
Institutionen för datavetenskap
Department of Computer and Information Science

Master’s Thesis

A Comparison of Katz-eig and Link-analysis for
Implicit Feedback Recommender Systems

Jonas Hietala

LIU-IDA/LITH-EX-A–15/026–SE
Linköping 2015

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Institutionen för datavetenskap
Department of Computer and Information Science

Master’s Thesis

A Comparison of Katz-eig and Link-analysis for
Implicit Feedback Recommender Systems

Jonas Hietala

LIU-IDA/LITH-EX-A–15/026–SE
Linköping 2015

Supervisor: Mattias Tiger
IDA, Linköpings universitet

Niklas Ekvall
Comordo Technologies

Examiner: Fredrik Heintz
IDA, Linköpings universitet

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Avdelning, Institution
Division, Department

AIICS
Department of Computer and Information Science
SE-581 83 Linköping

Datum
Date

2015-06-10

Språk
Language

� Svenska/Swedish

� Engelska/English

�

�

Rapporttyp
Report category

� Licentiatavhandling

� Examensarbete

� C-uppsats

� D-uppsats

� Övrig rapport

�

�

URL för elektronisk version

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119169

ISBN
—

ISRN
LIU-IDA/LITH-EX-A–15/026–SE

Serietitel och serienummer
Title of series, numbering

ISSN
—

Titel
Title

En jämförelse av Katz-eig och Link-analysis för rekommendationssystem med implicit återkoppling

A Comparison of Katz-eig and Link-analysis for Implicit Feedback Recommender Systems

Författare
Author

Jonas Hietala

Sammanfattning
Abstract

Recommendations are becoming more and more important in a world where there is an abundance of
possible choices and e-commerce and content providers are featuring recommendations prominently.
Recommendations based on explicit feedback, where user is giving feedback for example with ratings,
has been a popular research subject. Implicit feedback recommender systems which passively collects
information about the users is an area growing in interest. It makes it possible to generate recommen-
dations based purely from a user’s interactions history without requiring any explicit input from the
users, which is commercially useful for a wide area of businesses. This thesis builds a recommender
system based on implicit feedback using the recommendation algorithms katz-eig and link-analysis
and analyzes and implements strategies for learning optimized parameters for different datasets. The
resulting system forms the foundation for Comordo Technologies’ commercial recommender system.

Nyckelord
Keywords katz-eig, link analysis, recommendations, machine learning

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119169

Abstract
Recommendations are becoming more and more important in a world where there is an
abundance of possible choices and e-commerce and content providers are featuring rec-
ommendations prominently. Recommendations based on explicit feedback, where user is
giving feedback for example with ratings, has been a popular research subject. Implicit
feedback recommender systems which passively collects information about the users is
an area growing in interest. It makes it possible to generate recommendations based
purely from a user’s interactions history without requiring any explicit input from the
users, which is commercially useful for a wide area of businesses. This thesis builds a
recommender system based on implicit feedback using the recommendation algorithms
katz-eig and link-analysis and analyzes and implements strategies for learning optimized
parameters for different datasets. The resulting system forms the foundation for Comordo
Technologies’ commercial recommender system.

iii

Acknowledgments
All thanks to Veronica who has been a pillar and a saint during these laborous times. Also
big thanks to my supervisor Mattias Tiger who helped me write this thesis and to Niklas
Ekwall and Comordo Technologies for support and for giving me the opportunity for this
thesis work. Also thanks to my friend and opponent James Li who helped me improve
my work.

Linköping, June 2015
Jonas Hietala

v

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Problem definition . 2

1.2.1 Guiding questions . 3
1.3 Limitations . 3
1.4 Contributions . 3
1.5 Outline of the report . 4

2 Background 5
2.1 Recommendation theory . 5

2.1.1 Recommendation model . 6
2.1.2 Recommendation prediction 7
2.1.3 The katz-eig algorithm . 8
2.1.4 The link-analysis algorithm 11

2.2 Machine learning . 16
2.2.1 Supervised learning . 16
2.2.2 Unsupervised learning . 17
2.2.3 Evaluation . 17

2.3 Optimization . 19

3 Related work 21

4 The Comordo recommender system 23
4.1 Comordo . 23
4.2 System development task . 24

4.2.1 Use case . 25
4.3 Development methodology . 25

4.3.1 Programming languages . 25
4.4 Evaluation . 26
4.5 System overview . 26

4.5.1 Reader module . 27
4.5.2 Recommender module . 29
4.5.3 Exporter module . 29

vii

viii Contents

5 Data 31
5.1 Description of the datasets . 31
5.2 Number of interactions . 34
5.3 Clusters . 39

5.3.1 Compactness using k-means 39
5.3.2 Connectivity using Spectral Clustering 43

6 Parameter tuning 49
6.1 Training curves . 49

6.1.1 katz-eig . 50
6.1.2 link-analysis . 51

6.2 Learning curves . 52
6.3 Parameter space analysis . 54

6.3.1 katz-eig . 54
6.3.2 link-analysis . 57

6.4 Optimized parameters . 61
6.5 Algorithm comparison . 62

6.5.1 katz-eig . 62
6.5.2 link-analysis . 65
6.5.3 Result . 67

7 Discussion 71
7.1 Recommender systems . 71

7.1.1 Future work . 72
7.2 Datasets . 73
7.3 Evaluation . 74
7.4 Parameter tuning . 75

7.4.1 Parameters of katz-eig . 75
7.4.2 Parameters of link-analysis . 76
7.4.3 Future work . 77

8 Conclusions 79

A Code 83
A.1 ESWC reader plugin . 83

Bibliography 85

1
Introduction

The introduction chapter presents the purpose and the goals of the thesis, what questions
the thesis aims to answer, the limitations of the thesis and the contributions of this thesis.
An outline of the thesis concludes the chapter.

1.1 Introduction

Being able to make choices, of any kind, has always been an important skill and perhaps
it is more important now than ever before. It is hard to choose what products to buy,
what music to listen to, what posts to read and what videos to watch as there are so
many choices but a limited amount of time. In Youtube alone over 300 hours of video is
uploaded every minute 1.

This is why content providers and e-commerce are using recommendations, where items
believed to appeal to the consumer are presented more prominently on the sites. Rec-
ommendations have become an important part of their business and companies such as
Netflix are investing heavily into making their recommendations better 2 3.

A common practice among e-commerce is to produce related recommendations where
items are linked to related, similar, items. Another type is personal recommendations
where items are recommended specifically for a single user given their interaction history.

There are simple algorithms to produce these recommendations, like recommending the
most popular or the most watched movies. They are fast and easy to make but algorithms

1Youtube Statistics, 2015. http://www.youtube.com/yt/press/statistics.html
2Netflix: Recommendations beyond 5 stars (Part 1), 2012. http://techblog.netflix.com/2012/

04/netflix-recommendations-beyond-5-stars.html
3Netflix: Recommendations beyond 5 stars (Part 2), 2012. http://techblog.netflix.com/2012/

06/netflix-recommendations-beyond-5-stars.html

1

http://www.youtube.com/yt/press/statistics.html
http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html
http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html
http://techblog.netflix.com/2012/06/netflix-recommendations-beyond-5-stars.html
http://techblog.netflix.com/2012/06/netflix-recommendations-beyond-5-stars.html

2 1 Introduction

based on machine learning can produce more relevant recommendations. They work by
learning from the data and building a model used to make predictions. The drawback is
computational cost and complexity.

Explicit feedback recommender systems, which are concerned with ratings or other vol-
untary user feedback, have been researched extensively but implicit feedback, which pas-
sively collect information about the user, is not as extensively researched. [1, 2, 3]

This thesis examines the construction of a recommender system using implicit feedback
and the evaluation of two different recommender algorithms, link-analysis and katz-eig.
Both of the algorithms have their parameter space analysed and different optimization
strategies are evaluated using several different datasets. The recommender system is built
for Comordo Technologies as their core to later be built upon and extended.

1.2 Problem definition
The purpose of this thesis can be split in two larger parts. The first is to lay the foundation
of Comordo Technologies’ recommender system which could later be built upon and
extended. At the end of this thesis the goal is to have a recommendation system which
could load data supplied by Comordo’s clients, produce recommendations and store them
together with their recommendations in a database.

The second part is to analyze and create optimization strategies for katz-eig and link-
analysis which optimize the algorithm’s parameters for different datasets automatically.
Parameter optimization should be done in a reasonable amount of time so the system can
be commercially useful.

The recommendation algorithms depend on a couple of parameters which directly affects
the quality of the recommendations made and the parameter values are different depend-
ing on the dataset the recommendations are being made for. Recommendation quality, or
how good the recommendations are, is measured by the probability that a user interacts
with the recommendation given by the system in the future where only recommendations
to items not previously interacted with can be given. The goal of the optimization process
is to maximize this probability for a specific dataset.

Core parts of the recommendation algorithms katz-eig and link-analysis existed before
the thesis, but they were only runnable as Matlab scripts without any data handling and
they lacked parameter tuning. There were also some optimization issues with the imple-
mentations. Focus is not on porting them to a different language or platform, which could
improve them speed wise, but to adapt the existing code.

1.3 Limitations 3

1.2.1 Guiding questions

These are some questions the thesis aims to answer.

• How can a recommender system be designed to allow for easily extendible input-
and output handling?

• How can learning and recommendation using link-analysis and katz-eig be per-
formed in practice, with regards to speed and recommendation quality?

– How shall learning and optimization of their parameters be done?

To find an answer, an exploration of the function space of the parameters with
regards to the evaluation criteria might be necessary.

1.3 Limitations

Although the goal is to handle real world data, the data considered in the thesis is of a
limited size compared to the larger real world data. The implementations of the algorithms
are not optimized enough to handle the larger data in a reasonable amount of time and
under the memory limit of my machine4. It is possible to optimize the implementations
by rewriting them or porting them to another language but it is outside the scope of this
thesis.

This thesis focuses on implicit feedback systems with interaction history in unweighted
binary form (Eq 2.1) which is also the focus for Comordo. Explicit feedback like ratings
was not prioritized. Interactions in weighted form (Eq 2.5) might be interesting for Co-
mordo, but it is not considered in this thesis. The cold start problem [4] is not considered
in this thesis and no attempts are made to explain the recommendations.

Proprietary datasets used and code produced during the thesis will not be publicly released.
See section 5.1 for a description of used datasets.

The purpose is to lay a foundation for Comordo’s recommender system, but it does not
include the remote API or the admin web interface (see section 4.2).

1.4 Contributions

A first version of Comordo’s recommender system is built based around the recommender
algorithms katz-eig and link-analysis with parameter optimization and flexible input- and
output handling. The designed system can later be built upon and extended.

The parameter space over F-measure for katz-eig and link-analysis is analyzed for these
datasets. An effective parameter optimization strategy for katz-eig is to fix β and to opti-
mize K using a hill climbing algorithm. Similarly for link-analysis a good strategy is to
fix η and optimize γ using an adaptive hill climbing algorithm.

4The test setup is described in section 6.

4 1 Introduction

For sparse datasets link-analysis gives slightly better recommendations and for the other
datasets katz-eig gives better recommendations. Speed wise katz-eig is superior. As the
difference in recommendation quality for sparse datasets is so small katz-eig is the best
general choice as the recommendations are better for the other datasets and it is generally
much faster. The recommendations are better with datasets which have more interactions
and worse for sparse datasets.

1.5 Outline of the report
This thesis consists of two parts. The first part concerns the system development part
where a first version of Comordo’s recommender system is built. The second part con-
sists of an analysis of the parameter space and optimization strategies for the algorithms’
parameters. The system development part is concentrated to chapter 4 and the parameter
analysis to chapter 6.

Chapter 2 introduces the mathematical background for the thesis. The recommendation
model and the learning process along with the recommendation algorithms katz-eig
and link-analysis are presented.

Chapter 3 discusses work related to this thesis.

Chapter 4 covers the system development part of this thesis. Beginning with the given
system development task and then presenting the constructed recommender system.

Chapter 5 presents the datasets used by this thesis. Contains an analysis of the datasets
with respect to interactions and clusters.

Chapter 6 covers the parameter analysis and optimization. The chapter begins with an
analysis of the algorithms and the parameter space and finishes with a comparison
of different optimization techniques and a comparison between the algorithms.

Chapter 7 contains a discussion about the thesis and presents ideas for future work. Rec-
ommender systems in general and the one built are discussed. Then discussion
about the datasets, the evaluation method and finally parameter tuning follow.

Chapter 8 concludes with the conclusions of this thesis.

Appendix A presents the available source code. Only an example reader plugin is avail-
able.

2
Background

This chapter introduces the mathematical theory behind recommendations and the rec-
ommendation model used by this thesis. The recommendation algorithms katz-eig and
link-analysis are presented and a summary of machine learning follow which explains
supervised learning and the evaluation metrics used. A section about optimization tech-
niques finishes the chapter.

2.1 Recommendation theory

This section introduces the mathematical theory behind recommendations and it presents
the two recommendation algorithms katz-eig and link-analysis.

This is the basic process of producing recommendations:

1. Given an interaction history hu,i, u ∈ Users, i ∈ Items and algorithm specific
parameters the recommendation algorithm produce recommendations pu,i.

2. The recommendations pu,i, which are real values, are converted to binary recom-
mendations ru,i by selecting the N largest pu,i as ru,i = 1.

The process of parameter tuning used is as follows:

1. Split the interaction matrix A into a training set Atrain, a validation set Aval and a
test set Atest.

2. Evaluate different parameters by producing recommendations withAtrain and eval-
uating them against Aval or Atest with respect to F-measure.

3. Select the best performing parameters with respect to F-measure.

5

6 2 Background

2.1.1 Recommendation model

Given a set of users U , a set of items I and an interaction history hu,i, u ∈ U , i ∈ I given
in unweighted binary form

hu,i =

{
1 if user u has interacted with item i

0 otherwise
(2.1)

the recommender problem is defined by producing a set of recommendations ru,i

ru,i =

{
1 if item i is recommended to user u
0 otherwise

(2.2)

to maximize the probability that user u will want to interact with item i in the future,
for all users and items. When ru,i is binary this is a binary classification problem. This
definition is applicable for implicit feedback systems which passively track different sorts
of user behaviour. For example link following, interaction time and purchase history.

As an additional constraint (Eq 2.3) no recommendations can be made for items already
interacted with.

ru,i = 0 whenever hu,i = 1 ∀u, i (2.3)

It is sometimes notationally convenient to treat the interaction history as a matrix. The
whole interaction history hu,i will in matrix form be denoted by the interaction matrix
A = (hu,i), with each row representing each user and each column representing each
item. The underlying structure forms a bipartite graph with one set representing the users
and the other the items.

For example an interaction matrix

A =

(i1 i2 i3 i4

u1 1 0 1 0
u2 0 0 1 1

)
with 2 users and 4 items corresponds to the interaction history: h1,1 = 1, h1,3 = 1, h2,3 =
1 and h2,4 = 1. The recommendation set ru,i will be represented by the recommendation
matrix R = (ru,i).

Implementation wise the matrices are often stored in a sparse format which only stores
nonzero elements in memory. This can significantly speed up both computations and
storage usage, depending on the sparsity of the matrix. The sparse format lends itself
very well for interaction history in unweighted binary form (Eq 2.1) as the nonexistent
interactions are modeled as zero elements in the matrix.

2.1 Recommendation theory 7

The recommender problem can be extended to the Top-N recommender problem by intro-
ducing constraints (Eq 2.4) (for a binary classifier) which states that only N recommen-
dations can be presented for each user.

∑
i

ru,i ≤ N ∀u (2.4)

A variation of the recommender problem is when the interaction history is in weighted
form (Eq 2.5), when the values increase with each interaction

hu,i =

{
x user u has interacted x times with item i

0 otherwise
(2.5)

for example hu,i = 2 means that the user u has interacted with item i 2 times. It is
possible to allow implicit feedback systems to log partial interactions, so hu,i = 0.7 could
mean that user u has watched 70% of the movie i, in the context of movie watching. [1]

The converse of implicit feedback is explicit feedback where the users give direct input
regarding their preferences, for example with movie ratings or with likes and dislikes.
Here the definition of the interaction history hu,i is the users’ rating history (Eq 2.6).

hu,i =

{
x the rating user u gave item i

∅ if the user u did not rate item i
(2.6)

With ratings ru,i changes to ru,i = x̂ where x̂ is the rating user u is predicted to give item
i. This is also a classification problem, but the problem changes from assigning a binary
value to wanting to predict a rating value.

To transform datasets with the more common explicit feedback style of ratings to an
unweighted binary form a crude model (Eq 2.7) can be used.

hu,i =

{
1 user u has rated item i

0 otherwise
(2.7)

2.1.2 Recommendation prediction

The algorithms which produce binary classification recommendations produce predictions
for each user-item pair, denoted pu,i. Generally the higher the value of pu,i the more likely
is it that user uwill interact with item i. The predictions pu,i corresponds to the prediction
matrix P = (pu,i).

pu,i forms the bases for the recommendation set ru,i. To produce Top-N recommenda-
tions take the N largest puk,i ∀i for each user uk and set ruk,i = 1 for these N values. Set

8 2 Background

ruk,i = 0 for the rest. It is possible to set ru,i = 0 if pu,i ≤ ε, for some ε, to accommodate
for fewer than N recommendations.

In a classification context when the interaction history describes ratings the value cor-
responds to the predicted ratings user u would give i. The recommendations ru,i then
becomes the closest discrete rating value of pu,i. For example pu,i = 3.8 means a user u
is predicted to rate item i a 4, so ru,i = 4, given discrete ratings between 1 and 5.

Some algorithms also output a confidence value cu,i which denotes how certain the pre-
dicted values are. This is relevant when predicting ratings, for example pu,i = 4.0 may
seem like a surely predicted 4 rating but a low value of cu,i means we might not want to
recommend that item anyway.

2.1.3 The katz-eig algorithm

The katz-eig algorithm used is an adaptation [5] of a link prediction measure Katz [6].
Katz is defined as follows, ifA is the interaction matrix and the measure is used to produce
recommendation predictions

P =

∞∑
t=1

βtAt = (I − βA)−1 − I (2.8)

where I is the identity matrix. The intuition is that for each iteration t, one link in the
interaction graph defined by user-item pairs is traversed and propagated to introduce tran-
sitive connections in the graph. The parameter β ≤ ‖A‖2 represents the link dampening,
links far away adds a smaller weight than links closer to the initial node.

The problem with this definition is computational complexity, computing the Katz mea-
sure takes O

(
n3
)

time which is not practical for large matrices. This is why the Singular
Value Decomposition (SVD) is used.

A can be approximated by a rank k SVD so A ≈ U ∗S ∗V T . S is a k x k diagonal matrix
with the elements representing the k largest singular values. Then the Katz measure can
be approximated by

P =

∞∑
t=1

βtAt ≈
∞∑
t=1

βt(U ∗ S ∗ V T)t ≈ U

(∞∑
t=1

βtSt

)
V T (2.9)

Exponentiation is moved from the large interaction matrix A to the small k x k diagonal
matrix S which makes the iterative part of the algorithm very fast. Much of the informa-
tion about the matrix is still contained in U and V . The complexity of the algorithm is
now on calculating the SVD approximation.

2.1 Recommendation theory 9

Concretely the katz-eig algorithm follow these steps:

1. Construct U, S, V so U ∗ S ∗ V T forms a rank k SVD approximation of A. Let
S0 = S.

2. At each iteration t = 1, . . . , tmax perform:

(a) St = St−1 + βt ∗ Stt−1
Repeat until convergence.

3. The prediction matrix is given by P = U ∗ Stmax
∗ V T .

Runtime example

This is a runtime example for katz-eig using a simple interaction matrix (Eq 2.10), which
is the same matrix as in the example for link-analysis (see section 2.1.4).

A =


i1 i2 i3 i4

u1 0 1 0 1
u2 0 1 1 1
u3 1 0 1 0

 (2.10)

This example uses K = 2, β = 0.1 and is run for tmax = 3 iterations.

Firstly a rank 2 SVD approximation is created

U =

−0.5592 0.4472
−0.7805 0.0000
−0.2796 −0.8944

 , S =

(
2.1889 0

0 1.4142

)
, V =


−0.1277 −0.6325
−0.6120 0.3162
−0.4843 −0.6325
−0.6120 0.3162



U ∗ S ∗ V T =

−0.2436 0.9491 0.1928 0.9491
0.2182 1.0455 0.8273 1.0455
0.8782 −0.0254 1.0964 −0.0254

 ≈ A =

0 1 0 1
0 1 1 1
1 0 1 0


Notable here is that some valid recommendations could be made directly from the approx-
imation matrix. In fact for this example there would be no difference in recommendations
if tmax = 0 and the approximation matrix was used directly.

Intuitively a matrix approximation blurs together similar users and items. In a rank k
matrix approximation the value of k specifies the blurring degree, the higher k the more
of the original matrix will be retained.

10 2 Background

Initially S0 = S. Then St is calculated iteratively

S1 =

(
0.2189 0

0 0.1414

)
, S2 =

(
0.2668 0

0 0.1614

)
, S3 =

(
0.2773 0

0 0.1642

)
until convergence or as in our case tmax = 3. The recommendations are then given by

U ∗ S3 ∗ V T =


i1 i2 i3 i4

u1 −0.0266 0.1181 0.0286 0.1181
u2 0.0276 0.1324 0.1048 0.1324
u3 0.1028 0.0010 0.1305 0.0010


After removing the items users already have interacted with in A, the prediction matrix P
becomes

P =


i1 i2 i3 i4

u1 −0.0266 0 0.0286 0
u2 0.0276 0 0 0
u3 0 0.0010 0 0.0010


Figure 2.1 is a visualization of P displaying the single most recommended item for each
user.

Figure 2.1: A graph representing the most recommended item for each user. The
dotted lines represent the interaction history.

2.1 Recommendation theory 11

2.1.4 The link-analysis algorithm

The link-analysis algorithm is an adaption of a web page ranking algorithm HITS [7] to
the recommendation domain [8, 9].

The original algorithm distinguish between two types of web pages:

1. Authoritative pages which contain definite high quality information

2. Hub pages basically are lists of links to the authoritative pages

The authoritative score of a page is proportional to the hub scores linking to it. Similarly
the hub score of a page is proportional to the authoritative scores of the pages it is link-
ing to. These definitions are mutually reinforcing, good hub pages have links to many
authoritative pages and good authoritative pages have links from many hubs.

Adaptation to the recommendation domain is achieved by introducing the item represen-
tativeness score IR and the user representativeness score UR. The difference between
the recommendation domain and the web page ranking domain is that in the recommen-
dation domain the aim is to produce personal recommendations where as in the web page
domain generally popular pages are sought after.

The item representativeness score IR(i, u) can be seen as a measure of the item i’s level
of interest with respect to user u, or in other words i’s authority of u’s interests in i. This
is an analogy to the authoritative page score. Intuitively if it is a high score then the item
i can be recommended to user u.

The user representativeness score UR(u, û) measures how well u as a hub for û associates
with items of interests to û. This is analogous to the hub page score. Intuitively it is a
measure for how similar the users u and û are to each other.

A direct definition of the item and user representativeness scores is as follows where A is
the interaction matrix:

IR = AT ∗UR (2.11)

UR = A ∗ IR (2.12)

There are two inherent problems with these definitions. The first is if a user has interac-
tions with all items then that user will have the highest user representativeness UR for all
users, even though such a user provides little information. The second problem is that IR
and UR will converge to matrices with identical columns. This leads to item representa-
tiveness scores IR(i, u) which are independent of the user u chosen and depend only on
the item i. [8, 9]

To address these problems the user representativeness score is redefined [9] as

UR = B ∗ IR +UR0 (2.13)

12 2 Background

Where B is the normalization of the users A with respect to the total number of items the
user has interacted with

Bu,i =
Au,i

(
∑
iAu,i)

γ (2.14)

The effect of introducingB is that a user uwith more item interactions than another user û,
to get a high user representativeness score UR(u, û) the user u needs to have overlapping
purchases with û. The parameter γ controls the extent to which a user is penalized for
making many purchases.

UR0 is defined as a diagonal matrix with η on the diagonal. In other words UR0 = η∗IM
where IM is an M xM identity matrix and M is the number of users. It is included to
maintain the high representativeness score for the target users themselves, which prevents
IR and UR to converge to identical columns.

This also necessitates a normalization step of UR to keep the values on a consistent level,
otherwise numerical problems could occur when the values keep growing.

In summary the link-analysis algorithm follow these steps:

1. Construct the interaction matrix A and the associating matrix B.

2. Set UR0 = η ∗ IM .

3. At each iteration t = 1, . . . , tmax perform:

(a) IRt = AT ∗URt−1
(b) URt = B ∗ IRt
(c) Normalize URt so each column adds up to 1

(d) URt = URt +UR0

Repeat until convergence.

4. The predicted matrix is given by P = IRT .

2.1 Recommendation theory 13

Runtime example

This is a runtime example for link-analysis using a simple interaction matrix (Eq 2.15),
corresponding to the interaction graph figure 2.2.

A =


i1 i2 i3 i4

u1 0 1 0 1
u2 0 1 1 1
u3 1 0 1 0

 (2.15)

Figure 2.2: A graph representing the interaction history between each user and item,
describing the interaction matrix in (Eq 2.15).

The following example uses γ = 0.9 and η = 1.

B =


i1 i2 i3 i4

u1 0 0.5359 0 0.5359
u2 0 0.3720 0.3720 0.3720
u3 0.5359 0 0.5359 0

, UR0 =


u1 u2 u3

u1 1 0 0
u2 0 1 0
u3 0 0 1


During the iterations the rows of IR will be representing each item and each column will
be representing each user, this is the reverse of the interaction matrix A. The example
therefore presents the transpose of IR, IRT .

IRT1 =
(
AT ∗UR0

)T
=


i1 i2 i3 i4

u1 0 1 0 1
u2 0 1 1 1
u3 1 0 1 0



UR1 = norm (B ∗ IR1) +UR0 =


u1 u2 u3

u1 1.5902 0.4098 0
u2 0.3935 1.4098 0.1967
u3 0 0.2577 1.7423


The first iteration does not alter the item representativeness matrix. In the user repre-
sentativeness matrix links between users are made through one shared item. As seen in
figure 2.3 a connection is made between u1 and u2, through i2 and a connection between
u2 and u3 through i3.

14 2 Background

(a) IR1

(b) UR1

Figure 2.3: Visual representation of the first iteration. The full lines in UR1 (b)
represents new connections, which come from the new connections in IR1 (a) also
represented by full lines.

IRT2 =
(
AT ∗UR1

)T
=


i1 i2 i3 i4

u1 0 2.0000 0.4098 2.0000
u2 0.1967 1.8033 1.6065 1.8033
u3 1.7423 0.2577 2.0000 0.2577



UR2 = norm (B ∗ IR2) +UR0 =


u1 u2 u3

u1 1.5354 0.4098 0.0548
u2 0.3994 1.4008 0.1997
u3 0.0858 0.2909 1.6233



Figure 2.4: Visual representation of IR2. The full lines represents new connections.

New connections in IR2 are made by using item connections from related users from
UR1. In figure 2.4 new connections for u3 are made to i2 and i4 because u2 is now
representing u3 in figure 2.3b, and u2 has connections with i2 and i4.

2.1 Recommendation theory 15

IRT3 =
(
AT ∗UR2

)T
=


i1 i2 i3 i4

u1 0.0548 1.9452 0.4646 1.9452
u2 0.1997 1.8003 1.6006 1.8003
u3 1.6233 0.3767 1.9142 0.3767



UR3 = norm (B ∗ IR3) +UR0 =


u1 u2 u3

u1 1.5234 0.4067 0.0699
u2 0.3995 1.4007 0.1998
u3 0.1226 0.3015 1.5759


After transposing IR3 and removing the items users already have interacted with inA, the
prediction matrix P becomes

P =


i1 i2 i3 i4

u1 0.0548 0 0.4646 0
u2 0.1997 0 0 0
u3 0 0.3767 0 0.3767


Figure 2.5 is a visualization of P displaying the single most recommended item for each
user.

Figure 2.5: A graph representing the most recommended item for each user. The
dotted lines represent the interaction history.

16 2 Background

2.2 Machine learning

In this section a summary of supervised learning explaining how learning from the datasets
is accomplished. A short summary of unsupervised learning, mainly focused on cluster-
ing, follows and metrics for evaluating recommendation quality is presented at the end of
the section.

2.2.1 Supervised learning

The task of supervised learning is given a training set Atrain with input-output pairs
discover a function (or parameters for a function), the hypothesis, which approximates
the input-output mapping. To measure the accuracy of the hypothesis match it against a
test set Atest with input-output pairs distinct from the training set. [10]

The training set can be seen as the history available, what has happened before. The test
and validation sets represents the future in a sense. Given the training set the task is to
predict what happens “in the future”, stored in the test and validation sets.

In summary machine learning for supervised learning is done in a couple of steps:

1. Preface Split data set into training, test and validation sets.

2. Training phase Train the hypothesis, in our case select the algorithms’ parameters,
using the training set.

3. Model selection Select model using the validation set. (Optional)

4. Evaluation Estimate the accuracy using the test set.

5. Application Apply the developed model to real world data and get results.

There can be multiple available models for the hypothesis, for example if the hypothesis
is a polynomial function of the form

f(x) = anx
n + an−1x

n−1 + ...+ a2x
2 + a1x+ a0 (2.16)

then the polynomial degree n = 1, 2, 3, ... represents different possible models for the
hypothesis [10]. Other examples include the number of layers and the number of units in
a neural network1 or the rank of a low rank approximation 2.

The different models represents the complexity of the hypothesis. A more complex model
can make a better fit to the training data but that introduces the problem of overfitting
where the hypothesis fits the training data too well and it will not fit the test data. [10]

Model selection is the act of choosing a set of parameters, selecting a model, with the
goal of optimizing the algorithm’s performance on an independent data set, a validation
set Aval. The reason not to both choose the model and evaluate the model using the test

1Machine Learning, Stanford. https://class.coursera.org/ml-006
2katz-eig models this way, see section 2.1.3

https://class.coursera.org/ml-006

2.2 Machine learning 17

set is that then we will have overfit the test set as we both choose the best model and then
evaluate with the already best fit. [10]

The recommended ratio to split the training, validation and test set differs but common
recommendations include 60/20/20, 80/10/10, or 70/15/15 3 depending on domain and
the size of the available data set. It is important that the sets are pairwise disjunkt.

If there is no need for a validation set, which can be the case if there are no models to
choose from, common training/test set ratios include 70/30, 80/20 or 90/10 [1, 10] 4.

Another way to combat overfitting is with regularization. Regularization searches for
a hypothesis which directly penalizes complexity. Regularization still needs to select the
hyperparameter λ using model selection [10]. This will be explained further in section 2.3.

2.2.2 Unsupervised learning

In contrast with supervised learning, unsupervised learning doesn’t have an expected out-
put to learn from. Instead the task is to learn patterns in the input without any feedback.
The most common unsupervised learning task is clustering: detecting potentially useful
clusters, or groups, of input examples [10].

A common clustering technique is k-means, which clusters around k clusters [11]. An-
other technique is spectral clustering which is described in more detail in section 5.3
where it is used to find clusters the datasets.

2.2.3 Evaluation

A common technique to evaluate the accuracy, or the quality of recommendations, as sets
is with Precision, Recall and F-measure 5 [2]. Evaluating as sets is done in the evaluation
and model selection phase of supervised learning.

To evaluate between sets, let ru,i be the final recommendations in binary form (Eq 2.2)
produced by the training set Atrain. It’s possible to evaluate Top-N recommendations
by simply constraining the recommendation set ru,i (Eq 2.4). Let eu,i be the interaction
history as described by the evaluation set. The evaluation set could either be the test set
Atest or the validation set Aval, so eu,i should either represent Atest or Aval.

First define true positives TP as the sum of all correctly predicted positive samples.

TP =
∑
u,i

ru,i = 1 ∧ eu,i = 1 (2.17)

Conversely false positives FP is the sum of all falsely predicted positive samples.

3As recommended by Andrew Ng, Stanford. https://class.coursera.org/ml-006
4Andrew Ng also mentions these values
5The 2nd Linked Open Data-enabled Recommender Systems Challenge uses F-measure, 2015. http:

//sisinflab.poliba.it/events/lod-recsys-challenge-2015/

https://class.coursera.org/ml-006
http://sisinflab.poliba.it/events/lod-recsys-challenge-2015/
http://sisinflab.poliba.it/events/lod-recsys-challenge-2015/

18 2 Background

FP =
∑
u,i

ru,i = 1 ∧ eu,i = 0 (2.18)

And false negatives FN is the sum of all falsely predicted negative samples.

FN =
∑
u,i

ru,i = 0 ∧ eu,i = 1 (2.19)

Then Precision and Recall is defined as

Precision =
TP

TP+ FP
(2.20)

Recall =
TP

TP+ FN
(2.21)

Precision can be interpreted as how well the recommended items correspond to the users’
actual preferences as described by the evaluation set and Recall signifies how well the
users’ preferences contained in the evaluation set fits with the recommendations.

In many ways precision and recall are competing measures, when optimizing for precision
recall decreases and vice versa. As the number of recommendations N grow precision is
expected to be lower and recall is expected to be higher. [1]

F-measure F1 is defined as the harmonic mean of precision and recall (Eq 2.22) as a
combined measure of precision and recall.

F1 =
2 ∗ Precision ∗ Recall
Precision + Recall

(2.22)

Another evaluation method commonly used to evaluate classifications with ratings is the
Root of Mean Square Error (RMSE). [2]

RMSE =

√∑n
u,i(ru,i − eu,i)2

n
(2.23)

2.3 Optimization 19

2.3 Optimization

Most supervised learning algorithms try to minimize a cost function during the learning
phase. This function computes a value given some learned parameters and it can vary
with different algorithms. The cost function does not make a comparison between two
different sets but computes a metric from a single set.

A simple cost function (without regularization) could be defined as

min
ru,i

∑
hu,i is known

(hu,i − ru,i)2 (2.24)

A typical recommendation model associates each user u with a user-factors vector xu and
each item i with an item-factors vector yi such that ru,i = xTu yi [1]. In such a case a cost
function could be defined as

min
x∗,y∗

∑
hu,i is known

(hu,i − xTu yi)2 (2.25)

where the the optimization objective is xu and yi. Usually stochastic gradient descent
(SGD) is used to find the parameters [1]. With regularization a possible cost function
could be

min
x∗,y∗

∑
hu,i is known

(hu,i − xTu yi)2 + λ(‖xu‖2 + ‖yi‖2) (2.26)

where λ is the regularization hyperparameter found using model selection. This directly
penalizes larger values of xu and yi which in this case corresponds to an increase in
complexity.

Metrics such as F-measure can be used directly as optimization criteria if a suitable cost
function is hard to find. It is also a common way of evaluating different models during
model selection, the hyperparameter λ in equation (Eq 2.26) can be evaluated in this way
6 .

There are a couple of generic optimization techniques used for optimizing cost functions
and selecting parameters via recommender quality metrics such as F-measure. In all
cases the problem consists of minimizing or maximizing a target function. What follows
are short descriptions of some common techniques:

Grid search

Grid search is a straightforward search technique which evaluates the function over a
limited parameter space. This is a recommended approach for selecting the regularization

6Machine Learning, Stanford. https://class.coursera.org/ml-006

https://class.coursera.org/ml-006

20 2 Background

parameter λ 7.

Grid search is easily parallelized but it suffers from the curse of dimensionality, where it
is particularly slow if used to optimize multiple parameters.

Random search

Grid search is exhaustive and possibly expensive, random search with a fixed limit of
samples has been shown to be more effective in high-dimension spaces [12]. Random
search is easily parallelized but lacks guidance.

Hill climbing

Hill climbing is a technique for finding a local optima from a given starting point. The
neighbours of the current state are examined and the state is moved to the neighbour with
a better function value until a local optima has been found. For continuous functions a
variation called adaptive hill climbing exists which decrease the step size dynamically
whenever a local optima is found to increase the precision. Other variations which incor-
porate random jumps exists, here collectively named stochastic hill climbing. [10]

Gradient based approaches

Variations of gradient based optimization techniques such as stochastic gradient descent
can be used to optimize functions given that a gradient can be found. The search is similar
to that of hill climbing, but is guided by the gradient and optimizes for a local optima. This
is a fast and popular method for optimizing learning parameters. [1]

Simulated annealing

Simulated annealing is a probabilistic heuristic optimization technique used for finding
global optima in a limited search space. It works by randomly jumping to neighbouring
points with decreasing probability until it converges on a local optima. However it is more
likely to find a better local optima than a gradient based approach. [10]

Bayesian optimization

Bayesian optimization develops a statistical model over the function space and evaluates
the function sparsely which balances exploration and exploitation. With Gaussian process
priors, a form of statistical modeling of a function, Bayesian optimization has been shown
to give better results with fewer evaluations than grid search. [13]

7Suggested by Andrew Ng in his lectures on Machine Learning. https://class.coursera.org/
ml-006

https://class.coursera.org/ml-006
https://class.coursera.org/ml-006

3
Related work

A lot of research has been put into recommender systems [2, 3, 14, 15, 16]. Most ar-
ticles are concerned with improving accuracy of recommender system results, such as
minimizing Root of Mean Square Error (RMSE). This was the case for the popular Netflix
Prize [15] which was concerned with recommending movies given user ratings for other
movies. Explicit feedback recommender systems continue to be a well researched area
[2, 3, 14, 16]. Implicit feedback systems, which is the focus of this thesis, have grown
in popularity and are being actively researched but is still less researched than explicit
feedback [1, 2, 3].

According to [17] the Top-N Recommendation problem is the real problem of many on-
line recommender systems and it is common to seek improvements for recommendation
quality, using Precision, Recall or F-measure [2, 3, 18]. This is also the focus of this
thesis.

The 2nd Linked Open Data-enabled Recommender Systems Challenge 1 is another com-
petition which focuses on improving recommendation quality using F-measure for the
Top-N Recommendation problem as well as additional objectives such as diversity [2].
The recommender system challenge uses explicit feedback in the form of likes, but the
data format is compatible with the model (Eq 2.1) this thesis uses. They use item meta-
data such as genres, albums and actors which is not applicable to the general implicit
feedback system this thesis is focused on.

Together with the research many versions of different recommender systems have been
implemented, with recommender systems becoming more and more popular [2, 16]. One
of the most popular types are hybrid recommender systems which combine different types
of data and algorithms [2, 17]. This was the winning approach for the Netflix Prize which

12nd Linked Open Data-enabled Recommender Systems Challenge, 2015. http://sisinflab.
poliba.it/events/lod-recsys-challenge-2015/

21

http://sisinflab.poliba.it/events/lod-recsys-challenge-2015/
http://sisinflab.poliba.it/events/lod-recsys-challenge-2015/

22 3 Related work

combined 107 different algorithms in different ways to produce the final recommenda-
tions 2.

Optimization strategies for parameter tuning differ depending on the algorithm. Alter-
nating least squares (ALS) is a popular recommendation algorithm used both in explicit
feedback and implicit feedback systems [1, 3]. Stochastic gradient descent (SGD) is a pop-
ular optimization strategy for ALS [1, 3] but there is also a custom optimization strategy
purely for ALS [3]. Another popular approach is bayesian personalized ranking which
can also be optimized with SGD [19].

No literature concerning parameter optimization could be found for either link-analysis
nor katz-eig. Grid search seems to be the recommended approach for optimizing hyperpa-
rameters 3 . For implicit feedback systems the optimization of common cost functions 4 is
computationally expensive [3].

The link-analysis algorithm compared favorably in recommendation quality by [9]. But
without any analysis of the algorithms’ parameters. The parameter values are simply
stated but not commented on any further. No literature with further comments on the
parameters could be found. Relatively poor runtime performance is noted [8] but no
actual comparisons are found.

Similarly katz-eig had some positive recommendation quality results [5] but without pa-
rameter analysis and no mention of the algorithm’s speed. No literature for parameter
tuning could be found.

2Netflix: Recommendations beyond 5 stars (Part 1), 2012. http://techblog.netflix.com/2012/
04/netflix-recommendations-beyond-5-stars.html

3Recommended by Andrew Ng for the course Machine Learning, Stanford. https://class.
coursera.org/ml-006

4Similar to the definition in (Eq 2.24).

http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html
http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html
https://class.coursera.org/ml-006
https://class.coursera.org/ml-006

4
The Comordo recommender system

The thesis can be split in two major parts. The first part is a system development part
where a first version of Comordo’s recommender system is built, the “glue” around the
recommender algorithms. The second part with development of a learning framework for
the algorithms and an analysis of the algorithms’ parameters. This chapter describes the
system development part.

First is some background information about Comordo Technologies and the task given by
Comordo for the construction of the recommender system which is the main purpose of
the thesis from Comordo’s point of view. A system sketch provided by Comordo and a
use case of their product is included. Then follows the development methodology used
during this thesis and how evaluation of the recommendations is done. The final section
presents the developed recommender system and its modules.

4.1 Comordo

Comordo Technologies is a startup in recommendation systems driven inside the bounds
of LiU’s incubator LEAD in Linköping and will in the future offer a cloud service for
e-commerce. At the start of this thesis the company stood to build a first version of their
recommendation system, which is the purpose of this thesis.

Comordo focuses on generating personal recommendations using implicit feedback aimed
at e-commerce using purchase history for users as their main focus. The end product aims
to be a remote API where e-commerce clients queries for recommendations for their users.

23

24 4 The Comordo recommender system

4.2 System development task

The system development task for this thesis is to complete the backend of Comordo’s
system. This includes the reader, input, output and parameter modules, the storage of
purchase history and parameters and modules for parameter tuning. The other databases
were provided, but some level of adaptation was needed. The recommender algorithms
katz-eig and link-analysis were given and again some adaptation was needed. The admin
interface and the remote API are outside the scope of this thesis.

Figure 4.1 is the system sketch of Comordo’s recommender system, as planned for at the
start of this thesis.

Figure 4.1: Comordo’s system sketch

Reader module is responsible for reading data files provided by Comordo’s clients.

Input module provides the algorithms with transformed data.

Output module populates the database with recommendations.

4.3 Development methodology 25

Control program handles learning and optimization of the algorithms.

Parameter module stores and adjusts parameters the algorithms use.

Remote API is a REST based API, the endpoint for Comordo’s clients.

Admin web interface is a user friendly way for e-commerce clients to customize system
settings and view recommendations.

4.2.1 Use case

This is a high level use case for how Comordo’s recommender system will be used via the
remote API and how recommendations will be produced for Comordo’s clients.

1. Purchase history and product data is provided by e-commerce clients and consumed
by the recommender system.

2. Load algorithms with purchase history and produce recommendations.

3. Repopulate recommendation database with new recommendations.

4. Final customers visit the e-commerce website and are given recommendations de-
livered to the website via Comordo’s remote API.

4.3 Development methodology

The software is developed using agile inspired methods. Iterative development is used to
produce a simple prototype and then iteratively improved upon with more features. The
priority early on is to produce a working chain from reading data to storing recommenda-
tions in the database.

Small incremental goals are used, for example to complete a reader plugin for a specific
dataset. Automatic tests and unit tests are used but not in the test driven development
way, the requirement for the tests being made before the functionality was relaxed and
not required.

4.3.1 Programming languages

The existing algorithms exists in a prototype form in Matlab. The thesis continued to use
the algorithms written in Matlab for easy prototyping and modifications. Python was used
as glue and to implement all modules, see section 4.5.

Usage of other languages or platforms, such as Julia, C, C++, or Python with NumPy or
SciPy could give performance improvements, but it is outside the scope of this thesis. It
was valuable to continue with a platform familiar to Comordo as they are in the startup
phase with a focus on prototyping and performance enhancements can come later.

26 4 The Comordo recommender system

4.4 Evaluation
Recommendation quality is evaluated using Precision, Recall and F-measure with top-10
recommendations, as described in section 2.2.3. Focus is on F-measure as a combined
measure of Precision and Recall.

The following steps describes the steps taken to produce evaluations given the training,
validation and test sets Atrain, Aval and Atest:

1. Produce recommendation predictions matrix P from Atrain with the chosen algo-
rithm.

2. Transform P to the recommendation matrix R using the top-10 most predicted
items for each user.

3. Evaluate F-measure with eu,i representing Aval or Atest, depending on which set
to evaluate against.

The validation set Aval is used to evaluate the choice of k as the rank-k SVD approxima-
tion in katz-eig. All other evaluations are done against the test set Atest.

4.5 System overview
Some changes are made to Comordo’s original system design, as given in section 4.2. The
final system is shown in figure 4.2.

The logic of the recommender system is built of two major parts: the reader module
and the recommender module. Several modules from the original sketch has become
submodules inside the recommender module. This is a logical grouping as the reader
module and the recommender module are both implemented as separate scripts and the
submodules represents a higher level description of the implemented functionality.

The exporter module is an utility module which generates recommendations from the
database into another output format and serves statistics and as a developer debugging
tool. The remote API and the admin web interface are included in the system sketch, but
they are not implemented by this thesis.

4.5 System overview 27

Figure 4.2: Overview of the recommender system. Dotted lines represents interac-
tions not implemented by the thesis and the thick lines depicts the flow of generating
recommendations.

4.5.1 Reader module

The reader module takes data files, with client specific formatting, and stores the data in
the databases. The data contains user interaction history of some sort, possibly as a list of
user-item pairs, but it can also contain additional user and item information all in a single
file or in several.

To allow for flexibility the reader module uses a plugin system which can be selected at
runtime. This is accomplished using python’s dynamic module loading capabilities.

Firstly the reader module will get a list of available plugins found in

lib/reader_plugins

The plugin class shall have a single uppercase letter and the rest lowercase and reside in
a file with all lowercase. For example a plugin which handles eswc data could have the
class “Eswc” inside a file “eswc.py” in the plugin directory.

Secondly the appropriate plugin will be selected via command line arguments and the
plugin class will be handed control. The class should have two methods: “add_arguments”

28 4 The Comordo recommender system

which parses extra command line arguments and “load” which shall return a user hash and
a product hash. Appendix A.1 describes a full example plugin which handles eswc data.

With the selected data the reader module can then generate Matlab data file output in the
form of a “.mat” file, upload the data to the database or simply print some statistics. When
generating a “.mat” file different ratios of training, validation and test sets can be set. The
purpose of this option is to generate datasets used during prototyping and evaluation.

The reader module can remove items and users from the dataset by introducing a couple
of constraints:

1. limit the maximum number of users in the dataset

2. limit the maximum number of items in the dataset

3. remove users with too few item interactions in their history

4. remove items which too few users has interacted with

The reason to limit the size of the dataset is due to the high computational complexity
and the bad performance on large datasets. The removal of items or users with too few
interactions is because of the difficulty of generating recommendations for items or users
with no history. This is known as the cold start problem and it is a known difficulty in
recommendation systems [4] outside the scope of this thesis.

The reader module tries to conform to the constraints with these steps:

1. Remove users with too few items in history, if required to

2. Remove items which too few users has interacted with, if required to

3. Limit the number of items, if required

(a) Randomly select the items to keep

4. Limit the number of users, if required

(a) Randomly select the users to keep

5. Perform step 1 again

6. Perform step 2 again

This will not produce a perfect solution and some constraints may not be fulfilled. If we
for example want to constrain both the minimum number of item interactions each user
has and the minimum number of user interaction each item has, we might fail to find
a solution as the removal of some items may cause some users to have fewer than the
constrained number of item interactions.

The alternative is to introduce a constraint solver or iteratively perform step 1 and 2 until
convergence, but that’s a slow solution to a problem with inherently soft constraints. It
is not very important if all constraints hold, it is just an attempt to limit the size of the
dataset. Therefore a faster but less correct heuristic is chosen.

4.5 System overview 29

4.5.2 Recommender module

The recommender module is the core of the recommender system. It is responsible for
populating the databases with new recommendations and for optimizing the algorithms’
parameters to new datasets.

Below follows a short description of the different submodules and their function.

Input module reads the interaction history from the database.

Controller selects which algorithm to use and if the purpose is to optimize the parameters
or to generate recommendations.

Parameter tuner is responsible to optimize and fit the algorithms’ to a new dataset.

link-analysis, katz-eig are the available recommender algorithms.

Output module populates the database with new recommendations.

When learning parameters the recommender module stores the found optimal parameters
in the database. Then when generating personal recommendations the stored parameters
can be used.

As an additional feature apart from generating personal recommendations, the recom-
mender module can populate the database with general recommendations, which recom-
mends the most popular items, and related recommendations which creates recommenda-
tions on an item level.

4.5.3 Exporter module

The exporter module’s main function is to generate recommendation output in a file for-
mat. This serves as both a workaround for the lack of a working remote API and as an
extra feature as Comordo’s e-commerce clients might request the recommendations in a
file format. It acts as an easy way of creating a formatted database dump.

The secondary function is to serve statistics and act as a developer debugging tool. Exam-
ination of the dataset and the generated recommendations can be made. It can be used to
examine a user, the history and the recommendations generated.

5
Data

This chapter lists and describes the datasets used by the thesis, their contents and, if
possible, where to find them.

Then the data is analyzed in two ways. Firstly the number of interactions is examined,
both with respect to users and to items. All datasets are found to be top heavy, with al-
phaS less so, with few very popular items encompassing most of the user base. Secondly
clusters in the datasets is searched for with respect to compactness, or user similarity,
using k-means and on connectivity using spectral clustering. Connected clusters are iden-
tified in all datasets.

5.1 Description of the datasets

These are the datasets used by the thesis, a summary of the available datasets and their size
is given by table 5.1. Some of the datasets (alpha, alpha2, alphaS, romeo) are given by
some of Comordo’s clients and they do not want the data to be publicly available. Instead
a high level description of the datasets are given.

All of the datasets will be in unweighted binary form (Eq 2.1). Some of the datasets (alpha,
alpha2, alphaS) support weighted form (Eq 2.5) but the other datasets does not, so they
are transformed into unweighted binary form. Another given format is ratings, which
movielens1m use. Generating recommendations with explicit feedback, such as ratings,
is well researched but fundamentally different from implicit feedback systems. The focus
of this thesis is on implicit feedback systems which is why ratings are not considered in
their raw form, they are converted to unweighted binary form.

During supervised learning the datasets will be divided into training, validation and test
sets with a ratio of 70%, 15% and 15% respectively. The split is done by randomly

31

32 5 Data

distributing all items in the interaction history and distributing amongst the sets. In a
matrix representation it can be thought as randomly assigning each non-zero value from
the interaction matrix A to either Atrain, Aval or Atest while keeping all other elements
as zero.

When a validation set is not necessary, it will be ignored and only the training and test sets
will be used. This is done for simplicity and to reduce the number of different datasets
needed to keep track of. As mentioned in section 2.2.1 there are different ratios commonly
used to split datasets. There is no ratio which is always the best, they depend on the
amount of data available, the modeled domain and the algorithms chosen. A split of
70/15/15 is chosen early for simplicity reasons.

dataset users items elements sparsity
alpha 100002 219767 904201 0.0041%

alpha2 75007 345674 1945115 0.0075%
alphaS 16444 5000 26035 0.0316%

eswc2015books 1398 2609 11600 0.32%
eswc2015movies 32169 5389 638268 0.37%
eswc2015music 52072 6372 1093851 0.33%

movielens1m 6040 3706 1000209 4.5%
romeo 8321 722 205534 3.4%

Table 5.1: A summary of the used datasets

What follows is a description of each available dataset and where they can be found, if
applicable.

alpha, alpha2, alphaS

Anonymous datasets representing purchase history provided by an e-commerce
client. The dataset is given in a weighted form (Eq 2.5) but is converted to un-
weighted binary form (Eq 2.1).

alpha is a randomly sampled dataset. It contains 100002 users, 219767 items with
904201 interactions.

alpha2 is another randomly sampled dataset, independently sampled from alpha,
filtered to only contain users with ≥ 2 purchases. It contains 75007 users, 345674
items with 1945115 interactions.

alphaS is a subset of alpha2. It contains 16444 users, 5000 items with 26035 inter-
actions. This is often used as alpha and alpha2 are very large and the runtime is
very long.

eswc2015movies, eswc2015music, eswc2015books

These are the datasets used in the 2nd Linked Open Data-enabled Recommender
Systems Challenge 1. The data have been collected from Facebook profiles about

12nd Linked Open Data-enabled Recommender Systems Challenge, 2015. http://sisinflab.
poliba.it/events/lod-recsys-challenge-2015/

http://sisinflab.poliba.it/events/lod-recsys-challenge-2015/
http://sisinflab.poliba.it/events/lod-recsys-challenge-2015/

5.1 Description of the datasets 33

personal preferences, ”likes“, for movies, books and music. 2.

The datasets were originally split into training sets and evaluation sets. The evalu-
ation sets does not contain any user-product mappings and for evaluation purposes
this thesis will only concern itself with the training set part of the datasets.

eswc2015books contains 1398 users with 11600 likes for 2609 items. The dataset
contains likes for books, characters, genres and writers.

eswc2015movies contains 32159 users with 638268 likes for 6389 items. The
dataset contains likes for movies, actors, directors, characters and genres.

eswc2015music contains 52072 users with 1093851 likes for 6372 items. The
dataset contains likes for albums, artists, bands, compositions and genres.

For the purpose of this thesis, the different item types are treated as a single type.
For example no care is taken to cross-reference liked genres with movies in that
genre. The only thing considered is the unweighted binary user-item interaction
history.

movielens1m

The MovieLens 1M dataset 3 is a collection of ratings (1-5) taken from the Movie-
Lens website 4.

Ratings are transformed to unweighted binary form using (Eq 2.7).

This is by no means a perfect transformation as a rating of 1 means the user has
consumed an item but didn’t enjoy it, while our model only concerns itself with
interactions. Noise is introduced into the dataset and the recommendations loose
relevance with respect to the original unmodified dataset. It is still possible to evalu-
ate recommendation using F-measure with respect to the new dataset in unweighted
binary form, but no relevant conclusions can be made for the users themselves.

The dataset contains 6040 users with 1000209 ratings for 3706 movies.

romeo

An anonymous dataset representing purchase history provided by an e-commerce
client. The dataset is in unweighted binary form.

The dataset contains 8321 users, 722 items and 205534 interactions.

Some of the datasets are very large and later in the thesis all datasets are not used as the
runtime is so long. For example not all datasets are handled in the parameter analysis in
section 6.3. Specifically the datasets alpha, alpha2 and eswc2015music are often excluded
and eswc2015movies is also excluded sometimes.

2DataSet | 2nd Linked Open Data-enabled Recommender Systems Challenge, 2015. http://
sisinflab.poliba.it/events/lod-recsys-challenge-2015/dataset/

3Grouplens: MovieLens dataset, 2015. http://grouplens.org/datasets/movielens/
4MovieLens homepage. https://movielens.org/

http://sisinflab.poliba.it/events/lod-recsys-challenge-2015/dataset/
http://sisinflab.poliba.it/events/lod-recsys-challenge-2015/dataset/
http://grouplens.org/datasets/movielens/
https://movielens.org/

34 5 Data

5.2 Number of interactions
What follows is some plots describing the number of interactions each user has and the
number of interaction each item has in the datasets. It’s useful for identifying outliers and
possibly for identifying defining features of a dataset.

The plot on the left describes how many users have a fixed number of item interactions
and conversely the plot on the right describes how many items have a set number of user
interactions. The histograms are also represented in logarithmic scale.

Figure 5.1: alphaS

In alphaS each user and each item has interactions with a small fraction of the available
items and users. There are many users with very few interactions and also many items
which few users has interacted with. There are no users or items without any interactions,
but there are 11923 out of 16444 users and 2588 items out of 5000 with with only one
interaction. This can be compared to the 26035 total interactions in the dataset. There are
some users with more than 400 interactions and some items which have interacted with
more 600 users.

5.2 Number of interactions 35

Figure 5.2: eswc2015books

Figure 5.3: eswc2015movies

Figure 5.4: eswc2015music

All eswc datasets have similar distributions with more concentrated interactions. There
is a lower limit for the number of interactions each user has, this is probably a constraint
used when the datasets were made. There are also no extreme user outliers with many
more interactions than the norm.

The item interactions are more spread, with many items having interacted with relatively
few user but some items having a lot of interactions. eswc2015books have 1134 out
of 2609 items with only one user interaction. eswc2015movies and eswc2015music in
comparison have 2 out of 5389 items and 1 out of 6372 items with one user interaction.

36 5 Data

Figure 5.5: movielens1m

Figure 5.6: romeo

Both movielens1m and romeo have a more normalized look to them, especially with the
number of user interactions per item compared to the other datasets. There are still outliers
with many more interactions however. There are no users with less than 2 item interactions
and there are no items without a user interaction. 114 out of 3706 items and 17 of 722
items have 1 user interaction in movielens1m and romeo respectively.

In general two distinct types of users can be identified. The first is a user with only a
couple of item interactions, this appears to be the most common type of user. It could
possibly be users who try out a service but for some reason they do not continue or they
are new users who just recently started using the service. The other user type is the one
with a lot of item interactions, way more than the norm, and they are quite rare 5 . They
do not exist in the eswc datasets.

A similar classification can be made for items. The vast majority of items has only a
couple of user interactions. Perhaps these are new items few users have found out about
or niche items not interesting to most users. A large fraction of the items in alphaS and
eswc2015books have only one interaction (51% and 43%). Then there are items with a
lot more user interactions than what is common.

5Parallels can be drawn to what is known as big spenders or “whales” in the social-gaming community.
They make up a tiny group of the community but they drive most of the revenue for the game publishers. For a
more in depth discussion see
VentureBeat: What it means to be a “whale” — and why social gamers are just gamers, 2013.
http://venturebeat.com/2013/03/14/whales-and-why-social-gamers-are-just-gamers/

http://venturebeat.com/2013/03/14/whales-and-why-social-gamers-are-just-gamers/

5.2 Number of interactions 37

The following plots display the number of the most popular items and the number of users
they collectively interact with. This is useful for investigating how top heavy the datasets
are. The dashed lines represents the number of items required to include 95% of all users,
a summary of the required number of items can be found in table 5.2.

dataset items needed items total item ratio
alphaS 3058 5000 61%

eswc2015books 120 2609 4.6%
eswc2015movies 55 5389 1.0%
eswc2015music 78 6372 1.2%

movielens1m 13 3706 0.35%
romeo 21 722 2.9%

Table 5.2: This table describes how many of the most used items are necessary to
include in a set so 95% of all users have interacted with the set.

Figure 5.7: alphaS. 3058 of 5000
(61%) of the items are necessary to in-
clude 95% of all users.

Figure 5.8: eswc2015books. 120 of
2609 (4.6%) of the items are necessary
to include 95% of all users.

Figure 5.9: eswc2015movies. 55 of
5389 (1.0%) of the items are necessary
to include 95% of all users.

Figure 5.10: eswc2015music. 78 of
6372 (1.2%) of the items are necessary
to include 95% of all users.

Of the different datasets, alphaS is a clear outlier. It is nowhere near as top heavy as the
other datasets are, requiring over 60% of all items to reach 95% of the users. This can

38 5 Data

Figure 5.11: movielens1m. 13 of 3706
(0.35%) of the items are necessary to
include 95% of all users.

Figure 5.12: romeo. 21 of 722 (2.9%)
of the items are necessary to include
95% of all users.

in part be explained by the large number of users with only one interaction, 11923 out of
16444 users or in other words 72% of all users have only one item interaction.

In contrast eswc2015books require 4.6% of the items and romeo require 2.9% of the items,
which means few of the popular items are required to include most of the users. The other
datasets are even more top heavy with eswc2015movies and eswc2015music only require
1.0% and 1.2% of the items. For movielens1m only 0.35%, namely 13, of the items are
needed. In other words this means that 95% of all users in the dataset has seen at least
one movie from the 13 most watched movies.

This phenomena where very few of the most popular items command the attention of
most of the user base is also seen in mobile app stores where 1.6% of app developers
make more than the other 98.4% combined 6.

6readwrite: Among Mobile App Developers, The Middle Class Has Disappeared, 2014.
http://readwrite.com/2014/07/22/app-developers-middle-class-opportunities

http://readwrite.com/2014/07/22/app-developers-middle-class-opportunities

5.3 Clusters 39

5.3 Clusters
Clustering with regards to compactness is examined using k-means and with regards to
connectivity using spectral clustering. Compactness refers the closeness in space of the
nodes in each cluster and connectivity refers to how connected the nodes in each cluster
are with each other. In the recommendation domain compactness refers to how similar the
users’ full interaction history is to each other and connectivity instead examines similarity
over user-item links.

As an example for two users who are close with respect to connectivity but not to com-
pactness is when one user has a small subset of the other user’s interactions.

5.3.1 Compactness using k-means

This is the clustering process used to cluster on a user level with k-means. The goal is to
reorder the users so similar users are situated next to each other in the interaction matrix
A.

1. Approximate the interaction matrix A by a rank k SVD approximation, U ∗ S ∗ V ′
where S is a k x k matrix representing the k largest singular values.

2. Locate k clusters with k-means, operating on U ∗ S.

3. Reorder the rows, representing the users, in A using the clustering information.

A k rank approximation of A is used for two reasons. The first is to remove noise and
to introduce similarities for items. U spans the “column space” which is the reason for
operating on U ∗ S as we want to cluster on a user level. The second reason is for speed
reasons.

k-means clusters, or classifies, 2D-points into k clusters. Using the clustering information
for the users, each row in the interaction matrix A are reordered so all users in the same
cluster are next to each other.

For k-means the hard part is finding a good k value. This experiment is more concerned
about finding information about any clusters, not about finding the optimal amount, so the
number of clusters k = 10 is fixed.

The plots display a clustered interaction matrix, reordered user wise. If there are visible
clusters the expected thing to see is horizontal bands of similar user patterns. Vertical
bars represents items, or a set of items, with many interactions. Some of the plots will be
sparse and some will appear to be very dense. This is mostly due to resolution issues as
when the dataset grow, even though the sparsity might be lower, the number of data points
grow but the size of each data point in the plots are the same.

40 5 Data

Figure 5.13: alphaS Figure 5.14: eswc2015books

In alphaS there are some clusters whith relatively few item interactions, but the other
clusters aren’t very prominent. Both alpha and alpha2 are so large the resolution isn’t
enough to capture any individual data points so their plots don’t show anything of value
so they are not included here. eswc2015books doesn’t seem to have any major clusters,
the dataset doesn’t appear to have any structure except for a few streaks of very popular
items.

Figure 5.15: eswc2015movies Figure 5.16: eswc2015music

eswc2015movies and eswc2015music in contrast display more prominent clusters. There
are clusters who concentrate more on a subset of items, and there are clusters with higher
interaction count. Similarly movielens1m and romeo appear to have some clusters.

5.3 Clusters 41

Figure 5.17: movielens1m Figure 5.18: romeo

Although it is possible to discern some structure from the clustering plots, it is not so clear.
The following plots does the same clustering on the user level, but they also sort the items
with the most popular item to the left.

Figure 5.19: alphaS Figure 5.20: eswc2015books

42 5 Data

Figure 5.21: eswc2015movies Figure 5.22: eswc2015music

Figure 5.23: movielens1m Figure 5.24: romeo

With the items sorted the clustering on the user level are more visible. No clear clusters
can be seen in either alphaS or eswc2015books and some grouping can be seen in the
other datasets, but clusters cannot be clearly identified. The problem is if the apparent
clusters share any items, which is not clear from these plots.

What can be said is that there are some popular items with many interactions and there
are items with few interactions. Similarly users with more interactions, which appear to
be grouped together, exists. These are all findings supported by the interaction analysis in
section 5.2.

5.3 Clusters 43

5.3.2 Connectivity using Spectral Clustering

The process for clustering with spectral clustering is as follows 7

1. Create an affinity matrix, or an adjacency matrix, Af

2. Construct a graph Laplacian L from Af

3. Find eigenvalues and eigenvectors of L

4. Select a subspace of eigenvectors

5. Form clusters in the subspace

In our particular case, the interaction matrix A is defined as rows corresponding to users
and columns corresponding to items. The affinity matrix needs to be square, but the
interaction matrix does not. There are other more complex ways of creating an affinity
matrix, but for this purpose modelling an adjacency matrix is sufficient.

A transformation from the interaction matrix A to the adjacency matrix Af is made by
having both users and items as both row and column indices and mirroring the interactions.
Af will then be a symmetric, square matrix. Equation (Eq 5.1) illustrates an example of
the matrix structure and figure 5.25 gives a concrete example for eswc2015books.

As there are no connections between two users or between two items there will be two
large zero rectangles in the top left and the bottom right.

A =


i1 i2 i3 i4

u1 0 1 0 1
u2 0 1 1 1
u3 1 0 1 0

⇒ Af =



u1 u2 u3 i1 i2 i3 i4

u1 0 0 0 0 1 0 1
u2 0 0 0 0 1 1 1
u3 0 0 0 1 0 1 0
i1 0 0 1 0 0 0 0
i2 1 1 0 0 0 0 0
i3 0 1 1 0 0 0 0
i4 1 1 0 0 0 0 0


(5.1)

There are different kinds of Laplacians, mostly differing in how the normalization is done.
The one used here is the Generalized Laplacian L,

L = D−1(D −Af) (5.2)

where D is a diagonal matrix called the degree matrix. Each diagonal element Di,i repre-
sent the sum of degrees at each node i, calculated as the sum of row i,

7A clear explanation of spectral clustering is given by
charlesmartin14: Spectral Clustering: A quick overview, 2012.
https://charlesmartin14.wordpress.com/2012/10/09/spectral-clustering/

https://charlesmartin14.wordpress.com/2012/10/09/spectral-clustering/

44 5 Data

(a) Interaction matrix A (b) Adjacency matrix Af

Figure 5.25: This figure illustrates the original interaction matrix 5.25a for
eswc2015books and the related adjecency matrix 5.25b. Here the matrix A has been
moved to the upper right corner of Af as well as mirrored at the bottom left.

Di,i =
∑
j

Ai,j (5.3)

The principal idea is that if good clusters can be identified, then the Laplacian L is ap-
proximately block diagonal, with each cluster defined by a block. That is if there are 3
clusters as in (Eq 5.4),

L =

L1,1 L1,2 L1,3

L2,1 L2,2 L2,3

L3,1 L3,2 L3,3

 ∼
L1,1 0 0

0 L2,2 0
0 0 L3,3

 (5.4)

then also the lowest eigenvalues and their related eigenvectors correspond to different
clusters. In this case the 3 smallest eigenvalues and eigenvector pair would correspond to
each cluster, or block, in L.

To be able to identify different clusters, the sorted eigenvalues must have a gap. Fig-
ure 5.26 gives a concrete example for eswc2015books (another example of clear clusters
is figure 5.30 for alphaS). It is reasonable to expect there to be clear clusters in the adja-
cency matrix Af , as there is a clear gap in the sorted eigenvalues. Note that this doesn’t
mean that there are clusters in the interaction matrix A, as there is duplicate information
in Af . There might be large areas without interactions, but the indexes might correspond
to user-user or item-item which will not have any interactions. But it is a reasonable
expectation.

The subspace to find clusters in is some subset of the eigenvectors corresponding to the
smallest eigenvalues. The subspace used here is simply the eigenvector corresponding
to the 2nd smallest eigenvalue 8. Figure 5.27 displays the adjacency matrix Af for

8A practical example which used the same subspace is used as a reference.
Spectral Graph Partitioning and the Laplacian with Matlab, 2006.
https://www.cs.purdue.edu/homes/dgleich/demos/matlab/spectral/spectral.
html

https://www.cs.purdue.edu/homes/dgleich/demos/matlab/spectral/spectral.html
https://www.cs.purdue.edu/homes/dgleich/demos/matlab/spectral/spectral.html

5.3 Clusters 45

eswc2015books ordered by the ordering used when sorting the subspace.

Figure 5.26: The smallest eigenvalues
of L for eswc2015books.

Figure 5.27: Adjacency matrix A of
eswc2015books, sorted by the order-
ing used when sorting the 2nd smallest
eigenvector of L.

The interpretation of figure 5.26 is that one clear cluster is to be expected due to the gap
between the first and second eigenvalue. Some other blurred clusters can be expected as
the eigenvalues increase with a decreasing amount. If there are clear clusters the expecta-
tion is see square along the diagonal in figure 5.27. There are some horizontal and vertical
lines which might be outlines of some triangles, but it is hard to see.

If instead of simply sorting the subspace, k-means is used to find a clustering in the sub-
space, and that ordering is then used to reorder the adjacency matrix. Figure 5.28 displays
the adjacency matrix Af for eswc2015books.

Figure 5.28: Adjacency matrix Af
of eswc2015books, subspace clustered
with k-means.

Figure 5.29: Interaction matrix A
of eswc2015books, reordered using k-
means clustering information.

The reordered adjacency matrix in figure 5.28 reveal several apparent clusters, but this
doesn’t directly mean that there are clusters in the dataset as we already know there are
large areas without interactions in the adjacency matrix. But using the same ordering to
reconstruct the adjacency matrix by reordering both users and items clusters are revealed
for eswc2015books, shown in figure 5.29.

In contrast with the compactness clustering which only clustered on a user level, this time
there is clustering information for both users and items, this is a substantial benefit.

46 5 Data

What follows is a similar analysis for the other datasets.

Figure 5.30: The smallest eigenvalues
of L for alphaS. Figure 5.31: Adjacency matrix A of al-

phaS, sorted by the subspace ordering.

The large number of zero eigenvalues in figure 5.30 suggests that there are many clus-
ters in alphaS. This can also be seen in figure 5.31 where actual clear squares along the
diagonal can be seen, as opposed to figure 5.27 for eswc2015books.

Figure 5.32: Adjacency matrix Af
of alphaS, subspace clustered with k-
means.

Figure 5.33: Interaction matrix A of al-
phaS, reordered using k-means cluster-
ing information.

The final clustering for alphaS in figure 5.33 reveal that alphaS does have a large number
of distinct clusters. From the clustering made here it is possible to identify groups of users
with specialized interests, with a subset of appealing items. This could possibly be used
to identify personas 9 in the dataset.

9A persona is a description for a class of users or a description of a typical user. This is a requested feature
from Comordo’s e-commerce clients and spectral clustering could form a base for creating or researching per-
sonas for a specific dataset. This process however is not automated and it is just a bi-product of this thesis and
not pursued further.

5.3 Clusters 47

The adjacency matrices for the following datasets are not plotted and only the eigenvalues
and the final clustering of the interaction matrix A is presented. They are sufficient to
draw conclusions from.

Figure 5.34: The smallest eigenvalues
of L for eswc2015movies.

Figure 5.35: Interaction matrix A
of eswc2015movies, reordered using k-
means clustering information.

Figure 5.36: The smallest eigenvalues
of L for eswc2015music.

Figure 5.37: Interaction matrix A
of eswc2015music, reordered using k-
means clustering information.

Figure 5.38: The smallest eigenvalues
of L for movielens1m.

Figure 5.39: Interaction matrix A of
movielens1m, reordered using k-means
clustering information.

48 5 Data

Figure 5.40: The smallest eigenvalues
of L for romeo.

Figure 5.41: Interaction matrix A of
romeo, reordered using k-means clus-
tering information.

Clusters are visible in the final clustering of the interaction matrix A for all dataset, but
with less clear clustering than for alphaS. It is supported by their respective eigenvalue
plot, with all datasets have a prominent gap but only a single eigenvalue of zero. Fig-
ure 5.40 show that there are two other groups of eigenvalues with a gap between them
suggesting there might be more prominent clusters in the dataset, which is supported by
the clustering in figure 5.41.

The datasets eswc2015movies, eswc2015music and movielens1m also have clusters but
they are messier than that of romeo or alphaS. Part of the reason is the visualization
technique where a sparse interaction matrix will produce a cleaner visualization.

This analysis searched for a fixed number of clusters k = 10, with alphaS using k = 15.
It is by no means the optimal number of clusters and there might be more clusters in the
datasets and there might fewer but “better fitting” clusters. The point of this analysis is not
to cluster the datasets in an optimal way, but to examine if the datasets have any clusters.

It is very hard to make recommendations for a dataset without any similarity between
users, a random dataset for example, and the existence of clusters shows that there is
certain structure in the dataset which could be used to make predictions. The intuition
is that in a well clustered dataset users are tightly coupled with users of similar taste
and reduces the noise of outlining interactions and a better approximation of the user’s
preferences can be made.

6
Parameter tuning

This chapter presents the second major part of this thesis. The chapter begins with defin-
ing the convergence criteria for the algorithms with training curves. Then with learning
curves the learning process of the algorithms is demonstrated as functional. Parameter
space analysis follow which examines the effect of the algorithms’ parameters and the
final section compares the algorithms and different optimization strategies for parameter
tuning.

The tests were run on an ASUS U36SG RX049V laptop running slackware 14.1 linux.
These are some specs of the laptop:

CPU Intel Core i5-2450M Processor 2.5 GHz

Graphics card NVIDIA GeForce GT 610M 1GB VRAM

Ram 6GB DDR3

HDD 500GB 5400 rpm

6.1 Training curves
Both katz-eig and link-analysis are iterative algorithms but the descriptions of the algo-
rithms do not specify how many iterations to run. This section examines the stopping
criteria for when to stop the iterations. Training curves which plot the evaluation met-
ric with respect to the number of iterations is useful to see the effect of running more
iterations. This is then used to define when the algorithms break their loops.

49

50 6 Parameter tuning

6.1.1 katz-eig

Each K are different for each dataset, see section 6.4, selected for optimal performance
and β = 1

‖Atrain‖2 is fixed.

Figure 6.1: alphaS Figure 6.2: eswc2015movies

Figure 6.3: movielens1m Figure 6.4: romeo

The jagged line in the plots represents ‖St−St−1‖2, which is a measure of the difference
between the current iteration t and the previous iteration. This is made as a measure of
the convergence criteria, when St ≈ St−1 the iterations stops having effect. What can be
seen is that St converges in relatively few iterations and there is practically no difference
in F-measure. It means that more iterations have no real impact.

The convergence criteria is kept and is used to break iterations when ‖St − St−1‖2 < ε
with ε = 0.01. In practice it means < 10 iterations are done for all datasets. The iteration
count could instead be fixed, but the matrix St is small and the calculations inside the
iteration loop are of low complexity so the convergence is calculated instead of assumed.

In all following usages of katz-eig, a value of ε = 0.01 is used to break iterations when
‖St − St−1‖2 < ε.

6.1 Training curves 51

6.1.2 link-analysis

Each γ and η are selected for optimal performance with respect to each dataset, see sec-
tion 6.4.

Figure 6.5: alphaS Figure 6.6: eswc2015books

Figure 6.7: movielens1m Figure 6.8: romeo

For link-analysis convergence is also fast. The choice here is to fix tmax to a fixed value
instead of measuring convergence either by calculating ‖IRt − IRt−1‖2 or by explicitly
calculating F-measure and measuring the change. This is done because the iteration step
in link-analysis, in contrast to katz-eig, handles large matrices which makes the calcula-
tions very time consuming.

In all following usages of link-analysis, the iteration count is fixed to tmax = 3.

52 6 Parameter tuning

6.2 Learning curves
Learning curves plots the evaluation metric with respect to a varying training set size.
The expectation here is that the algorithms should fit better the bigger the training set size
becomes, given the same test set. The algorithms should produce better recommendations
the more data they have to learn from. Learning curves is a good way to see if the learning
process work like it is supposed to.

The evaluation uses the training matrix Atrain and the test set matrix Atest. For each
step a random selection of a specific size is selected from Atrain, recommendations are
generated and evaluated against the same test set Atest. The dimensions of the matrices
will the same, only the number of non-zero elements are increased with the training set
size. This is done 10 times for each training set size as to remove variations from the
random selection. Ideally more repetitions should be done but due to time constraints
they were not.

Optimized parameters as described in section 6.4 are used. The plots also describe the
standard deviation.

Figure 6.9: alphaS

Figure 6.10: eswc2015books

6.2 Learning curves 53

Figure 6.11: movielens1m

Figure 6.12: romeo

As the recommendation performance increase with increasing training size the learning
process can be said to be working.

A notable observation about the runtime is that for link-analysis it increases almost lin-
early with the increase in training set size, the runtime for katz-eig is almost independent
of the training set size. This is to be expected as katz-eig operates on a low-rank approxi-
mation of the interaction matrixAtrain while link-analysis operates directly on the matrix.
The sparse matrix format (section 2.1.1) which discards zero elements during calculations
is computationally more complex as the sparsity decreases.

Another observation is that link-analysis seems to generate better recommendations for
the sparse datasets alphaS and eswc2015books and also for movielens1m and romeo a
short while when the training size was smaller.

The large variation in F-measure for katz-eig for alphaS and eswc2015books can be ex-
plained by the sparsity of the datasets. As the training set is randomly selected for each
run up to a selected number interactions, it is possible that a large number of users with
very few interactions are selected, which makes for a bad basis for recommendations.
This is especially true for alphaS where most of the users only have one interaction.

The same variation is not seen with link-analysis as the recommendations are produced
on a link-following basis instead of trying to blur together users like katz-eig does.

54 6 Parameter tuning

6.3 Parameter space analysis
This section presents an analysis for what happens to the function space of F-measure
with respect to Atest when the different parameters for the algorithms are varied.

6.3.1 katz-eig

There are two parameters to katz-eig: β, the link diminishing factor and K specifying the
K-rank approximation. β is a continous value satisfying 0 < β ≤ 1

‖Atrain‖2 . If β = 0

then the algorithm will only output 0 and if β > 1
‖Atrain‖2 the iterations will not converge.

K > 0 is a discrete value.

What follows is plots over both of the parameters K and β.

Figure 6.13: alphaS Figure 6.14: eswc2015books

Figure 6.15: movielens1m Figure 6.16: romeo

It seems like beta doesn’t have a very big impact on the function value. Some plots with
a fixed K follows to better see differences.

The range examined is 0 < β ≤ βmax = 1
‖Atrain‖2 with a K optimized as described in

section 6.4.

6.3 Parameter space analysis 55

Figure 6.17: alphaS. βmax is the best
value with a 1.9% diff between the min-
imum and the maximum F1 value.

Figure 6.18: eswc2015movies. βmax is
not the best value with a 0.3% diff be-
tween the minimum and the maximum
F1 value.

Figure 6.19: movielens1m. βmax is
not the best value with a 0.41% diff be-
tween the minimum and the maximum
F1 value.

Figure 6.20: movielens1m. βmax is
not the best value with a 2.09% diff be-
tween the minimum and the maximum
F1 value.

The difference between the optimal β and an arbitrary selected β isn’t very large and the
difference between the optimal β and βmax is even smaller. Table 6.1 is a summary of
the evaluated values.

dataset diff between βopt and βmax diff between fmin and fmax
alphaS 0 % 2.0 %

eswc2015books 0 % 0%
eswc2015movies 0.039 % 0.28 %

movielens1m 0.41 % 0.41 %
romeo 0.072 % 2.1 %

Table 6.1: A summary of evaluating different β. βmax = 1
‖Atrain‖2 is the maximally

examined β and βopt is the optimal β found in the range 0 < β ≤ βmax. K is
individually optimized for the different datasets. fmin and fmax are the minimal
and maximal F1 values obtained.

56 6 Parameter tuning

The K-rank approximation represents different available models for katz-eig. The follow-
ing plots show different values of K. β = 1

‖Atrain‖ 2
for all datasets as the difference

between it and the optimal value is neglible. Km is the value of K which gives the best
F-measure for each dataset.

Figure 6.21: alphaS Km = 13 Figure 6.22: eswc2015books Km = 1

Figure 6.23: movielens1m Km = 31 Figure 6.24: romeo Km = 8

The function space with respect toK is fairly smooth if not entirely convex. eswc2015books
is an outlier with a low optimal value K = 1 and many local optima. The other datasets
display more smooth functions, but there are clear local optima with both alphaS and
romeo.

6.3 Parameter space analysis 57

6.3.2 link-analysis

There are two parameters to link-analysis: γ and η, they are both continuous. At η = 0
all recommendations will always be 0.

The following plot is evaluated using F-measure over the parameter space of both γ and
η.

Figure 6.25: alphaS

For alphaS it appears γ < 0 is a very bad choice. Both η > 0 and η < 0 seems to be
fair choices, with η > 0 being slightly better. As long as η > 0, the specific choice of η
doesn’t seem to matter that much. Curiously γ = 0 represents a peak. There’s an anomaly
at η = −2 which is markedly worse than η = −1 and η = −3.

58 6 Parameter tuning

Figure 6.26: movielens1m Figure 6.27: romeo

Similarly for movielens1m and romeo, γ > 0 is generally better than γ < 0. This time
γ = 0 does not represent the maximum function value. The function space seems to be
fairly smooth, almost convex, except for η = 0. For movielens1m η < 0 is the better
choice.

Figure 6.28: eswc2015books

A closer look at eswc2015books reveals that the function space isn’t as smooth as it might
have seemed in the previous plots, several local optima can be seen.

6.3 Parameter space analysis 59

Interestingly some of the datasets have their maximum at η > 0 but others have η < 0.
What follows is some plots over η and a fixed γ = 1. The value of γ = 1 is chosen as
a fixed point as the variation of η at that interval seems like a good point to examine for
variations, as seen in the previous 3D plots.

Figure 6.29: alphaS Figure 6.30: eswc2015books

Figure 6.31: movielens1m Figure 6.32: romeo

Here alphaS and eswc2015books have maximum F-measure with η > 0 but movielens1m
and romeo with η < 0. Other than the choice of which sign, the actual value does not
seem to matter that much, with some local minimas around η = −2 for alphaS and
eswc2015books.

60 6 Parameter tuning

γ is the parameter which seems to vary the function value the most. The following plots
varies γ while holding η = 1 constant. η = 1 is chosen as it appears to be universally
good value according to the previous 3D plots.

Figure 6.33: alphaS Figure 6.34: eswc2015books

Figure 6.35: movielens1m Figure 6.36: romeo

Generally γ > 0 seems like a better choice than γ < 0. Overall the function space looks
fairly smooth with a nice hill shape being visible in all plots. No other local optimas
appear to be visible.

6.4 Optimized parameters 61

6.4 Optimized parameters
This section summarises the optimized parameter values to get good values of F-measure
on the corresponding dataset. These values are used throughout the thesis when parame-
ters which would yield good results are needed.

dataset K
alphaS 13

eswc2015books 1
eswc2015movies 5
eswc2015music 4

movielens1m 31
romeo 8

Table 6.2: Optimized parameters for katz-eig. β = ‖Atrain‖2. Found using grid
search over 1 ≤ K ≤ 100.

dataset γ η
alphaS 1 4

eswc2015books 0 2.5
movielens1m 1 -3

romeo 2 -5

Table 6.3: Optimized parameters for link-analysis. Found using grid search over
−10 ≤ γ ≤ 10 and −10 ≤ η ≤ 10 with a step size of 1 (or 0.5 for eswc2015books).

62 6 Parameter tuning

6.5 Algorithm comparison
This section starts out with comparing different optimizations strategies for parameter
tuning with regards to recommendation quality and speed for katz-eig and link-analysis.
The section is concluded with a comparison of the algorithms against each other using the
best evaluated strategies.

6.5.1 katz-eig

The strategies for optimizing algorithm parameters for different datasets, or parameter
tuning, has focuses on keeping β fixed and searching for K which optimizes F-measure.
The analysis in section 6.3.1 shows that varying β has a neglible effect on the algorithm’s
performance, so β is fixed as β = 1

‖Atrain‖2 .

What follows is a description of the different optimization strategies evaluated:

grid Does a grid search over K, with a fixed step size. β is fixed. 1 ≤ K ≤ 50 is
examined and a step size of 1 is used.

rand Random search over a subspace of K with a fixed β. Depends on the size of the
subset to sample over and the number of samples. 1 ≤ K ≤ 50 is examined and 12
random samples are used meaning 24% of the subspace is examined.

hill A hill climbing algorithm using steepest descent which examines the neighbours of
K and moves to the best neighbour, will find a local optima. Uses a fixed β and a
step size of 1 is used.

stoch-hill A type of stochastic hill climbing algorithm which does a random restart when-
ever a local optima is found. Also randomly jumps to a random K by a 10% prob-
ability whenever a step is taken. Depends on the random jump probability, the
subspace of K and the number of iterations. A step size of 1 is used, the space
restriction is 1 ≤ K ≤ 50 and 12 samples are used meaning 24% of the subspace
is examined. The algorithm never revisits an old value.

The following plots compares the recommendation quality and runtime of the different
optimization strategies.

6.5 Algorithm comparison 63

Figure 6.37: Comparison of the recommendation quality given from the parameters
found by the different optimization strategies for katz-eig.

Figure 6.37 show that all the evaluated strategies generate recommendations of a similar
quality. The randomized algorithms rand and stoch-hill generally generate slightly worse
recommendations due to the variance.

Figure 6.38: Comparison of the runtime of the different optimization strategies for
katz-eig, given the optimized parameters specified in section 6.4.

The runtime is very poor for the grid based approach as expected. The random algorithms
also have poor performance, but this could be corrected by reducing the maximum number
of samples they try. Reducing them might reduce the recommendation quality which

64 6 Parameter tuning

Figure 6.39: Comparison of the runtime of the different optimization strategies for
katz-eig, given the optimized parameters specified in section 6.4. In a log scale.

already is worse than that of the regular hill climbing algorithm.

These tests show that the regular hill climbing algorithm is the best optimization strategy
for katz-eig producing similar recommendation quality to the full grid search while being
much faster than the other alternatives.

6.5 Algorithm comparison 65

6.5.2 link-analysis

Neither eswc2015movies nor eswc2015music was runnable with link-analysis on the test
setup so they are excluded from this discussion.

What follows is a description of the different optimization strategies evaluated:

grid Does a grid search over a subset of γ and η, given a fixed step size. −10 ≤ γ ≤ 10
x −10 ≤ η ≤ 10 was examined with a step size of 1.

adapt-hill An adaptive hill climbing algorithm over both γ and η. It starts with a fixed
step size and compares the neighbours. If a local optima is found, the step size is
decreased. Continues until a specified function, eta or gamma tolerance has been
reached. An initial step size of 1 is used and a η tolerance of 1 and a γ tolerance
of 0.5 is used. The algorithm aborts whenever a function tolerance of < 0.01 is
reached.

adapt-hill-gamma Similar to adapt-hill, but instead of searching over η it keeps η = 1
and optimizes over γ. When a local optima is found, η = −1 is tried.

Figure 6.40: Comparison of the recommendation quality given from the parameters
found by thedifferent optimization strategies for link-analysis.

The only difference between adapt-hill and adapt-hill-gamma can be seen with movie-
lens1m. Both display similar recommendation quality as the full grid search.

66 6 Parameter tuning

Figure 6.41: Comparison of the runtime of the different optimization strategies for
link-analysis, given the optimized parameters specified in section 6.4.

Figure 6.42: Comparison of the runtime of the different optimization strategies for
link-analysis, given the optimized parameters specified in section 6.4. In a log scale.

Grid search isn’t shown in the runtime plots as it is too slow, for movielens1m a runtime of
approximately 6 hours is needed. The runtime difference between optimizing over both γ
and η compared to only optimizing over γ is large while the difference in recommendation
quality is negligible. This shows that purely optimizing over γ using a hill climbing
algorithm is better than the alternatives.

6.5 Algorithm comparison 67

6.5.3 Result

This presents a comparison between the best performing optimization strategies for katz-
eig and link-analysis and compares the algorithms against each other. The optimized
parameters given in section 6.4 summarises the best performing parameters found for the
different datasets. These are the parameters used for the comparison.

Firstly table 6.4 displays the runtime for the algorithms to produce recommendations
using the full interaction matrix A. The same results is visualized in figure 6.43.

katz-eig link-analysis
alphaS 3.434409 s 1.038829 10.307018 s 0.068634

eswc2015books 0.027989 s 0.004293 0.720686 s 0.016339
eswc2015movies 1.382029 s 0.516727 x x
eswc2015music 2.001985 s 0.159226 x x

movielens1m 1.410586 s 0.107071 154.404908 s 18.179708
romeo 0.216897 s 0.032052 40.477119 s 0.114363

Table 6.4: Runtime of the algorithms using the full interaction history using the
optimized parameters given in section 6.4.

(a) (b)

Figure 6.43: Comparison of the runtime of generating recommendations for the full
dataset for the different algorithms. (b) shows the speed with logarithmic y-axis.
Both plots include the standard deviation of the 10 runs made.

Conclusively katz-eig is far superior speed wise. Only alphaS is somewhat close. The
difference for movielens1m and romeo is extreme. The bad complexity for matrix mul-
tiplication can be blamed as both datasets are larger than the rest and less sparse and
link-analysis does several full matrix multiplications but katz-eig does not.

The time for optimizing the parameters is shown in table 6.5 and visualized figure 6.44.

68 6 Parameter tuning

katz-eig link-analysis
alphaS 41.876401 9.106161 26.978338 0.877453

eswc2015books 1.871681 0.023562 3.245297 0.026975
eswc2015movies 52.749416 5.194185 x x
eswc2015music 141.664568 5.769257 x x

movielens1m 31.249456 0.190485 244.484291 58.205089
romeo 3.781222 0.012321 81.478788 4.675901

Table 6.5: Runtime for optimizing the different algorithms for the different datasets.
Uses the fastest optimization strategy.

(a) (b)

Figure 6.44: The runtime for paramater optimization for the different algorithms. (b)
shows the speed with logarithmic y-axis. Both plots include the standard deviation
of the 10 runs made.

Again katz-eig is superior speed wise, except for alphaS where it is slightly slower. The
speed difference between the parameter optimization for the algorithms is less than it is
for generating the final recommendations. Optimizing for eswc2015books is almost as
fast for link-analysis as for katz-eig but the difference is still large for movielens1m and
romeo.

Finally the recommendation quality of the algorithms is given in table 6.6 and visualized
in figure 6.45.

katz-eig link-analysis
alphaS 0.002174 0.003208

eswc2015books 0.020102 0.023537
eswc2015movies 0.048456 x
eswc2015music 0.054448 x

movielens1m 0.124839 0.090044
romeo 0.145914 0.134655

Table 6.6: Performance on F-measure of the different algorithms using the opti-
mized parameters given in section 6.4.

6.5 Algorithm comparison 69

Figure 6.45: Comparison of the recommendation quality given from the different
algorithms, given the optimized parameters specified in section 6.4.

For alphaS and eswc2015books link-analysis generates slightly better recommendations
compared to katz-eig but the difference is very small. For movielens1m and romeo katz-
eig provides better recommendations.

Conclusively katz-eig provides overall similar or better recommendations and is much
faster than link-analysis. For sparse matrices link-analysis is comparable but for larger
and less sparse matrices katz-eig is superior.

7
Discussion

This chapter discusses the thesis and future work. The chapter starts by discussing rec-
ommender systems in general and the recommender system built for Comordo and gives
some possible directions for future work on Comordo’s recommender system. After that
comes a discussion of the used datasets with comments about some surprising results for
specific datasets. Discussion around the evaluation method for recommendation quality
follow with thoughts about other metrics to try in future work follow. The chapter con-
cludes with discussing parameter tuning for the different algorithms with comments about
some optimization strategies to be tried in future work.

7.1 Recommender systems

One of the purposes of this thesis is to lay the foundation of Comordo Technologies’
recommender system. A guiding question in section 1.2.1 asked how a recommender
system could be designed to allow for easily extendible input- and output handling.

This question is answered by the plugin system described in section 4.5. A dynamic
plugin system designed in this way is very flexible and it can accommodate different
formats with little programming effort. Input in a standard form is also easy to handle,
for example an interaction matrix already created and stored in a “.mat” data file, as a
standard plugin can handle such a case.

It is not enough to only have support for a standard format as Comordo’s e-commerce
clients use different formats and different types of data. It is possible multiple files in a
non-standard format or some preprocessing are needed to handle data from a client. This
makes some customization unavoidable and the plugin system allows for this customiza-
tion.

71

72 7 Discussion

The recommender system developed in this thesis is very bare bones compared to some
larger commercial examples. It is reasonable as the purpose is to produce a first prototype,
or a core, for Comordo Technologies to built upon and extend.

7.1.1 Future work

The list of features of a modern recommender system could have is large. An important
feature is the act of explaining recommendations, which can be seen in both Netflix and
Spotify. Netflix notes that explanations improve trusts in the recommender system and
makes the recommendations more effective 1. This is also supported by the literature
which notes the importance of recommendations [1, 20]. The intuition is that if the rec-
ommendations come with a note “Recommended to you because you watched Die Hard”
and if you liked Die Hard you’re more likely to value the recommendations.

Extending Comordo’s recommender system with explanations would be a worthwhile
direction for future work. Developing algorithms which examine the linked structure
could be a possible way of generating explanations, this approach would be especially
suited for link-analysis but it might also be possible for katz-eig. Using a different set of
recommendation algorithms with support for explanations [1] might be another possible
approach.

Another feature which has gained some popularity lately [2] is diversifying the recommen-
dations. For Netflix it is common that a user account not just represents a single person
but a whole household which is why Netflix values diversity in their recommendations 2.
Diversity is the act of recommending different types of items, in the Netflix example in-
stead of only recommending action movies the recommendations include different genres
like drama, animated or horror. This isn’t just relevant when several persons share one
account but it also accommodates for different moods of a single person.

Including considerations for diversity into Comordo’s recommender system is another
good direction for the future. It is also something Comordo’s clients have shown interest
in.

The distinction between offline and online recommender systems is something not consid-
ered in the recommender system design by this thesis, but it is an important one. Instead
of generating recommendations on a fixed schedule, like once a day, it is desirable to gen-
erate recommendations in real time. The way Netflix does it 3 is to use faster and simpler
algorithms for generating recommendations in real time and more complex algorithms for
offline recommendations which take longer to run. As the complexity of the system grows
the line between offline and online algorithms become more blurred and more layers can
be added. Netflix has an intermediate layer between the online and offline for example.

When Comordo finalizes their remote API the online/offline distinction should be thought
about. I imagine functionality for generating recommendations in real time, so a consumer

1Netflix: Recommendations beyond 5 stars (Part 1), 2012. http://techblog.netflix.com/2012/
04/netflix-recommendations-beyond-5-stars.html

2Netflix: Recommendations beyond 5 stars (Part 1), 2012. http://techblog.netflix.com/2012/
04/netflix-recommendations-beyond-5-stars.html

3Netflix: System Architectures for Personalization and Recommendation, 2013. http://techblog.
netflix.com/2013/03/system-architectures-for.html

http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html
http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html
http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html
http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html
http://techblog.netflix.com/2013/03/system-architectures-for.html
http://techblog.netflix.com/2013/03/system-architectures-for.html

7.2 Datasets 73

at the e-commerce website can get instant feedback, would be appreciated by their clients.

7.2 Datasets

At the start of this thesis Comordo did not have access to the client specific datasets alpha,
alpha, alphaS and romeo, they came later during the work. They are interesting because
they are real datasets from Comordo’s actual clients which makes them commercially
interesting to study. Before acquiring these datasets movielens1m was the primary dataset
used. It was chosen as it is a real life dataset with many interactions used in other work
[21]. The datasets eswc2015books, eswc2015movies and eswc2015music are interesting
to examine as they form the basis of a recent recommender systems challenge 4. They
were included to increase the number of datasets in the study.

The datasets alpha and alpha2 are too large to be run on my test setup due to low memory
which is why alphaS is used instead. Also eswc2015movies and eswc2015music are not
runnable with link-analysis as Matlab crashed for unknown reasons when attempts were
made. My suspicion is on memory problems there as well. A better setup will be needed
to be able to process datasets such as these, or a filtering of the datasets to smaller size
would be needed. Optimization of the algorithms with respect to memory usage outside
the scope of this thesis but improvements could be made.

The datasets are examined both with regards to the number of interactions and examined
if there are any clusters. alphaS is an outlier as it had many users (51%) with only one
interaction. To generate recommendations a list of popular items could be provided and
the users could be removed from the training and test sets for a general speedup and
keeping the relative recommendation quality as high or possibly higher. The many one-
item users explains the requirement for 61% of all users to be able to reach 95% of the
users in table 5.2.

The sparsity of data in alphaS explains the better recommendation accuracy for link-
analysis compared to katz-eig (table 6.6) as link-analysis is specifically designed to solve
the sparse data problem [8, 9]. Similar results can be seen for eswc2015books and in the
learning curves for movielens1m and romeo which supports the claim in the literature.

The optimal parameters for eswc2015books are fairly strange. For katz-eig K = 1 gives
the best recommendation quality, but that means the recommendations are given by a rank-
1 approximation. Also for link-analysis γ = 0 gives the best recommendation quality,
which means that no penalization of users with many purchases occur. This could be
explained by the low variance of the users interaction count. All users have a very similar
amount of interactions and the point of γ is to penalize the user representativeness score
UR(u, û) if u had more interactions than û. If they have a similar amount, it doesn’t
matter.

The main motivation for the clustering analysis was to see if eswc2015books had any
clusters at all, but it turned out it has clusters (see figure 5.29). I don’t have a good

42nd Linked Open Data-enabled Recommender Systems Challenge, 2015. http://sisinflab.
poliba.it/events/lod-recsys-challenge-2015/

http://sisinflab.poliba.it/events/lod-recsys-challenge-2015/
http://sisinflab.poliba.it/events/lod-recsys-challenge-2015/

74 7 Discussion

explanation for the strange parameter values for eswc2015books, a more in-depth look at
the dataset and the generated recommendations would be needed.

Apart from defining a general baseline that all examined datasets have clusters, no other
conclusions about the clustering could be drawn. The most clustered dataset alphaS re-
ceives the lowest F-measure and the dataset with the least amount of clear clusters movie-
lens1m gets a high F-measure, but it’s not clear if the clustering is the reason. They are
endpoints with respect to sparsity with alphaS being the most sparse and movielens1m the
least.

The bad recommendations for alphaS can also be explained by it having a very large
percentage of users with very few interactions, which per definition will give a bad F-
measure. Similar reasons can be given for eswc2015books. There most users have less
than 10 interactions, but as we’re generating a top-10 list of recommendations a large part
of the recommendations will not be found matched against the test set and will produce a
low F-measure.

Better recommendations are generated for movielens1m and romeo, with both algorithms.
Both datasets are larger while being less sparse. The defining difference between datasets
with good recommendations and datasets with bad seems to be the sparsity level and the
number of interactions per user. Which makes intuitive sense as it is easier to predict for
users with more interactions than for users with fewer interactions. Clustering does not
seem to be a factor for generating good recommendations.

7.3 Evaluation

Different types of evaluation metrics have been used throughout the literature. The one
used in this thesis, F-measure, is a popular one but other metrics could yield different
results. Diversity [2] is a metric which measures the diversity of the recommendations. In
conjunction with F-measure, Diversity was the evaluation metric used for the 2nd Linked
Open Data-enabled Recommender Systems Challenge 5. Rank Score [9] is another metric
designed to rate a ranked list, list with the most recommended items, which is evaluated
in thesis. Rank Score and F-measure is used to evaluate link-analysis [9]. For future work
it would be interesting to evaluate link-analysis and katz-eig using these metrics to see if
the parameter analysis differ.

Another defining feature is that in this thesis only recommendations for new items are
generated. This makes sense for some of Comordo’s clients as they are concerned with
recommending new products, but other businesses might want to recommend old products
as well. Modifying the evaluation process to also include old products might change both
the performance and the behaviour of the algorithms. This is something which might be
pursued more in future work.

The reasoning for evaluating F-measure against a top-10 list of recommendations instead
of the whole recommendation matrix with some threshold is also because it’s most inter-

5Evaluation | 2nd Linked Open Data-enabled Recommender Systems Challenge, 2015.
http://sisinflab.poliba.it/events/lod-recsys-challenge-2015/tasks/
evaluation-service/

http://sisinflab.poliba.it/events/lod-recsys-challenge-2015/tasks/evaluation-service/
http://sisinflab.poliba.it/events/lod-recsys-challenge-2015/tasks/evaluation-service/

7.4 Parameter tuning 75

esting for Comordo and their clients. A top 10 list was chosen for simplicity instead of
evaluating different number of recommendations which would make the analysis more
complex and time consuming.

In the end the reasoning for using F-measure is one of simplicity. Precision, Recall and
F-measure is in some ways the basic way of evaluating recommendations which can form
a good basis and other metrics which measure more specific things (like Diversity) can
complement and extend that basis. This extension is expanded upon more in section 7.1.1
of future work for Comordo’s recommendation system.

7.4 Parameter tuning

The second of the two large parts of the thesis is to analyze and create parameter optimiza-
tion strategies for katz-eig and link-analysis. This is specified by the guiding questions in
section 1.2.1 and focus is placed on how to generate recommendations in practice.

First a recommender system around the algorithms is built containing all infrastructure
necessary to generate recommendations, see section 4.5. Then the analysis of the pa-
rameter space with regards to recommendation quality guides the evaluation of suitable
optimization strategies which then completes the parameter optimization part of the the-
sis.

katz-eig generally has much better runtime performance compared to link-analysis and
generates similar or better recommendation quality. link-analysis gives slightly better
recommendation quality for sparse datasets. It is expected as the primary motivation
for link-analysis is to generate recommendations for sparse data, but katz-eig still gives
comparable recommendations even for these datasets.

Optimization is very expensive, but generating recommendations for the full datasets for
both algorithms is fairly fast. Both algorithms can both be useful commercially when the
recommendations are generated offline. The only reason to use link-analysis over katz-
eig is if a known dataset is very sparse and fairly small otherwise katz-eig is the superior
choice.

In general gradient descent strategies and in particular the popular stochastic gradient
descent were not evaluated as a suitable cost function, with a gradient, for katz-eig or
link-analysis could not be find.

7.4.1 Parameters of katz-eig

The impact of varying β is very small, as shown in section 6.3.1. It is surprising as accord-
ing to the model β represents the link dampening. This means that fixing β to a constant
value while optimizing over K could give speed improvements while retaining recom-
mendation quality. Another surprising result is that the training curves in section 6.1.1
show that the number of iterations does not have a sizable effect on F-measure. There is
some improvement, but it is a very minor one.

These results suggests that katz-eig gives very similar recommendations as directly using
a SVD-k approximation would, which is what happens when β = 0. The number of

76 7 Discussion

iterations intuitively represents how many links are followed, but if the recommendation
quality is the same regardless of the number of iterations, then only one link followed
is enough. Recommendations based on SVD, or low rank matrix approximation in gen-
eral, is an acknowledged way of generating good predictions [2, 14] so the assumption is
reasonable.

The intuition that a low rank approximation could form the direct basis for recommen-
dations is that the effect of a matrix approximation necessarily blurs rows and columns,
meaning the user and item interaction history is blurred leading to users with similar in-
teractions are blurred together.

Varying K however affects F-measure a lot more, as seen in section 6.3.1. Although a bit
jagged, the plots indicate a “hill” shape which suggests that a hill climbing strategy could
be a viable optimization strategy. As seen in section 6.5.1 this does seem to be the case
as a hill climbing strategy produce nearly as good a result as a full grid search. A variant
with random jumps and restarts is also tried but the standard hill climber outperformed
the stochastic version.

7.4.2 Parameters of link-analysis

The paper introducing link-analysis [8] does not include η in the description. It is instead
introduced by the same authors in a later paper [9] but there it is just set to η = 1 without
further comments or analysis, which is surprising.

The analysis in section 6.3.2 shows that η = 1 is a well performing value. The modelling
of link-analysis supports it as the most logical value, which probably is why they chose
it. When η > 1 very similar results as η = 1 are obtained. This can be explained
by the algorithm description. The purpose of UR0 = η ∗ IM is to keep a high user
representativeness score for the user itself. It doesn’t matter that much how high the
value is, as long as it is higher than the surrounding values. With the normalization step
included in the iterations a value of η ≥ 1 makes sure of that. Worth pointing out is that
the optimal parameters can have η > 1, but it is not with a very big margin. Inaccuracy in
multiplications is a plausible explanation.

More interesting and harder to explain is values η < 0, which can be even better than
η > 0. I have found no reasonable explanation and it might be worth investigating further.

The same papers [8, 9] mentions that investigations with 0 ≤ γ ≤ 1 have been made
and then a value of 0.9 was a good value. My investigations include a larger interval
and optimal values for γ can be found outside that range, romeo has a local maxima with
γ = 2. The findings in this thesis however do support the claim that 0.9 is a reasonably
good value.

Analysis of γ in section 6.3.2 suggests that F-measure is almost convex with a clear “hill”
in the function space. There are small local maxima but as a whole it follows a clear
hill form. This suggests that a hill climbing optimization strategy might perform well for
these datasets. It might also be worthwhile to keep η fixed as is done in [8, 9].

This is supported by the tests in section 6.5.2 which show that an adaptive hill climbing
strategy produce recommendations almost as good as a full blown grid search in only a

7.4 Parameter tuning 77

fraction of the time needed. The difference in recommendation quality between optimiz-
ing over both γ and η compared to just optimizing over γ while η = 1 or − 1 is small,
but the runtime difference is not.

7.4.3 Future work

Due to time constraints several optimization techniques are not examined by this thesis.
Stochastic hill climbing is examined for katz-eig but not for link-analysis. It is not a very
promising strategy as the parameter space still has a clear hill shape, but depending on the
exact implementation it could still be a promising technique. The fixed parameters for the
examined algorithms were not optimized and performance improvements could be gained
by tweaking them more.

Simulated annealing is a way of randomly sample, similar to the random sampling and
stochastic hill climbing investigated for katz-eig, and the expectation is that simulated
annealing might outperform these strategies. Bayesian optimization is another promising
optimization strategy to try.

For future work it would be interesting to examine the performance of optimizing onK for
katz-eig and on γ or on γ and η for link-analysis using simulated annealing and bayesian
optimization. The central question is if these strategies can outperform the regular hill
climbing algorithm for datasets such as these with very prominent hill shapes.

8
Conclusions

A implicit feedback recommender system with the recommendation algorithms katz-eig
and link-analysis is built. Optimization strategies for learning the algorithms’ parameters
and fit them to different datasets are implemented and evaluated.

Recommendation quality is measured using F-measure and evaluated on a top 10 list. For
sparse datasets link-analysis gives slightly better recommendation quality compared to
katz-eig, but the performance is comparable. For the other datasets katz-eig gives better
recommendations. Speed wise katz-eig is superior. As the difference in recommendation
quality for sparse datasets is so small katz-eig is the best general choice as the recom-
mendations are better for the other datasets and it is generally much faster. The recom-
mendations are better with datasets which have more interactions and worse for sparse
datasets.

For future work bayesian optimization and simulated annealing could be explored as pos-
sibly more efficient optimization strategies. The recommender system could be extended
with regards to diversity and ability to explain the recommendations.

79

80 8 Conclusions

This is a summary of the guiding questions posed in section 1.2.1 with answers.

Q: How can a recommender system be designed to allow for easily extendible input- and
output handling?

A: With a plugin system where each plugin correspond to a different format. The devel-
oped system is described more in section 4.5.1.

Q: How can learning and recommendation using link-analysis and katz-eig be performed
in practice, with regards to speed and recommendation quality? How shall learning and
optimization of their parameters be done?

A: Using a recommender system as described in section 4.5 learning and recommending
can be accomplished in a general way.

Varying β for katz-eig has little to no effect and link-analysis varies mostly depending
on the sign with respect to η. The best parameter optimization strategy for katz-eig is
to fix β = ‖Atrain‖2 and optimize K using a hill climbing algorithm. It gives similar
recommendation quality compared to a full grid search but with better speed. Similarly
the best optimization strategy for link-analysis only examines η = 1 and η = −1 while
using an adaptive hill climbing algorithm to optimize γ.

Appendix

A
Code

A.1 ESWC reader plugin
class Eswc():

def add_arguments(self, parser):
"""Parse command line arguments"""

parser.description = "Load eswc data"
parser.add_argument(’file’, metavar=’eswc_training_file’, type=str

, help=’The training file’)

def load(self, args):
"""Load users and items."""

items = {}
users = {}

Each line is composed by: userID \t itemID
with open(args.file) as f:

for line in f:
s = line.rstrip().split(’\t’)
user_id, item_id = s[0], s[1]

if not item_id in items:
items[item_id] = Item(item_id)

if not user_id in users:
users[user_id] = User(user_id)

users[user_id].add_history(item_id, 1)

return users, items

83

84 A Code

Bibliography

[1] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit
feedback datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE International
Conference on, pages 263–272. IEEE, 2008. Cited on pages 2, 7, 17, 18, 19, 20, 21,
22, and 72.

[2] Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham Gutiérrez. Rec-
ommender systems survey. Knowledge-Based Systems, 46:109–132, 2013. Cited
on pages 2, 17, 18, 21, 72, 74, and 76.

[3] Gábor Takács and Domonkos Tikk. Alternating least squares for personalized rank-
ing. In Proceedings of the sixth ACM conference on Recommender systems, pages
83–90. ACM, 2012. Cited on pages 2, 21, and 22.

[4] Fidel Cacheda, Víctor Carneiro, Diego Fernández, and Vreixo Formoso. Compari-
son of collaborative filtering algorithms: Limitations of current techniques and pro-
posals for scalable, high-performance recommender systems. ACM Transactions on
the Web (TWEB), 5(1):2, 2011. Cited on pages 3 and 28.

[5] Donghyuk Shin, Si Si, and Inderjit S Dhillon. Multi-scale link prediction. In Pro-
ceedings of the 21st ACM international conference on Information and knowledge
management, pages 215–224. ACM, 2012. Cited on pages 8 and 22.

[6] Leo Katz. A new status index derived from sociometric analysis. Psychometrika, 18
(1):39–43, 1953. Cited on page 8.

[7] Jon M Kleinberg. Authoritative sources in a hyperlinked environment. Journal of
the ACM (JACM), 46(5):604–632, 1999. Cited on page 11.

[8] Zan Huang, Daniel Zeng, and Hsinchun Chen. A link analysis approach to recom-
mendation under sparse data. AMCIS 2004 Proceedings, page 239, 2004. Cited on
pages 11, 22, 73, and 76.

[9] Zan Huang, Daniel Zeng, and Hsinchun Chen. A comparison of collaborative-
filtering recommendation algorithms for e-commerce. IEEE Intelligent Systems,
(5):68–78, 2007. Cited on pages 11, 22, 73, 74, and 76.

85

86 Bibliography

[10] Peter Norvig and Stuart Russell. Artificial Intelligence, A Modern Approach. Pear-
son, third edition, 2010. Cited on pages 16, 17, and 20.

[11] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. Data clustering: a review.
ACM computing surveys (CSUR), 31(3):264–323, 1999. Cited on page 17.

[12] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimiza-
tion. The Journal of Machine Learning Research, 13(1):281–305, 2012. Cited on
page 20.

[13] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization
of machine learning algorithms. In Advances in Neural Information Processing
Systems, pages 2951–2959, 2012. Cited on page 20.

[14] Linyuan Lü, Matúš Medo, Chi Ho Yeung, Yi-Cheng Zhang, Zi-Ke Zhang, and Tao
Zhou. Recommender systems. Physics Reports, 519(1):1–49, 2012. Cited on pages
21 and 76.

[15] James Bennett and Stan Lanning. The netflix prize. In Proceedings of KDD cup and
workshop, volume 2007, page 35, 2007. Cited on page 21.

[16] Xiaoyuan Su and Taghi M Khoshgoftaar. A survey of collaborative filtering tech-
niques. Advances in artificial intelligence, 2009:4, 2009. Cited on page 21.

[17] Siwei Lai, Yang Liu, Huxiang Gu, Liheng Xu, Kang Liu, Shiming Xiang, Jun Zhao,
Rui Diao, Liang Xiang, Hang Li, et al. Hybrid recommendation models for binary
user preference prediction problem. In KDD Cup, pages 137–151, 2012. Cited on
page 21.

[18] Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T Riedl. Eval-
uating collaborative filtering recommender systems. ACM Transactions on Infor-
mation Systems (TOIS), 22(1):5–53, 2004. Cited on page 21.

[19] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
Bpr: Bayesian personalized ranking from implicit feedback. In Proceedings of the
Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pages 452–461.
AUAI Press, 2009. Cited on page 22.

[20] Nava Tintarev and Judith Masthoff. A survey of explanations in recommender sys-
tems. In Data Engineering Workshop, 2007 IEEE 23rd International Conference on,
pages 801–810. IEEE, 2007. Cited on page 72.

[21] Niklas Ekvall. Movie recommendation system based on clustered low-rank approx-
imation. 2012. Cited on page 73.

Upphovsrätt
Detta dokument hålls tillgängligt på Internet — eller dess framtida ersättare — under 25 år
från publiceringsdatum under förutsättning att inga extraordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut
enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forsk-
ning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte
upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens
medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns det lösning-
ar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den om-
fattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt
skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang
som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se förlagets
hemsida http://www.ep.liu.se/

Copyright
The publishers will keep this document online on the Internet — or its possible replace-
ment — for a period of 25 years from the date of publication barring exceptional circum-
stances.

The online availability of the document implies a permanent permission for anyone to
read, to download, to print out single copies for his/her own use and to use it unchanged
for any non-commercial research and educational purpose. Subsequent transfers of copy-
right cannot revoke this permission. All other uses of the document are conditional on
the consent of the copyright owner. The publisher has taken technical and administrative
measures to assure authenticity, security and accessibility.

According to intellectual property law the author has the right to be mentioned when
his/her work is accessed as described above and to be protected against infringement.

For additional information about the Linköping University Electronic Press and its
procedures for publication and for assurance of document integrity, please refer to its
www home page: http://www.ep.liu.se/

c© Jonas Hietala

http://www.ep.liu.se/
http://www.ep.liu.se/

	Front Page
	Title Page
	Library Page
	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Introduction
	1.2 Problem definition
	1.2.1 Guiding questions

	1.3 Limitations
	1.4 Contributions
	1.5 Outline of the report

	2 Background
	2.1 Recommendation theory
	2.1.1 Recommendation model
	2.1.2 Recommendation prediction
	2.1.3 The katz-eig algorithm
	2.1.4 The link-analysis algorithm

	2.2 Machine learning
	2.2.1 Supervised learning
	2.2.2 Unsupervised learning
	2.2.3 Evaluation

	2.3 Optimization

	3 Related work
	4 The Comordo recommender system
	4.1 Comordo
	4.2 System development task
	4.2.1 Use case

	4.3 Development methodology
	4.3.1 Programming languages

	4.4 Evaluation
	4.5 System overview
	4.5.1 Reader module
	4.5.2 Recommender module
	4.5.3 Exporter module

	5 Data
	5.1 Description of the datasets
	5.2 Number of interactions
	5.3 Clusters
	5.3.1 Compactness using k-means
	5.3.2 Connectivity using Spectral Clustering

	6 Parameter tuning
	6.1 Training curves
	6.1.1 katz-eig
	6.1.2 link-analysis

	6.2 Learning curves
	6.3 Parameter space analysis
	6.3.1 katz-eig
	6.3.2 link-analysis

	6.4 Optimized parameters
	6.5 Algorithm comparison
	6.5.1 katz-eig
	6.5.2 link-analysis
	6.5.3 Result

	7 Discussion
	7.1 Recommender systems
	7.1.1 Future work

	7.2 Datasets
	7.3 Evaluation
	7.4 Parameter tuning
	7.4.1 Parameters of katz-eig
	7.4.2 Parameters of link-analysis
	7.4.3 Future work

	8 Conclusions
	A Code
	A.1 ESWC reader plugin

	Bibliography
	Copyright

