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Abstract

The growing mail volumes for businesses worldwide is one reason why they
are increasingly turning to digital mailrooms. A digital mailroom automat-
ically manages the incoming mails, and a vital technology to its success is
document classification. A problem with digital mailrooms and the docu-
ment classification is separating the input stream of pages into documents.
This thesis investigates existing classification theory and applies it to create
an algorithm which solves the document separation problem. This algorithm
is evaluated and compared against an existing algorithmic solution, over a
dataset containing real invoices.
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Chapter 1

Introduction

This thesis was done on behalf and with the help of Readsoft AB in Stock-
holm. In this chapter the background and the problem is introduced, fol-
lowed by a concrete problem formulation and scope. The chapter is then
concluded with an outline of the report.

1.1 Background

Digital mailrooms are systems which automate the incoming mail processes
for businesses. These systems use a wide range of technologies to achieve
this automation, such as document capture, document classification and
workflow applications. Document capture is the process of scanning and
retrieving documents from electronic and ordinary mail, inputting them into
the system. Document classification uses machine learning techniques to
recognize the class of each document, in order to determine which workflow
should continue handling it. The different workflow applications can then
e.g. sort, redistribute or extract information from documents, depending on
what is needed.

Document classification, or in other words text classification, is a widely
researched area with many successful applications such as search engines and
of course digital mailrooms. Classifying text typically requires text to be
transformed into a uniform comparable feature representation, such as the
Bag-of-Words vector. This representation allows Support Vector Machines,
Naive Bayes or other classification algorithms to learn and distinguish be-
tween the different classes. The different feature representations and classifi-
cation algorithms all have different advantages and disadvantages, effecting
e.g. the resulting classification accuracy and speed. As such, the practical
applications requirements and its domain have a major impact on the choice
of classification system.

1



2 CHAPTER 1. INTRODUCTION

1.2 Problem Description

Documents are continuously input into digital mailrooms in batches. These
batches contain any number of documents, and is structured as a sequence of
pages. The classification system of a digital mailroom is used on a document
level and as such the batch has to be separated into documents. Batch
separation can be regarded as a type of change-point detection or clustering
problem. A graphical representation of the batch separation problem is
shown in Figure 1.1.

Figure 1.1: An example of the batch separation problem in a simplified
and larger picture. The pages of the batch are separated according to their
corresponding document.

Henceforth the term separation point will be used to denote a breakpoint
in a batch, which separates one document from the other. Figure 1.2 shows
these separation points in the same example scenario as Figure 1.1.
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Figure 1.2: An example of the batch separation problem with separation
points.

To further explain the document separation problem take the following
example. A large company has a digital mailroom implemented to manage
their mail volumes. The company receives invoices from its two suppliers
daily and wants to handle these efficiently. These two suppliers’ invoices
are managed differently. The invoices from the first supplier, supplier A,
is simply forwarded to the financial department. Invoices from the second
supplier, supplier B, is also forwarded to the financial department but is also
into their business system. To enable this one class for each supplier is cre-
ated, class A and class B. The document capture phase gathers these invoice
documents throughout the day from both electronic and regular mails. The
document capture phase gathers a number of documents into a batch, before
dispatching the it to the remaining parts of the system. Because of this the
document classification phase now has to find the individual documents in
the batch, which is done by the document separation.

One solution is to use a blank-page separation technique to find the
separation points in the batches. This technique is done by manually adding
a blank page between each document. This blank page can be added during
the input phase of the digital mailroom, but it requires overhead, be it
manual or machine. The blank page then acts as a separation point in a
batch during the classification phase. This method is quite effective, as it
can achieve a perfect separation rate, at the cost of an increased overhead.

There has been rather little research done regarding algorithmic batch
separation. Collins-Thompson and Nickolov (2002) created a clustering-
based technique, which had the advantage of not requiring a classification
platform. This algorithm depends on certain features, such as the page
number, to be extracted to achieve a higher separation accuracy.

Gordo et al. (2013) also derived an algorithm for separating a batch. This
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method uses probabilistic reasoning to find the most likely valid documents
in a batch. A requirement with this method is a classification platform, or
a similar substitution, which gives a likelihood estimate for classes.

Due to the fact that there has been little research done into the batch
separation domain there seems to be ample opportunities for other solu-
tions. One approach could be to apply other classification- and clustering
techniques to solve the batch separation problem. Furthermore it is inter-
esting to investigate if any of these batch separation algorithms manage to
achieve a performance which renders them usable in practice.
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1.3 Problem Formulation

This thesis investigates and compares algorithms which solve the batch sep-
aration problem. To aid in this task we use an existing proprietary classi-
fication platform, provided by ReadSoft. The questions this thesis aims to
answer are the following:

1. How can a batch of documents be separated algorithmically?

2. How well do the proposed algorithms as well as existing solutions per-
form in comparison to each other?

3. Are any of the examined solutions good enough to be useful in prac-
tice?

1.4 Scope

This thesis will not derive an algorithm for classifying documents. The thesis
will instead use the provided proprietary classification platform and focus
on the separation problem exclusively.

To solve the separation problem the thesis will examine and investigate
solutions using similarity measures between documents and their text. Thus
the thesis will focus on and use elements and concepts from the classification
and information retrieval fields, experimenting with similarity measures and
feature representations.

This thesis focuses on invoice documents and not general documents.
The evaluation of the algorithms is performed with three suites of data
received from ReadSoft.

1.5 Outline

1. Introduction

2. Text Classification Theory
In the first chapter we examine the theoretical foundation of textual
classification. This chapter investigates feature representations, simi-
larity measures and some common classification algorithms.

3. Document Separation Algorithms
The thesis then continues with descriptions of three different document
separation algorithms.

4. Experiments
This chapter contains detail about the the experiments which were
performed. The chapter contains descriptions about the used perfor-
mance measures, the suites of data which were used and also details
about the experiments which were performed.
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5. Results
In this chapter, all the results from the experiments are presented.
These results are presented using several bar charts.

6. Discussion and Conclusion
The thesis is then concluded with a discussion about the evaluated
solutions and discussions about improvements as well as possible future
work.



Chapter 2

Text Classification Theory

This chapter starts with an overview of text classification, and how it is
generally performed. The chapter then continues by giving more in depth
details about the following areas; feature representations, feature selection,
classification algorithms and finally algorithms for measuring the similarity
of text.

2.1 Classification Overview

Classifying text can be done through either supervised or unsupervised
machine learning algorithms. Supervised classification trains algorithms
with pre-labeled sets of data. Unsupervised classification generates clus-
ters of documents, where each cluster contains documents that are similar
to each other. This requires no human interaction and can be completely au-
tonomous. Text classification is generally done through the following steps;

1. Data is extracted from texts to create a simplified representation. The
data elements which are extracted are known as features. The simpli-
fied representation is known as a feature representation.

2. The feature representation generated from the previous step is typi-
cally very large and high-dimensional. The next step of the process
reduces the feature representation by removing redundant information.
This is known as either feature selection or extraction.

3. After a document has been transformed into a feature representation
it is input to a algorithm which classifies it. There exists a multitude
of classification algorithms, such as the support vector machine and
the k-nearest neighbor algorithm.

7
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2.2 Feature Representations

Texts which are used in classification platforms are transformed into uniform
comparable structures known as a feature representations. This section
describes two different types of feature representations, vectors and graphs.

2.2.1 Vector Space Model

A fundamental concept within classification- and information retrieval areas
is the vector space model developed by Salton (1968). The model is based
on the notion that objects, such as textual documents, can be represented
by algebraic models. In particular that objects are represented as vectors
in a common space. The implications of the vector space model is that it
transforms abstract objects into comparable vectors.

di = (w1,i, w2,i, . . . , wm,i) (2.1)

An example of the vector space model is found in Equation 2.1. Doc-
ument i is transformed into the feature vector di. The value wm,i is the
frequency of word wm in document i. This feature vector is also known as
the Bag-of-Words (Manning et al., 2009). Figure 2.2.1 shows an example of
this.

This is an example text

Another example text

1, 1, 1, 1, 1, 0

0, 0, 0, 1, 1, 1

𝐹𝑡ℎ𝑖𝑠,𝑖 , 𝐹𝑖𝑠,𝑖 , 𝐹𝑎𝑛,𝑖 , 𝐹𝑒𝑥𝑎𝑚𝑝𝑙𝑒,𝑖 , 𝐹𝑡𝑒𝑥𝑡,𝑖 , 𝐹𝑎𝑛𝑜𝑡ℎ𝑒𝑟,𝑖

Text1

Text2

Feature Representation – Text1

Feature Representation – Text2

Figure 2.1: A figure showing the Bag-of-Words feature vectors in the same
vector space, for two examples texts. The variable Fa,b denotes the frequency
for the word a in text b.
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Below follows a list of common vector-based feature representations for
documents which previous literature have used.

Bag-of-Words
Also known as the word frequency vector. This was described above.

Length Normalized Frequency Vector
The length normalized frequency vector builds upon the Bag-of-Words
feature representation. The vector contains the frequency of a word
divided by the number of words in the document (Wajeed and Adi-
lakshmi, 2011). If the same notion is used as in Equation 2.1 and the
number of words in a document is c, the length normalized frequency
vector can be described as

di = (
w1,i

c
,
w2,i

c
, . . . ,

wm,i
c

) (2.2)

n-gram
The n-gram feature representation uses a combinations of n words as
features. If a document i contains the words wj the n-gram feature
vector di can be described as

di = (f1, f2, . . . , fn) (2.3)

fj = wjwj+1 . . . wj+n (2.4)

The order wjwj+1 . . . wj+n is in no particular fashion. It could simply
be a left-to-right order of the words in a sentence. The value of a fj
could be the frequency of that feature in document i.

Tf-idf Vector
Tf-idf stands for term frequency-inverse document frequency. The
purpose of this feature representation is to lower the impact of common
redundant words while increasing the impact of rare, unique words
(Manning et al., 2009, p. 117-118). The features of this representation
are the words of the document. The feature vector is calculated as

idfw = log(
N

dfw
) (2.5)

fw = tfw · idfw (2.6)

di = (fw1 , fw2 , . . . , fwj ) (2.7)

Here, w denotes a word, dfw denotes the number of document where
word w occurs, N denotes the number of documents and tfw is word
frequency of word w. Furthermore, di denotes the feature vector for
document i, where wj denotes the words in document i.
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2.2.2 Graph-based Representation

The common feature representation Bag-of-words assumes an independence
property between words of documents. The representation ignores the se-
quence in which words occur. This simplification has been proven to be
effective, but incorporating the sequence into a feature representation can
improve the accuracy. For example the words ”social”, ”economy” are differ-
ent from the concatenation ”social economy”, and have different contextual
meanings. To incorporate the contextual and spatial meaning of terms Chow
et al. (2009) proposed a graph-based feature representation.

Sequential Graph

A document can be represented by a graph G = (V,E, φ, θ). V denotes
the vertices of the graph, which represent a unique word in a document. E
denotes the edges of the graph, which is a sequential connection between a
documents words. The function φ : V → tfV,d assigns the word frequency
attribute to the vertices. Lastly, θ : E → cE,d assigns the connection fre-
quency attribute to the edges.

The graph can be either directed or undirected, but Chow et al. (2009)
proposes the undirected graph. The reason for this was, to quote; ”In many
cases the sequence of words are convertible, although it conveys the same
semantics for human language. For example, ”computer science” can be
expressed as ”science of computer”, which delivers the same meaning.”

Projection of Graph to Vector

A graph G = (V,E, φ, θ) can be represented simply by using the adjacency
matrix denoted by Ak = [Akij ] for a graph Gk. An element Akij = tfij in
the adjacency matrix is equal to the word frequency between word i and j.
Chow et al. (2009) states that using just the adjacency matrix to calculate
similarity leads to a waste of both time and space, because the matrix is
so sparse. A solution to create a sparser representation, while maintaining
the statistical properties is to apply principal component analysis or linear
discriminant analysis.

2.3 Feature Selection & Extraction

The feature representation space dimension will grow rapidly when classify-
ing more and larger documents. To combat this, feature selection or extrac-
tions methods are employed to remove unnecessary and redundant features
from the feature representations. Feature selection methods filter features
from the representation, while feature extraction methods transforms the
feature representation from a larger feature space to a smaller one.



CHAPTER 2. TEXT CLASSIFICATION THEORY 11

2.3.1 Stemming

Stemming, or lemmatization, is a variant of feature selection which reduces
words to their base forms. As an example, stemming would transform the
words ”walking” and ”walked” into the base word ”walk”. This ultimately
decreases the amount of features, while still maintaining the same informa-
tion. (Manning et al., 2009)

2.3.2 Stop-Words

Another feature selection approach is to simply remove all the common
words, such as ”the” or ”what”, from the feature representation. These
words are typically given in a stop-words list, or can be derived by removing
words with high global frequency (Liu et al., 2005; Manning et al., 2009).

Manning et al. (2009) argue that in the information retrieval field it used
to be popular to create huge lists of stop-words that were ignored, but in
more recent time however these stop-word lists are decreasing in size and
may not even be used. However the authors Ikonomakis et al. (2005) claim
that ignoring or decrease the impact of these stop words can possibly increase
the classification accuracy. Ignoring these stop words also helps reducing the
curse of dimensionality (Ikonomakis et al., 2005; Bandyopadhyay and Saha,
2013, p. 7).

2.3.3 Feature Clustering

Feature clustering is a method of feature extraction. This method uses clus-
tering techniques to group similar features together. These groups are then
used as new features, transforming a feature representation into a new fea-
ture space and lowering the dimensionality. Feature extraction is practically
recognized as more effective then feature selection, but is more computation-
ally costly (Jiang et al., 2011).

One noteworthy method of clustering features for text classification is
the information bottleneck method (IB). The features used in the IB method
are words. The IB method is based on the idea that the similarity between
two features is determined by comparing their individual joint probability
distribution of occurrences over all the classes. If the two features share the
same probability distribution, they contribute equally as much information
in determining the class, and as such can be clustered together. (Slonim
and Tishby, 2001)

2.4 Machine Learning Algorithms

Inductive machine learning is learning from examples (Kotsiantis et al.,
2006). There are numerous different machine learning approaches to classi-
fication. Broadly speaking they can be categorized into logic-, perceptron-,
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statistics-, instance- and support vector machine based learning. (Kotsiantis
et al., 2006) Some examples of algorithms from the different categories are
as follows;

• Tree Based

– Decision Tree

• Perceptron Based

– Single layer perceptron

– Multi layer perceptron

• Probabilistic Based

– Naive Bayes Classifier

• Instance Based

– k Nearest Neighbors

• Support Vector Machines

When choosing a machine learning algorithm one has to take questions and
aspects into account such as; How much training data is available? (Manning
et al., 2009) How fast should it be able to classify? How accurate does it
have to be? Are the features discrete or continuous? (Kotsiantis et al., 2006)
The authors Kotsiantis et al. (2006) argue that

The key question when dealing with ML classification is not
whether a learning algorithm is superior to others, but under
which conditions a particular method can significantly outper-
form others on a given application problem. (Kotsiantis et al.,
2006)

For further details and in-depth research the authors Caruana and Niculescu-
Mizil (2006) compare these algorithms against each other on well known sets
of data.

2.4.1 Naive Bayes Classifier

The Naive Bayes Classifier (NBC) is one of the simplest classification algo-
rithms. NBC calculates the probability for the class C given the observed
set of words W . The class C can assume a label from a set c = c1, . . . , c2, i.e.
this is not only a binary classifier. The random variable W is a set of ran-
dom variables W1, . . . ,W2 representing individual features. The algorithm
builds upon Bayes Theorem, see Equation 2.8. (Smola and Vishwanathan,
2008, p. 22-23)
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p(C|W ) =
p(W |C)p(C)

p(W )
(2.8)

The probability p(W ) can be difficult to calculate, and is regarded as
constant for different calculations of C. To avoid estimating this proba-
bility, the fraction R between p(Ci|W ) and p(Cj |W ) is calculated, yielding
Equation 2.9.

R =
p(Ci|W )

p(Cj |W )
=
p(W |Ci)p(Ci)
p(W |Cj)p(Cj)

(2.9)

The Equation 2.9 can be further simplified by an independence assump-
tion. The features are all regarded as independent of each other, and only
dependent on the class. Even though this assumption is clearly wrong, it
yields good results (Kotsiantis et al., 2006). This final assumption results
in the simpler Equation 2.10.

R =
p(W |Ci)p(Ci)
p(W |Cj)p(Cj)

=
p(Ci)

∏
q p(W

q|Ci)
p(Cj)

∏
q p(W

q|Cj)
(2.10)

Equation 2.10 only requires p(Ci) and p(W q|Ci) to be estimated during
the training phase.

A major advantage with NBC is the low computational training time
which is required. According to the comparison table given by the authors
Ikonomakis et al. (2005) the NBC has, compared to the other algorithms,
a high tolerance of missing values, a high speed of training and a good
classification speed. On the negative side the NBC has a low tolerance of
redundant and irrelevant features, and a low classification accuracy. (Ikono-
makis et al., 2005) But the low classification accuracy of the NBC is a bit
disputed. According to Rish (2001) the NBC is effective in practice because
even though the probability estimates may be inaccurate, the classification
decision may be correct.

2.4.2 Support Vector Machine

The support vector machine (SVM) algorithm is a modern ML algorithm
developed by Cortes and Vapnik (1995). SVMs constructs a hyperplane,
see Figure 2.2 for an example, that attempts to separate the data by max-
imizing the margin between a subset of the data points denoted ”support
vectors” and the plane. SVMs also allow the incorporation of different ker-
nels that transform the classification task to a higher dimensional space.
This can improve classification accuracy in cases where the data is not well
separated by a plane. Popular such kernels include polynomials and radial
basis functions.

The support vector machine can achieve a high classification accuracy,
but it requires an expensive training, requiring more time and data then e.g.
NBC and kNN classification. The SVM and artificial neural networks are
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Figure 2.2: An example of linearly separable data in 2-dimensional space,
from Cortes and Vapnik (1995).

generally said to deal with continuous and multi-dimension features better
then the other classification algorithms. SVM is a binary classifier, but it
can be extended to a multiclass classifier. (Ikonomakis et al., 2005)

2.4.3 kNN Classification

One of the simplest instance based classification algorithms is the k nearest
neighbor (kNN). The kNN algorithm is built upon the assumption that
instances of the same class are similar to each other, and are therefore located
close to each other in the feature space.

The kNN algorithm does not need a training phase, because the instances
which are used to measure against are simply stored. When classifying new
data the kNN measures the similarity between the data and the stored
instances. This is also known as lazy learning. The k closest resembling
instances are chosen and the class which is the most frequent in these k
selected instances is the class to which the data is assigned. (Kotsiantis
et al., 2006; Wajeed and Adilakshmi, 2011; Smola and Vishwanathan, 2008,
p. 24-26)

There are a lot of different ways of measuring the similarity of two in-
stances. Typically the instances are represented by some vector, and the
similarity can be measured by some distance between the two locations
in the space. Some examples are the Manhattan distance, see Equation
2.11, and the Euclidean distance, see Equation 2.12. (Wajeed and Adilak-
shmi, 2011) There are many other ways of measuring similarities between
instances. The topic of similarity will be further discussed in Section 2.5.
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D(x, y) =
∑
t

|xt − yt| (2.11)

D(x, y) =

√∑
t

|xt − yt|2 (2.12)

kNN uses a lot of storage compared to other ML algorithms. This can
be explained by the fact that it uses lazy learning, where it simply stores
everything. Unlike NBC the kNN can handle continuous features, but it has
a lower classification speed. (Kotsiantis et al., 2006)

2.5 Similarity

Measuring the similarity between documents is often done pairwise. In the
thesis Analysing Document Similarity Measures, written by Grefenstette and
Pulman (2009), the authors try to establish a scientific notion of similarity
with a basis from areas such as philosophy and cognitive science.

Grefenstette and Pulman (2009, p. 19) argue that two objects which are
similar will share properties. It is important to note that when measuring
similarity one has to regard contextually significant properties, otherwise it
leads to a faulty comparison. As an example, take the situation when one
wants to measure the similarity between two books. If the similarity context
is the content of a book, a poor similarity estimate will be given if the only
properties that are analyzed and compared are connected to the images
on the front page. Measuring the similarity between two documents can
be regarded as the comparison of what features they contain, for example
in the bag-of-words feature representation shared properties could be word
frequencies. Sometimes certain properties are more important then others in
determining the similarity, and thus should have a bigger weight or impact
(Grefenstette and Pulman, 2009).

Measuring the similarity between objects, and more importantly docu-
ments, can be quite difficult. The choice of feature representation for docu-
ments has a big impact on how the similarity measure performs.

2.5.1 Similarity Measures

Euclidean Similarity

The Euclidean similarity measure is based on using the Euclidean distance
between two feature vectors, see Equation 2.13.

S(x,y) =

√∑
t

|xt − yt|2 (2.13)
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The similarity value S(x,y) is inversely proportional to the feature vec-
tors real similarity. The best similarity is achieved when x = y, yielding a
similarity S(x,y) = 0

A drawback of the euclidean similarity measure is the sensitivity of dis-
proportionate differences in the feature values of x and y. This increases
the distance between the vectors, resulting in a worse similarity, when this
may not be the case.

Cosine Similarity

The cosine similarity measure uses the angle between the feature vectors.
This measure is derived from the dot product of vectors, as shown below.

x • y = ||x|| · ||y|| · cos(θ)

S(x,y) = cos(θ) =
x • y

||x|| · ||y||
The effect of using the angle between vectors as a measure is that the

length of a vector has no effect on the similarity, which is the case in the
euclidean similarity measure.

Similarity Measure for Text Processing

Another similarity measure for documents was presented by Lin et al. (2014)
and is called Similarity Measure for Text Processing (SMTP). The measure is
based on the presence or absence of different features giving certain similarity
scores. This similarity measure is calculated according to Equation 2.14.

S(x,y) =
F (x,y) + λ

1 + λ
(2.14)

F (x,y) =

∑m
j=1N∗(wj,x, wj,y)∑m
j=1N∪(wj,x, wj,y)

(2.15)

N∗(xj , yj) =


0.5 · (1 + exp(−(

wj,x−wj,y

σj
)2)),

if wj,x, wj,y > 0

0, if wj,x = 0 and wj,y = 0

−λ, otherwise

(2.16)

N∪(wj,x, wj,y) =

{
0, if wj,x = 0 and wj,y = 0

1, otherwise
(2.17)

The feature representations x and y are vectors of features. The σj value
is the standard deviation for non-zero features wj , and λ is a constant.

This similarity measure is derived on properties, which are used as an
inspiration for the similarity measure in the fine separation algorithm de-
scribed in Subsection 3.5.5. These properties are (Lin et al., 2014):
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1. The absence or presence of features is more important when determin-
ing the similarity then the difference in magnitude of a feature.

2. Documents are more similar if the difference in magnitude of a factor
is smaller. As an example; Two documents are transformed into the
feature vector x and y. The documents are more similar if the vectors
are x =< 3, 0 > and y =< 4, 0 > than x =< 4, 0 > and y =< 20, 0 >.

3. As the number of presence absence features increases, the documents
similarity degree should decrease. An example; the feature vectors
< 1, 0, 1 > and < 1, 1, 0 > should have a lower degree of similarity
than the vectors < 1, 0, 0 > and < 1, 0, 1 >.

4. Documents have the least degree of similarity to each other if they
have no common non-zero or zero features with each other.

The SMTP has a good overall classification accuracy. When used in a single
label classification purpose, with a word frequency feature representation
and the SL-kNN classifier, it outperforms both the euclidean and cosine
similarity measures. SMTP generally outperforms other similarity measures
on kNN multi-label classification k-means clustering. (Lin et al., 2014)



Chapter 3

Document Separation
Algorithms

This chapters presents the solutions for the document separation problem.
It starts off by first presenting two existing solutions. The first existing
algorithm is described in the Related Algorithm section, because it was not
implemented and only used as inspiration. The other algorithm is described
in the statistical separation algorithm section. The chapter then continues
by presenting the new document separation algorithm which was developed
specifically for this thesis, called the rough & fine separation algorithm. The
chapter concludes by describing how the provided classification system was
used.

3.1 Related Algorithm

The authors Collins-Thompson and Nickolov (2002) evaluated a clustering
based technique for finding or separation points in a stream of pages. The
technique was based on the premise that documents can be found by clus-
tering similar pages, and that there were clear separating discrepancies on
the separation points.

Achieving good separation results with the algorithm thus requires a
good feature representation and similarity measure. The feature represen-
tation needs to contain the necessary information required to distinguish
instances of documents and a similarity measure which can accurately esti-
mate this.

3.1.1 Feature Representation

Collins-Thompson and Nickolov (2002) used a variety of different features
from the documents. The features used by the authors contain information
about; document structure, layout structure and text similarity.

18
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The text similarity features contained information about the words found
in a document. For every page a Bag-of-Words was used, where common
words were stemmed.

The document structure features was meta-information extracted from
the document. These features were derived from the headers, footers and
page numbers of the documents.

Finally, the layout structure features incorporated information about e.g.
word height, character width, line spacing and line indentation.

3.1.2 Similarity Measures

Every feature representations required their own similarity measure calcu-
lations. To measure the similarity for text features the cosine similarity
measure was used. The other feature representations utilized unique simi-
larity measures which Collins-Thompson and Nickolov (2002) had derived
for each representation. The resulting similarity factors were then used by
a linear classifier, in their case a SVM, which estimated the probability that
two pages are related.

3.1.3 Clustering Algorithm

To separate the pages a two-phase bottom-up clustering algorithm was used.
The first phase begins with all pages in their own clusters, then iteratively
combining the closest page clusters together using a single linkage criterion.
The single linkage criterion means that the distance between two clusters is
the distance between their two most similar pages, which was calculated by
their similarity measure. The second phase relaxed the the linkage criterion,
which allows the remaining single pages to be clustered into the appropriate
nearby clusters.

The two phases of the algorithms are used to handle a situation where a
document contains a small amount of pages which differ significantly from
the other pages. The relaxation in phase two allows the significantly differing
pages to merge into their document clusters.

3.2 Statistical Separation Algorithm

Gordo et al. (2013) claim that the existing page stream segmentation so-
lutions rely heavily on the homogeneity of pages in document classes. The
solutions neglect the use of classification and the knowledge which can be ex-
ploited from it. To examine this new possibility, Gordo et al. (2013) created
a new algorithm, henceforth called the statistical separation (SS) algorithm.
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3.2.1 Feature Representation

In order to incorporate classification into the separation process the authors
created a feature representation for multi-page documents. There is no set
length for the multi-page documents. The authors argued that explicitly en-
coding the page order into the feature representation can be inefficient and
opted to use a simpler and more general model. Let P = {p1, p2, . . . , pn}
denote the pages of a multi-page document. The pages pi are represented
by a vectorial feature-representation with a dimension d, i.e. pi ∈ Rd. The
authors do not specify any specific feature representation to use, but they
briefly mention the Bag-of-Words as a possible choice. The aggregated fea-
ture representation for a multi-page document P , denoted φ(P ), is created
by Equation 3.1.

φ(P ) =
1

n

n∑
i=1

pi (3.1)

This equation allows the dimension for the feature representation of a
multi-page document to be independent of the length of the document, while
still maintaining vital information. Despite the crudeness, or simplicity, of
the feature representation it proved to be equal or even better then more
complex representations (Gordo et al., 2013).

3.2.2 Validity Estimation

To evaluate different separations of a page stream, a document validity esti-
mator was used. The purpose of the validity estimator was to assess whether
a given set of pages form a valid document of one of the classes. This valid-
ity estimator, denoted V , was defined as a function accepting a set of pages
P and a feature representation transformer φ. To assess the validity of a
proposed document the estimator used probabilistic reasoning. The num-
ber of k classes which exist are defined as C = {c1, c2, . . . , ck}, the feature
representation of P is defined as x = φ(P ) and the length of the document
is defined as n = |P |. The resulting function was defined as Equation 3.2.

V (P, φ) =
∑
c∈C

p(x, n|c) (3.2)

V (P, φ) is the probability distribution that the feature representation
x of length n was generated by class c. To avoid an ambiguity issue, the
authors proposed that one should maximize the difference between the first
and second most likely classes instead, as defined in Equation 3.3.

V (P, φ) = max
ĉ∈C
{p(x, n|ĉ)} − max

c∈C\{ĉ}
{p(x, n|c)} (3.3)

This equation was further simplified by assuming an independence prop-
erty between x and n and applying Bayes rules. The probability p(x, n|c)
was then written as Equation 3.4.
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p(x, n|c) ∝ p(c|x)p(n|c)
p(c)

(3.4)

The probability p(c|x) was estimated from the classification results. Both
the probability p(n|c) and p(c) were estimated from the training data used by
the classification algorithm. The probability p(x) was disregarded because
it was assumed to be uniform.

3.2.3 Separation Algorithm

A stream of n pages was denoted S = {p1, p2, . . . , pn}. This stream is to
be split into an unknown number of documents of unknown lengths which
belong to one of the k classes. Sc:v = {pc, . . . , pv} was defined as a subse-
quence of pages from S from page c to page v, where 1 ≤ c < v ≤ n. The
algorithm was defined as Pj , seen in Equation 3.5.

Pj =

{
0 if j = 0

max
i<j

(Pi + log V (Si+1:j , φ)) otherwise
(3.5)

This algorithms calculates the best separation score of a stream up until
page j, similar to a dynamic programming algorithm. To find the separation
points of the whole stream up until n, calculate Pn and keep track of the
selected separations.
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3.3 Rough & Fine Separation Algorithm Overview

The rough & fine separation (RFS) algorithm is the new separation algo-
rithm. This algorithm uses two steps to locate the correct separation points.
This section provides a general overview of how these two steps function.
The steps themselves are implemented as two different algorithms, and de-
scribed in their own respective sections.
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Figure 3.1: The conceptual flow of the RFS algorithm.

3.3.1 Rough Separation

The first step of the the RFS is called rough separation (RS). This step
performs a class-wise separation of the batch, dividing the batch based on
the class of the pages, as can be seen in Figure 3.1.

3.3.2 Fine Separation

The second step performs a document separation on each class separation
individually. It checks if a class separation is one document or if it is actually
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multiple documents of the same class. The result of this is a batch which is
document separated. The second step is called fine separation (FS), and is
seen in the Figure 3.1.

3.4 Rough Separation Algorithm

The purpose of the RS algorithm is to separate the pages of a batch based
on their classes.

3.4.1 Separation Algorithm

The algorithm uses a greedy approach. It iterates the sequence of page
data from left to right, and at every page it evaluates the hypothesis ”A
separation point should be placed here”. The hypothesis evaluation is based
on comparing the current separation subsequence’s classification result with
the classification result of the next page. If the two classification results
differ, such as the next page is more similar to another class, a separation
point is added. The pseudocode for the heuristic separation algorithm is
displayed by Algorithm 1.

Algorithm 1 Heuristic Rough Separation Algorithm

1: function RoughSeparation(Pages)
2: separations← empty
3: currentSeparation← empty
4: for currentPage in Pages do
5: sepScore← Classify(currentSeparation)
6: pageScore← Classify(currentPage)
7: if ShouldSeparate(sepScore, pageScore) then
8: separations.Add(currentSeparation)
9: currentSeparation← NewSeparation()

10: currentSeparation.Add(currentPage)

Return separations

The variable currentSeparation is a set of pages and separations is a
set containing sets of pages. The lines 5 − 6 use the previously described
classification algorithm. The function ”ShouldSeparate” on line 7 checks if
the two classifications are of the same class as previously described.

The motivation behind this greedy approach is based on the fact that the
pages of invoices should individually conform well to their class, because they
typically contain the same information in headers, footers and so forth. Also,
subsequences of pages which have been successfully classified and separated
are not going to change class. Searching the entire solution space is therefore
unnecessary.
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3.4.2 Analysis & Limitations

The RS algorithm only needs to iterate a sequence once and thus has time
complexity of O(n), where n is the number of pages in a batch. In order
for the algorithm to work every individual page has to be able to match
and receive a good classification result. This might not always be the case
because sometimes a document may contain pages with some graphs, images,
or perhaps an unrelated table.

3.5 Fine Separation Algorithm

The purpose of the FS algorithm is to separate each class separation into
document separations. The FS algorithm uses a similar approach as Gordo
et al. (2013), with the same separation algorithm but with a different ap-
proach regarding the feature representation and validity estimation.

3.5.1 Approach

The class of all pages are equal and known during the document separa-
tion. As such, the algorithm does not have to evaluate over multiple classes.
Instead, the algorithm tries to distinguish one document from another by
looking for repetitions of data. The repetitions of data which are important
are those which are unique for documents, such as the beginning and end
data of the class. To find these repetitions the sequences of words are used.

3.5.2 Motivation

For formal documents such as invoices, business memos and mail the data
is bound to contain some unique common words. These formal documents
contain some unique sequence of data, be it by starting with some header
containing e.g. corporation name, ending with some typical footer or even
some unique word-sequence in the middle. Therefore, the information about
these sequences of words need to be encoded in the feature representation.

Another possible approach would be to use the lengths of a classes doc-
uments. This approach is not useful in this scenario, as invoices of specific
classes can vary greatly in lengths.

3.5.3 Relational Feature Representation

A sequence of words can be represented by the relations the words have to
each other. As an example, take case where a word sequence is ”Lorem
ipsum dolor”. ”Lorem” only has a right relation with the two other words,
while ”ipsum” has a left relation with ”Lorem” and a right relation with
”dolor”, and ”dolor” only has left relations with the other two words. The
bi-gram feature representation, discussed in section 2.2.1, can be used to
represent this if it is generated with the specific relation-sequences in mind.
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Chow et al. (2009) have successfully implemented a relational feature rep-
resentation, by generating a graph representation of the relations between
the words in the document. The following feature representation uses the
ideas of the bi-gram and the representation created by Chow et al. (2009).

Let W = w1, w2, . . . , wn denote the words of a subsequence of pages.
The function γ(W ) transforms the the words W into a sequence S upon a
certain sort criteria. This sort function can be based upon any criteria such
as the vertical and/or horizontal position of the words on a document. The
sequence S is then transformed into a graph-based feature representation
G = (V,E, φ, θ) as described in Section 2.2.2. Instead of using the graph G,
the adjacency matrix Fdirection is used. direction denotes which sequential
direction is used from the graph G, which is either left or right. An example
of this feature matrix is displayed in Figure 3.5.3.

W = {Ipsum,Dolor, Lorem, Ipsum}

S = γ(T ) = {Lorem, Ipsum,Dolor, Ipsum}

Fright =


Lorem Ipsum Dolor

Lorem 0 2 1
Ipsum 0 1 1
Dolor 0 1 0



Fleft =


Lorem Ipsum Dolor

Lorem 0 0 0
Ipsum 2 1 1
Dolor 1 1 0


Figure 3.2: An example of how two feature representations of a document
with the words W can be created. The function γ uses a left-to-right sort
criteria. Fright is a feature matrix based on a right-relational criteria, and
Fleft is based on a left-relational criteria.

The feature representation will most likely contain a lot of zeroes when
represented by a matrix. This is something that the authors Chow et al.
(2009) argue results in a poor performance. Chow et al. (2009) incorporated
a principal component analysis to remove what they perceived to be unnec-
essary information. This will not be the case for the feature representation
used by the FS algorithm, because the zeroes are quite vital. The zeroes,
and also low values, signal unique sequential words, which was previously
argued to be vital to discover multiple documents.

3.5.4 Validity Estimation

The validity estimation function assesses if a subseqeunce of pages contains
valid sequences of words. Valid sequences of words exist if a subsequence of
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pages does not contain repetitions of a classes unique sequences of words.
This assessment is performed by measuring the similarity between the subse-
quence of pages feature matrix with the classes feature matrix. The validity
estimation function V (P ) is calculated according to Equation 3.6.

V (P ) = S(α(P ), DCM)) (3.6)

Here, α(P ) denotes the feature matrix for a subsequence of pages P .
DCM denotes the feature matrix for the class, henceforth known as the doc-
ument class model. The similarity measure and the document class model
is described in the following sections.

3.5.5 Similarity Measure

The similarity measure used by the validity estimator uses concepts from the
previously presented similarity measures from section 2.5. S(x, y) denotes
the similarity between the feature matrix x and y. This thesis evaluates two
similarity measures which are called the simple similarity measure and the
smoothed similarity measure.

Simple Similarity Measure

The simple similarity measure is based on the same principles as described
in the SMTP-measure, from Section 2.5. If both representations have the
presence, i.e. a value greater than zero, of a shared feature the similarity
increases. Similarly if both representations contain the absence of the same
feature this further indicates an increased similarity. If one of the represen-
tations contain features which the other does not this indicates a decrease
in similarity. The resulting similarity measure is found in Equation 3.7.

S(x,y) =
∑

(i,j)∈F

Q(xi,j , yi,j) (3.7)

Q(xi,j , yi,j) =


1 if xi,j = 0, yi,j = 0

1 if xi,j > 0, yi,j > 0

−1 otherwise

Note that xi and yi are the values the representations have for feature i.
The set of features which is being compared is denoted by F .

Smoothed Similarity Measure

Sometimes an increased difference between the magnitude of features indi-
cates a decreased similarity between two objects. The SMTP-measure han-
dled this situation by calculating a score based upon the presence-abscence
of features, and the difference in magnitude. This measure is presented in
Equation 3.8.
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S(x,y) =
∑

(i,j)∈F

Q(xi,j , yi,j) (3.8)

Q(xi,j , yi,j) =


1 if xi,j = 0, yi,j = 0

1
|xi,j−yi,j |+1 if xi,j > 0, yi,j > 0

−1 otherwise

3.5.6 Document Class Model

The document class model is the feature matrix for a class. The classes
training data is used to generate this feature matrix. Two methods for
generating the document class model are evaluated in this thesis, the sim-
ple document model (SDM) and the unique shared words document model
(USWDM).

Simple Document Model

A naive approach is to assume that one training example is enough, i.e.
assuming that a class is homogeneous. This may be enough to generate a
practically feasible document model when using invoices as documents. To
generate the model simply take one document from the training data of the
class and create the feature matrix based solely upon this.

Unique Shared Words Document Model

Another approach is to try and capture the fundamental structure of a class.
This is achieved by using only the shared words of the training examples.
These words exist in all documents, and the important sequences of words
are most likely found here. These words are extracted and used to create
the feature matrix.

Sometimes documents from a class will vary slightly between each other.
Such variations will exist on some portion of the training examples. This
may improve the accuracy, and as such is also evaluated. These two doc-
ument models are referred to as Unique Shared Words Document Model
(USWDM) and 2/3 Unique Shared Words Document Model (2/3-USWDM),
where 2/3 denotes the required portion of training examples to contain a
unique word.

3.5.7 Separation Algorithm

Given a class-separation the fine algorithm builds the document class model,
denoted DCM , as explained in subsection 3.5.6. The pages of a class-
separation is denoted D = {d1, d2, . . . , dn}, and Dc:b = {dc, . . . , db} denotes
a subsequence of pages from dc to db, where 1 ≤ c < b ≤ n. The function to
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find the separation points is defined as a recursive function Rj as shown in
Equation 3.9.

Rj =

{
0 if j = 0

max
i<j

(Ri + V (D(i+1):j)) otherwise
(3.9)

Rj calculates the best separation points up until index j in the sequence
D. The best separations are the ones which achieve the highest similarity
value from S(x, y). To get the best separations for the class-separation
simply calculate Rn and keep track of the selected separations.

3.5.8 Analysis & Limitations

The resulting FS algorithm is an exponential algorithm, with a time com-
plexity of O(m2n) where n is the number of pages in a class-separation and
m is the number of class-separations in a batch. The performance of the al-
gorithm can be increased by caching and reusing the results of the similarity
for subsequences, but this leads to an increase in the memory complexity of
O(2p) where p is the amount of pages in a class separation.

The feature representation is built upon the premise that instances of
documents can be identified with the help of sequences of the words. This
may not always be true, e.g. in cases where news articles or heterogeneous
classes are used.

The document class model may not contain some words or features if the
USWDM or 2/3-USWDM is used. This may increase the accuracy because
the dropped information may not be useful in separating instances. Some
information which might be dropped include OCR errors and other word-
noise which can exist, but there may be instances when vital information
might be dropped and may in result negatively affect the separation.

3.6 Classification System

Both the SS algorithm, described in Section 3.2, and the RS algorithm,
described in Section 3.4, use a classification system. The classification sys-
tem which was used in the implementations of both these algorithms was
provided by ReadSoft. This system is a proprietary software developed by
experts at ReadSoft, and as such will not be disclosed here. The classifica-
tion system is successfully used by their clients worldwide.

The implementations of both these algorithms are independent of this
proprietary system. Any other classification platform could be used instead,
as long as it produces the expected results by the algorithms. The SS al-
gorithm requires the classification system to return the class label together
with the probability, while the RS algorithm only requires the class label.



Chapter 4

Experiments

In this chapter the experiments of the statistical- and rough & fine separa-
tion algorithm are presented. The following sections describe the metrics,
datasets and methods which where used to evaluate the performance of the
two document separation algorithms.

4.1 Metrics

The following section presents the metrics which where used to evaluate the
performance of the algorithms.

4.1.1 Batch Separation Accuracy

The purpose of the algorithms is to find every document in a batch, or
in other words, find all the separation points. The obvious performance
metric for evaluating the algorithms is batch separation accuracy (BSA).
This metric can simply be calculated by the fraction between the number of
correctly separated batches and the number of batches, as shown in Equation
4.1.

BSA =
# Correctly Separated Batches

# Batches in dataset
(4.1)

This metric gives a good general performance overview of an algorithm,
but it doesn’t provide much else. Therefore the following three comple-
mentary metrics were also used to provide a more complete performance
evaluation.

4.1.2 Batch over- and under-Separation Rate

The batch over-separation rate (BOSR) and the batch under-separation rate
(BUSR) provide an insight to what went wrong on the incorrectly separated
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batches. If an incorrectly separated batch contains more separation points
then required it is regarded as an over-separation, and vice-versa, an incor-
rectly separated batch which contains fewer separations points then required
is regarded as an under-separated batch. The rates are calculated by the
fraction of over- or under-separations and the number of batches in the
dataset, as shown in Equation 4.2 and 4.3.

BOSR =
# Over-separated batches

# Batches
(4.2)

BUSR =
# Under-separated batches

# Batches
(4.3)

4.1.3 Intra-Batch Separation Accuracy

The intra-batch separation accuracy (IBSA) adds an additional aspect to
the BSA. Sometimes a batch may be correctly separated except for one
separation. This results in a wrongly separated batch, but the algorithm
actually separated many documents successfully. This is useful because
sometimes a batch may contain bad pages or documents, rendering the batch
inseparable and in results indicating that an algorithm is performing poorly,
when it may in fact be okay. The IBSA is calculated by the fraction between
number of correct separations and number of possible separations, as shown
in Equation 4.4.

IBSA =
# correctly separated documents

# documents
(4.4)

4.2 Data

The data which was used in the experiments was provided by ReadSoft.
The data came in three suites, or datasets. These datasets are described
in in the subsection below. The material contained 1143 OCR:ed 1 invoice
documents spread over 377 different classes. The Figure 4.1 visualizes the
spread of these documents over the classes. The data did not contain any
prepared batches. This allows a ground truth for the comparison. The
method used to generate batches and training data from a dataset is unique
for the three different experiments. As such, the method used to generate
the batches is presented in their corresponding section.

As the Figure 4.1 shows there were very few examples per class. Gener-
ally this is too few examples to properly train a machine learning algorithm,
but in this case it is good enough. This is in part because the classes were
internally very homogeneous.

1Optical Character Recognition is the processes of extracting the machine-encoded
text from an image of the text.
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Figure 4.1: A histogram showing the number of examples every class has in
the dataset All.
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Figure 4.2: A histogram showing the number of pages the documents contain
in the dataset All.
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4.2.1 Datasets

The data which was received came in three datasets. These different datasets
where used individually and also combined during experimentation, in an
attempt to evaluate different scenarios. These datasets provided realistic
scenarios as they originated from realistic environments.

The first dataset contained invoices in the languages German and Dutch,
and was therefore called Foreign Invoices (F). The second and third dataset
contained invoices which were in Swedish. These two datasets were called
Swedish Invoices Small (SI-Small) and Swedish Invoices Large (SI-Large),
where small and large indicate the size of the datasets.

A fourth dataset was created from a subset of the previous three datasets,
which was called ClassDocsSequence (CDS). This dataset was created with
the only intention of evaluating the fine separation algorithm. The spread
and size of these datasets is shown in Figure 4.3 and 4.4. All four datasets
were also combined into a dataset called All.
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Figure 4.3: A histogram showing the number of examples per class has for
the different datasets.



CHAPTER 4. EXPERIMENTS 33

1 2 3 4 5 6 7 8 9 11 15 16 18 22

CDS 60 10 4 1 2 2 0 0 0 1 0 0 0 0

FI 29 21 8 6 3 2 1 0 1 1 0 0 0 0

SI-Small 82 0 0 0 0 0 0 0 0 0 0 0 0 0

SI-Large 711 191 33 24 7 5 5 3 2 1 1 3 1 2

0

100

200

300

400

500

600

700

800

N
u

m
b

er
o

f 
d

o
cu

m
en

ts
Length of documents

Figure 4.4: A histogram showing the length, in number of pages, of the
documents in the different datasets.

As can be seen from Figures 4.3 and 4.3 the SI-Large dataset contained
330 classes and the majority of all documents. The CDS dataset only con-
tained classes with more then 3 examples per class. SI-Small only contained
documents of one page length and FI contained the most varied documents.

4.2.2 Classification Accuracy

The RS and SS algorithms both utilized the provided proprietary classifica-
tion platform. The performance of the separation algorithms depend on the
classification algorithm being able to accurately classify data. The classifi-
cation accuracy of the datasets can also indicate if the data is problematic
and difficult. The classification accuracy for the datasets can be found in
Table 4.1.

Dataset Classification
Accuracy

All 93,55%
Foreign Invoice 84,62%
Swedish Invoices 97,78%
Swedish Invoices Few 93,78%
ClassDocsSequenced 93,02%

Table 4.1: A table containing the classification accuracy for every dataset.
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4.3 Baseline Algorithm

The baseline algorithm was created both to justify the increased complexity
of the two separation algorithms and to be used as a minimum requirement
on the performance.

The algorithm is a trivial and naive approach towards solving the sepa-
ration problem. The algorithm regards every page as a new document, and
it simply adds a separation point after every page. The scope of this thesis
is to evaluate algorithms for separating invoices, and it is not uncommon
that invoice documents are one page.

The RFS and SS algorithms implement concepts and techniques to learn
where to separate the batches. Both algorithms should achieve a better
performance then the baseline algorithm. If they do not achieve a better
performance this can be an indicator that something is wrong with the ideas
or implementations of the statistical- and R&F separation algorithms. This
could also be an indication that the two algorithms are too complex and as
a result they are under- or overfitting.

The material which was used to evaluate the algorithms contained a
majority of one-paged documents, which is shown in the Figure 4.2. From
this figure we can estimate the probability of receiving a one-paged document
to be 71,96%. As such, the baseline algorithm should achieve an IBSA of
71,96%. The minimum IBSA requirement is therefore 71,96%, if either of
the two separation algorithms should be deemed useful.

4.4 Experimentation Method

The RFS, SS and baseline algorithm were implemented using C# and the
.NET framework. The datasets did not contain any predefined batches. As
such, the used batches were generated in each experiment. Three different
experiments were performed and in all of them the baseline algorithm was
used and compared with.

4.4.1 Rough Separation Experiments

The purpose of the RS algorithm is to perform a class-based separation of a
batch. As such the algorithm will only be able to find the correct separation
points of a batches where no documents of the same class are located after
one another. To correctly isolate and evaluate the RS algorithm, batches
have to be generated which conform to this logic.

The generation of the batches and the training data from a given dataset
was done with the help of a holdout method. The dataset was split in
half, where one half of the documents was used as training material while
the other half was used when generating batches. The batches were then
generated by first randomizing the size of the batch and then randomly
adding documents from the test-half of the documents. This was done until
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all test-documents were added to a batch. The training data was used to
train the classification platform. The size of the batches were between two
and five documents. The evaluation of the rough separation algorithm is
performed over the datasets FI, SI-Small and SI-Large.

4.4.2 Fine Separation Experiments

The purpose of the FS algorithm is to find separation points between se-
quenced documents of the same class. The fine separation algorithm only
separates sequences of pages which have been pre-separated by class. To cor-
rectly isolate and evaluate the FS algorithm, batches have to be generated
which adhere to this logic.

The generation of batches was performed in the same way as for the RS
algorithm. A holdout method was used to split the dataset into a training-
half and a test-half. The batches were then created class wise, where a
batch contained all the test-examples of each class, in a sequence. To create
batches which were usable, only classes which contain more then one test-
examples was used. The only dataset which entirely conforms to this is the
CDS-dataset, as seen in Figure 4.3, which is also the only dataset used to
evaluate the fine separation algorithm.

4.4.3 Final Separation Experiments

The best RFS algorithm was compared against the SS algorithm from Gordo
et al. (2013) as well as the baseline algorithm. The comparison was done
over the four datasets FI, SI-Small, SI-Large and finally All. The generation
of batches was done with the help of randomization functions and a hold-
out strategy. Half of the documents in the used dataset was set to training
documents, and the other half was set as test documents. To generate the
batches a randomization function was used to generate batches of varying
sizes with random documents from the test documents. The sizes of the
batches varied between two and five documents per batch and every docu-
ment was only used once. All three algorithms were evaluated on the same
generated training and test data for every dataset.



Chapter 5

Results

This chapter first presents the results of the isolated rough separation and
fine separation experiments. The chapter then concludes with the results
from the final experiments with the rough & fine separation, statistical sep-
aration and baseline algorithms.

5.1 Rough Separation Experiment Results

The rough separation experiments only investigated the performance of the
RS algorithm. These experiments were performed over three datasets, and
was compared against the baseline algorithm.

The RS algorithm outperformed the baseline algorithm on both BSA
and IBSA, over all datasets. As can be seen in Figure 5.1 and 5.2, the RS
algorithm achieved a BSA of 86.94%, with an IBSA of 95.6%, on the largest
dataset available. When wrong separations occured, the RS algorithm only
overseparated the batches, as seen in Figure 5.3 and 5.4.
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RS Baseline
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SI-Large 86.94% 39.64%
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Figure 5.1: A comparison of the BSA of only the RS algorithm with the
baseline over three datasets.
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Figure 5.2: A comparison of the IBSA of only the RS algorithm with the
baseline over three datasets.
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RS Baseline
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Figure 5.3: A comparison of the BOSR of only the RS algorithm with the
baseline over three datasets.
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Figure 5.4: A comparison of the BUSR of only the RS algorithm with the
baseline over three datasets.
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5.2 Fine Separation Experiment Results

The fine separation experiments were only performed on the FS algorithm
in isolation, and in comparison with the baseline algorithm. These experi-
ments were done to examine the impact of different feature representations,
document models and similarity measures.

From Figures 5.5 and 5.6 it is discernible that the FS algorithm at its
best variant only achieves a similar accuracy as the baseline algorithm. Both
algorithms manage to achieve a BSA of 71,43% and an IBSA of 79,07%.

The Figures 5.7 and 5.8 show that the FS algorithm only performs under-
separations of batches when using the SDM, achieving a BUSR of 42.86%.
When using either the USWD or 2/3-USDWM the FS algorithm only tends
to perform underseparations, with a BUSR of 21.43% compared to a BOSR
of 7.14%.

The best variants of the FS algorithm used any of the feature represen-
tations, the USWDM and the smoothed similarity measure. The feature
representation which was used in the final experiments was right-relations.
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Figure 5.5: A comparison of the BSA for the different feature representa-
tions, similarity functions and document models over the CDS dataset.
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Figure 5.6: A comparison of the IBSA for the different feature representa-
tions, similarity functions and document models over the CDS dataset.
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Figure 5.8: A comparison of the BUSR for the different feature representa-
tions, similarity functions and document models over the CDS dataset.
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Figure 5.7: A comparison of the BOSR for the different feature representa-
tions, similarity functions and document models over the CDS dataset.

5.3 Final Experiment Results

The final experiments were performed with the best variant of the RFS
algorithm, the SS algorithm derived by Gordo et al. (2013) and the baseline
algorithm. These experiments were done over the four datasets FI, SI-Small,
SI-Large and All.

From Figures 5.9 and 5.10 it is clear that the RFS algorithm outper-
formed the other two algorithms in terms of accuracy. The RFS algorithm
almost achieved twice as high BSA over the SI-Large, FI and All datasets,
with an accuracy of 71.03% on All. The differences in IBSA were smaller,
but the RFS algorithm beat the other algorithms on all datasets, with an
accuracy of 88.43% on All. The only algorithm which managed to perform
underseparations on a batch was the SS algorithm.

It is noteworthy that the SS algorithm only managed to perform equally
well as the baseline algorithm. The only instance which the SS algorithm
outperformed the baseline algorithm was on IBSA over the FI dataset, where
it achieved an accuracy of 71.79% compared to 46.15%.
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Figure 5.9: A comparison of the BSA for the algorithms over all the datasets.

72.01%

88.43%

72.01%

71.79%
74.36%

46.15%

95.56%
100.00% 100.00%

71.47%

88.47%

71.62%

S S R F S B A S E L I N E

INTRA-BATCH SEPARATION ACCURACY

All FI SI-Small SI-Large

Figure 5.10: A comparison of the IBSA for the algorithms over all the
datasets.
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Figure 5.11: A comparison of the BOSR for the algorithms over all the
datasets.

0.00% 0.00% 0.00%

0.00% 0.00% 0.00%

7.14%

0.00% 0.00%

0.00% 0.00% 0.00%

S S R F S B A S E L I N E

BATCH UNDER-SEPARATION RATE

All FI SI-Small SI-Large

Figure 5.12: A comparison of the BUSR for the algorithms over all the
datasets.



Chapter 6

Discussion and Conclusion

This chapter briefly discusses the results of the experiments, continuing with
a conclusion of the thesis and finally presents potential improvements and
future work.

6.1 Discussion

The RFS algorithm achieved an intra-batch separation accuracy of 88.43%
over all test data available. Compared to the SS algorithm, which achieved
an accuracy of 72.01% and also a worse performance on the other metrics.
It is therefore clear that the RFS algorithm is the stronger choice. The final
variant of the FS algorithm used the right-relation feature representation,
the USWDM and the smoothed similarity measure.

6.1.1 Results

It is clear from the results that the RFS algorithm was the most successful
separation algorithm. While it achieved substantially higher BSA than the
alternatives, it still lagged behind its IBSA in absolute terms. A reason for
this may be that even though the algorithm has a high IBSA, the incorrect
separations get spread over the multiple batches causing the batches to
become incorrectly separated.

The FS algorithm achieved atleast a 20% BUSR regardless of the fea-
ture representation, similarity measure or document model it used. The
FS algorithm still achieves equal accuracy as the baseline algorithm, but
the algorithms differ in the BOSR and BUSR. This implies that the algo-
rithms achieve equally many document separations but in different instances.
Given that baseline only separates on every page, the FS algorithm success-
fully separates the less common but more interesting case of multi-paged
documents in a sequence. This is proof that the fine separation algorithm
actually works.

44
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From the fine separation experiments it is clear that the type of simi-
larity measure and document class model had impact on the performance
of the algorithm. The best performance was achieved with the USWDM.
This document class model only selects the features which are common on
all training examples, which is a feature selection technique. This result
indicates that the FS algorithm could be further improved by finer feature
selection techniques. The smoothed similarity measure resulted in a better
performance when using the USWDM. The key element of the smoothed
similarity measure was that it provided a varying similarity score based on
the difference in factor of two features. This indicates that a more sen-
sitive and finer similarity measure may further increase the performance.
The improvement of the fine separation algorithm is further discussed in
the improvements section below.

All algorithms performed notably worse on the FI-dataset. The classifi-
cation accuracy of the FI dataset, seen in Table 4.1, was 84.62% which is also
notably lower then the accuracy of the other datasets. This indicates that
the dataset may contain problematic and difficult documents and classes.
As such, the resulting performance drop for the document separation algo-
rithms is not unexpected.

As the experiments showed, the SS algorithm was at best only equally
good with the baseline algorithm. The SS performed worse then the baseline
on the SI-Small dataset, where it had some under-separations. This indi-
cates that something may be wrong wrong with the statistical separation
algorithm. This issue was not further investigated , but the problem could
be explained by the few examples, as described in the subsection below.
Otherwise, this could indicate that either the implementation was faulty or
that the algorithm was under- or overfitting.

6.1.2 Method

The data which was used in the experiments contained very few training
examples for every class, and as such it is almost expected that a statistical
algorithm should perform poorly. The SS algorithm requires a larger sample
size if it is to estimate the two probability distributions correctly, which was
not the case in this scenario. It should be noted that the SS algorithm
uses the same classification system as the RFS algorithm to estimate the
probability that a given sequence of pages belongs to a class. As such,
this factor is not as affected by the fewer training samples. On the other
hand, it can be argued that the used data is realistic. In many practical
applications it is very hard to find a larger set of training examples, and as
such performing relatively well with as little information as possible can be
a requirement.
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6.1.3 Practical Applications

It is difficult to conclude if the RFS algorithm is usable in practice. The
reason is that it is going to be extremely difficult, costly or even impossi-
ble to overcome the inherent error which exists in a document separation
algorithm. One factor which effects the inherent error is the classification
accuracy, which is not 100%. The answer is really based upon what error
rate is allowed in the application. Take a bank which handles invoices for its
customer as an example. It is vital for the entire business that these invoices
are handled in time, as people will loose money otherwise. In this instance,
it is definitively not acceptable that a portion of invoices are incorrectly
separated and possibly misplaced. On the other hand, in a small company
using a digital mailroom to sort and distribute documents to departments
internally this could be acceptable. It could be okay as it can be easy to
re-place these documents and the consequences are not as expensive. This
inherent error rate in document separation algorithms creates a possibility
for further improvement, discussed in the improvements section below.

6.2 Conclusion

With the help of feature representations, similarity measures and classifi-
cation algorithms a document separation algorithm was derived, called the
rough & fine separation algorithm. This algorithm was compared against an
existing solution, called the statistical separation algorithm. The rough &
fine separation algorithm achieved a batch separation accuracy of 71,03%,
with an intra-batch separation accuracy of 88,43%. The statistical separa-
tion algorithm managed to achieve 39,68%, with an intra-batch separation
accuracy of 72,01%. From these metrics it is clear that the rough & fine sep-
aration algorithm is the more successful algorithm. The experiments were
performed with invoices and datasets which did not contain large amounts
of data, but they simulated realistic scenarios. The batch separation- and
intra-batch separation accuracy of the R&F separation algorithm indicates
that it could potentially be usable in practice, depending on the application
and domain.

6.3 Improvements & Further Research

This section contains suggestions for potential improvements for the algo-
rithms. These ideas were discovered during the work on this thesis but were
outside the initial scope.

6.3.1 Degree of Uncertainty

The inherent error rate which exists in the document separation algorithms
could be overcome by attaching a degree of uncertainty to a separation.
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This is a method which is implemented in the classification system to allow
human operators to intervene and help the machine when it becomes unsure,
and as such it avoids some of the classification errors which can occur, such
as a new class of documents.

This same method could be implemented in the document separation
algorithms to overcome some separation errors, such as trying to separate a
sequence of pages which belong to a class which has not been learnt yet. A
successful implementation of a degree of uncertainty could render document
separation algorithm more useful in practical applications.

6.3.2 Rough Separation Clustering

The clustering algorithm created by Collins-Thompson and Nickolov (2002)
can overcome a common issue with certain documents. Some documents
contain pages which are completely unrelated to a class, e.g. a page con-
taining an image or an appendix of tables. The RFS algorithm would be
unable to separate a batch with these documents, because it requires every
page to be similar to the class it belongs too.

Their clustering algorithm incorporates a two-step clustering approach,
where the first step clusters pages which clearly belong together. The second
step looks at the remaining pages which do not seem to belong to any
class, and tries to place them in their appropriate cluster. This allows the
clustering separation algorithm to handle documents where some pages are
completely unrelated to the class. This exact technique could potentially be
incorporated in the rough separation algorithm, allowing it to handle these
documents and as such achieve a higher batch separation accuracy.

6.3.3 Improved Fine Separation

As it was argued in the discussion, their is potential for improvements of
the fine separation algorithm. The results indicate that feature selection
techniques improved the accuracy of the algorithm, and as such it would be
interesting to see if further development leads to better accuracy. Documents
contains a lot of words which are so common that they are likely to not be
part of the vital unique sequences of words, and may even be detrimental
to the separation. These words could be removed by filtering inverted stop-
words, which is discussed in Section 2.3. Other feature selection techniques
such as stemming could also prove to be effective.

Furthermore, there were indications that an improved similarity measure
can lead to a better accuracy. This could be investigated by developing a
finer similarity measure or by using the SMTP, described in Section 2.5.
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