ

holds.

Now, Theorem 3.4.2 can be proved.

Proof. First, `BNL Trusti,j(α,ϕ)→ Beli(Afterj:αϕ∧ Capablejα) by the defi-
nition of Trusti,j(α,ϕ) (Definition 3.4.1) and distribution of Beli over conjunc-
tion. Second, by Lemma 3.4.1 and Axioms NecBel and KBel, it holds that
`BNL Beli(Afterj:αϕ ∧ Capablejα)→ BeliXϕ.

The theorem follows from the above.

However, this renders the truster’s belief about the trustee’s intention redun-
dant. This goes against the claim of the C&F theory that both beliefs about
the trustee’s capability and intentions (or willingness) are essential in forming
expectations about the trustee’s behaviour [12, p. 53]. Theorem 3.4.2 is an
indirect consequence of the weak semantic constraints and corresponding lack
of interaction axioms in BNL. In particular, there are no axioms governing
the interaction between intentions and actions. It is natural to assume that
some actions by agent i are brought about intentionally; this is also an implicit
assumption in the C&F theory when dealing with trust in intentional agents.

Herzig and Lorini [31] state the principle that, if α is an action, and agent i
intends to do α, then i’s intention is what brings about i’s attempt to do α [31].
If agent i actually can do α, i will succeed in her attempt. This is captured in,
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for instance, the logic of Demolombe and Lorini [29], where the following is an
axiom:17

Inti(α) ∧ Cani(α)→ Doesi:α>

The reason for the lack of such an interaction axiom in the logic of Bonnefon et
al. might be found in the formalizations of emotions; however, for the rest of
this essay, it suffices to conclude that the logic of Bonnefon et al. does not suit
my purposes.

17On the other hand, in both DL and HHVL, all actions are intentional actions. This is
evident from Theorems 3.2.1 and 3.3.1(a). This claim can possibly be put to doubt, but it
suffices to notice that the claim that no actions are intentional is much more problematic in
relation to the C&F theory.



Chapter 4

Scenario-based comparison
of the logics HHVL and DL

The following is a simple case study of an Internet forum scenario. The case
study serves two purposes: first, by formalizing a scenario using the two con-
sidered logics in parallel, grounds of comparison of the logics’ performances are
established. Second, the formalization shows how the C&F theory could be used
to reason about formal inference and establishment of trust in an Internet com-
munications context. Relating to the latter, a logical formalization of trust on an
Internet forum could form a theoretical framework for implementing assistant-
tools, with the purposes of aiding the work of moderators; such an assistant tool
could, for instance, partially automate the process of finding vandalism and spot
Internet trolls. The scenario is inspired by a paper by Krupa, Vercouter, and
Hübner [27], where trust based assessments of Wikipedia contributors are used
to partially automate the work of Wikipedia’s moderators.1

So, what is the scenario?

4.1 The Internet forum

Consider an Internet forum on some topic. The agents involved are of two
kinds: regular users and moderators. The role of the moderators is to maintain
high quality on the forum. This is done by approving or not approving posts
submitted by regular users, as well as warn and suspend users who causes—
deliberately or not—bad quality on the forum.

Here, an Internet forum will be studied from the point of view of moderators’
trust in regular users; trust in a user forms the basis of approving posts sub-
mitted by the user, while mistrust and distrust in a user form the basis for not
approving the user’s posts, and in some cases, provide reason for a moderator
to warn or suspend the user.

I assume that the overall quality on the forum is dependent on the quality of
individual posts; if a sufficient number of posts on the forum is of high quality,
then the forum is of high quality. Conversely, the forum is of low quality if there

1Wikipedia’s moderators consist of volunteers, and there are many different moderating
roles. Krupa et al.’s article focuses on the “Recent Changes Patrol” [27].

Nygren, 2015. 49
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are too many low quality posts. In order to formalize this relation, I assume
that the forum has a threaded interface, i.e. the forum consists of a number of
threads, which in turn consists of a number of posts.

With this construction in place, I will assume that the forum is of high
overall quality if a sufficient number of threads are of high quality. A thread, in
turn, is of high quality if no posts in the thread are of low quality. For example,
if a thread is vandalized by a troll, the thread is considered to be of low quality.
This allows for a quite natural analysis of how the actions of making a post in
a thread directly affects the quality of the thread. It can now be stated that
after a user j has made a post in a thread t, t is of high or low quality. Hence,
the goal of a high quality forum is reduced to the set of goals of high quality in
threads.

For both HHVL and DL, let T = {t1, t2, ..., tn} be a finite set of forum
threads, and let

• hq:t ∈ ATM denote that thread t ∈ T is of high quality,

• mp:t ∈ ACT denote the action of making a new post in thread t ∈ T ,

• vd:t ∈ ACT denote the action of vandalizing the thread t ∈ T .

Let M = {i1, ..., ik} be a finite set of moderators, and U = {j1, ..., jl} be a finite
set of regular users, such that AGT = M ∪ U and M ∩ U = ∅.

4.2 The goal component

In BDI approaches to agency, a common distinction is that between achieve-
ment goals and maintenance goals. An achievement goal is the goal to achieve
something, which does not currently hold, and a maintenance goal is the goal to
maintain a certain state of affairs the way they are. Herzig et al. [25] formalizes
this distinction in HHVL in the following way. Achievement goals are defined
as:

AGoaliϕ
def
= ChoiceiFϕ ∧ ¬Beliϕ,

and maintenance goals as

MGoaliϕ
def
= ChoiceiGϕ ∧ Beliϕ.

In DL, goals of agents are expressed by the formula

GoaliXϕ.

In the Internet forum scenario, maintenance goal sophisticates the analysis. For
example, the goal of a high quality forum can be thought of as a maintenance
goal (under the assumption that a sufficient number of threads on the forum is
of high quality). It is natural to assume that all moderators have the goal of
keeping all threads of high quality at all future times, i.e.∧

i∈M,t∈T
ChoiceiGhq:t.

Note that the condition Belihq:t for all t ∈ T is ignored here; this is because
moderators want threads to be of high quality at all future times, even if they
believe that some threads currently are of low quality.
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This kind of maintenance goal requires the ability to reason about all future
times, which is why it cannot be expressed in DL.

The following example highlights the importance of accurately defined goals.

Example 4.2.1. Suppose that a moderator i has the goal of achieving high
quality of the content in thread t. Suppose that i has the additional goal of the
forum to become the largest and most comprehensive Internet community on
its subject, and that i does not believe that this goal currently holds.

In HHVL, the two goals are expressed as

ChoiceiFhq:t ∧ ChoiceiFlargestforum.

In DL, the corresponding formal expression is

GoaliXhq:t ∧ GoaliXlargestforum.

However, it is slightly problematic to hold that i has the goal of the forum to
be the largest Internet community at the next time. If the forum currently is
far away from being the largest Internet community, then the goal of the forum
being the largest Internet community is most naturally characterised as some
kind of ultimate goal, a goal that i wants to hold at some point in the future,
but not necessarily at the next instant in time.

Additionally, in DL, the above formula is equivalent to

GoaliX(hq:t ∧ largestforum).

However, i might be prepared to compromise the quality of thread t, if it means
that her goal of the forum being the largest Internet community on its subject
can be reached.

4.3 Trust in users

Moderators can trust users with making posts in order to contribute to the high
quality of the forum. As seen, core trust is the most basic component of trust
relations, and consists of the conjunction of a goal of the truster and the belief
that the trustee is willing and able, and has the power/opportunity to ensure
the truster’s goal by performing a certain action. Trust in forum users is a little
different from the general case of trust, in that moderators never doubt the
capability and intention of a user when evaluating her. Typically, moderators
are dependent on forum users for reaching the goal of a high quality forum (a
high quality forum should be active and up-to-date, and if no one writes posts
in the forum, then the forum stagnates), but they are not (weakly or strongly)
dependent on particular users for reaching their goal. When trust in a forum
user is inferred, it is under the condition that the user actually has submitted
a post (this is also noted in [27]).

In HHVL, Theorem 3.2.1 states that

`HHVL Capablei(α) ∧ Intendsi(α)↔ Doesi:α>

and in DL, Theorem 3.3.1(a) says that

`DL Cani(α) ∧ Inti(α)↔ Doesi:α>.
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Thus, the formal definitions of trust can be simplified by replacing the conditions
concerning the trustee j’s capability and willingness in relation to the action α
with the formula Doesi:α> (the notation is the same in both HHVL and DL).

A moderator i’s core trust in a user j in relation to the action of making
a post in thread t and the goal of high quality in thread t is expressed as follows.
In HHVL, for i ∈M, j ∈ U and t ∈ T :

OccTrust(i, j,mp:t, hq:t)
def
= ChoiceiFhq:t ∧ Beli(Doesj:mp:t> ∧ Afterj:mp:thq:t).

In DL, for i ∈M, j ∈ U and t ∈ T :

ATrust(i, j,mp:t, hq:t)
def
= GoaliXhq:t ∧ Beli(Afterj:mp:thq:t ∧ Doesj:mp:t>).

Now, consider some examples.

Example 4.3.1. Moderator i decides to consult a colleague x about a user j,
who has made a post in thread t. If i believes that x trusts j, i decides to trust
j as well, i.e.

Beli(OccTrust(x, j,mp:t, hq:t)→ OccTrust(i, j,mp:t, hq:t)).

Furthermore, i believes that x has the goal of high quality in t, i believes that
x believes that j has submitted a post in t, and i believes that x believes that
j’s post will contribute to the high quality in t, i.e.

BeliChoicexF(hq:t)

and
BeliBelxDoesj:mp:t>

and
BeliBelxAfterj:mp:t(hq:t).

Thus, i believes that x trusts j:

BeliOccTrust(x, j,mp:t, hq:t)

and hence i believes that she trusts j about making a post in t:

BeliOccTrust(i, j,mp:t, hq:t),

which is equivalent to
OccTrust(i, j,mp:t, hq:t).

4.4 Distrust in users

In a way similar to the cases of trust in users, distrust in a user is only dependent
on the belief about the user’s power to contribute to the high quality in a thread
t by making a post in t (the condition Afterj:mp:thq:t, expressed using the same
symbols in both HHVL and DL). Thus, a moderator i distrusts a user j if i
believes that it is not the case that after j has made a post in thread t, t is of
high quality.
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The general definitions of distrust (Definitions 3.2.4 and 3.3.2) are as follows.
In HHVL:

DisTrust(i, j, α, ϕ)
def
=ChoiceiFϕ

∧ Beli(¬Intendsj(α) ∨ ¬Afterj:αϕ ∨ ¬Capablej(α)),

and in DL:

DisTrust(i, j, α, ϕ)
def
= GoaliXϕ ∧ Beli(¬Afterj:αϕ ∨ ¬Canj(α) ∨ ¬Intj(α)).

However, because of the circumstances just mentioned, i.e. that Doesj:mp:t>
is always true when a moderator i distrusts a user j, I propose the following
definition: A moderator i distrusts a user j with contributing to the high quality
in a thread t if i believes that j lacks the opportunity (or power) to achieve or
maintain high quality in t by making a post in t. Formally, in HHVL, this
translates as:

DisTrust(i, j,mp:t, hq:t)
def
=ChoiceiFhq:t

∧ Beli(Doesj:mp:t> ∧ ¬Afterj:mp:thq:t).

In DL, the corresponding definition is:

DisTrust(i, j,mp:t, hq:t)
def
=ChoiceiXhq:t

∧ Beli(Doesj:mp:t> ∧ ¬Afterj:mp:thq:t).

Example 4.4.1. Suppose that moderator i decides to distrust a user j with
making a post in thread t in relation to i’s goal of high quality if one of her
moderator colleagues x, y, or z distrusts j:

Beli(DisTrust(x, j,mp:t, hq:t) ∨ DisTrust(y, j,mp:t, hq:t)

∨ DisTrust(z, j,mp:t, hq:t)→ DisTrust(i, j,mp:t, hq:t)).

Further, suppose that i believes that x distrusts j:

BeliDisTrust(x, j,mp:t, hq:t).

Then, i believes that she distrusts j:

BeliDisTrust(i, j,mp:t, hq:t).

4.5 Mistrust in trolls

According to Hardaker’s [24], an Internet troll is a user of Internet communi-
cation “who constructs the identity of sincerely wishing to be part of the group
in question, including professing, or conveying pseudo-sincere intentions, but
whose real intention(s) is/are to cause disruption and/or to trigger or exac-
erbate conflict for the purposes of their own amusement” [24, p. 237]. Thus,
a troll is a forum user who intends to vandalize the forum, and by doing so,
causes conflict and/or general disruption. Vandalizing a thread t in such a way
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leads to low quality in t.2 Therefore, moderators mistrust users they believe to
be trolls.

Note that the mistrust in a user should rely on evaluations of the user’s
intention (this is also acknowledged in [27]). In fact, a moderator i believing
that a user j has submitted a post with the intention of vandalizing should
be inclined to mistrust j, regardless of whether j actually succeeds to cause
bad quality on the forum. Formally, this can be expressed by the following
definitions. In HHVL:

MisTrust(i, j, vd:t, hq:t)
def
= ChoiceiFhq:t ∧ BeliDoesj:vd:t>.

In DL:

MisTrust(i, j, vd:t, hq:t)
def
= GoaliXhq:t ∧ BeliDoesj:vd:t>.

However, the reason for mistrusting a user who intentionally submits vandalism
is that such posts usually or in most cases causes the forum to be of low quality.
As an alternative approach, one could assume that every moderator believes
that every user of the forum has the opportunity to cause bad quality in t by
vandalizing t, i.e., for both HHVL and DL:∧

i∈M
Beli

∧
j∈U,t∈T

Afterj:vd:t¬hq:t.

A moderator i’s mistrust in a user j relative to the goal of high quality in thread
t and the action of vandalizing t can then be expressed as follows. In HHVL:

MisTrust(i, j, vd:t, hq:t)
def
= ChoiceiFhq:t ∧ Beli(Doesj:vd:t> ∧ Afterj:vd:t¬hq:t).

In DL:

MisTrust(i, j, vd:t, hq:t)
def
= GoaliXhq:t ∧ Beli(Doesj:vd:t> ∧ Afterj:vd:t¬hq:t).

Example 4.5.1. Suppose that a moderator i has the goal of high quality in t.
In HHVL:

ChoiceiFhq:t,

and in DL:
GoaliXhq:t.

The moderator i also believes that a user j has submitted a post intended to
vandalize thread t:

BeliDoesj:vd:t>.

Since all moderators believe that every user has the opportunity to vandalize
a thread t,

BeliAfterj:vd:t¬hq:t.

Hence, i mistrusts j:
MisTrust(i, j, vd:t, hq:t).

2Note that it does not need to be a goal of a troll to ensure low quality on the forum; for
example, a troll’s goal might just be to amuse herself. However, it is a consequence of the
action of vandalizing a thread that the thread’s quality drops.
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4.6 Trust dispositions

The additional operators G and F allow for the concept of trust dispositions to
be formally expressed. This is particularly useful in the Internet forum scenario.

If a user has made many good posts, and never attempted any trolling,
moderators are inclined to trust that user with making new posts. With the
definitions proposed above, moderators are forced to make new evaluations of
users for every new post made, with the result that moderators can only consider
a user trustworthy or not in relation to one particular post in one particular
thread. Trust and mistrust dispositions allow for moderators to deem particular
users trustworthy overall (within the domain of making posts in the forum).

Using the concepts of the C&F theory, in cases like the above, moderators
can have trust dispositions towards users; they can make evaluations about the
users’ capability, willingness, and powers in relation to potential actions and/or
potential goals. Such evaluations consist of beliefs that whenever a user j makes
a post, the post will contribute to the goal of a high quality forum. Then, this
potential evaluation forms the basis for inferring core trust in the relevant user j
under the circumstances that j actually submits a post. This can be expressed
in HHVL using the formal definition of dispositional trust.

A moderator i has dispositional trust in a user j in relation to the goal of
high quality and the potential action of submitting a post in a thread t if i has
the goal of high quality in t, and believes that always when j submits a post,
the post will contribute to the high quality of t. In HHVL, this translates as:

DispTrust(i, j,mp:t, hq:t, Doesj:mp:t>)
def
= PotGoali(hq:t, Doesj:mp:t>)

∧ BeliG∗(Doesj:mp:t> ∧ ChoiceiF(hq:t)→ Afterj:mp:thq:t).

To express that a moderator i has dispositional trust in user j in relation to
submitting posts in any thread, I propose the following definition:

Definition 4.6.1.

GenDispTrust(i, j)
def
=

∧
t∈T

DispTrust(i, j,mp:t, hq:t, Doesj:mp:t>)

This definition expresses a type of generalized trust disposition; the trusting
moderator takes the user to be generally trustworthy in relation to the goals of
high quality in all threads and the actions of making posts in any thread. Note
that this definition is specific for the Internet forum scenario; moderator i does
not necessarily take user j to be trustworthy in every aspect. For example, i
might take j to be trustworthy in relation to the actions of submitting posts on
the forum, without thinking that she could trust j with her personal finances.

Example 4.6.1. Suppose that the moderator i takes the user j to be trustwor-
thy:

GenDispTrust(i, j).

Then, i has dispositional trust in j about j’s opportunity to ensure high quality
in a specific thread t1 under the circumstances that j makes a post in t1:

DispTrust(i, j,mp:t1, hq:t1, Doesj:mp:t1>).
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Suppose further that i believes that j has submitted a post in thread t1, and
has the goal of high quality in t1:

BeliDoesj:mp:t1>

and
ChoiceiFhq:t1.

Then, i trusts, “here-and-now”, that j will ensure the goal of high quality in t1
by the submission of a post in t1:

OccTrust(i, j,mp:t1, hq:t1).

Example 4.6.2. Suppose that a moderator i decides that she will trust a user
j, who i believes has submitted a post, if two of i’s moderator colleagues x and
y, who have experience with posts submitted by j, have general dispositional
trust in j:

Beli(GenDispTrust(x, j) ∧ GenDispTrust(y, j)→ OccTrust(i, j,mp:t, hq:t)).

Suppose now that i actually believes that x and y have general dispositional
trust in j:

Beli(GenDispTrust(x, j) ∧ GenDispTrust(y, j)).

Then, i believes that she trusts j:

BeliOccTrust(i, j,mp:t, hq:t),

and consequently, i trusts j:

OccTrust(i, j,mp:t, hq:t).

4.7 Conclusion

It is clear from the above formalization of the Internet forum scenario that
the time aspect is important; in particular, the modal operators G and F in
HHVL enables reasoning about aspects of trust that is not expressible in DL,
for example combinations of goals and trust dispositions. Such dispositions are
tantamount when modelling evaluations of users that are stable over time. In
particular, if evaluations of users are always done “here-and-now”, moderators
are forced to re-evaluate users in relation to every individual post made by the
users. This seems counter-intuitive, since, for instance, if a moderator believes
a particular user always submits good posts, she is inclined to trust the user in
relation to every post she submits. This is highlighted in Example 4.6.1.

Example 4.2.1 highlights some interesting properties of the logics HHVL
and DL regarding the interaction of goals and aspects of time. In particular,
the operators G and F in HHVL allows for a natural formalization of different
kinds of goals. As seen in Example 4.2.1, treating all goals as being of the same
kind leads to unintuitive consequences.

The above discussion shows that the adding of the operators G and F sophis-
ticates the analysis of the Internet forum scenario in a useful way, even though
it somewhat complicates the formalism. It should be noted that the additional
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operators G and F could possibly be added to DL. Another important thing
to note is that the next operator X cannot directly be defined in HHVL. The
reason for this is HHVL’s lack of an axiom corresponding to DL’s Active; in
DL, Axiom Active ensures that there always is a next world [29]. These things
are, however, beyond the scope of this essay, which is why I have chosen the
logic HHVL for my further analysis.
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Chapter 5

A Horn fragment of HHVL

In this chapter, a general Horn fragment for the logic HHVL is defined. A few
further restrictions, intended to possibly avoid non-determinism, are also con-
sidered. I will then consider the Horn fragment of HHVL in relation to the
Internet forum scenario.

5.1 Why Horn fragments?

A fragment of a logic S is a restriction put on S. Such a restriction can, for
instance, consist in restricting which formulas will be regarded well-formed.
The reason for studying fragments of multi-agent logics like HHVL is primarily
due to the inherent complexity of such logics. For example, for many modal
logics, checking whether any set of formulas is satisfiable requires unreasonable
amounts of resources, making such logics difficult to use in practice [8]. As
seen in the previous sections, a logic of trust needs to be able to differentiate
between different kinds of mental attitudes, for example beliefs and goals, as
well as enable reasoning about other agents’ mental states. The case study
in Chapter 4 also shows that the modelling of time is essential in practical
applications.

Thus, there is a need to identify fragments of multi-agent logics that both
have reasonable data complexity for practical uses, and at the same time are
expressive enough to allow reasoning that is useful in practice.

A Horn fragment of a logic S is a particular restriction of S’s syntax; in
a Horn fragment of S only formulas of the form of Horn clauses (or, in some
cases, as with the Horn fragment of HHVL defined below, Horn formulas) are
allowed as legal formulas. Horn fragments are particularly useful, since they
form the basis of logic programming and deductive databases, and in some
logics, they considerably lower the data complexity of checking satisfiability
and validity of sets of formulas.

Let me first define the Horn fragment of propositional logic in order to
introduce the idea.

Nygren, 2015. 59
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5.2 The Horn fragment of propositional logic

Consider the propositional logic PL with syntax and semantics defined in the
usual way (see Appendix A).

The following definitions are needed for the definition of Horn clauses.
Formulas of the forms p or ¬p, where p is an atomic proposition, are called

literals, and a, b, c, ... are used to denote them. Literals containing a negation are
called negative literals, and literals not containing a negation are called positive.

A clause in propositional logic is a disjunction of literals; i.e. a formula of
the form

p1 ∨ p2 ∨ ... ∨ pk ∨ ¬q1 ∨ ¬q2 ∨ ... ∨ ¬ql

where p1, ..., pk, q1, ..., ql are atomic propositions and k, l ≥ 0.
A Horn clause is a clause with at most one positive literal; i.e. Horn clauses

are clauses on the form

¬q1 ∨ ... ∨ ¬ql ∨ p ≡ q1 ∧ ... ∧ ql → p or ¬q1 ∨ ... ∨ ¬ql ≡ q1 ∧ ... ∧ ql → ⊥

where p1, ..., pk, q1, ..., ql are atomic propositions and k, l ≥ 0.
Horn clauses are often written as p ← q1, ..., ql, using commas instead of

∧ and an implication arrow pointing to the left instead of to the right. This
is because Horn clauses are often most naturally read as: to prove p, prove
q1, ..., ql.

The Horn fragment of PL is the language resulting from allowing only for-
mulas of the form of Horn clauses as well-formed formulas.

5.3 A Horn fragment of HHVL
In this section, I define a Horn fragment of HHVL (here referred to as Horn-
HHVL), which is the fragment ofHHVL containing only Horn-HHVL formulas.
I then prove some properties of Horn-HHVL. The definitions in the following
sections, and the theorems and proofs in Section 5.3.1, are based on those given
by Nguyen [37, 38].

For convenience, the universal modal operators in HHVL will be denoted in
the following way:1

• [Bi]ϕ denotes Beliϕ;

• [Ci]ϕ denotes Choiceiϕ;

• [Ai:α]ϕ denotes Afteri:αϕ;

• [G]ϕ denotes Gϕ.

The operator Doesi:α is an existential modal operator, and will be denoted:

• 〈Di:α〉ϕ denotes Doesi:αϕ.

The duals of the above operators are also taken into account. Recall that the
dual of a universal modal operator is an existential modal operator, and the

1The same kind of notation is also used in [19].
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dual of an existential modal operator is a universal modal operator. Thus, the
following abbreviations are defined:

〈Bi〉ϕ
def
= ¬[Bi]¬ϕ;

〈Ci〉ϕ
def
= ¬[Ci]¬ϕ;

〈Ai:α〉ϕ
def
= ¬[Ai:α]¬ϕ;

〈G〉ϕ def
= ¬[G]¬ϕ;

[Di:α]ϕ
def
= ¬〈Di:α〉¬ϕ.

Note that some of the above duals were explicitly defined in Section 3.2. For
example, the operator 〈G〉 is the operator F, the operator 〈Bi〉 is Possi, etc.

Let Σ = {Bi, Ci, G,Ai:α, Di:α : i ∈ AGT , α ∈ ACT}. For convenience, [R]
and 〈R〉, R ∈ Σ, denote universal operators and existential operators, respec-
tively.

Formulas of the form p or ¬p, where p ∈ ATM , are called classical literals,
and a, b, c, ... are used to denote them.

Formulas of the form p, [R]p, or 〈R〉p, where R ∈ Σ and p ∈ ATM , are called
atoms and A,B,C, ... are used to denote them.

Definition 5.3.1. A formula is in negation normal form if it does not contain
the connective → and the connective ¬ can only occur immediately before an
atomic proposition of ATM .

Every formula of HHVL can be translated into its negation normal form by
applying the following equivalences:

ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ);

ϕ→ ψ ≡ ¬ϕ ∨ ψ;

¬¬ϕ ≡ ϕ;

¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ;

¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ;

¬[R]ϕ ≡ 〈R〉¬ϕ;

¬〈R〉ϕ ≡ [R]¬ϕ,

where R ∈ Σ. The first five equivalences are standard tautologies of proposi-
tional logic. The rest of the rules, concerning the modal operators of HHVL,
holds because all operators are normal (see Section 3.1.1).

Note also the following equivalences, which can be applied to formulas where
the constants > or ⊥ occur:

ϕ ∧ > ≡ ϕ;

ϕ ∨ > ≡ >;

ϕ ∧ ⊥ ≡ ⊥;

ϕ ∨ ⊥ ≡ ϕ.

Definition 5.3.2. A formula is positive if it is constructed from > and atomic
propositions of ATM using ∧,∨, and the modal operators [R] and 〈R〉, R ∈ Σ. A
formula ϕ is negative if the negation normal form of ¬ϕ is positive. If a formula
is not positive, it is called non-positive.
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Note that both positive and negative formulas are in negation normal form,
and that positive formulas contain no ¬, while in negative formulas every occur-
rences of > and every atomic proposition of ATM are preceded by a negation.

Definition 5.3.3. A modal context (denoted �) is a possibly empty sequence
of universal modal operators [R], R ∈ Σ.

Note that a modal context can be distributed over conjunction. Suppose
that ϕ = �(φ ∧ ψ) holds. Then, the rightmost operator [R], R ∈ Σ occurring
in � can be distributed over the conjunction to, so that ϕ ≡ �′([R]φ ∧ [R]ψ),
where � = �′[R]. Distribution can be applied again in a similar way for the
rightmost operator in �′, etc., until the formula ϕ ≡ �φ ∧�φ′ is reached.

Definition 5.3.4. A clause in HHVL is a formula of the form

�(A1 ∨ ... ∨An ∨ ¬B1 ∨ ...¬Bm)

where m,n ≥ 0, � is a modal context, and A1, ..., An, B1, ..., Bm are atoms.

Definition 5.3.5. A formula ϕ is a Horn-HHVL formula (hereafter referred
to simply as Horn formula) if it is of one of the following forms:

• ϕ = >;

• ϕ is a proposition of ATM ;

• ϕ is a negative formula;

• ϕ = [R]ψ or ϕ = 〈R〉ψ or ϕ = ψ ∧ ζ, where R ∈ Σ and ψ, ζ are Horn
formulas;

• ϕ = ψ → ζ, where ψ is a positive formula and ζ is a Horn formula;

• ϕ = ψ ∨ ζ, where ψ is a negative formula and ζ is a Horn formula.

Definition 5.3.6. A clause is a Horn-HHVL clause (hereafter referred to as
Horn clause) if it is a Horn formula.

Theorem 5.3.1. Every Horn clause is of one of the forms

�(¬B1 ∨ ... ∨ ¬Bm) ≡ �(B1 ∧ ... ∧Bm → ⊥) or

�(¬B1 ∨ ... ∨ ¬Bm ∨A) ≡ �(B1 ∧ ... ∧Bm → A)

where m ≥ 0, � is a modal context, and B1, ..., Bm, A are atoms.

Proof. Since [R]ϕ is a Horn formula if ϕ is a Horn formula for every R ∈ Σ,
it suffices to prove that a clause with empty modal context and more than one
positive atom is not a Horn formula.

First, all formulas ¬Bi and Aj , i, j ≥ 0 are Horn formulas. Every Aj is of
the form p or [R]p or 〈R〉p, where R ∈ Σ and p ∈ ATM . Every formula ¬Bi
is of the form ¬p or ¬[R]p or ¬〈R〉p, where R ∈ Σ and p ∈ ATM . In the two
latter cases formulas of the form ¬[R]p are equivalent to 〈R〉¬p and formulas of
the form ¬〈R〉p are equivalent to [R]¬p, which by definition are Horn formulas.
Further, all formulas ¬Bi are negative formulas. The negative normal form of
the clause ¬B1 ∨ ...∨¬Bm, m ≥ 0 is a negative formula, hence a Horn formula.
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The clause ¬B1 ∨ ... ∨ ¬Bm ∨ A, m ≥ 0, is a disjunction of a negative formula
(i.e. ¬B1 ∨ ... ∨ ¬Bm) and a Horn formula (i.e. A), hence a Horn formula.

The theorem is proved by induction over the length of the disjunction of
positive atoms occurring in a clause; it is shown that a clause ¬B1∨ ...∨¬Bm∨
A1 ∨ ... ∨An is not a Horn formula for n ≥ 2.

Base step. Consider a clause with empty modal context and with two
positive atoms: (¬B1 ∨ ... ∨ ¬Bm ∨ A1 ∨ A2). The negative normal form of
ϕ = ¬B1∨...∨¬Bm is a negative formula. Since A1 is a Horn formula, ψ = ϕ∨A1

is a Horn formula. It is, however, not a negative formula, since the atomic
proposition occurring in A1 is not prefixed by ¬. This means that ψ∨A2 is not
a Horn formula.

Induction step. Assume that ζ = ¬B1 ∨ ...∨¬Bm ∨A1 ∨ ...∨Ak, k ≥ 2 is
not a Horn formula. Then ζ ′ = ζ ∨ An+1 is not a Horn formula, since ζ is not
a negative formula.

Thus, the theorem is proved by induction on the length of the disjunction
of positive atoms occurring in a clause.

Definition 5.3.7. A positive program is a set of Horn clauses of the form

�(B1 ∧ ... ∧Bm → A)

where � is a modal context, m ≥ 0, and B1, ..., Bm, A are atoms. If m > 0, the
clause is called a program clause. If m = 0, the resulting clause → A is called
a fact.

Clauses in positive programs are often written using a reversed implication
symbol and commas instead of ∧, i.e. �(A← B1, ..., Bm). The expression P � ϕ
is used to denote that ϕ is a logical consequence of the positive program P .2

5.3.1 The expressiveness of the language of Horn clauses
in HHVL

In this section, I prove that the language of Horn clauses in HHVL is as ex-
pressive as the language of Horn formulas in HHVL. The proof of the theorem
stating this property is essentially the same as the proof given in Nguyen [37].

Definition 5.3.8. A set X = {φ1, ..., φk} of formulas in HHVL is satisfiable if
there is a model M in which all formulas in X are satisfiable. In other words,
a set X of formulas is satisfiable if all formulas in X can be true at the same
time.

It will be useful to regard a set of formulas as a conjunction of the formulas
in the set, i.e. {φ1, ..., φk} as φ1 ∧ ... ∧ φk. This is fine, since by the definition
of satisfiability of conjunction, a formula ϕ ∧ ψ is satisfiable if and only if ϕ is
satisfiable and ψ is satisfiable.

Definition 5.3.9. Two sets of formulas X and Y are equisatisfiable in HHVL
if (X is satisfiable if and only if Y is satisfiable).

2If the logic S in question is not clear from context, P �S ϕ is used to express that ϕ is
a consequence of the program P in the logic S.
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Note that equisatisfiability is different from logical equivalence. Two equi-
satisfiable formulas need not be equivalent, since they might be satisfiable in
different models. Equisatisfiability is useful when checking whether a set of for-
mulas X is satisfiable—if X can be shown to be equisatisfiable to a set Y of
formulas, checking whether X is satisfiable amounts to checking whether Y is
satisfiable.

The following theorem is a variant of a similar theorem concerning monomodal
normal logics proven by Nguyen [37, pp. 35–36] (see also Mints [35]). The proof
is essentially the same as that of Nguyen [37], since all operators [R] (and their
duals 〈R〉), R ∈ Σ, are normal modal operators.

Theorem 5.3.2. For any set X of Horn formulas in HHVL, there exists a set
Y of Horn clauses such that X and Y are equisatisfiable.

In order to prove this theorem, the following lemma is needed [37]. For the
sake of convenience, the following notation is introduced:

• [φ1, ..., φk] denote the disjunction φ1 ∨ ... ∨ φk;

• φ1; ...;φk denote the set {φ1, ..., φk};

• if X and Y are sets of formulas, X;Y are used to denote X ∪ Y ;

• X;ϕ denotes X ∪ {ϕ}.

Thus, X ∪ {�(ψ ∨ ζ ∨ ξ)} is denoted X; �[ψ, ζ, ξ], etc.

Lemma 5.3.1. Let p and q be fresh propositions, which means that they only
occur where indicated. Then, for any R ∈ Σ, the following pairs of sets of
formulas are equisatisfiable in HHVL:

(a) X; �[ψ, ζ ∨ ξ] and X; �[ψ, ζ, ξ];

(b) X; �[ψ, ζ ∧ ξ] and X; �[ψ,¬p]; �[p, ζ]; �[p, ξ];

(c) X; �[ψ, ζ ∧ ξ] and X; �[ψ, q]; �[¬q, ζ]; �[¬q; ξ];

(d) X; �[φ, [R]ψ] and X; �[φ, [R]p]; �[R][¬p, ψ];

(e) X; �[φ, [R]ψ] and X; �[φ, [R]¬q]; �[R][q, ψ];

(f) X; �[φ, 〈R〉ψ] and X; �[φ, 〈R〉p]; �[R][¬p, ψ];

(g) X; �[φ, 〈R〉ψ] and X; �[φ, 〈R〉¬q]; �[R][q, ψ].

Proof. What needs to be shown to prove the theorem is that, for every pair of
sets of formulas (a)–(g), if the left hand side (LHS) is satisfiable, then the right
hand side (RHS) is satisfiable, and if the RHS is satisfiable, then the LHS is
satisfiable.

First, the implication from left to right is proved (if the LHS is satisfiable,
then the RHS is satisfiable).

Fix one of the pairs. Suppose that the LHS of the pair is satisfied in a model
M = 〈F, V 〉, where F = 〈W,A,B,C,D,G〉 is a frame. Let M ′ = 〈F, V ′〉 be
a model such that, where p and q are fresh atomic propositions,

• for x 6= p and x 6= q, x ∈ V ′(w) if and only if x ∈ V (w),
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• p ∈ V ′(w) if and only if M,w � ψ,

• q ∈ V ′(w) if and only if M,w � ¬ψ.

It is easily seen that the right hand side of the fixed pair is satisfied in M ′. Here
is a sketch of the reasoning involved for pair (b). If M,w � ψ ∨ (ζ ∧ ξ), then
M,w � ψ ∨ ζ and M,w � ψ ∨ ξ. If M,w � ψ, then the left hand side trivially
holds, since M ′, w � ψ and M ′, w � p hold. If M,w 2 ψ holds, then M ′, w � ζ,
M ′, w � ξ, and M ′, w � ¬p hold.

Second, the implication from right to left is proved (if the RHS is satisfiable,
then the LHS is satisfiable).

Pair (a): This is straightforward, since disjunction is associative; ψ∨ζ∨ξ implies
ψ ∨ (ζ ∨ ξ). By axioms Nec and K for all R ∈ Σ, �(ψ ∨ ζ ∨ ξ)→ �(ψ ∨ (ζ ∨ ξ))
is a theorem.

Pair (b): It is a tautology of propositional logic that (ψ ∨ ¬p) ∧ (p ∨ ζ) ∧
(p ∨ ξ) → ψ ∨ (ζ ∧ ξ). Since all modal operators in HHVL are normal,
�((ψ ∨ ¬p) ∧ (p ∨ ζ) ∧ (p ∨ ξ) → ψ ∨ (ζ ∧ ξ)) is a theorem, which (by the
Nec and K axioms and distribution of [R] over conjunction for all R ∈ Σ)
makes �(ψ ∨ ¬p) ∧�(p ∨ ζ) ∧�(p ∨ ξ)→ �(ψ ∨ (ζ ∧ ξ)) a tautology.

Pair (c): �(ψ ∨ q) ∧ �(¬q ∨ ζ) ∧ �(¬q ∨ ξ) → �(ψ ∨ (ζ ∧ ξ)) is a tautology
by similar reasoning as for pair (b).

Pair (d): (φ ∨ [R]p) ∧ [R](¬p ∨ ψ) → (φ ∨ [R]ψ) is a tautology. To see why,
assume the opposite, i.e. (φ ∨ [R]p) ∧ [R](¬p ∨ ψ) ∧ ¬φ ∧ ¬[R]ψ which by
standard equivalences of propositional logic and distribution of [R], R ∈ Σ
over conjunction is equivalent to (φ ∨ [R]p) ∧ ([R]p → [R]ψ) ∧ ¬φ ∧ ¬[R]ψ.
This, in turn, leads to a contradiction, since [R]p must hold, and hence also
[R]ψ ∧ ¬[R]ψ. Since (φ ∨ [R]p) ∧ [R](¬p ∨ ψ) → φ ∨ [R]ψ is a tautology,
�(φ ∨ [R]p) ∧ �[R](¬p ∨ ψ) → �(φ ∨ [R]ψ) is a tautology by Axioms Nec
and K for R ∈ Σ.

Pair (e): �(φ ∨ [R]¬q) ∧ �[R](q ∨ ψ) → �(φ ∨ [R]ψ) is a tautology by simi-
lar reasoning as for pair (d).

Pair (f): Assume the opposite of (φ ∨ 〈R〉p) ∧ [R](¬p ∨ ψ) → (φ ∨ 〈R〉ψ),
i.e. (φ ∨ 〈R〉p) ∧ [R](¬p ∨ ψ) ∧ ¬φ ∧ ¬〈R〉ψ which, by standard properties
of propositional logic and the normal operators [R], R ∈ Σ, is equivalent to
(φ∨〈R〉p)∧¬〈R〉p∧¬〈R〉¬ψ∧¬φ∧¬〈R〉ψ. This formula implies 〈R〉p∧¬〈R〉p,
which is a contradiction. Hence (φ∨ 〈R〉p)∧ [R](¬p∨ψ)→ (φ∨ 〈R〉ψ) is a tau-
tology. By Axioms Nec and K, for R ∈ Σ, �(φ ∨ 〈R〉p) ∧ �[R](¬p ∨ ψ) →
�(φ ∨ 〈R〉ψ) is a tautology.

Pair (g): �(φ ∨ 〈R〉¬q) ∧�[R](q ∨ ψ)→ �(φ ∨ 〈R〉ψ) is a tautology by similar
reasoning as for pair (f).

With Lemma 5.3.1 in place, Theorem 5.3.2 can be proved.
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Proof. Let X be a set of Horn-HHVL formulas. Translation of all formulas in
X into negative normal form yields a new set of formulas X ′. Then, the pairs
of equisatisfiable sets of formulas in Lemma 5.3.1 are used as translation rules
from left to right.

Since all formulas in X ′ are in negative normal form, every formula in X ′ is
of the forms �(ϕ ∧ ϕ′), or of one of the forms represented by the left hand side
of the pairs (a)–(g).

If a formula is of the form �(ϕ∧ϕ′), it can be regarded as the set of formulas
{�ϕ,�ϕ′}.

The translation rules (a)–(g) are applied to X ′ until no more changes can
be made to X ′. The rules (d)–(g) are only used when ψ is not a classical literal,
and if both (b) and (c), both (d) and (e), or both (f) and (g) are applicable,
then the appropriate one must be chosen so that the resulting set contains only
Horn formulas.

The resulting set Y is a set containing only Horn clauses.

5.3.2 Possible further restrictions

In order to avoid undesirable properties, some further restrictions of Horn-
HHVL might be warranted.

Consider the following program P in Horn-HHVL (a similar example can
be found in [39]):

[G]p←;

q ← 〈G〉p;
s← [G]r.

If there is an accessible world from the world of evaluation, then 〈G〉p is true,
and hence also q. If there is not an accessible world, then [G]r is true, and hence
also s. Thus, it is the case that P � q ∨ s but P 2 q and P 2 s. The problem
is that if there is no accessible world, then [G]r might undesirably become true,
since r is trivially true at every accessible world (since there are no accessible
worlds), even though [G]r does not follow from the program. This is because
the operator [G] is not serial.3

The operators [Bi] and [Ci], i ∈ AGT , satisfy the principles

[Bi]ϕ→ 〈Bi〉ϕ and [Ci]ϕ→ 〈Ci〉ϕ

which correspond to the semantic constraint placed on frames known as seriality.
Recall that a relation R is serial if, for every w ∈W there is a v ∈W such that
R(w, v). The operators (their corresponding accessibility relation) [G], [Ai:α]
and [Di:α] do not have this property.

To avoid this kind of “non-determinism”, one can restrict Horn-HHVL by
allowing [G], [Ai:α], and [Di:α] on the left hand side of implications only in
conjunction with their existential duals.

3When I say that an operator is serial, I mean that the accessibility relation corresponding
to the operator is serial. Note also that if the seriality property applies to an operator, it also
applies to the operator’s dual, since dual operators share the same accessibility relation.
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The following operators are defined:

[G]sϕ
def
= [G]ϕ ∧ 〈G〉ϕ;

[Ai:α]sϕ
def
= [Ai:α]ϕ ∧ 〈Ai:α〉ϕ;

[Di:α]sϕ
def
= [Di:α]ϕ ∧ 〈Di:α〉ϕ.

Horn-HHVL can then be restricted by disallowing [G], [Ai:α], and [Di:α], and
instead use [G]s, [Ai:α]s and [Di:α]s on the left hand side of implications. Note
that [G], [Ai:α], and [Di:α] are still allowed in on the right hand side of impli-
cations, and in formulas where no implications occur. The legal occurrences of
the existential operators 〈G〉, 〈Ai:α〉, and 〈Di:α〉 are not restricted in any way.

For the operator [G], it may not be that problematic to adopt seriality, i.e.
to use [G]s on the left hand side of implications. This is because it is quite
natural to assume that if ϕ holds at all future times, then there is a future time
where ϕ holds.

However, it is not always desirable to adopt seriality for the dynamic oper-
ators [Ai:α] and [Di:α] (and their duals), since, for example,

[Di:α]ϕ→ 〈Di:α〉ϕ ≡ ¬[Di:α]ϕ ∨ 〈Di:α〉ϕ
≡ 〈Di:α〉¬ϕ ∨ 〈Di:α〉ϕ
≡ 〈Di:α〉(¬ϕ ∨ ϕ)

≡ 〈Di:α〉>.

Thus, imposing seriality on the operator [Di:α] amounts to stating that every
agent i ∈ AGT always performs an action α ∈ ACT .

5.4 Horn formulas and the Internet forum sce-
nario

In this section, I consider the Internet forum scenario expressed using Horn-
HHVL.

5.4.1 Trust, distrust, and mistrust

Let mp:t ∈ ACT , hq:t ∈ ATM , and t ∈ T . First, note that

[Ci]〈G〉hq:t and [Bi]〈Dj:mp:t〉>

are Horn formulas.
A moderator j’s trust in a user i about the action of making a post and the

goal of high quality is expressed by the formula

[Ci]〈G〉hq:t ∧ [Bi]〈Dj:mp:t〉> ∧ [Bi][Aj:mp:t]hq:t.

This formula is a Horn formula, since it is a conjunction of known Horn formulas,
and [Bi][Aj:mp:t]hq:t, which also is a Horn formula.

A moderator i’s distrust in a user j is expressed by the formula

[Ci]〈G〉hq:t ∧ [Bi]〈Dj:mp:t〉> ∧ [Bi]¬[Aj:mp:t]hq:t.
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This is equivalent to a Horn formula, since it is a conjunction of Horn formulas,
as seen above, and the formula [Bi]¬[Aj:mp:t]hq:t, which is a Horn formula, since
¬[Aj:α]hq:t ≡ 〈Aj:α〉¬hq:t is a Horn formula.

A moderator i’s mistrust in a user j is expressed by the formula

[Ci]〈G〉hq:t ∧ [Bi]〈Dj:vd:t〉> ∧ [Bi][Aj:vd:t]¬hq:t.

This formula is a Horn formula, since [Bi]〈Dj:vd:t〉> and [Bi][Aj:vd:t]¬hq:t are
easily seen to be Horn formulas.

5.4.2 Trust dispositions

A moderator i’s potential goal of high quality in thread t under the circum-
stances that a user j submits a post is expressed by the formula

PotGoali(hq:t, 〈Dj:mp:t〉)
def
=

〈Bi〉(〈Dj:mp:t〉> ∧ [Ci]〈G〉hq:t ∧ 〈G〉(〈Dj:mp:t〉> ∧ [Ci]〈G〉hq:t)),

which is clearly a Horn formula, since it is a conjunction of Horn formulas
preceded by 〈Bi〉.

A moderator’s dispositional trust in a user j in relation to the potential goal
of high quality in t under the circumstances that j submits a post, and j’s action
of actually submitting a post, is defined as the conjunction of a potential goal
and the formula

[Bi](〈Dj:mp:t〉> ∧ [Ci]〈G〉hq:t→ [Aj:mp:t]hq:t)

∧ [Bi][G](〈Dj:mp:t〉> ∧ [Ci]〈G〉hq:t→ [Aj:mp:t]hq:t).

The above formula is Horn, since

ϕ = 〈Dj:mp:t〉> ∧ [Ci]〈G〉hq:t→ [Aj:mp:t]hq:t

is a Horn formula (the left hand side of the implication is a positive formula,
and the right hand side is a Horn formula), which makes [Bi]ϕ and [Bi][G]ϕ
Horn formulas.

5.4.3 Inferring trust

Let, for all i ∈M, j ∈ U, t ∈ T :

• trust i,j,t ∈ ATM denote moderator i’s core trust in user j about ensuring
high quality in thread t by submitting a post in t;

• distrust i,j,t ∈ ATM denote moderator i’s distrust in user j about ensuring
high quality in thread t by submitting a post in t;

• mistrust i,j,t ∈ ATM denote moderator i’s mistrust in user j in relation to
the goal of high quality in t and the action of vandalizing t;

• disptrust i,j,t ∈ ATM denote moderator i’s dispositional trust that user
j will contribute to the high quality in t under the circumstances that j
actually submits a post.
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Trust are inferred according to the rule:

[Ci]〈G〉hq:t ∧ [Bi]〈Dj:mp:t〉> ∧ [Bi][Aj:mp:t]hq:t→ trust i,j,t.

This is a Horn formula, since the right hand side is a proposition of ATM and
the left hand side is a positive formula.

However, since [Bi]¬[Aj:mp:t]hq:t ≡ [Bi]〈Aj:mp:t〉¬hq:t and [Bi][Aj:vd:t]¬hq:t
are not positive formulas, the inference rules

[Ci]〈G〉hq:t ∧ [Bi]〈Dj:mp:t〉> ∧ [Bi]¬[Aj:mp:t]hq:t→ distrust i,j,t

and
[Ci]〈G〉hq:t ∧ [Bi]〈Dj:vd:t〉> ∧ [Bi][Aj:vd:t]¬hq:t→ mistrust i,j,t

are not Horn formulas.
In the case of mistrust, the second approach discussed in Section 4.5, con-

sisting in defining mistrust as a conjunction of the moderator’s goal of high
quality in t and the moderator’s belief that the user deliberately has submitted
a vandalizing post in t while ignoring the consequences of the particular action
of vandalizing, can be used to express the following rule:

[Ci]〈G〉hq:t ∧ [Bi]〈Dj:vd:t〉> → mistrust i,j,t.

This formula is easily seen to be a Horn formula, since the left hand side consists
of a conjunction of positive formulas.

However, in the case of distrust in the context of the Internet forum scenario,
distrust is clearly based on the belief about the user’s lack of opportunity/power
to ensure high quality.

Inference of trust dispositions cannot be expressed as a Horn formula either.
To see why, note that the Horn formula

[Bi](〈Dj:mp:t〉> ∧ [Ci]〈G〉hq:t→ [Aj:mp:t]hq:t)

∧ [Bi][G](〈Dj:mp:t〉> ∧ [Ci]〈G〉hq:t→ [Aj:mp:t]hq:t)

is equivalent to

[Bi](¬〈Dj:mp:t〉> ∨ ¬[Ci]〈G〉hq:t ∨ [Aj:mp:t]hq:t)

∧ [Bi][G](¬〈Dj:mp:t〉> ∨ ¬[Ci]〈G〉hq:t ∨ [Aj:mp:t]hq:t),

which is not a positive formula. Hence

([Bi](〈Dj:mp:t〉> ∧ [Ci]〈G〉hq:t→ [Aj:mp:t]hq:t)

∧ [Bi][G](〈Dj:mp:t〉> ∧ [Ci]〈G〉hq:t→ [Aj:mp:t]hq:t))→ disptrust i,j,t

is not a Horn formula.
This means that the Internet forum scenario cannot be fully expressed using

Horn-HHVL.

5.4.4 Examples

In this section, I will express some of the examples from Section 4 in Horn-
HHVL.
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Example 5.4.1. Consider Example 4.3.1 again. This example can be expressed
by a set X containing the Horn formulas:

[Bi](trustx,j,t → trust i,j,t);

[Ci]〈G〉hq:t ∧ [Bi]〈Dj:mp:t〉> ∧ [Bi][Aj:mp:t]hq:t→ trust i,j,t;

[Bi]trust i,j,t → trust i,j,t;

[Bi][Cx]〈G〉hq:t;

[Bi][Bx][Aj:mp:t]hq:t;

[Bi][Bx]〈Dj:mp:t〉>.

In this case, it is clear that X � trust i,j,t.

Example 5.4.2. Consider Example 4.4.1. This example can be formalized in
Horn-HHVL as the set X containing the Horn formulas

[Bi](distrustx,j,t ∨ distrusty,j,t ∨ distrustz,j,t → distrust i,j,t);

[Bi]distrust i,j,t → distrust i,j,t;

[Bi]distrustx,j,t,

which logically implies distrust i,j,t.

Example 5.4.3. Consider Example 4.5.1, and consider the set X containing
the following Horn formulas:

[Ci]〈G〉hq:t ∧ [Bi]〈Dj:vd:t〉> → mistrust i,j,t;

[Bi]〈Dj:vd:t〉>;

[Ci]〈G〉hq:t.

It is clear that X � mistrust i,j,t.

Example 5.4.4. This example is a variant of Example 4.6.2. Consider the set
of Horn formulas X:

[Bi](disptrustx,j,t ∧ disptrusty,j,t → trust i,j,t);

[Bi]trust i,j,t → trust i,j,t;

[Bi](disptrustx,j,t ∧ disptrusty,j,t),

from which the consequence trust i,j,t follows logically.



Chapter 6

Summary and conclusions

In this thesis, the three different logics HHVL, DL, and BNL, all intended
to formalize the C&F theory of trust, were presented and evaluated along two
lines.

First, key concepts of the C&F theory were formally defined, and some inter-
esting properties resulting from these definitions were proved. I proposed new
formal definitions for the concepts of mistrust, lack of trust, and dispositional
mistrust. The proven properties were then compared to properties of the infor-
mal formulation of the C&F theory, resulting in the conclusion that the logics
HHVL and DL were best suited for formalization of the C&F theory.

Second, the performances of the logicsHHVL and DL were compared within
a case study consisting of trust assessments of users of an Internet forum. It
was concluded that HHVL allowed a more sophisticated analysis.

Then, a Horn fragment of HHVL was defined. The Horn fragment was
shown to be too restrictive to express the Internet forum scenario.

It is clear that a trust logic intended to formalize the C&F theory of trust
in order to reason about trust in intentional entities must be able to formalize
intentional action. The C&F theory states that the truster’s evaluation of the
trustee’s intention is equally important as the evaluation of the trustee’s capabil-
ity and opportunity for predicting the trustee’s behaviour. The logic BNL does
not capture this property, primarily because there are no interaction axioms
governing the connection between intention and action. Further, in BNL, the
operators Afteri:α and Happensi:α are duals, which allows for some unwanted
properties. For instance, capability implies action:

`BNL ¬Afteri:α⊥ → Happensi:α>.

This problem is avoided in HHVL and DL by the use of two different accessi-
bility relations for the action operators Afteri:α and Doesi:α, which allows for
the formula Afteri:αϕ↔ ¬Doesi:α¬ϕ to be falsifiable.

Another critical point when formalizing the C&F theory is the time aspect,
and in particular the interaction of goals and time. The logics HHVL and DL
both model time in a linear temporal logic fashion, but while HHVL incorpo-
rates the always and eventually operators G and F as basic, DL uses the next
time operator X, defined in terms of actions. This leads to different modelling
of agents’ goals.
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Regarding the Horn fragment of HHVL, the analysis in Section 5.4 shows
that inference of OccTrust(i, j, α, ϕ) (corresponding to core trust in the C&F
theory) can be expressed by a Horn formula, but that inference of mistrust,
distrust, and trust dispositions cannot be expressed by Horn formulas.

6.1 Ideas for further research

The following are ideas for further inquiries in trust logics and their Horn frag-
ments.

• How could the rest of the basic concepts of the C&F theory be formally
defined in a MAS oriented modal logic? In this thesis, I considered the
formal translations of the concepts of core trust, mistrust, distrust, lack
of trust, and trust dispositions. In order to reason about the connection
between trust, reliance, and delegation, these concepts need to be formally
defined.

• What is the data complexity for checking satisfiability for the logic HHVL
and the Horn fragment of HHVL defined in Section 5? Are further re-
strictions needed to reach a tractable fragment?

• Another line of inquiry is to further investigate how to allow negations on
the left hand side of implications (see the analysis in Section 5.4), in order
to express inference of distrust, mistrust, and dispositional trust.

• It would also be interesting to investigate the construction of least models
for Horn-HHVL, as well as study the possibility of providing Horn-HHVL
with a proof calculus. In that case, further restrictions along the lines
proposed in Section 5.3.2 are probably needed (see e.g. [37, 39]).



Appendix A

Propositional logic

This appendix is a short introduction to propositional logic. The material is
based on [2]. Other good introductory texts on propositional logic are Asratian,
Björn, and Turesson’s [1], Mårtensson’s [32], and Prawitz’s [40].

Propositional logic studies propositions. A proposition is a sentence that is
either true or false. For example, “It is raining in Linköping” is a proposition,
but “How many tigers are there in Alaska?” is not a proposition, since it does
not have a truth value.

Consider the two propositions “It is raining in Linköping” and “2+2=4”.
These propositions are either true or false. The two propositions can be com-
bined in different ways, yielding new sentences which are either true or false.
Consider the following combination: “It is raining in Linköping and 2+2=4”.
This sentence is true when “It is raining in Linköping” and “2+2=4” are both
true. The word “and” is an example of a connective. Other such connectives
in common English are “or”, “if ..., then” and “not”. The purpose of proposi-
tional logic is to formalize the way in which words like “and” and “not” combines
propositions, and how such combinations enable formal reasoning from premises
to a conclusion.

A.1 Syntax

The language of propositional logic (denoted PL) consists of a nonempty set of
atomic propositions ATM = {p, q, ...}, and the logical connectives presented in
Table A.1.

An atomic proposition is a proposition without an internal logical structure;
in other words, it is a proposition without any logical connectives.

Name Symbol Meaning
negation ¬ not

conjunction ∧ and
disjunction ∨ or
implication → if ... , then ...
equivalence ↔ if and only if

Table A.1: The logical connectives in propositional logic.
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All connectives except ¬ are binary, which means that they connect two for-
mulas. The connective ¬ is applied to a single formula. The following definition
gives the rules of how formulas are constructed.

Definition A.1.1. A well-formed formula (hereafter denoted simply “formula”)
is constructed from the elements of ATM and the logical connectives from Ta-
ble A.1 according to the following rules, where p ∈ ATM :

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ϕ↔ ϕ.

The above expression means that all atomic propositions are formulas, a formula
preceded by ¬ is a formula, and two formulas connected by ∧,∨,→, or ↔ is a
formula.

In the meta-language, ϕ,ψ, ... are used to denote formulas. This means that
ϕ,ψ, ... are not symbols in the language of PL, but convenient symbols used as
abbreviations for formulas. For example, the formula (p ∨ q) ∧ (r ∨ s) can be
abbreviated ϕ ∧ ψ, where ϕ = (p ∨ q) and ψ = (r ∨ s).

Parentheses “(” and “)” are used to separate subformulas in formulas. In
addition, precedence and associativity conventions for formulas are defined, just
like in arithmetic; for example, one recognizes a ·b ·c+d ·e as (((a ·b) ·c)+(d ·e)).
The connectives in propositional logic have the following order of precedence:

1. ¬;

2. ∧ and ∨;

3. → and ↔.

Additional parentheses can be used to clarify formulas, even when it is not
strictly necessary. Further, the connectives ∧, ∨, and ↔ are associative, so it
is possible to omit parentheses in formulas that have repeated occurrences of
these connectives. For example, instead of writing ((p ∨ q) ∨ r), one can write
p ∨ q ∨ r. The connective → is not associative, so parentheses must be used
when implication occur repeatedly in a formula.

A.2 Semantics

The semantics of PL defines the meaning of formulas in PL.

Definition A.2.1. Let ϕ be a formula, and let Pϕ be the set of all atomic
propositions appearing in ϕ. An interpretation for a formula ϕ is a full mapping
fϕ : Pϕ → {T, F} assigning a truth value true (denoted T ) or false (denoted F )
to each proposition in Pϕ.

Definition A.2.2. Truth values of a formula ϕ under an interpretation fϕ,
denoted vfϕ(ϕ), (whenever the formula ϕ is clear from context, vfϕ(ϕ) will be
abbreviated by vf (ϕ)), are defined as follows:

• vf (ϕ) = f(ϕ) if ϕ is an atomic proposition;

• vf (¬ϕ) = T if vf (ϕ) = F ,
vf (¬ϕ) = F if vf (ϕ) = T ;
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p ¬p
T F
F T

p q p ∧ q p ∨ q p→ q p↔ q
T T T T T T
T F F T F F
F T F T T F
F F F F T T

Table A.2: The truth table for the logical connectives

• vf (ϕ ∧ ψ) = T if vf (ϕ) = T and vf (ψ) = T ,
vf (ϕ ∧ ψ) = F otherwise;

• vf (ϕ ∨ ψ) = F if vf (ϕ) = F and vf (ψ) = F ,
vf (ϕ ∨ ψ) = T otherwise;

• vf (ϕ→ ψ) = F if vf (ϕ) = T and vf (ψ) = F ,
vf (ϕ ∨ ψ) = T otherwise;

• vf (ϕ↔ ψ) = T if vf (ϕ) = vf (ψ),
vf (ϕ↔ ψ) = F if vf (ϕ) 6= vf (ψ).

The meaning of the logical connectives can be illustrated with the help of
truth tables. Consider the formula ¬p. There is only one atomic proposition
in this formula, which means that there are two possible interpretations for the
formula; either p is true, or p is false. Consider the truth table for negation
given in Table A.2. Each row corresponds to an interpretation of the formula
occurring on the far right of the top row. Thus, if the atomic proposition p
is true, then the resulting formula when the connective ¬ is applied to p is
false, and vice versa. The idea is to show how the truth value of a formula
containing a logical connective depends on its parts. This is done by calculating
the truth value under every possible interpretation of the formula using the rules
in Definition A.2.2. The truth table for the binary connectives are also given in
Table A.2.

A.3 Satisfiability and validity

Definition A.3.1. Let ϕ be a formula.

• ϕ is satisfiable if there is some interpretation such that vf (ϕ) = T ;

• ϕ is unsatisfiable if it is not satisfiable;

• ϕ is valid (denoted � ϕ) if vfϕ(ϕ) = T for every interpretation;

• ϕ is falsifiable (denoted 2 ϕ) if it is not valid.

A valid formula is also called a tautology, and an unsatisfiable formula is also
called a contradiction. Note the following properties of the above definition:

• ϕ is unsatisfiable if and only if ¬ϕ is valid;

• ϕ is satisfiable if and only if ¬ϕ is falsifiable.
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p q p ∧ q ¬(p ∧ q) ¬p ¬q ¬p ∨ ¬q ϕ
T T T F F F F T
T F F T F T T T
F T F T T F T T
F F F T T T T T

Table A.3: The truth table for the formula ϕ = ¬(p ∧ q)↔ ¬p ∨ ¬q.

p q p ∨ q ψ
T T T T
T F T T
F T T F
F F F T

Table A.4: The truth tables for the formula ψ = p ∨ q → p.

Truth tables can be used to check whether a given formula is satisfiable, unsatis-
fiable, valid or falsifiable. Consider, as an example, the formula ϕ = ¬(p∧ q)↔
¬p ∨ ¬q. The truth table is constructed by considering the truth values of all
the subformulas of ϕ under all possible interpretations of ϕ. Since there are two
atomic propositions occurring in ϕ, there are 22 = 4 possible interpretations.
The truth table for ϕ is presented in Table A.3. The column on the far right in
the above truth table consists of four T s. This means that ϕ is true under any
interpretation, i.e. ϕ is a valid formula (a tautology).

Consider the formula ψ = p∨ q → p. There are four possible interpretations
of this formula, since it contains two atomic propositions: p and q. The truth
table for this formula is presented in Table A.4. The formula ψ is thus not
valid, since it is false under the interpretation represented by the third row in
the above truth table; this means that ψ is falsifiable. ψ is also satisfiable since
there are interpretations under which it is true (the interpretations represented
by the first, second, and fourth rows).

A.4 Logical equivalence

It is often useful to substitute a formula for a logically equivalent formula, for
example to simplify a complex formula. Two formulas are logically equivalent
if they have the same truth-value under all interpretations. Formally, this is
defined as:

Definition A.4.1. Let ϕ,ψ be formulas. ϕ and ψ are logically equivalent (de-
noted ϕ ≡ ψ) if vf (ϕ) = vf (ϕ) for all interpretations f .

It is important to note that ≡ is not a symbol of PL; rather, it is a symbol
used in the metalanguage to reason about PL.

However, as seen in Definition A.2.2, the connective ↔ behaves in a way
reminding of the above definition of logical equivalence; ϕ ↔ ψ is true under
an interpretation if and only if ϕ and ψ have the same truth-value under the
interpretation. This suggests that there is an interesting relation between ≡
and ↔. In fact, the following is a theorem:
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Theorem A.4.1. ϕ ≡ ψ if and only if ϕ ↔ ψ is valid (i.e. true under any
interpretation).

The proof is quite simple, and can be found in [2, p. 22].
Truth tables and Theorem A.4.1 can be used to check whether two formu-

las are equivalent. Consider the example formula ϕ = ¬(p ∧ q) ↔ ¬p ∨ ¬q
from Section A.3. It was shown in Section A.3 that ϕ is a valid formula. By
Theorem A.4.1, ¬(p ∧ q) ≡ ¬p ∨ ¬q.

Theorem A.4.2. Let ϕ be a formula containing logical connectives, and let
ψ be a formula occurring in ϕ. Assume that ψ ≡ ψ′. Let ϕ′ be the formula
resulting from ϕ by substitution of every occurrence of ψ with ψ′. Then ϕ ≡ ϕ′.

This theorem describes substitution, and shows that it is possible to form
new equivalences from older ones.

A.4.1 Examples of useful equivalences

There are several logical equivalences that are particularly useful. Here is a short
list of such equivalences:

¬¬ϕ ≡ ϕ;

ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ);

ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ);

¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ;

¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ;

ϕ→ ψ ≡ ¬(ϕ ∧ ¬ψ);

ϕ→ ψ ≡ ¬ϕ ∨ ψ;

ϕ→ ψ ≡ ¬ψ → ¬ϕ;

¬(ϕ→ ψ) ≡ ϕ ∧ ¬ψ;

ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ);

ϕ↔ ψ ≡ ¬ϕ↔ ¬ψ.

Truth tables can be used to prove the above equivalences.
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20. Dunin-Kȩplicz, B., Nguyen, L. A. and Sza las, A., A Framework for
Graded Beliefs, Goals and Intentions, Fundamenta Informaticae 100 (2010),
53–76.
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