
Institutionen för datavetenskap
Department of Computer and Information Science

Examensarbete

Unsupervised Spatio-Temporal Activity Learning and
Recognition in a Stream Processing Framework

Examensarbete utfört
vid Tekniska högskolan vid Linköpings universitet

av

Mattias Tiger

LIU-IDA/LITH-EX-A–14/059–SE

Linköping 2014-10-27

Department of Computer and Information Science Linköpings tekniska högskola
Linköpings universitet Linköpings universitet
SE-581 83 Linköping, Sweden 581 83 Linköping

Unsupervised Spatio-Temporal Activity Learning and
Recognition in a Stream Processing Framework

Examensarbete utfört
vid Tekniska högskolan vid Linköpings universitet

av

Mattias Tiger

LIU-IDA/LITH-EX-A–14/059–SE

Handledare: Daniel de Leng
ida, Linköping University

Examinator: Fredrik Heintz
ida, Linköping University

Linköping, 27 oktober 2014

Till min älskade mamma, som tålmodigt väntar på den dag hon kan få en
tvättande, städande och diskande robot till sitt hem.

Avdelning, Institution
Division, Department

Artificial Intelligence and Integrated Computer Systems
Department of Computer and Information Science
SE-581 83 Linköping

Datum
Date

2014-10-27

Språk
Language

� Svenska/Swedish

� Engelska/English

�

�

Rapporttyp
Report category

� Licentiatavhandling

� Examensarbete

� C-uppsats

� D-uppsats

� Övrig rapport

�

�

URL för elektronisk version

urn:nbn:se:liu:diva-111646

ISBN

—

ISRN

LIU-IDA/LITH-EX-A–14/059–SE

Serietitel och serienummer
Title of series, numbering

ISSN

—

Titel
Title

Oövervakad maskininlärning och klassificering av spatio-temporala aktiviteter i ett ström-
baserat ramverk

Unsupervised Spatio-Temporal Activity Learning and Recognition in a Stream Processing
Framework

Författare
Author

Mattias Tiger

Sammanfattning
Abstract

Learning to recognize and predict common activities, performed by objects and observed
by sensors, is an important and challenging problem related both to artificial intelligence
and robotics. In this thesis, the general problem of dynamic adaptive situation awareness is
considered and we argue for the need for an on-line bottom-up approach. A candidate for a
bottom layer is proposed, which we consider to be capable of future extensions that can bring
us closer towards the goal. We present a novel approach to adaptive activity learning, where
a mapping between raw data and primitive activity concepts are learned and continuously
improved on-line and unsupervised. The approach takes streams of observations of objects
as input and learns a probabilistic representation of both the observed spatio-temporal ac-
tivities and their causal relations. The dynamics of the activities are modeled using sparse
Gaussian processes and their causal relations using probabilistic graphs. The learned model
supports both estimating the most likely activity and predicting the most likely future (and
past) activities. Methods and ideas from a wide range of previous work are combined to pro-
vide a uniform and efficient way to handle a variety of common problems related to learning,
classifying and predicting activities. The framework is evaluated both by learning activities
in a simulated traffic monitoring application and by learning the flight patterns of an in-
ternally developed autonomous quadcopter system. The conclusion is that our framework
is capable of learning the observed activities in real-time with good accuracy. We see this
work as a step towards unsupervised learning of activities for robotic systems to adapt to
new circumstances autonomously and to learn new activities on the fly that can be detected
and predicted immediately.

Nyckelord
Keywords Activity learning, Activity recognition, Activity prediction, Unsupervised On-line learning,

Artificial Intelligence, Spatio-temporal, Stream processing, Sparse Gaussian process

urn:nbn:se:liu:diva-111646

Abstract

Learning to recognize and predict common activities, performed by objects and
observed by sensors, is an important and challenging problem related both to ar-
tificial intelligence and robotics. In this thesis, the general problem of dynamic
adaptive situation awareness is considered and we argue for the need for an on-
line bottom-up approach. A candidate for a bottom layer is proposed, which we
consider to be capable of future extensions that can bring us closer towards the
goal. We present a novel approach to adaptive activity learning, where a mapping
between raw data and primitive activity concepts are learned and continuously
improved on-line and unsupervised. The approach takes streams of observations
of objects as input and learns a probabilistic representation of both the observed
spatio-temporal activities and their causal relations. The dynamics of the activi-
ties are modeled using sparse Gaussian processes and their causal relations using
probabilistic graphs. The learned model supports both estimating the most likely
activity and predicting the most likely future (and past) activities. Methods and
ideas from a wide range of previous work are combined to provide a uniform and
efficient way to handle a variety of common problems related to learning, classify-
ing and predicting activities. The framework is evaluated both by learning activ-
ities in a simulated traffic monitoring application and by learning the flight pat-
terns of an internally developed autonomous quadcopter system. The conclusion
is that our framework is capable of learning the observed activities in real-time
with good accuracy. We see this work as a step towards unsupervised learning of
activities for robotic systems to adapt to new circumstances autonomously and
to learn new activities on the fly that can be detected and predicted immediately.

v

Sammanfattning

Att lära sig känna igen och förutsäga vanliga aktiviteter genom att analysera
sensordata från observerade objekt är ett viktigt och utmanande problem rela-
terat både till artificiell intelligens och robotik. I det här exjobbet studerar vi det
generella problemet rörande adaptiv situationsmedvetenhet, och vi argumente-
rar för behovet av ett angreppssätt som arbetar on-line (direkt på ny data) och
från botten upp. Vi föreslår en möjlig lösning som vi anser bereder väg för fram-
tida utökningar som kan ta oss närmare detta mål. Vi presenterar en ny metod för
adaptiv aktivitetsinlärning, där en mappning mellan rå-data och grundläggande
aktivitetskoncept, samt deras kausala relationer, lärs och är kontinuerligt förfi-
nade utan behov av övervakning. Tillvägagångssättet bygger på användandet av
strömmar av observationer av objekt, och inlärning sker av en statistik represen-
tation för både de observerade spatio-temporala aktiviteterna och deras kausala
relationer. Aktiviteternas dynamik modelleras med hjälp av glesa Gaussiska pro-
cesser och för att modellera aktiviteternas kausala samband används probabilis-
tiska grafer. Givet observationer av ett objekt så stödjer de inlärda modellerna
både skattning av den troligaste aktiviteten och förutsägelser av de mest troliga
framtida (och dåtida) aktiviteterna utförda. Metoder och idéer från en rad olika
tidigare arbeten kombineras på ett sätt som möjliggör ett enhetligt och effektivt
sätt att hantera en mängd vanliga problem relaterade till inlärning, klassificering
och förutsägelser av aktiviteter. Ramverket är utvärderat genom att dels inlärning
av aktiviteter i en simulerad trafikövervakningsapplikation och dels genom inlär-
ning av flygmönster hos ett internt utvecklad quadrocoptersystem. Slutsatsen är
att vårt ramverk klarar av att lära sig de observerade aktivisterna i realtid med
god noggrannhet. Vi ser detta arbete som ett steg mot oövervakad inlärning av
aktiviteter för robotsystem, så att dessa kan anpassa sig till nya förhållanden auto-
nomt och lära sig nya aktiviteter direkt och som då dessutom kan börja detekteras
och förutsägas omedelbart.

vii

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Problem Overview . 3
1.3 Objectives . 5
1.4 Contributions . 6
1.5 Outline . 7

2 Background and Related Work 9
2.1 Stream Processing and Stream Reasoning 9
2.2 Motivation for Using Probabilities 11
2.3 Gaussian Processes . 13

2.3.1 Kernels . 15
2.3.2 Gaussian Process Regression 16

2.4 Related Work . 17

3 Sparse Local Gaussian Processes 21
3.1 Sparse Local Gaussian Processes . 22
3.2 Combining Gaussian Distributions 24
3.3 Combining and Fusion of Gaussian Processes 26
3.4 Sparse Gaussian Process by Uniform Sampling 29

3.4.1 Variance Estimation . 29
3.4.2 Mean Estimation . 30
3.4.3 The SGPUS Algorithm . 31

4 Activities 35
4.1 Activities . 35
4.2 Modeling Spatio-Temporal Activities 36
4.3 The Activity Model . 39
4.4 Evidence . 41
4.5 Activity similarity . 42

5 The Activity Learning and Classification Framework 45
5.1 The Framework . 45

ix

x Contents

5.2 Activity Learning . 47
5.2.1 Learning New Activities . 50
5.2.2 Merging Activities . 50
5.2.3 Updating Activities . 51
5.2.4 Separating Learned Activities 52

5.3 Activity Recognition and Prediction 54
5.3.1 Activity Recognition and Prediction 55
5.3.2 Activity Chain Recognition and Prediction 56

6 Experiments and Result 59
6.1 T-Crossing Case Study . 59
6.2 UAV Case Study . 60

7 Discussion and Conclusion 65
7.1 The Framework . 65
7.2 Computational Complexity and Performance Factors 67
7.3 Discussion . 69
7.4 Conclusion . 73
7.5 Future Work . 74

Bibliography 77

A Variance Estimation Derivation 83

Acknowledgments

I have always been interested in robots and artificial intelligence, in one form or
another, ever since I can first remember. The older I became, the more interesting
and fabulous the details and concepts were, while I at the same time grew in
disappointment of how little progress it seemed we had made. I could imagine
such potential, and yet it felt like we were lifetimes away from getting there. I
no longer feel as disappointed, nor am I as worried. We are slowly but steadily
getting there, a little closer and a little faster each year.

Since many years back now, I have come to appreciate what effect growing up in
my generation has had on me. Personal computers, and later the Internet, formed
a natural part our daily experience as teenagers and forward, with Google and
Wikipedia at a few pushes of a button away. What older generations still see
as recent wonders, especially engineers and in academia, we grew up with and
never really had a chance to appreciate its glamour in the same way.

I have a desire to replicate and automate my skills and how I go about learn-
ing and applying knowledge for solving problems and acquiring new knowledge.
One of the fundamental aspects of a learning entity is the ability to distinguish
patterns of increasing detail, such as when we explore something new and after
a while start to see and understand more and more details about it. This is for
example the case with music of a new genre, or that of whiskey or wine, were
what is new first can seem awful and weird. However, after some accumulated
experience it is shown to consist of many different flavors, with intricate details
one didn’t think were there. It is something I have found to be the case with most
things in life.

In this work I present a way to go about this incremental learning of details, cur-
rently applied to that of spatial behaviors, with the sense-reasoning gap as one of
the main hindrance for the progress of robotics and AI. I look forward to seeing
where it can get us and I am eager to continue, on the shoulders of giants, the
improvements of civilization that future generations one day will come to take
for granted.

Many people have made this work possible with both minor and major contri-
butions of various sorts. I would first like to thank my examiner Fredrik Heintz
for his engagement, encouragement and support. I have the pleasure of work-
ing alongside him and my supervisor Daniel de Leng on a daily basis, whom I
would like thank for all the enlightening discussions, his tireless support and for
always being there to help me. I would also like to thank everybody at AIICS, and
Patrick Doherty in particular, for welcoming me to the division. A special thanks
to Patrick Doherty for the generous opportunity to present my preliminary work
at the STAIRS symposium of the 21th European conference on artificial intelli-
gence (ECAI). It taught me a lot to attend the conference and to meet my peers,
with interesting discussions and many new contacts as a result.

Finally I would like to thank my family and friends for their support and en-

xi

xii Acknowledgments

couragement during these past six years of study. I am every bit as proud to be
their family and friend as they might be for my success and the conclusion of this
chapter of my life. Lastly an especial thank you to my extraordinary and beloved
Hanna Johansson, for our past years and those yet to come.

Linköping, October 2014
Mattias Tiger

1
Introduction

This chapter starts with an introduction to the problem of situation awareness in
a realistic and dynamic environment. It is followed by an introduction to a novel
and efficient approach to this problem using unsupervised bottom-up learning
of activities. The objectives of this thesis are covered together with its contribu-
tion, and finally a thesis outline is given in which the remaining chapters are
introduced.

1.1 Introduction

One of the core issues in Artificial Intelligence is the notion of situation aware-
ness, introduced by Endsley (1988) as “knowing what is going on around you”
in a given situation. Concretely, what we seek is adaptive domain knowledge
acquisition through continuous maintenance and integration of high-level and
low-level information combining symbolic and quantitative models. This brings
us closer to learning, recognition, prediction and simulation of situations on all
abstraction levels, which is closely related to efforts towards bridging the sense-
reasoning gap, introduced by Heintz et al. (2010).

Suppose you want to build the mind of a robot that interacts with and performs
human level tasks in the real world. In a lab the environment can to a large extent
be controlled and behaviors can therefore be hard-coded for different scenarios
given the known artificial constraints. Real world environments are in many
cases much more challenging by being more dynamic and varying than those in
the controlled lab setting, and would require a lot more hard coded functionality
to manage each expected situation for each task. It can be very hard to pin down
how the real world environment might change and to anticipate all appropriate

1

2 1 Introduction

responses and situations to detect and adapt to.

Should you let the robot run free in the environment and something unantic-
ipated were to happen, then the expected behavior is undefined and anything
can happen. In some cases it might be possible to detect when the robot’s world
model diverges from the real world in a way that can make it stop in unknown
situations and wait until everything is as it is used to, before carrying on. This
would definitely improve the safety of humans and property, similar to how an
industrial robot might stop when a human or something noticeable enters a re-
stricted space as to not hurt the human. But permanent or long changes to the
environment will lead to the robot standing idle a very long time or even indefi-
nitely, unless humans intervene.

The changes in the environment might be either slow or very rapid and models
used by the robot can slowly drift from the piece of reality it models or become
deprecated all together. Unless total knowledge of a domain is available from the
start, an operator would have to figure out a new set of rules with corresponding
context and update the robot each time it detects a limitation. Maybe we will
have acquired sufficiently complete domain knowledge models for real world
domains in the future, but we are no way near that point yet, so it is still up to
the robot developer to figure out abstractions, rules, contexts and restrictions for
their robot.

Another way to approach this problem is to add mechanisms that extends and
updates the robot world model. While it is comparatively simple to update some
quantitative models of e.g. probability distributions or certain classifiers, it is
much harder to extend a robot’s taxonomy with new concepts that are also at the
same time grounded/connected from the bottom-up in everything else that the
robot understands. If a robot cannot relate a newly learned concept to the other
concepts it knows then it cannot reason over its effects. If it cannot relate the new
concept to some quantitative representations then it cannot simulate its effects in
the continuous world, nor keep it updated or maybe not even detect it properly.
The integration of low-level and high-level data representations and processes is
one of the main challenges of autonomous embedded systems (Coradeschi, 1999).

A way to approach these issues is to let the robot itself learn the domain knowl-
edge in an unsupervised manner, from low-level representations up to high-level
concepts and relations, bottom-up from observation. The idea is that what has
been learned can also be relearned, modified, kept updated and will continuously
in time represent the most accurate up-to-date world model the robot is capable
of. The objective of this thesis is to present a novel approach to adaptive ac-
tivity and context learning, where a mapping between raw data and primitive
activity concepts and contexts are learned and continuously improved without
supervision.

Activities here are so called spatio-temporal activities, which are generally de-
fined as changes in state variables over time. State variables can for example be
from human activities in the form of arm or leg motions related to the torso, or

1.2 Problem Overview 3

related to the other arm or leg. In a traffic domain state variables can be the po-
sition and velocity of a driving car, or come from relations between cars in for
example a crossing or during an overtake maneuver. Examples of car activities
can be a left turn, a slowdown, acceleration, a parking maneuver or an overtake,
and each of them of various kinds. It is also important to recognize that activities
do not happen in isolation. Activities follow after each other, are triggered by
previous activities and are causing future activities. Activities differ at different
places, at different times and in different situations. The recognition and predic-
tion of activities is dependent on the context, to narrow down an overwhelming
set of possibilities what is most likely to be applicable and most expected, or as
Brézillon (1999) put it: “Contextual knowledge acts as a filter that defines, at a
given time, what knowledge pieces must be taken into account (explicit context)
from those that are not necessary or already shared (implicit context).” Context
in this work is information external to the spatio-temporal activity models and
can be things like causal transitions between activities, object classes performing
specific activities or time periods and time cycles of variations in behavior. The
notion also incorporates discrete information such as the presence of a red light
for a car or rain for a UAV.

We focus primarily on the case of streaming data, where observations are made
incrementally available. We assume that we cannot wait until everything worth
observing has been observed, and therefore require an incremental build-up of
domain knowledge through learning. The reason for this is that we want to be
able to use real-time adaptive learning systems in the field, on-board robotic plat-
forms or in surveillance applications. It is also the case that the number of pos-
sible situations in the real world is practically endless and the situations ever
changing, so we will never have learned everything with a complete and correct
representation of the world. Just like the world is changing, so must we.

1.2 Problem Overview

Learning and recognizing spatio-temporal activities from streams of observations
is a central problem in artificial intelligence and robotics. Activity recognition
is important for many applications including detecting human activities such
that a person has forgotten to take her medicine in an assisted home (Aggarwal
and Ryoo, 2011), monitoring telecommunication networks (Dousson and Maigat,
2007), and recognizing illegal or dangerous traffic behavior (Gerber and Nagel,
2008, Heintz et al., 2007). In each of the applications the input is a potentially
large number of streams of observations coming from sensors and other informa-
tion sources. Based on these observations common patterns should be learned
and later recognized, in real-time as new information becomes available.

The road traffic domain is an example of a domain which is composed of explicit
trajectories, consisting of states that change over time. The domain of trajecto-
ries of positions of cars along roads is simple enough to be used as an illustrative
example, yet rich enough in complexity and applicability. Changes in state vari-

4 1 Introduction

Figure 1.1: T-crossing scenario. Will the car turn or continue?

ables (motion) are constrained by environmental structure (roads) which enforce
a context very well suited for trajectories. Such a context would in many other
domains have to be learned first. This would require a larger system than what
we focus on here, although we give some hints about the larger perspective. By
choosing this domain we can focus on the fundamentals of quantitative to qual-
itative domain knowledge learning together with a base context layer, and save
the next layer of in-depth context learning for future work. The work in this
thesis is with the latter extension in mind.

Consider a traffic monitoring application where a UAV is given the task of moni-
toring the traffic in a T-crossing. The UAV is equipped with a color and a thermal
camera and is capable of detecting and tracking vehicles driving through the
intersection (Heintz et al., 2007). The output of the vision-based tracking func-
tionality consists of streams of states where a state represents the information
about a single car at a single time-point and a stream represents the trajectory of
a particular car over time (Figure 1.1, left). Based on this information the UAV
needs to learn traffic activities such as driving straight through the intersection
or making a turn (Figure 1.1, right). The T-crossing scenario in Figure 1.1 is used
throughout the thesis as a running example.

The learning of activity models is similar to trajectory clustering since the model
represents a (growing) set of observed trajectories. Morris and Trivedi (2013)
highlights two key questions in trajectory clustering which are as follows:

• “How can trajectories of varying length be compared (clustered) in a man-
ner that ensures all semantically meaningful patterns are extracted in a
completely unsupervised fashion?”

• “Given a grouping of similar trajectories, how should they be modeled and
parametrized to capture the difference between clusters while providing a
computationally efficient inference scheme?”

1.3 Objectives 5

The first question is covered in-depth in chapter 5 where we present our unsuper-
vised framework aimed to accomplish this task. An intuition of our solution to
the first question is also provided in section 4.2. The second question is covered
in chapter 3 and 4, where we provide a computationally efficient probabilistic
model that we show in chapter 6 can be used for both on-line unsupervised learn-
ing in real-time, and be used for classification and prediction in real-time.

1.3 Objectives

The objective is to construct and evaluate an unsupervised domain knowledge
acquisition framework for spatio-temporal activities. The domain knowledge
base constructed should be suitable for activity learning, recognition, prediction
and simulation on multiple abstraction levels. The abstraction levels focused
on in this thesis are the two which are considered to be fundamental for spatio-
temporal activities:

• Learn and update atomic state-trajectories using Gaussian processes as a
probabilistic continuous model. These will be our atomic building blocks
and form the instances of atomic/primitives activities. The models should
be limited in size so that they do not grow with additional observations, and
the learning mechanism should make sure of this. Learning, updating and
comparison regarding similarity with other activities or trajectories should
be as computationally efficient as possible in order to meet the real-time
constraint.

• Segment overlapping atomic activities and learn the proximity and transi-
tional relations between activities in a way that makes it possible to perform
probabilistic prediction, novelty/abnormality discovery and transition de-
tection. We wish to capture the contextual information that is directly avail-
able from comparing new trajectories to known activity trajectories regard-
ing their overlap in the state-space and that they have a direction in time.

A number of properties are desired of a solution of the stated problems. These
are highlighted with the notation [D]. We will use the properties when evaluating
our framework.

Given incrementally available state trajectories of unique objects, we want to
learn [D1] and maintain [D2] an up to date knowledge base of the world. The
state variables are assumed to be continuous, such as physical properties which
are sampled by sensors. The intention is to have such a system in the future run-
ning on a robotic platform capable of acting in the real world [D3]. This means
that real-time restrictions and information overload must be taken into consider-
ation. The real-time constraint is important since a robot acting in the real world
has a need to react on time to changes in its surroundings. The issue of infor-
mation overload is important since a continuously running system will observe
immense amounts of data, which can be useful in modeling and understanding
the world. The ideal is a system that can run indefinitely in real-time [D4] and

6 1 Introduction

accumulate an endless number of observations [D5], allowing autonomous oper-
ations with adaptive world understanding support. We assume the presence of
robust tracking and that the observed trajectories are produced by the intended
objects, although the trajectories and each single observation are allowed, and
expected to, contain observation noise. We assume this noise has a Gaussian dis-
tribution.

The knowledge base that is learned should be useful for a robotic platform or
surveillance system. It should support recognition [D6], prediction [D7] and
simulation [D8] of activities and situations, thereby providing situation aware-
ness (Endsley, 1988). World understanding encompasses the ability to recognize
behaviors and situations as well as the ability to reason over causal relationships
[D9] between different behaviors and situations. The causality used here is prob-
abilistic causality, which means that a behavior B follows behavior A with proba-
bility P, for example. We want a system to be able to recognize previously learned
behaviors as well as observed behaviors that are unknown to the system [D10].
We also want it to recognize possible causes for the observed behavior [D11] and
to which degree this behavior is explained or considered unknown given what
has been seen and learned so far.

We want to learn activities without supervision [D12], both to simplify for hu-
mans but also to let robotic systems adapt to new circumstances, to learn new
activities on the fly that can be detected and predicted immediately. We also
want to provide up to date certainty measurements of detected and predicted ac-
tivities, for event processing and other high level stream reasoning and Artificial
Intelligence (AI) applications.

1.4 Contributions

We have constructed an activity learning, recognition and prediction framework
(Tiger and Heintz, 2014) that was presented as a poster at the STAIRS symposium
of the 21th European conference on artificial intelligence (ECAI). It provides the
fundamentals for a system with capabilities of the sort discussed in the beginning
of this chapter. These fundamentals have been out-lined and evaluated in the the-
sis. We show a way to model and learn atomic state-trajectories using Gaussian
processes and demonstrate that this approach has some key properties:

• Fully probabilistic framework on all abstraction levels.

• On-line unsupervised learning without unjustified model growth.

• One-shot learning: a single observation is sufficient for recognition, predic-
tion and simulation of an activity or activity chain.

• Real-time performance.

• Convergence under realistic assumptions.

• Scalability to real-world situations and to complex context learning.

1.5 Outline 7

The framework is demonstrated to be able to learn, recognize and predict spatio-
temporal activities in real-time, both in simulations and in practice.

Methods and ideas from a wide range of previous work are combined and inter-
act to provide a uniform way to tackle a variety of common problems related to
learning, classifying and predicting activities. We provide an extensive approach
towards the modeling and realization of real-time context-sensitive adaptive sit-
uation awareness.

1.5 Outline

The thesis consists of two main parts, with a background chapter as prelude. The
first part consists of chapter 3 and 4. It concentrates on how to model activities as
atomic state-trajectories using unsupervised methods in a manner that is both ef-
ficient enough for real-time usage and adaptive, but with a size that does not grow
with an increasingly number of observations. The second part consists of chapter
5 which uses the atomic activity model introduced in part one to learn, segment,
recognize and predict atomic activities. It concentrates on how the relations be-
tween atomic activities are learned, a presentation of the entire framework and
concludes with how it can be used for recognition, prediction and detection tasks.

The thesis is structured as follows:

• Chapter 2 covers background information about streams, stream process-
ing and Gaussian processes which is used in the remainder of the thesis.

• Chapter 3 introduces local and sparse Gaussian processes and we propose
an approximation schema based on sampling Gaussian processes that pro-
vide a fixed size trajectory model suiting our needs.

• Chapter 4 introduces spatio-temporal activities and the activity model we
use. Aspects such as evidence and similarity between activities are pre-
sented.

• Chapter 5 presents the activity learning and classifying framework and
proposes an activity segmentation scheme for learning probabilistic causal
transitions and relations between activities, enabling prediction and abnor-
mality detection among other things.

• Chapter 6 describes experiments for two different scenarios, using simu-
lated and real data.

• Chapter 7 concludes the thesis with a discussion and conclusions.

2
Background and Related Work

In this chapter we introduce the stream concept and its relation to robotics and
signal processing. The added value of having up to date certainties of the con-
straints used in symbolic reasoning, although not reasoned over explicitly, is il-
lustrated and used as a motivational example of the bridging of sub-symbolic and
symbolic knowledge representations. Velocities of an object are measured as dis-
crete sample values which are point-wise estimates of a velocity fluent that has a
continuous form in time. Gaussian processes, which are continuous probabilistic
non-parametric models are introduced in order to have a model that can capture
the underlying fluent of properties, such as velocities, from discrete sampled ob-
servations.

2.1 Stream Processing and Stream Reasoning

A stream of information is characterized by information being made available
incrementally. Most of todays information exchanges are stream-based by the
use of serial interfaces. The information transferred as a stream can be divided
into two distinct types based on intent. The first type is information that is only
valuable if it is recent enough. The second type is information as data structures
which are only valuable when they are fully transferred. The information from
a sensor in an active robotic system can be of the former type, and of the latter
type if meant to be part of a data set with a clear beginning and end. Similarly
a video file or a movie can be both, since it is intrinsically stream-based in that
it contains an ordered data structure of frame after frame from a start to an end.
In comparison, a binary program file is in most cases useless in parts, with no
linear ordering of the internal structure, and therefore requires the transfer to be
complete before it becomes useful. In robotic systems streams of information are

9

10 2 Background and Related Work

mostly of the first type. In a changing world a robotic system is desired to be able
to react and adapt to the changes it faces when they happen.

In this thesis we are primarily concerned with streams originating from measure-
ments of the physical world. The measurements can for example be of properties
associated with objects or properties associated with relations of objects. The val-
ues of these properties can be continuous and changing over time and the total
function from time to value of such a property is called a fluent (Heintz et al.,
2007). A sensor produces a fluent stream, a partial representation of a fluent,
by providing a momentary estimate of a fluent’s value for each time point a sen-
sor read-out is made. The estimate varies in quality due to the imperfectness of
any physical setup. It is possible to model this imperfectness with a probability
distribution such as a Gaussian distribution. By using for example a known or
measured variations in estimated quality as a variance estimate and the sensor
value as the distribution mean, a Gaussian distribution is used as a model for the
imperfectness of the sensor itself.

When both the an estimate and its uncertainty are made available, probabilistic
inference such as (sensor) fusion is made possible. Virtual filters can be con-
structed using Bayesian inference schemes, such as the Kalman filter (KF) or the
more general Particle filter. These are used to estimate fluent streams of not
directly observable fluents by the use of physical models connecting the unob-
served property with observed properties. While an ordinary sensor in many
cases can be assumed to have a static probability distribution over its measure-
ment, the virtual filter usually adapts its estimates and associated probability
distributions with each new measurement. A sensor might measure the velocity
of an object, and a Kalman filter might use this to additionally estimate the posi-
tion and the acceleration of the object. For the sensor each measure estimate is
regarded as independent of the measurements in the past or future. In the case
of the Kalman filter, the estimated distributions at any given time is the result
of the effects of the previous state, the current received measurements, as well
as predicted or expected values provided by the physical model. This combina-
tion of the past, the present and the expected present can make it possible for
the Kalman filter to become more certain of an estimated property, say velocity,
than the sensor measuring the property in question. In other words, the fluent
stream provided by a virtual sensor might be of a higher quality in its estimate
of the fluent than the sensor which produce the initial fluent stream of the fluent
in question.

Cugola and Margara (2012) divide stream processing systems into two main cat-
egories, Data Stream Management Systems (DSMS) and Complex Event Process-
ing (CEP). The former is an adaptation of the traditional Data Base Management
System (DBMS). The DSMS model work with streams instead of with persistently
stored data and execute standing queries which run and provide answers contin-
uously as new data arrives in the input streams. Streams are transformed into
other streams using selections, aggregations, joints and other transformations
based on common SQL operators and defined by relation algebra. In contrast,

2.2 Motivation for Using Probabilities 11

the CEP model consider stream items as event notifications (e.g. of events in
the external world). These are filtered and combined to find patterns that match
those of high-level events, which reflect what is happening in the external world.
It is the process of abstraction, by detection of high-level events from patterns of
low-level events, that is central to the CEP model.

The properties of stream transformations (DSMS) and stream abstractions (CEP)
are required to have full-fledged Information Flow Processing (IFP), a general
term for stream processing systems. Except for the unique properties of respec-
tively DSMS and CEP, the central aspect of IFP systems is “the need for process-
ing information as it flows from the periphery to the center of the system without
requiring, at least in principle, the information to be persistently stored. Once
the flowing data has been processed, thereby producing new information, it can
be discarded while the newly produced information leaves the system as output”
Cugola and Margara (2012).

An example of a IFP system is DyKnow (Heintz, 2009, Heintz and Doherty, 2004),
a stream-based knowledge processing middleware framework. They use Metric
temporal logic (MTL), an extension of first order logic with the addition of tempo-
ral operators, to provide stream reasoning over streams. Stream reasoning is incre-
mental reasoning over incrementally available information. It makes DyKnow
able to react to a rapidly changing environment due to the minimal latency in
the incremental formula evaluation by a technique called progression. CEP is in-
cluded in DyKnow by the incorporation of Chronicle Recognition (Dousson and
Le Maigat, 2007) which provides CEP-specific functionality. DyKnow has also
been extended with a formal model and semantic matching. The latter makes
streams of indirectly-available information available by dynamically construct-
ing the necessary transformations (from transformations that are available) to
produce the requested streams (de Leng, 2013).

2.2 Motivation for Using Probabilities

Sensors and virtual sensors can be seen as measuring probability distributions
and in practice it is most often the mean which is used for (constraint) compar-
ison in cases where uncertainties or probability distributions are not taken into
account. This is also the case in metric temporal logic (MTL) reasoning and in
chronicle recognition. The form of the probability distributions does however
impact the uncertainty of that value, and the availability of this uncertainty can
enable better decision-making. Consider the usage of Altitude > 100m as a con-
straint for an event. In this example the altitude sensor can measure the altitude
property with a Gaussian probability distribution. If the first moment (the mean)
of the distribution is sampled as 101m, the constraint is satisfied. The likelihood
for the altitude to actually be above 100m does however depend on the second
moment (the standard deviation) of the Gaussian distribution, as is illustrated in
Figure 2.1.

If the standard deviation is 5m, the probability of the altitude being higher than

12 2 Background and Related Work

90 92 94 96 98 100 102 104 106 108 110
0

0.2

0.4

0.6

0.8

Altitude measured to be 101 with varying uncertainty

P(Alt > 100) = 58% (std: 5m)
P(Alt > 100) = 84% (std: 1m)
P(Alt > 100) = 98% (std: 0.5m)

Figure 2.1: Illustration of the difference in the certainty that the altitude
(Alt) is above 100m given various degrees of uncertainties in the sensor value
for altitude with a measured altitude of 101m.

100m is only 58%. If the standard deviation is 1m the probability is 84%. If a
98% certainty of the constraint being satisfied is desired, the altitude constraint
can easily once and for all be adjusted upwards to compensate for the uncertainty
if the probability distribution is static and known. However, sensors may be re-
placed or upgraded, or the software might be meant to run on more than one
system. By letting the system know the probability distribution of the sensor,
it is possible to simply state the degree of certainty that is desired and the sys-
tem could take care of the rest. Similarly, virtual sensors such as Kalman filters
have probability distributions which change over time depending on how well
the models used reflect the observed data, updating the uncertainty of the esti-
mated value for every sample. The managing of dynamic certainty introduces
robustness in the system by mitigating faulty perception, so that the constraints
will be satisfied with the same desired certainty regardless how uncertain the
agent has become. This can be due to an insufficient model, or due to degrada-
tion of sensors as long as the sensor fault can be detected and estimated. It makes
the system adaptive to increases and decreases in the quality of perception with-
out any change of policies. For example, a UAV will fly as high as necessary in
order to fulfill the required certainty that it is at least above a threshold altitude,
regardless of perception quality.

While it is straightforward how to handle the certainty of constraints based on
physical attributes from sensors or virtual sensors, it is more difficult when it
comes to the detection of activities. An activity can informally be defined as
certain changes of some physical attributes over time. Just like a KF is used to
estimate the true value of a fluent at a given time point, an activity as a model
is an estimate of some fluents over a time frame. An activity can be a human’s
action of flexing an arm or a car performing a turn or a slowdown. If a car slows
down or accelerates the activity model may estimate the fluent, the positive or
negative function of a cars acceleration over time. Since such an activity is a state
change in a continuous space it is beneficial to model it using a continuous proba-
bilistic model, to sufficiently expressively model the fluents behind the observed

2.3 Gaussian Processes 13

uncertain samples. Consider that we want to describe the kind of slowdown a
car performs in a T-crossing before it turns. This would be very hard to specify
formally, making a good argument for learning. To achieve this without learning
it would be necessary to observe a great number of similar car-paths, as well as
complementary paths to discriminate with. Then a statistical model has to be con-
structed of all those observations which best explains the dynamic changes over
space, time and acceleration. This would indeed be what a learning algorithm
would do, either unsupervised or supervised.

2.3 Gaussian Processes

Gaussian Processes (GPs) have been shown to be useful for prediction, model-
ing and detecting spatio-temporal trajectories such as motor vehicles in cross-
ings (Kim et al., 2011), marine vessel paths (Smith et al., 2013) and human body
dynamics (Wang et al., 2008). GPs have also been used to model spatial regions
and structures such as occupancy maps (Kim and Kim, 2013b) and smooth mo-
tion paths (Keat and Laugier, 2007). They are also good for handling noisy or
missing data (Kim et al., 2011, Wang et al., 2008), where large chunks of trajecto-
ries can reliably be reconstructed.

A Gaussian process is a distribution over functions,

f (x) ∼ GP (m(x), k(x, x)), (2.1)

fully specified by its expected mean function m(x) and covariance function k(x, x)
(Rasmussen, 2006). It is a generalization of the multidimensional Gaussian dis-
tribution which in turn is a distribution over vectors,

x ∼ N (µ,Σ), (2.2)

fully specified by its mean vector µ and covariance matrix Σ. The stochastic
vector x in the multidimensional Gaussian distribution is usually used to model
a finite set of dimensions, such as a 3D position or the angle of each joint in
a robot. For the Gaussian process it is the function values y and arguments x
(y = f (x), y ∈ y, x ∈ x) to the stochastic function that are each a stochastic
vector, a vector not over the dimension of the input respectively output, but over
the domain and co-domain, respectively, of the function. Although the domain of
the function may be the real numbers, x will in application only consist of a finite
subset of the possible inputs and y of the corresponding outputs. These function
arguments and function values (x, y) will be those that are known, in this work
referred to as support points of a Gaussian process model, and which provide the
means of interpolating and extrapolating the stochastic function for other input
values. m(x) is a vector and k(x, x) is a symmetric matrix, similar to µ and Σ of
the multidimensional Gaussian distribution. A Gaussian process can therefore
be seen as a multidimensional Gaussian distribution over its known input values.
A Gaussian process is a set of jointly Gaussian stochastic variables; x and y.

In many applications it is common that the known outputs, which are often based

14 2 Background and Related Work

(a) Without noisy outputs.

(b) With noisy outputs.

Figure 2.2: Example of two Gaussian process distributions, with a zero mean
function and a Gaussian kernel as covariance function. The grey area is the
95% confidence interval. The red dots are the means of the instances of the
stochastic variable pairs (x, f (x) = y) of the finite set this Gaussian process
model consists of.

on measurements, contain noise. A common assumption is that the noise in the
output is independent and Gaussian distributed. Since the noise is independent
the only effect it has on the covariance is that on the autocovariance of each
stochastic variable f (x). This formulation takes the form

f̂ (x) = f (x) + ε(x), ε(x) ∼ N (0, σ2
noise(x)) (2.3)

f̂ (x) ∼ GP (m(x), k(x, x) + σ2
i δij), (2.4)

where i and j are the indexes in k(xi , xj), and σ2
i is the output variance of yi =

f̂ (xi) for each xi ∈ x and yi ∈ y. δij = 1 if i = j else, zero. The evaluation of the
stochastic function f̂ for the argument x∗,

y∗ = f̂ (x∗), (2.5)

is a Gaussian distributed stochastic variable y∗ with the conditional distribution

2.3 Gaussian Processes 15

y∗ ∼ pf̂ (x∗ | x, y) = N (µ(x∗), σ2(x∗)), where

µ(x∗) = m(x) + k(x∗, x)(k(x, x) + σ2
i δij)

−1(y −m(x)), (2.6)

σ2(x∗) = k(x∗, x∗) − k(x∗, x)(k(x, x) + σ2
i δij)

−1k(x∗, x)T . (2.7)

Here k(x∗, x∗) is a scalar, k(x∗, x) a N -dimensional row-vector and k(x, x) a NxN -
dimensional matrix, where N is the number of elements in respective vectors x
and y. From here on we refer to µ(x∗) from equation 2.6 as the mean function and
σ2(x∗) from equation 2.7 as the variance function of a Gaussian process model.

Some degree of noise in the inputs is also common in practice, but it is usually
ignored, as it is much harder to handle than noise in the outputs. There exist
approximate solutions to noisy inputs (Girard et al., 2002). An example of a a
Gaussian process with and without observation noise is shown in Figure 2.2.

The above formulation is easily extended to handle multiple output variables
(higher dimension than 1 in y) if these are assumed independent. If the outputs
have the same variance, the only change is that the mean function now is M di-
mensional and y is M × N dimensional, where M is the dimension of y and N
is the number of stochastic variable pairs in the Gaussian process model. Ex-
tensions exist to handle multiple dependent and identically distributed output
(Boyle and Frean, 2005).

If the input consists of multiple variables instead, the GP turns into a Gaussian
random field. Given that the kernel function is a mapping from the higher input
space to a scalar space, e.g. by being a function of the norm of the input, then it
can be treated as a ordinary GP.

One major obstacle restricting the use of GPs in the past has been the expensive
matrix inversion operation necessary to update the model. A straight forward
implementation of a Gaussian process require the inversion of the covariance ma-
trix, an operation with the computational complexity of O(n3) in the size of the
training data. Various methods have been employed to reduce this weakness, by
efficient iterative updates (Smith et al., 2012), segmentation into local patches of
GPs (Schneider and Ertel, 2010, Snelson and Ghahramani, 2007), and by tech-
niques to make the GP sparse (Snelson and Ghahramani, 2005, 2007). In this
thesis we employ sparse GPs to model activities, which are systematically seg-
mented into local models. We extend the Gaussian process regression to also
regress sparsely over the number of known inputs and outputs, in a way that
better suits our applications.

2.3.1 Kernels

It is common to assume that the mean of a Gaussian process is zero for many
calculations in practice. This would mean that the mean function is zero. In our
application we do not assume that the data of the GP is normalized to be centered
around zero and we therefore assume the mean function to be a constant with the
value of the mean of the output values y of the GP model.

16 2 Background and Related Work

We make use of the squared exponential kernel which is commonly used in Gaus-
sian Process regression,

k(x1, x2) = θ2
0e
−
||x1−x2 ||22

2θ2
1 , (2.8)

where θ2
0 denotes the global variance of the mapping and θ2

1 denotes the global
smoothness parameter of the mapping. It is a non-linear mapping which allow a
Gaussian process to model arbitrary linear and non-linear functions.

The smoothness term in equation 2.8 is equal for all D dimensions of x. However,
different dimensions might be suitable to be smoother than other. It is also the
case that some dimensions might be dependent, and this formulation assumes
independence for all dimensions of x ∈ RD . A more general formulation is

k(x1, x2) = θ2
0e
−(x1−x2)TW (x1−x2), (2.9)

where W is a DxD matrix with three different interesting possibilities:

W = θ2
1

1 . . . 0
...

. . .
...

0 . . . 1

 (2.10)

W =

θ2

1 . . . 0
...

. . .
...

0 . . . θ2
D

 (2.11)

W =

θ2

1,1 . . . θ2
1,D

...
. . .

...
θ2
D,1 . . . θ2

D,D

 (2.12)

The first possibility (equation 2.10) makes the kernel equivalent to equation 2.8.
The second possibility (equation 2.11) is slower to optimize (D smooth parame-
ters instead of one) but it provides a smoothness parameter for each dimension.
By utilizing that the matrix W is diagonal, the complexity of the evaluation of
the kernel is linear in the number of dimensions D. The third and last possibility
(equation 2.12) provides the expressibility of dependent relations between the di-
mensions, but as a consequence also increases the complexity of the evaluation of
the kernel to be quadratic in the number of dimensions D. The parameters in the
matrices can either be learned, as part of the Gaussian process, or hard coded by
a user. For example, the dependencies of different dimensions might be known a
priori, but the smoothness of each dimension that best describes the data in the
Gaussian process model might have to be learned.

2.3.2 Gaussian Process Regression

Given a set of data points x and y, we want to find the hyper parameters θ0
and θ1 that make the Gaussian process fit the data in some optimal way. The

2.4 Related Work 17

hyper parameters are usually optimized over the marginal likelihood P(y|x) of
the Gaussian process, where x has been integrated out of the likelihood. Gaussian
process regression is described in more detail in the work of Rasmussen (2006).

The marginal log likelihood of a Gaussian process which we want to maximize is,
as derived by Rasmussen (2006),

log P (y|x) = −1
2

y[V]−1yT − 1
2

log(det(V)) − 1
2
N log(2π), (2.13)

where V = k(x, x) + σ2
i δij . The hyper parameters θ0 and θ1 that maximize the

right hand side set to zero can be solved on closed form.

2.4 Related Work

There are many different approaches to activity recognition, both qualitative and
quantitative. Here we focus on some quantitative approaches since they are most
related to our work. As far as we know there is no other unsupervised framework
that can learn the atomic activities, the dynamics of each activity and the causal
relations between the activities in a fully continuous and probabilistic model.

In the field of vehicular traffic behavior understanding two of the most popular
methods are trajectory clustering and topic modeling (Morris and Trivedi, 2013).
The former uses trajectories of image coordinates as input and is therefore similar
to our work. The usage of trajectories make the models dependent on robustness
of the tracker, and the latter group of methods do not assume trajectories and
instead directly use motion feature vectors from the raw image feed.

One example of the latter approach uses a Bayesian Hierarchical Model with mov-
ing pixels from video surveillance as input Wang et al. (2007). They divide the
image into square regions which the pixels belong to and use together with four
different motion directions as a code book. They treat 10-second video clips as
documents and the moving pixels as words and learn a Hierarchical Dirichlet
Process. By performing word document analysis, the resulting topics are norma-
tive atomic activities in the form of pixel motion trajectories in the 2D image.
They can unsupervised learn what they call ‘atomic activities’, which are activ-
ity regions which are separated by lack of motion (i.e. a car or pedestrian stop-
ping). They also learn ‘interactions’ between ‘atomic activities’ which are sets
of ‘atomic activities’ that commonly co-exist in the same video clips (document).
Their learning approach is off-line.

Our on-line unsupervised framework in comparison requires trajectories, but
can learn more sophisticated primitive activities and relations bottom up from
these trajectories. Our primitive activities are continuous in any state-space com-
pared to discrete in the 2D image. Ours are fully probabilistic compared to non-
probabilistic histogram-based. Our relations between activities are probabilistic,
and segmented based on actual intersecting activities compared to frequent oc-
curring in the same video clips and segmented based on where there is a lack of

18 2 Background and Related Work

pixel-motion. Since our activity relations are actually casual transitions directly
acquired from observations, we can do probabilistically correct non-ambiguous
predictions of future and past activities. Our framework could use moving pixels
as input, but also other types of information such as 3D-positions if available. It
also incorporates the uncertainties of observations.

An additional strength of our approach compared to any other with comparable
capabilities that we could find, is that it is on-line and is built to operate for
arbitrarily long durations and adapting the models on new observed behaviors.
Morris and Trivedi (2013) write that adaptation to new data and changing con-
ditions are important for real-world implementations, with the motivation that
surveillance systems usually are required to be operational over extensively long
time periods and that old training data at some point in time may no longer ac-
curately reflect the current monitoring situation. An example mentioned is road
construction shutting down a lane and rerouting traffic. Our framework does
not have to remove old behavioral models due to them getting old and more sel-
dom used. This is the case since they will be less and less likely for each new
observations that reinforce the evidence of other more frequent behaviors. This
provides a natural balance between historical prior models and learning from
new observations, as argued for by Morris and Trivedi (2013), and this balance is
an implicit feature of the design of the framework with our activity model and
activity relations.

Among the trajectory clustering approaches, one approach is to use splines with
rectangular envelopes to model trajectories (Makris and Ellis, 2005, Guillarme
and Lerouvreur, 2013), in comparison to our approach and the approach of Kim
et al. (2011) which use Gaussian Processes in a continuous fully Bayesian setting.
Similar to our approach Guillarme and Lerouvreur (2013) divide trajectories into
shorter segments and split trajectories at intersections, while Kim et al. (2011)
only considers trajectories beginning and ending out of sight and performs no
segmentation of activities. Neither of the frameworks mentioned are suitable
in a stream processing context with incrementally available information in the
learning phase. Our framework can continue to learn in the field on a robotic
platform and adapt directly to new situations with regards to learning, classify-
ing and predicting activities. Our framework supports not only detecting and
keeping count of abnormal activities, but also learns those activities and collect
statistics on their relations to other activities.

Piciarelli and Foresti (2006) describe a framework for on-line trajectory clus-
tering for abnormality detection, in which they learn trees of connected wide
trajectory-models. The trajectory-models are updated with new observations as
to have their width and mean adjusted to new observations. These are created,
updated, and merged very similar to our framework. The difference to our work
is that our activities are modeled using Gaussian processes, which provide a con-
tinuous probabilistic model and that we can handle graphs of trajectories com-
pared to only trees in their work. Additionally updating of activity models we
perform rest on a theoretical foundation. Both we and they collect statistics on

2.4 Related Work 19

how many observed trajectories that have been explained of each modeled trajec-
tory and statistics for the transitions between different modeled trajectories. By
using Gaussian processes to model trajectories we make our model much more
resilient of missing data. As a consequence it lets us treat the underlying fluent
as a continuous function modeled as a Gaussian process distribution which im-
proves the observation quality compared to that of independently observed data
points when observation noise is present.

Arguments against trajectory-based behavioral learning of traffic or other out-
door activities include issues with adverse lightning and weather conditions (Mor-
ris and Trivedi, 2013) or crowded places (Wang et al., 2007) and occlusion. Spatial
trajectories of arbitrary objects from vision sensors that is robust to these kind of
effects can with much more ease than previously be made readily available due to
recent advances in computer vision of real time robust visual tracking (Danelljan
et al., 2014b), (Danelljan et al., 2014a). Robust tracking is therefore no longer
very limited in practice for robotic platforms with visual sensors. Trajectories are
used by us because they provide additional contextual information that is highly
useful when building an understanding of the world bottom-up.

3
Sparse Local Gaussian Processes

Gaussian process model learning is slow for large data sets, with a complexity of
O(N3) for optimizing the hyper parameters, whereN is the number of data points
in the data set (Rasmussen, 2006). The complexity for evaluating the mean and
variance of a Gaussian process for a single point is O(N) and O(N2) respectively.
These complexity constraints has in the past been a major obstacle but since a few
years back there exists several approximation techniques which makes Gaussian
processes much more appealing and applicable. The two main approximation
techniques usually employed are the use of local models and the use of sparse
Gaussian processes (Schneider and Ertel, 2010).

The use of local models let us divide the Gaussian process into a chain of smaller
GPs, the so called local models, which together are intended to mimic the origi-
nal GP. This is more efficient than having a single GP since the data points are
divided into different models (N is split into a set {N1...NJ }, where

∑J
k=0 Nk = N).

Sparse Gaussian processes use a smaller set of data points as support points com-
pared to all available data points, while still intended to mimic the original GP
model. This is more efficient since it reduces the number of data points used (N
is replaced by a smaller number M, where it is usually the case that M << N).

In this thesis we are faced with a possibly unbounded N , since observations
added to the model might continue for an arbitrarily long time period and with
arbitrarily high rate. Using the fact that the observations made can be grouped as
individual trajectories of finite length over the same ranges, which can be treated
as observed incrementally in order, we show that this problem can be solved in
an efficient manner.

This chapter starts with an introduction to the problems local models and sparse
Gaussian processes solve. It is shown that both of them, individually or combined,

21

22 3 Sparse Local Gaussian Processes

are insufficient for the task at hand with a continuous stream of new observations
of trajectories. We introduce an alternative sparse Gaussian process algorithm
which we call Sparse Gaussian Process by Uniform Sampling (SGPUS) in section
3.4, which builds upon and is motivated by the two preceding sections 3.2 and
3.3. In these sections we show that it is a valid approximation to assume that
the Gaussian processes of two observed trajectories can be seen as point-wise
partial estimations of common Gaussian distributed populations, and that the
joint (combined) estimation of these populations can be modeled point-wise by a
new Gaussian process. This is because we assume that both observed trajectories
represent instances of the same underlying trajectory which we want to model.

3.1 Sparse Local Gaussian Processes

Local Gaussian process models are used to reduce the complexity of a model
by breaking it up into smaller parts that model different pieces of an interval
(Schneider and Ertel, 2010). But by breaking them apart the problem of how to
move between them arises, as they are no longer connected and can not easily be
guaranteed to be smooth and continuously connected. One approach towards a
solution to this problem is to let the local models overlap each other slightly, so
that bordering models use the same data at their borders (Kim and Kim, 2013a).
The neighboring local models will be more similar to each other since they share
the same data points at the overlap. Another way to solve the problem is to apply
the fusion formula (Gustafsson, 2010) to equation 2.6-2.7 to fuse the informa-
tion from two or several local models. The result behaves as a single continuous
smooth Gaussian process, at the cost of evaluating all active local models for each
test point. This cost can be reduced to only that of the two closest local models
with a small approximation error if the other models are far away enough, due
to the exponential rate of decreasing influence. The fusion formula for two Gaus-
sian distributions is given by equation 3.1-3.2:

σ2
1,2 =

1

σ−2
1 + σ−2

2

(3.1)

µ1,2 = σ2
12(µ1σ

−2
1 + µ2σ

−2
2) (3.2)

where µ1, µ2 and σ2
1 , σ2

2 are the mean and variance respectively for two Gaus-
sian distributions. µ1,2 and σ2

1,2 are the mean and variance, respectively, of the
resulting Gaussian distribution.

The complexity reduction by using local models breaks down when considering
examples with very dense or large amounts of data, due to too much data. Such
an example is the expected trajectory of cars on an highly traveled road strip, with
continuous inclusion of new observations for a few days, weeks or even indefinite
monitoring. One straightforward strategy would be to divide a local model into
two when the number of data points in its interval reaches a certain size. This
however would still make the number of local models rapidly increase. With
an increasing number of models, each model will cover a smaller and smaller

3.1 Sparse Local Gaussian Processes 23

interval until it is vanishingly small. The trajectory as a whole would have lost
most of the properties of a Gaussian process. This is demonstrated in example
3.1.

3.1 Example
A 100 meter long road segment is being monitored using a static video camera. If
cars on the road drive 5 meters apart on average and 40 uniformly distributed car
positions per second are sampled (two for each car) then on a month this reaches

40 ∗ 60 ∗ 60 ∗ 24 ∗ 30 = 103680000

samples in total. If each local model is allowed to hold a maximum of 5000
samples for performance reasons then the average model covers a distance of

(100/103680000) ∗ 5000 = 0.0048

which is ∼5 mm of the 100 meter long road segment, given a uniform distribu-
tion of the observed position in the best case. In many scenarios it would be even
worse as two samples per second per vehicle might not provide enough informa-
tion if the cars are not driving sufficiently slow. For example on a highway two
samples per second over a 100 meter road strip would be insufficient for most
behaviour recognition applications.

Situations such as these require the local models to be sparse as well, to limit
the amount of local models. Sparse Gaussian processes have been used to cope
with large data sets and works by either selecting a subset of the data set, or by
finding more optimal support points which may not exist explicitly in the data
set (Snelson and Ghahramani, 2007). In the example scenario above, the data
arrives incrementally and there are many possible applications where a trajectory
model might be useful before all the data has been collected. In other scenarios it
might also be the case that the number of data points collected becomes too large
to store and therefore needs to be incorporated in a sparse model incrementally.
The number of data points in example 3.1 is 103680000 for only a 100 m road
section after a month. Imagine a city wide statistics collection network.

There exist effective techniques for incremental incorporation of single data points
in ordinary Gaussian processes (Osborne, 2010), these are however not known to
be trivially extended to the methods that creates sparse Gaussian processes. The
support points in the sparse Gaussian processes are each supposedly worth more
in influence than a single new observed data point, since they have replaced a
potentially huge amount of data points while keeping the shape of Gaussian pro-
cess.

An alternative way of approaching this problem is to introduce such a weighting
mechanism externally of the Gaussian process rather than internally. Treating in-
dividual observations of a trajectory as independent is an approximation which
disregards the expected underlying trajectory structure of a fluent. It is there-
fore meaningful to treat such observations as a Gaussian process model which
models the underlying trajectory, rather than treating the observations as indi-

24 3 Sparse Local Gaussian Processes

vidual Gaussian distributions. This is motivated as long as a sufficient range of
observations are used, in order for a Gaussian process to be able to capture the
underlying trajectory structure. An example of a trajectory is the observed states
of a car driving along a path. A Gaussian process model can be treated as a
function x ∈ R 7→ N (µ(x), σ2(x)) which is a function from the real numbers to a
Gaussian distribution parametrized by the functions µ(x) and σ2(x) from Equa-
tion 3.12-3.13. It is possible to calculate a weighted combination of two Gaussian
processes by treating them as two pairs each consisting of a mean and a variance
function (equation 3.12-3.13). This is shown in section 3.3 which builds upon the
content of section 3.2. The weighting can reflect that one Gaussian process model
represents a single trajectory and another Gaussian process represents several
combined trajectories. We show in section 3.4-1 that by sampling a combining of
two GPs we can estimate a new Gaussian process which have the characteristics
of the combined GP in the sample interval. The quality of the estimated Gaus-
sian process increases with a higher sample density, although this also increases
the size of the model, which in turn makes the Gaussian process model slower.
This method provides a way to incrementally include an arbitrary number of ob-
served trajectories into a single model with a size that does not grow because of
additional observations.

3.2 Combining Gaussian Distributions

Consider that we draw observations xk from a Gaussian distribution with un-
known mean µ and variance σ2. We can estimate these parameters by calculating
the sample mean and sample variance,

µn =
1
n

n∑
k=1

xk , (3.3)

σ2
n =

1
n − 1

n∑
k=1

(xk − µn)2, (3.4)

for all n up-till-now made observations. The sample variance presented here is
unbiased and has because of this the dividing factor of n − 1 instead of n like
the sample mean. This is the case because if we only have a single observation
the variance is always zero, due to the mean µ0 and the observation x0 being the
same. So although the sample variance is a sum over all n observations, only
n − 1 observations can be accounted to be used for the variance estimation. As n
grows large, both µn and σ2

n converge to the true values of µ and σ2, and the bias
correcting term makes no difference any more.

Consider instead that each observation contains observation noise such that each
observation by itself is modeled by a Gaussian distribution. We no longer have
the observed sample xk but instead have the observation N (µk , σ

2
k). Since xk

is no longer known, we cannot use Equation (3.3-3.4) directly to estimate the
true values of µ and σ2. The observed µ0 and σ2

0 form our best estimate of the

3.2 Combining Gaussian Distributions 25

unknown Gaussian distribution after the first (k = 0) observation. Compared to
the previous case a variance is now provided with the first observation, so no bias
correction is necessary.

Let N (µ1, σ
2
1) and N (µ2, σ

2
2) be two sampled estimations of the same Gaussian

distributed population given N1 and N2 observations respectively. In the case
of two Gaussian samples from the population then N1 = N2 = 1. The combined
sampled estimation is denoted N (µ1,2, σ

2
1,2) with N = N1 + N2 observations and

with µ1,2 and σ2
1,2 given by

µ1,2 =
1

N1 + N2
(
N1∑
k=1

xk,1 +
N2∑
k=1

xk,2) =
N1µ1 + N2µ2

N1 + N2
, (3.5)

σ2
1,2 =

1
N1 + N2

(
N1∑
k=1

x2
k,1 +

N2∑
k=1

x2
k,2) − µ2 =

N1(σ2
1 + µ2

1) + N2(σ2
2 + µ2

2)
N1 + N2

− µ2, (3.6)

where we use the fact that

σ2 =
1
N

N∑
k=1

(xk − µ)2 =
1
N

N∑
k=1

x2
k − 2xkµ + µ2 =

1
N

N∑
k=1

x2
k − µ

2

=⇒ 1
N

N∑
k=1

x2
k = σ2 + µ2 =⇒

N1∑
k=1

x2
k = N (σ2 + µ2) (3.7)

This formulation corresponds with that of weighted mean and weighted variance,
where N1 and N2 can be arbitrary weights or respective Gaussian distribution.
The combining of two Gaussian distributions is illustrated in Figure 3.1a together
with a comparison with the fusion of the two distributions.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Combine

(a) Combining of two Gaussian distri-
butions.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Fusion

(b) Fusion of two Gaussian distribu-
tions.

Figure 3.1: Combining and Fusion of two Gaussian distributions with N1 =
N2 = 1. The blue has mean 0 and variance 0.1. The red has mean 1 and
variance 0.3.

26 3 Sparse Local Gaussian Processes

3.3 Combining and Fusion of Gaussian Processes

The combining of two Gaussian processes models is performed by the combina-
tion of equations 2.6-2.7 and 3.5-3.6 which results

µ12(x) =
N1µ1(x) + N2µ2(x)

N1 + N2
, (3.8)

σ2
12(x) =

N1(σ2
1 (x) + µ2

1(x)) + N2(σ2
2 (x) + µ2

2(x))
N1 + N2

− µ2
12(x), (3.9)

whereN1 andN2 are weights of respective Gaussian process, similar to the weights
in the previous section. For example, imagine that we now have observed Gaus-
sian processes instead of Gaussian distributions. If the first GP model two ob-
served GPs and the second GP only model one observed GP, then N1 = 2 and
N2 = 1, and equation 3.8-3.9 would parametrize the combined GP of the three
observed GPs. Fusion of two Gaussian process models with different evidence
can be formulated similarly to equation 3.1-3.2 as

σ2
12(x) =

N1 + N2

N1
1

σ2
1 (x)

+ E2
1

σ2
2 (x)

, (3.10)

µ12(x) = σ2
12(x)

(N1
µ1(x)
σ2

1 (x)
+ N2

µ2(x)
σ2

2 (x)

N1 + N2

)
, (3.11)

where N1 and N2 are weights of respective Gaussian process.

Fusing and combining two different local models that are serial, meaning that
the intervals they primarily model are not overlapping, can be seen in Figure
3.2. Fusing and combining two different local models that are parallel, meaning
that the intervals are overlapping, is shown in Figure 3.3. In the case of serial
models we have several small models after each other which only describes a lo-
cal part of the overall distribution that we want to model. What we want is for
each local model to model the interval it describes the best and for the borders
between models to be a smooth mix of the two bordering models, as would have
been expected if it was a whole Gaussian process rather than a chain of small
local models. In the case of parallel models we have several models that describe
the same overlapping interval, and which can be seen as representing different
estimates of the same common population which we want to model. We want a
Gaussian process that combines the information from the different local overlap-
ping models, in the same way that we combined Gaussian distributions in section
3.2. These figures show that fusion, which decreases uncertainty, is well suited
for interpolation between serial local models. We also see that combining is well
suited for merging parallel local models.

3.3 Combining and Fusion of Gaussian Processes 27

(a) Two Gaussian processes. Support points of the red GP is red and support points of
the green is blue.

(b) The combined GP is in dark gray and its mean is in black.

(c) The GP fusion is in dark gray and its mean is in black.

Figure 3.2: Combining and fusion of two serial Gaussian processes. In both
cases are the GPs weighted equally (N1 = N2).

28 3 Sparse Local Gaussian Processes

(a) Two Gaussian processes. Support points of the red GP is red and support
points of the green is blue.

(b) The combined GP is in dark gray and its mean is in black.

(c) The GP fusion is in dark gray and its mean is in black.

Figure 3.3: Combining and fusion of two parallel Gaussian processes. In
both cases are the GPs weighted equally (N1 = N2).

Changes to current sparse Gaussian process algorithms are however required in
order for them to utilize the previously described combining of Gaussian pro-
cesses. To demonstrate the applicability we have constructed a sparse Gaussian
process algorithm SGPUS (Sparse Gaussian Process by Uniform Sampling) which
uses an already existing or combined Gaussian process. It works by sampling
the mean and variance functions of the target Gaussian process model with a
uniform sampling interval, and can therefore at least reconstruct a Gaussian pro-
cess under most circumstances as long as the Nyquist-Shannon sampling theorem
(Nyquist, 1928) is fulfilled. This theorem states that a function g can be fully re-
constructed from samples if g contain no frequencies higher than f hz and the
sample frequency is two times that frequency.

3.4 Sparse Gaussian Process by Uniform Sampling 29

3.4 Sparse Gaussian Process by Uniform Sampling

Sparse Gaussian Process by Uniform Sampling (SGPUS) is an algorithm that esti-
mates a new GP from another GP (the target) by uniformly sampling the latter at
the points that the new GP will use as support points. This means that we do not
need to know the number of support points or kernel parameters of the target GP
as long as we can evaluate the mean and variance at a number of points. The new
GP will be as sparse as we specify it to be, but it will not capture the structure
of the target GP if we make the new GP too sparse (i.e. too few support points).
SGPUS approximates the target GP by making the new GP have the same mean
value as the target GP at its support points, and the same variance as the target
GP at and in the middle between each of its support points.

Let GP true be the Gaussian process model that we want to model with the sparse
Gaussian process model GP estimate. We assume that both GPs have zero mean
and a Gaussian kernel as covariance function. Let the number of support points
in GP estimate be N .

Sample the mean and variance functions of GP true at states S = {s1, . . . , sN } to
produce the sampled states Ssampled = {{µs1 , σ

2
s1 }, . . . , {µsN , σ

2
sN }}, by using equa-

tion (2.6-2.7):

µsn = µtrue(sn) = µy + k(sn, x)(k(x, x) + σ2
nδnj)

−1(y − µy) (3.12)

σ2
sn = σ2

true(sn) = k(sn, sn) − k(sn, x)(k(x, x) + σ2
nδnj)

−1k(sn, x)T (3.13)

The new Gaussian process model is then defined by

GP estimate = {xnew, ynew, θnew, σ2
new}, (3.14)

where xnew, ynew and σ2
new are three vectors with corresponding input variables,

output variables and output noise, respectively. θnew is the old θ0 and the new
θ1 parameter for the kernel. The two following sub-sections explain the details
of estimating ynew, σ2

new and θnew, using the following two vectors:

xnew = x∗ = {s1, . . . , sN }
y∗ = {µs1 , . . . , µsN }

(3.15)

The final sub-section culminates in a formalization of the final algorithm SGPUS,
which incorporates these estimations.

3.4.1 Variance Estimation

The variance σ2(x∗) of a Gaussian process for any point x∗ is determined by the
relation between x∗ and x given by the kernel k(x∗, x) as well as by the error σ2

i
of respective yi ∈ y. In the case of the Gaussian kernel, the relation is governed
by the exponential negative distance between x and xi , weighted by a factor θ1.
Since the value of each xi is assumed fixed, the free variables that can be changed
are θ1 and σ2

i for all i = 1 . . . N .

By only optimizing over σ2
i , the variance at each x∗ = xi will be correct, but the

30 3 Sparse Local Gaussian Processes

variance in between points in x is only correct in a special case. The special case is
when the trajectory sampled is uniformly distributed in the support points xother
with a length between each successive xi which is equal to the sample step length.
The behavior of the variance between successive xi is directly related to θ1. In a
sense σ2

i sets the minimal variance at each support point (xi , yi) and θ1 describes
how these are influencing the intermediate space.

The optimization over θ1 and σ2
i is performed using gradient descent. Gradi-

ent descent is a first-order optimization algorithm that finds a local minimum
by incremental steps in the direction of the negative of the gradient of an error
function,

φn+1 = φn − γn∇E(φn), (3.16)

where φn is the parameter optimized at iteration n, E(φ) is an error function
parametrized by φ and γn is the step length which has to be small enough for
convergence to be guaranteed. An initial guess φ0 is assumed and the step size
γn can be adjusted at each iteration to improve the convergence rate.

We want to minimize the difference in variance at the points x1...xM ∈ x∗, at and
in-between each support point, and therefore formulate the error function E as
the least squares of this error:

E(θ1, σ
2
1 , . . . , σ

2
N) = E(φ) =

1
2M

M∑
k=1

(σ2
est(xk |φ) − σ2

true(xk))
2 (3.17)

The incremental update of gradient descent for each parameter we optimized
over is

φj = φj − γ
d
dφj
E(φ) (3.18)

The parameter derivatives are derived in Appendix A and can with the substitu-
tions V =

[
k(x, x) + σ2

i δi,j
]

and e(φ) = (σ2
est(xk |φ) − σ2

true(xk)) be formulated as

d
dθ1
E(φ) =

−1
M

M∑
k=1

(
2
dk(xk , x)
dθ1

V −1k(xk , x)T + k(xk , x)
dV −1

dθ1
k(xk , x)T

)
e(φ) (3.19)

d

dσ2
i

E(φ) =
−1
M

M∑
k=1

(
k(xk , x)V −1 êi ê

T
i V
−1k(xk , x)T

)
e(φ), i = 1 . . . N (3.20)

where êi is the identity vector with zeros at all positions except for the i−th place
where there is a 1. êi ê

T
i is therefore an N times N matrix filled with zeros except

at the diagonal element (i, i) where there is a 1.

3.4.2 Mean Estimation

Updating the observation error affects the mean of the posterior such that it drifts.
This is because the observation error σ2

i is optimized such that a matching vari-
ance is found as described in the previous sub-section. Since the observation

3.4 Sparse Gaussian Process by Uniform Sampling 31

error affects how reliable each data point is in the Gaussian process model, we
must now compensate the positioning of the output variables y∗ so that GP estimate
evaluates to y∗ for all variables in x∗.

What we want is for equation 2.6 to equal the vector y∗ for all x∗, when we have
the output variables y∗new (which we want to find) and the input variables x∗ as
support points. We can formulate this using equation 2.6 if we assume y∗new have
zero mean, and we therefore use y∗ − µy∗ since this expression has zero mean as
well. We want ynew to have the same mean as y∗, so we can simply add this at the
end.

y∗ − µy∗ = 0 + k(x∗, x∗)
[
k(x∗, x∗) + σ2

new,iδij
]−1

(y∗new + 0) (3.21)

The matrix k(x∗, x∗) is of full rank and therefore invertible, this allow us to rewrite
the formula as follows

y∗ − µy∗ = 0 + k(x∗, x∗)
[
k(x∗, x∗) + σ2

new,iδij
]−1

(y∗new + 0)

=⇒
[
k(x∗, x∗) + σ2

new,iδij
][
k(x∗, x∗)

]−1
(y∗ − µy∗) = y∗new

=⇒ y∗new =
[
k(x∗, x∗) + σ2

new

][
k(x∗, x∗)

]−1
(y∗ − µy∗)

=⇒ y∗new = σ2
new

[
k(x∗, x∗)

]−1
(y∗ − µy∗) + (y∗ − µy∗)

(3.22)

We introduce a regularization parameter λ to improve the numerical stability, as
well as to stop too high resulting y-values at the cost of allowing for some small
estimation errors.

x∗new = σ2
new

[
k(x∗, x∗) + λI

]−1
(x∗ − µx∗) + (x∗ − µx∗) (3.23)

Finally we add the mean value of x∗ which provides us with a closed form solu-
tion that corrects the values of x∗ to the best possible given our regularization
parameter,

xnew = x∗new + µx∗ , (3.24)

and the support-points’ function value required for the Gaussian process model
to evaluate its mean function to yi ∈ x∗ for xi ∈ x∗ for all i = 1 . . . N is thereby
given by

xnew = σ2
new

[
k(x∗, x∗) + λI

]−1
(x∗ − µx∗) + x∗ (3.25)

3.4.3 The SGPUS Algorithm

The details of the SGPUS are shown in Algorithm 1. The input s1...N is a vector
of uniformly distributed real numbers and corresponds to the input variables in
the support points. µtrue(s1...N), σ2

true(s1...N) can be evaluations of any mean and
variance function (µ(x), σ2(x)) for any argument x ∈ R, for example the combin-
ing or fusion of two Gaussian processes described in sub-section 3.3. In the case
that it is another Gaussian process it would be formulated like this:

µtrue(s1...N), σ2
true(s1...N)← EvaluateGP true(s1...N)

32 3 Sparse Local Gaussian Processes

(a) 161 support points. (b) 9 support points. (c) Comparison

(d) 801 support points. (e) 9 support points. (f) Comparison.

Figure 3.1: SGPUS applied to a Gaussian process optimized over 161 (top)
respectively 801 (bottom) data points generated from a sine wave with
N (0, 0.52)-distributed noise. In the comparison the true mean is magenta
colored and the true confidence is colored red. A close to perfect overlap is
demonstrated within the range of the data. The optimization of the Gaussian
process took 0.48s for the top and 10.9s for the bottom. SGPUS took 0.59s
for the top and 0.78s for the bottom.

Two example of runs of the SGPUS algorithm are shown in Figure 3.1, where
a GP model is first found for a set of observed points and which then is made
sparse. The sparse GP and the original GP are compared and they deviate only
outside of the range of the data. That they deviate can be seen as an issue for
certain applications, but it is of marginal concern in our application as well as
in other applications where only the GP model within the range of the data is
relevant.

“Evaluate GP estimate(s1...N | φ, y)” in Algorithm 1 refer to the evaluation of Equa-
tion 3.12-3.13 using y and the parameters in φ which provide the support point
variance (observation noise) and the kernel hyper parameter θ1.

3.4 Sparse Gaussian Process by Uniform Sampling 33

Algorithm 1 Sparse Gaussian Process by Uniform Sampling

1: procedure SGPUS(s1...N , φinit , µ(x), σ2(x))
2: φ← φinit
3: µtrue(s1...N)← µ(s1...N)
4: σ2

true(s1...N)← σ2(s1...N)
5: x = µtrue(s1...N)
6: µest(s1...N), σ2

est(s1...N)← Evaluate GP estimate(s1...N | φ, x)
7: for i = k..maxIterations do
8: θ1 ← θ1 − γ1

d
dθ1
E(φ | σ2

est(sn), σ2
true(sn))

9: σ2
i ← σ2

i − γ2
d
dσ2

i
E(φ | σ2

est(sn), σ2
true(sn))

10: φ← {θ1, σ
2
1 . . . σ

2
N }

11: µest(s1...N), σ2
est(s1...N)← Evaluate GP estimate(s1...N | φ, x)

12: if ||∇E(φ | σ2
est(sn), σ2

true(sn))||2 ≤ stopCriterion then
13: break
14: Adapt γ1, γ2

15: σ2
new ← σ2

1..N
16: θnew ← θ1
17: x∗ ← µest

18: ynew ← σ2
new

[
k(x∗, x∗) + λI

]−1
(y∗ − µy∗) + y∗

19: return ynew, θnew, σ2
new

The complexity of Algorithm 1 is O(N3) plus the complexity of line 3 − 4 in
the number of support points N . For all intended use-cases in this thesis it re-
quires the evaluation of at least one Gaussian process to produce µtrue(s1...N) and
σ2
true(s1...N), meaning that the mean and variance function (µ(x) and σ2(x)) taken

as arguments correspond to equation 2.6-2.7 or weighted combinations of sev-
eral such equations. As a consequence the total complexity of the application
of SGPUS is O(NM2 + N3) where M is the maximum number of support points
among the Gaussian processes used. It is multiplied with N due to the N evalu-
ations necessary to compute N means and variances for the vectors µtrue(s1...N)
and σ2

true(s1...N).

The adaptation of γ1 and γ2 currently performed is very trivial. We don’t adapt
γ2 at all, and γ1 is divided by half when the direction of the gradient on line 9
changes and multiplied by two when it does not change. A more sophisticated
line-search of both variables can probably improve the convergence time.

The kernel parameter θ0 is currently not optimized, and this might be a draw-
back. We cope by taking the highest θ0 of all the GPs used, but this is side-
stepping the algorithm and not a neat solution.

A possible extension is to support non-uniform sampling, which would require
multiple smoothness parameters such as in equation 2.11. This would probably
be slower due to additional variables to optimize over, but it would also make it

34 3 Sparse Local Gaussian Processes

possible to have more support points at changing parts of the GP and less points
at constant or slowly changing parts. Since Gaussian processes are infinitely dif-
ferentiable we could spend more time on putting support points at the minima
and maxima (as well as on suitable, rapidly changing places) of the observed GP,
which would improve the modeling accuracy and require fewer support points
in total. We would as a consequence no longer be bound by the sampling theo-
rem (Nyquist, 1928) for assurances of being able to capture the structure of the
observed GP.

4
Activities

This chapter first provides an overview of what we mean with an activity within
the scope of this thesis, and provides an intuition to how to learn activities and
their usefulness. After the first two introductory sections the more formal activity
model is introduced. The chapter concludes with how the number of observed
trajectories supporting an activity is used to make a fair comparison between
activities when they compete for explaining an observation and when comparing
how similar two activities are. Activity similarity and activity classification is
introduced briefly.

4.1 Activities

In the context of this thesis, an activity can informally be defined as something
a particular object does. In our case, an instance of an activity is represented by
a state trajectory where some state variables are expected to change in a certain
way while others may change freely. For example, an activity could be a slow-
down where the velocity state variable is expected to decrease. An activity model
should capture such continuous developments.

When considering the context in which an activity is performed, it is natural
to consider in which ways either the context or the activity is likely to change.
Change is intrinsically causal and we can consider both prediction and explana-
tion as exemplified by the following two questions: Given that a car is entering
a T-crossing by its main road and is slowing down, how likely is it that the car
will turn rather than drive straight ahead? Given that a car leaves a T-crossing,
how likely is it that it did turn? Every dynamic object is perceived to traverse an
activity chain, by transitioning from one activity to another.

35

36 4 Activities

The type of activities of primary concern in this thesis are so called spatio-temporal
activities. These are activities that are dynamic in the sense that they vary spa-
tially in the state space over time. Such activities are for example a slow-down,
cruising at constant speed or turning. Activities that do not fall into this category
are activities such as standing still, where there is no spatial change over time.
Inclusion of stationary activities are left for future work.

4.2 Modeling Spatio-Temporal Activities

The idea of modeling spatio-temporal activities is as follows. Use observations
to model the behavior of variables through space and time. Segment the world
based on where multiple models occur. If a new observation is poorly represented
by the current model, create a new local model. If multiple models are similar,
merge these.

Consider that we are observing the positions of a car in motion on a road, a sce-
nario shown in Figure 4.1. We assume that we can measure the position as a 2D
Gaussian distribution, with a mean and a covariance matrix which provide the
most likely position and the uncertainty in 2 dimensions. Instead of treating each
position separately, we can apply the prior knowledge that each position is a part
of a trajectory and we as observers know the ordering of the observed positions
(Figure 4.1a). The continuous trajectory of discrete positions can be modeled
using a Gaussian process (Figure 4.1b), which is a probability distribution over
functions that in this example are possible 2D-trajectories. The uncertainties in
each of the observed 2D positions are incorporated in the Gaussian process. Any
given point on the Gaussian process trajectory model we now have is a Gaussian
distribution, and we can easily generate new random trajectories which follow
the characteristics of the observed trajectory.

4.2 Modeling Spatio-Temporal Activities 37

(a) A trajectory of individual measurements of the 2D position of a vehicle with
Gaussian distributed measurement noise.

(b) A Gaussian process modelling the 2D trajectory.

(c) A more confident Gaussian process model, by incorporating multiple observed
trajectories in the same lane.

Figure 4.1: From observed discrete 2D positions to a continuous trajectory.

By observing more cars and their ordered positions, the trajectory model can be
updated by combining the observed trajectory and the previous trajectory model
and applying uniform re-sampling as described in Chapter 3. This allows the
model to incorporate more observations of trajectories while keeping the model
complexity constant. The model complexity for the Gaussian process is the num-
ber of support points, shown as black dots in the figure. If the trajectories of
the observed cars are somewhat similar, an even more certain Gaussian process
should emerge as a well-supported trajectory model for the observed road (Figure
4.1c).

38 4 Activities

Figure 4.2: The trajectory of a vehicle turning in the crossing is also modeled
using a Gaussian process.

An observed car might turn in the T-crossing, not following the old trajectory
model (Figure 4.2). Along the turning trajectory before the turn, there will be
a 2D position where the turning car is outside of the confidence interval of the
straight going trajectory model. The position of the car has up till this point been
explainable by the straight model, and can possibly be used to update the straight
trajectory model. After this point the car is observed to perform an unexpected
and previously unknown behavior. It is possible to discriminate between the old
behavior and the new behavior from this point on. The old straight trajectory
model is therefore split in to two at the point and a new turning trajectory model
is created which originates from that point (Figure 4.3).

Figure 4.3: The previously learned trajectory is segmented into two shorter
trajectories, where one corresponds to the overlap with the observed trajec-
tory. The point of segmentation is where the observed trajectory stopped
overlapping sufficiently with the previously learned activity. The marked
area shows where cars that intend to turn left are assumed to be slowing
down as the turn approaches.

By modeling more than just the trajectory of 2D positions, such as the 2D velocity

4.3 The Activity Model 39

as well, it will be possible to detect and predict the turn even earlier than the
current branching point. Cars usually drive past in higher speeds than what is
practical to turn in, so those that turn have to slow down before turning. Even
though we are only observing positions we can observe the velocity via a virtual
sensor by using a Kalman filter. With both the position and velocity trajectory
modeled, the activity of driving straight and that of turning left are dissimilar
earlier than the previous branching point due to the variations in velocity (Figure
4.4).

Figure 4.4: The two different trajectories the speed is expected to follow for
cars driving in the previously marked area. The blue trajectory models the
vehicles that drive straight ahead and the red trajectory models those that
turn left. We assume that no vehicle ever stops or waits because vehicles in
front of it is slowing down or stopping e.g. to perform the left turn. Handling
this is left for future work.

4.3 The Activity Model

An activity is seen as a continuous trajectory in the state space, i.e. a mapping
from time t to state y. A state can for example be a 2D position and a 2D veloc-
ity. To model a path through the state space over time we use a Gaussian Process
which provides a continuous non-linear mapping with confidence measures us-
ing a finite number of data points here called support points. To get invariance
in time, t is normalized to be between 0.0 and 1.0 and acts as a parametrization
variable of y = f (t). The mapping is modeled using a Gaussian process model
y = fGP (t) and it is used to classify new observations and to support prediction,
similar to Kim et al. (2011). The assumption is that an activity is a curve in an
N -dimensional state space. The activity model is the result of the continued ac-
cumulation of explained observed trajectories. The amount of these supporting
trajectories is seen as the amount of evidence E of the activity model, and is used
in comparison with other activity models.

Given an observed state, the parametrization variable t of the observed trajectory
must be known in order to calculate how well an activity explains the observation.

40 4 Activities

In Kim et al. (2011) they assume this parametrization to be known by assuming
that it is already normalized to the interval [0, 1] which can only occur after the
whole trajectory has been observed. Further, they only consider entire trajectories
without temporal segmentation, and with a state space consisting of positions
and velocities. When performing stream reasoning the entire trajectory cannot
be assumed to be present at once such that it can be normalized, because states
are made available incrementally. We estimate the parametrization for any obser-
vation to allow the system to operate with only incrementally available pieces of
the observed trajectories.

To make it possible to estimate t, an inverse mapping is also modeled by a Gaus-
sian Process model, t = gGP (y) = f −1

GP (y), in order to estimate the mapping from
state space to the temporal parameter. For the mapping to be unique, fGP must
be bijective. This assumption restricts y = fGP (t) such that it is not allowed to
intersect itself at different time points. This limitation can be circumvented by
segmenting observed state trajectories into non-intersecting intervals and model
each separately. The inverse mapping is constructed by switching the input and
the output, x and y, of fGP .

The activity model M (Definition 4.1) consists of two Gaussian process models,
modeling the parametrized state trajectory and its inverse mapping. These two
models are in turn both composed of a set of finite input-output pairs together
with hyper parameters for the covariance function. The covariance function used
in both cases is the squared exponential kernel (Equation 2.8), which is com-
monly used in Gaussian process regression.
4.1 Definition (Activity Model). An activity modelM is formally defined as a
pair of Gaussian process models fGP and gGP . fGP is a mapping from the time
parameter t ∈ [0.0 1.0] to the D-dimensional state space y ∈ RD , with kernel
parameters θf . gGP is the inverse mapping of fGP , with kernel parameters θg .

M = 〈fGP , gGP 〉 (4.1)

fGP = 〈t, y, θf 〉 (4.2)

gGP = 〈y, t, θg〉 (4.3)

The main purpose of the inverse mapping is to project a state space point
x∗ ∼ N (µx∗ , σ

2
x∗) onto the mean function of fGP , thereby becoming the state

space point y∗ ∼ N (µy∗ , σ
2
y∗). This is used when calculating the likelihood of a

point on one trajectory being explained by a point on another. The calculation is
performed by approximating x∗ as µx∗ and t∗ as µt∗ ,

y∗ = fGP (µt∗), t∗ = gGP (µx∗). (4.4)

The latter approximation is valid if the inverse mapping accurately models the in-
verse mean function. The former approximation can be improved by techniques
for uncertain inputs to GPs described in (Girard et al., 2002).

4.4 Evidence 41

4.4 Evidence

Evidence is used in this thesis as a measurement for how much support an activ-
ity has had from the observations in the past. The amount of evidence for a given
activity is the number of observed trajectories this activity has explained so far.

The mean of the Gaussian process is used to model the expected trajectory of
the activity model. The variance of the Gaussian process is used to model both
the uncertainty of the activity model (in state space proximity) and the expected
wideness of the activity model in the state space. For example, the 95% con-
fidence interval might be wide enough to contain all possible trajectories on a
single lane, and thereby capturing the activity in this region. On the other hand,
the observations can be very uncertain and sporadic which makes the 95% con-
fidence wide as well. This introduces a problem of ambiguity of the wideness
of a trajectory, between uncertainty and modeled structure, and it is solved by
relating the amount of evidence of activities.

The classification of observed trajectories is presented in the next section and is
based on local conditional probabilities similar to those used in (Kim et al., 2011).
This makes an activity which has explained a lot of observations in the past, but
is wide, less likely to explain an observed trajectory than a less supported more
narrow activity in some cases (Figure 4.5a).

(a) The slices of two Gaussian pro-
cesses are show as two Gaussian distri-
butions. Before evidence weighting.

(b) The slices of two Gaussian pro-
cesses are show as two Gaussian distri-
butions. After evidence weighting.

Figure 4.5: Two Gaussian distributions with different evidence, and an ob-
served point indicated as a black dashed line. The blue has mean 0, variance
0.1 and evidence 1. The red has mean 1.5, variance 1.0 and evidence 4.

This ambiguous duality is handled by having a weighting evidence measure for
each activity, based on the number of observations that support each activity. An
activity supported by a large amount of observations is likely to have a shape that
starts to capture the underlying structure of the observed fluents composing the
activity. The shape should eventually start to converge to a stable form as suffi-
cient observations reinforce it. The weighting of the evidence amount is a way to
make the well-supported activity more resistant to change and new observations.

42 4 Activities

If an activity with immense support from observations has a large variance, then
it is due to the shape of the activity.

For example, consider the case showed in Figure 4.5 where a comparatively strongly
supported activity (red) is much wider than the less strongly supported activity
(blue). An example scenario can be that what is shown is a slice of a road lane
right before a road exit, where the blue Gaussian distribution models the position
of the cars that leave the main road for the exit and the red Gaussian distribution
models the position of cars that drive past the exit. The cars that will use the exit
tend to position themselves close to the road lane’s border, while the cars pass-
ing the exit tend to position themselves more uniformity around the road lane’s
center although also at the road lane’s boarder from time to time. If most cars
pass by the road exit then it is more likely that a car close to the lane border will
drive past the exit compared to if cars more often exit the road than continue
past the exit. However, since the red activity model is wide enough to cover the
entire lane it is without any adjustments less likely to explain cars at the lane
border compared to the blue activity, regardless if driving on the border are a
hundred times more likely to continue than to exit the road. By weighting the
activity likelihoods with the number of explained observations, this problem is
approximately reduced.

4.5 Activity similarity

Activities, as well as observed trajectories and activities, are compared based on
a similarity measure using point-wise conditional probabilities over the range of
both of them. When considering an observed trajectory, the activity which has
the highest local likelihood for a point on the observed trajectory is regarded as
the activity that best explains that local point of the observed trajectory.

Let A be an activity consisting of 〈fGP , gGP 〉 and let x∗ ∼ N (µx∗ , σ
2
x∗) be an ob-

served point or a point on another activity. If the different dimensions of the state
space are assumed to be independent, the local likelihood (Kim et al., 2011) of x∗

given A is

P (x∗|A) = P (x∗|y∗) =
D∏

d = 0

P (x∗d |y
∗
d), y∗ = fGP (gGP (x∗)), (4.5)

where D is the dimension of the state space and y∗ is a D-dimensional multivari-
ate Gaussian distribution. When considering multiple activities the calculation
of the local likelihood is weighted by the relative evidence E in support of respec-
tive activity. If Tn is point n on trajectory T then

P ∗(Tn|Ak) =
Ek∑
i(Ei)

P (Tn|Ak), (4.6)

where i ranges over all activities in consideration of which Ak is one. This allows
a well supported activity with high variance to keep significant importance. Ac-
tivity similarity is for example used to determine what activity best explains a

4.5 Activity similarity 43

newly observed trajectory.

5
The Activity Learning and
Classification Framework

In this chapter we present a framework that is able to unsupervised learn con-
nected atomic activity representations from observed trajectories, by discriminat-
ing between intervals that are and are not similar enough to previously-learned
activities. The chapter starts with a top-down overview of the framework, fol-
lowed by an in-depth description of the activity learning mechanisms. The chap-
ter is concluded with a description of the recognition and prediction capabilities
of the framework.

5.1 The Framework

The proposed framework (Figure 5.1) learns activities and their relations based
on streams of temporally ordered time-stamped probabilistic states for individ-
ual objects in an unsupervised manner. Using the learned activities, the frame-
work classifies the current trajectory of an object to belong to the most likely
chain of activities. The framework can also be used to predict how abnormal the
current trajectory is and how likely future activities are.

The framework models activities as Gaussian Processes, which are sufficiently ex-
pressive to model the development of the state variables including uncertainties
in observations. Activities are learned as edges in a graph, where the nodes are
intersection points, in the state-space, between activities. On a higher abstraction
level activities are seen as nodes, with edges representing transitions which are
weighted according to the observed empirical probability of the transitions. The
latter construct enables prediction of activities through probabilistic inference.
The graphs are called the State Space Graph and the Activity Transition Graph.

An example is shown in Figure 5.2. The Activity Transition Graph is a causally

45

46 5 The Activity Learning and Classification Framework

Stream of states of
individual objects

State space graph
Activity transition graph

Activity learning

Create

Merge

Update

Reasoning

Detect

Predict{..., (object id,
 state,
 time point), …}

Figure 5.1: An overview of the framework. It is built around the three mod-
ules Reasoning, Activity Learning and the knowledge base consisting of two
graphs, which the two former modules make extensive use of. The Activ-
ity learning takes entire observed trajectories and updates the graphs. It is
divided into three parts which are performed sequentially. The Reasoning
module detects and predicts activities based on observations.

ordered discrete Markov chain. We currently only consider 1-order Markovian
transitions in the formulation of this graph. However, a natural future extension
is to use a higher order Markov chain. This would allow the activities to affect
each others likelihood over longer distances. This does however introduce some
additional issues, such as how to keep the number of transitions sparse while
finding out which transitions that are statistically significant and should be kept.
Such an extension is left for future work.

I1 I2
A1 A2

A3

A4

(a) State Space Graph

A1 A2

A3

A4

T1

T2

T3

(b) Activity Transition Graph

Figure 5.2: Ai denotes an activity in both the State Space Graph and the Ac-
tivity Transition Graph, Tj denotes an intersection point in the state space,
Iw denotes a transition in the Activity Transition Graph. All transitions be-
tween A2, A3 and A4 can be seen as contained within the intersection point
I2.

5.2 Activity Learning 47

5.2 Activity Learning

To learn activities from observed trajectories, the framework segments trajecto-
ries into sequences of activities, where each activity differs from all other activ-
ities currently known. Activities are segmented such that no two activities can
have overlapping intervals in the state space, where the margin for overlap is con-
trolled by sthreshold . Figure 5.3 illustrates the creation of a new activity by trajec-
tory segmentation, and a larger example of activity learning using the T-crossing
domain is shown in Figure 1.1, page 4.

Figure 5.3: Activity Learning. Both the old activity trajectory T and the new
activity trajectory Tnew will be split into two activities, where one part of
each is overlapping and one is not. The overlapping parts will be merged, to
combine the information of the two into a new activity, with added evidence
from the multiple observations. The non-overlapping part of the new activ-
ity is now an activity branching out from the mean point of the split between
overlap and non-overlap. This local part of the activity graphs now has an
activity that leads to a branching into two possible other activities.

The learning process updates the State Space Graph and the Activity Transition
Graph based on an observed trajectory. The first step is to generate a GP from the
observed trajectory, and then to generate a new trajectory by applying SGPUS to
the GP model (chapter 3) to get a smaller number of support points for compu-
tational efficiency. The next step is to classify the trajectory given the current set
of activity models. Based on this classification the graphs are updated. If a long
enough interval of an observed trajectory lacks sufficient explanation given the
known activities, then this interval is considered novel and is added as a new ac-
tivity. Intervals that are explained sufficiently by a single activity more than by
any other are used to update that activity with the new observed information. See
Figure 5.3 for an example. Sometimes long enough parts of activities become too
similar, i.e. too close together in the state space, to be considered different activi-
ties. In those cases such parts of these activities are merged. This removes cases
where intervals of the observation is sufficiently and on equal terms explained by
more than one activity.

By letting the transition nodes store statistics of the transitions between the ac-

48 5 The Activity Learning and Classification Framework

(a) An activity of driving straight and an
observation of a left turn. Bright blue in-
dicates interval for update. Bright green
indicates a interval which will result in the
creation of a new activity.

(b) Now three activities after learning the
left turn. The previous activity is now
split at the point where the left turn was
no longer explained sufficiently by the
straight activity.

(c) An illegal overtake is observed. The
rounded trajectory of the overtake is indi-
cated to be created as two activities since
it is too similar to the left turn when spa-
tially crossing it. This does not happen if
velocities are part of the state space.

(d) After the overtake trajectory has been
learned.

Figure 5.4: Example of the learning of the State Space Graph using only 2D
positions as state variables for the activities, in order (a)-(d). Activity color-
ing is from green (t = 0.0) to red (t = 1.0). The white circles are intersection
points, the other circles are support points of the activities’ fGP .

tivities, the Activity Transition Graph becomes another perspective of the same
information contained in the State Space Graph. It is updated simultaneously
with the State Space Graph in the different learning steps.

The inner workings of the framework when updating its knowledge base with a
new observed trajectory is demonstrated in Figure 5.5. In Figure 5.5 (c) the dif-
ferent steps of the learning module are shown. The top graph shows the local
likelihood for each activity at each t of the observed trajectory. The red dashed
line is the user parameter sthreshold and the local likelihoods on the y-axis of the
plot are scaled to the power of 0.2. The second graph shows the activities with
the maximum local likelihood. In the case where only one is above sthreshold it is
a clear activity detection. If more than one activity is above sthreshold then that
interval on t is ambiguous and it can be either a transition or multiple activities
that have become too similar and should be merged. If no activity has a local
likelihood above sthreshold for an interval then this interval is unexplained, mean-
ing that a new, i.e. abnormal, activity is being observed. The third graph shows
the intervals that are unexplained in the color green. The fourth graph shows
the intervals that are found ambiguous colored red and the non-ambiguous ones
colored blue. The fifth and final graph shows the operations planned to be exe-
cuted for each interval. After generating the set of planned operations such that
the resulting knowledge base’s structure is consistent, then the create, merge and

5.2 Activity Learning 49

(a)

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

Local likelihood for each activity

0 0.2 0.4 0.6 0.8 1

0

1

Activity with maximum local likelihood

0 0.2 0.4 0.6 0.8 1

Unexplained intervals

0 0.2 0.4 0.6 0.8 1

Explained intervals (Ambiguous:RED, Non ambiguous:BLUE)

0 0.2 0.4 0.6 0.8 1

Operation intervals (Create:GREEN, Merge:RED, Update:BLUE)

(c)

Figure 5.5: The State Space Graph before (a) and after (b) learning a new ob-
served trajectory (shown as a thick blue line). The observed trajectory starts
at the top-left of the graph. (c) The different stages of analysis performed by
the framework as described in the text.

update operations are performed in that order. Whether the different operations
are added to the plan or not depends on the rules for each operation and these
are explained in the upcoming subsections.

Notice that at t = 0.5 there is a transition between two activities (cyan and black)
of best explaining the observation. Neither are however explaining it sufficiently,
as no activity has a local likelihood that is above the limit sthreshold . The interval
surrounding t = 0.5 is therefore detected as a novel (abnormal) behavior rather
than as a transition. There is a small transition right before t = 0.5 where the ob-
servation crosses the cyan activity on the right side of the intersection point. This
transition is however too small to be detected and both the yellow and the cyan
activities are updated by the observation. The other occurrences of transitions
are detected correctly and marked as ambiguous. Since these are transitions and
not overlapping activities they should not be considered for merging.

The remainder of this chapter explains the operations of learning new activities
(5.2.1), merging activities (5.2.2) and updating activities (5.2.3) as implemented
in the framework. The activity learning section is concluded with Section 5.2.4
about separating learned activities. Here we elaborate on possible complemen-
tary extensions to these three operations that are supposed to improve both re-

50 5 The Activity Learning and Classification Framework

producibility and completeness of the framework.

5.2.1 Learning New Activities

Given a observed trajectory T , a new activity is created for each maximal interval
τ := [t0 : t1] where P (Tτ |Ak) < sthreshold for all activities Ak in consideration
and where ∆lτ > lthreshold . That is, any long enough interval of the observed
trajectory, which is insufficiently explained by every concerned activity, is added
to the framework as a new activity.

Intersection points are used to connect activities with other activities. Since ac-
tivities are not allowed to be shorter than lthreshold , it is also the case that two in-
tersection points cannot be created on the same activity with a distance between
them shorter than lthreshold .

If needed, a new intersection point is created at each end of the new activity,
but only if the length to the nearest other intersection point is larger or equal to
lthreshold . If not, the new activity is connected to the nearest intersection point
and the intersection point is updated to be placed at the weighted mean position
of the end-points of the connected activities. The weighting is done in accordance
to the amount of evidence of each connected activity. Figure 5.6 show both cases.

A
T

l < lthreshold

l > lthreshold

l > lthreshold l > lthreshold

(a)
A’’A’

A’’’

(b)

Figure 5.6: Illustrative example of the create procedure, where the left figure
is before and the right figure is after. The dashed lines indicate where the
similarity of A and T is crossing the sthreshold .

If a new activity is branching into or out of a previous activity, the previous ac-
tivity is split in two at the branching point. The intersection point is placed at
the weighted mean position. Intersection points that are closer than lthreshold to
each other are merged into a single intersection point. An illustrative example
is shown in Figure 5.6, where a new observation is branching out of the known
activity and a new intersection point is created due to the splitting.

5.2.2 Merging Activities

To remove redundant activities, activities are merged at intervals that are too
similar to each other. Activities are also merged in order to allow for spatially
wide activities, which might be initially observed as several parallel activities
growing together over time as more observations are acquired.

All activities Ak are merged with A∗ on the interval τ := [t0 : t1] for which
P (Tτ |Ak) ≥ sthreshold , ∆lτ > lthreshold and A∗ is the activity with the maximum

5.2 Activity Learning 51

A1

l > lthreshold

A2

l > lthresholdl > lthreshold

(a)

A’’1

A’2 A’’2

A’1 A’’’1

(b)

Figure 5.7: An illustrative example of the merge procedure, where the left
figure is before and the right figure is after. The dotted lines indicate where
the similarity of both A2 and A1 are exceeding the sthreshold .

similarity P (Tτ |A∗). That is, all activities which sufficiently explain long enough
intervals of the observed trajectory are merged with the activity best explaining
that interval.

An activity is merged into another by applying uniform re-sampling, as described
in Chapter 3, of the combined activity models. The combining is weighted with
the evidence of the respective activities. The final activity has the combined
amount of evidence from all activities merged. Intersection points are created
and updated in the same way as when new activities are created. An illustrative
example is shown in Figure 5.7 where two activities get too close (become too
similar) to each other and parts of each are merged.

5.2.3 Updating Activities

Any interval τi on T not used for creating or merging in the two previous steps
carry information that is used to update activities. The activity best explaining
such an interval cannot have been created or been part of a merge in the previous
two steps.

The intervals In (n = 1...N) remaining with length > lthreshold always have at
every point an activity A∗ with maximum similarity where P (Tt |A∗) ≥ sthreshold
holds except for intervals with length ≤ lthreshold . These intervals are segmented
into shorter intervals such that there is only a single activity with maximum sim-
ilarity for the entire interval, In,i .

If length(In,i) ≤ lthreshold then the interval is combined with the neighbor of short-
est length until they are composite intervals Ic satisfying length(Icn,i) > lthreshold .
The activity assigned as the most likely to the composite interval is the activity
Ak which has the highest P (Icn,i |Ak) for all k in consideration.

The observed trajectory is modeled as an activity so that intervals or composite in-
tervals of it can update the most similar activity by merging the activity with the
intervals in question. This is a special case of the merging of two activities, with
the weight of the observed intervals’ activity equal to one since it only represents
a single observation.

52 5 The Activity Learning and Classification Framework

5.2.4 Separating Learned Activities

It is possible to construct scenarios where some activities grow to cover what
would otherwise have become two different activities side by side. This could
happen either due to bad luck of the ordering of the observed trajectories or due
to new activities emerging after a while within the space of previous activities
(Figure 5.8).

(a)

(b)

Figure 5.8: An illustrative example of the how the order of observations in
some cases can create a clustering problem. Each graph has the Gaussian
distribution in transparent blue indicating how the activity has modeled the
observed data. The blue box(es) indicate the distribution of the observations
seen first and the red box(es) indicate the distribution of observations seen
later. In (a) the problem occur while in (b) it does not, with different end
result of activity learning and modeling

The problem is a clustering problem, where a current activity no longer represent
the data sufficiently and should be split in two (or more) activities. This is illus-
trated in Figure 5.9 where the trajectory T of an activity should be split into two
activities with respective trajectory TA and TB.

This could potentially be solved using standard clustering algorithms such as Ex-
pectation Maximisation (Bishop, 2006) but there is a big risk that these would
take a very long time to run since they would need all observed trajectories. Stor-
ing a history of all the observed trajectories for a system running the framework
is also a potential problem since the purpose of the framework is to handle con-
tinuous observation flows over arbitrarily long time frame. Another problem
with this approach is that it is not obvious how to check if an activity should be
clustered or is fine as it is.

5.2 Activity Learning 53

Figure 5.9: The wide activity with trajectory T actually consists of two
smaller activities with trajectory TA and TB. In the lower figure it is shown
that the similarity between the two smaller sub-activities is below the thresh-
old σd which indicate that the wider activity should be split into these two
smaller activities.

A possible alternative solution is to have a hierarchy of detail levels, illustrated
in Figure 5.10, for each activity. Sub-activities are modeled in the same way as
the ordinary primary activities are, but with a similarity threshold that is lower
than on the detail level above them. If the primary detail level has a threshold
determined by sthreshold , then the detail level below might have a threshold that
is sthreshold

2 . The lower similarity threshold allows two more activities to be formed
side by side, without them being considered the same or close as to warrant a
merge. If two activities on this level would still be separated with the lower de-
tail of sthreshold then the activity on the primary detail level should be split to
reflect the separation of the two separated activities on the level below. The hier-
archy does not need to be particular deep, with a depth adjustable by the user for
increasing the cluster resolution for the cost of less computational performance.
This solution was not investigated within this work and further elaboration end
experiments are left to future work.

54 5 The Activity Learning and Classification Framework

Figure 5.10: A detail hierarchy of an activity. The primary activity is at the
bottom with detail level σd . The clusters of activities given different detail
levels are shown above it until the detail level is so low that only the actually
observed samples are seen.

5.3 Activity Recognition and Prediction

Activity recognition and prediction are considered both within the span of single
activities, and over chains of activities in the Activity Transition Graph. In the for-
mer case is the continuous activity model of activities considered and in the latter
case is activities viewed as discrete nodes in a network of activity transitions.

This division is motivated by the fact that we have two different kinds of models;
the activity model which models the variable state for the duration of a single
activity, and the Activity Transition Graph that models the likelihoods of transi-
tions between activities. The latter assumes that we know which activity we are
in, in order to predict the likelihood for future and past activities. In compari-
son, the activity model is used to classify sections of an observed trajectory in
order to find the most likely activity of each section. For example, consider the
car in the T-crossing scenario (Figure 1.1, bottom to the right). The car will be
classified as performing the initial activity in the beginning of the entry of the
T-crossing. The only information available at this stage about if the car will turn
or not is from the transition statistics of the past, stored in the Activity Transition
Graph. Not until the car gets close to the point of intersection, where the first
activity branches into a turning activity and a straight activity, can we say more
about the likelihood for a turn. At this stage the primary concern is which of the
two activities best explains the observed behavior. The uncertainty will be high
with only the first observed samples directly after the intersection point, but the
classification grows more certain with the car making its way and covering more
and more of the length of either of the activities. From the start on the other

5.3 Activity Recognition and Prediction 55

side of the transition point until the object has covered an entire activity can we
perform run-time early classification, with a final classification afterwards. This
means that the framework can always supply the currently best activity classifi-
cation, and the currently most likely future activity transitions can be predicted
as a consequence. Figure 5.11 illustrates the different cases of predictions.

(a) (b) (c) (d)

Figure 5.11: Activities are nodes and the arrows are possible transitions be-
tween nodes. The black node is the current activity. The nodes with question
marks are the nodes of possible future or past activities. (a-b) concern pre-
diction of future activity. (c-d) concern prediction of past activity. (a) and (c)
are predictions from within the current activity (the possible next/previous
activities are evaluated using the local likelihood while the objects activity is
still best explained by the current node) weighted with the transition prob-
abilities. (b) and (d) are predicted based only on the transition probabilities
of transition between the intermediate activity and the nodes marked with
question marks.

5.3.1 Activity Recognition and Prediction

For a collection of observed data points, we want to find out which activity that
best explains these observations (Activity Recognition). We also want to predict
expected future observation data points, given that we have found a most likely
activity for our observations (Prediction).

The observed data points can either be treated separately, or be modeled using a
Gaussian process to account for their dependence and that they are samples of
an underlying trajectory. The local likelihood (Equation 4.5) can be calculated
for either case, but if we do not model the observations as a GP we can only be
as accurate as the available observed data points are when they individually have
their local likelihood calculated. If they are modeled as a GP the local likelihood
can be calculated for many more points, since the GP model allows the observed
data to be extrapolated by estimating the underlying fluent.

We expect the observations to be iteratively available (as a stream) and there exist
efficient ways to iteratively include new data points in Gaussian process mod-
els without having to recalculate the entire matrix inverse of all the data points
(Smith et al., 2012).

The local likelihood of the observations given the various activities deemed rele-
vant can be calculated for a single point, for a limited interval or for the entire
up-till-now known interval of each activity. These different calculations provide

56 5 The Activity Learning and Classification Framework

different information, such as which activity that best explains a given observa-
tion, or that best explains the observations over a specific interval. This is il-
lustrated in Figure 5.12, where an observed trajectory is compared to a known
activity.

Figure 5.12: The different possible probability calculations of a new ob-
served trajectory Tnew given the activity T , over the parametrized time t of
the activity.

The comparison of the local likelihood of the observations between different ac-
tivities decide which activity that is most likely to explain the observed data. If
the observed data is not sufficient yet to be compared to the entire activity, the
remainder of the activity can be used to predict the expected continuity of the
observed data. The Gaussian process is a generative model, so an entire instance
of an activity trajectory or simply the continuation of the observed trajectory can
be generated. An intuition to the classification an observed trajectory together
with the prediction as a consequence of the classification is shown in Figure 5.13.

5.3.2 Activity Chain Recognition and Prediction

The State Space Graph and the Activity Transition Graph can be used in several
ways to detect and predict activities. There is statistical information such as the
evidence for any activity, similarity between any two activities and the proba-
bility of transition between activities. Assuming the presence of one or several
learned activities, it is straight-forward to calculate the activity chain from n steps
in the past to m steps into the future that is most likely, least likely or anything
in between. It is also possible to calculate the k most likely activity chains, with
or without sharing activities at any step.

The most likely path from activity Ai to activity Aj is the shortest path in terms
of the negative log of the transition probabilities in the Activity Transition Graph.
This follows from the fact that the likelihood of any given chain of activities
equals the product of the transition likelihoods of that chain. The negative log
likelihood of this path, − log P (Aj |Ai), is the path cost. Because of this, general
graph algorithms for finding a shortest path can be used out of the box.

The most likely path from any activity to an activity at most n activities away,

5.3 Activity Recognition and Prediction 57

Figure 5.13: The observed trajectory Tnew has been calculated to be more
likely explained by the activity in the left box than in the right box. The
bottom graph shows the prediction of the observed trajectory given that the
currently most likely activity is indeed able to best explain the continuation
of the observed trajectory.

r meters away, l meters travelled or any similar constraint is solved for in the
same way as before with the added restriction on allowed nodes to expand in
the search. Prediction forward in time and backwards in time is possible by fol-
lowing the causal arrows of the Activity Transition Graph forward or backwards
respectively.

More dynamic information regarding the learning procedure is also available.
Events can be created of when the activity learning module creates, updates and
merges activities, or when the classification of an object is finished due to the
object crossing an intersection point. Activities can be classified in real time, and
their most likely chain backwards and forwards in time can be found to cope
with unobserved behavior. The k most probable activities can be streamed for
every observed object, or the most likely activity can be used for event genera-
tion by thresholding the probability of the activity having occurred. Finally the
probability of an object being in a transition or performing an activity can also
be deduced, including the probability of the performed activity being abnormal.

6
Experiments and Result

To verify that our approach works as expected, we have performed two experi-
ments. The first is a T-crossing scenario illustrating the benefits of using multi-
ple types of data in the state, and the second is a UAV scenario demonstrating the
framework’s capabilities to handle real data from physical platforms.

6.1 T-Crossing Case Study

The T-crossing scenario is similar to Figure 1.1 on page 4 where two types of
trajectories are observed: straight trajectories and left turning trajectories. In
each of the experiments we used 50 of each type. Trajectories are provided to the
framework in a random order. Three different state spaces are compared:

Case 1 : y = {positionx̂, positionŷ}, y ∈ R2 (6.1)

Case 2 : y = {positionx̂, positionŷ , headingx̂, headingŷ}, y ∈ R4 (6.2)

Case 3 : y = {positionx̂, positionŷ , velocityx̂, velocityŷ}, y ∈ R4 (6.3)

The headings in the second case are the normalized velocities from case three.
The converged trajectories of the first and second case can be seen in Figure 6.1
where the generated data is also shown.

With position and headings (normalized velocities) the turning activity begin ear-
lier than with only positions available, and even more so with the slow down
taking place. The framework learns a turn activity earlier when having positions
and headings (case 2) compared to when only having positions (case 1). As a con-
sequence it is possible to predict that a car will turn earlier. Similarly, using both
velocity and position (case 3) the framework is capable of learning the turning

59

60 6 Experiments and Result

Figure 6.1: Case study. Top row: Scenario with positions only. Bottom row:
Scenario with a slow down. The figures in the middle show the three learned
activities after two observed trajectories, while the figures to the right show
the result after all observations. Blue color indicates a higher speed than
yellow.

activity even earlier than when using headings (case 2), and can therefore predict
turn activities even earlier.

6.2 UAV Case Study

The second experiment is a quadcopter UAV flying various patterns through a
four times four meter large grid with a top speed of 0.5m/s. The UAV always
flies in the same direction between each pair of points (Figure 6.2, Left). The
branches in a crossing have different probabilities. The experiment evaluates the
framework using 72 simulated flight trajectories and 25 real flight trajectories.

Figure 6.2: (Left) The graph of flight patterns used for the second experi-
ment. A UAV always enters from the top-left green node and then arbitrar-
ily traverses the graph until it reaches the middle-left red node. (Middle)
An example trajectory with the positions of the UAV shown as blue circles.
At some nodes the circles are stronger which indicate that the UAV has been
standing still there. (Right) The red line is the mean of the GP model of the
observed positions in the example, when they have been down-sampled.

6.2 UAV Case Study 61

The input consists of full trajectories of 2D positions. All preprocessing and pro-
cessing required is included in the presented times. Among this processing is the
down-sampling of the dense positions in the observed trajectories

The framework in its current form requires that the state is continually changing.
To handle the situation where for example the UAV is standing still, static data
is removed by incrementally averaging all data points that are too close to each
other, resulting in a trajectory with evenly spaced data points. The minimum
distance between two data points was set to 15cm. This imposes a limitation
to the resolution of detectable details, which should be a minor issue. It does
however reduce the influence the data points at the nodes have on the GP model
and so the GP is a bit too round and sometimes misses the center of the nodes
which can be seen to the right in Figure 6.2.

20 40 60
0

500

1000

1500

2000

T
im

e
[s

]

Trajectories

Time comparison − simulation

Trajectory time
Learning time

5 10 15 20 25
0

200

400

600

800
T

im
e

[s
]

Trajectories

Time comparison − UAV flight

Trajectory time
Learning time

Figure 6.3: A comparison between the accumulative flight time and the ac-
cumulated learning time after a given number of observed trajectories.

A comparison of the flight time of trajectories and the learning time of the trajec-
tories is shown in Figure 6.3. The experiment ran on a single 2.5 Ghz Gen.4 Intel
i5 core. The learning rate of the simulated trajectories is 11.89x real-time and the
corresponding learning rate of the real flight trajectories is 10.39x real-time. This
implies that the framework is feasible for real-time applications at least on small
scales, or for learning activities from multiple simultaneously observed objects
in real-time.

Figure 6.4 shows that the most computationally heavy work in the framework is
that of estimating a GP model of a atomic trajectory and re-sampling GP mod-
els using SGPUS, where the former is performed in pre-process trajectory and the
latter in the create/update/merge operations. These two calculations have com-
plexities of O(M3) and O(M2 +N3) in the number of observed data points M the
trajectory consists of and the number of support points N used by the activity
models. It takes longer time to create GP models of long observed trajectories
compared to short observed trajectories. At the start of a system with no prior
knowledge, no activities are known and the first learned activity will be the first
observed trajectory. Any successively learned activity will either be added as the
whole observed trajectory, or contribute to the splitting of activities and thereby

62 6 Experiments and Result

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

Observation

T
im

e
[s

]

perform create operations
perform update operations
pre−process trajectory
calc local likelihoods
calc operations intervals
load trajectory
remove clusters
update intersections
calc create/merge/update intervals
calc exp/unexp/ambiguous intervals
perform merge operations

Figure 6.4: The legend is sorted on maximum processing time and the three
most costly tasks have distinct markings. The fourth most costly task is to
calculate the local likelihoods for a new observation and it is the only clearly
visible function apart from the three most costly.

make known activities shorter. As a consequence, the time it takes to learn new
activities will generally start high and later converge to a lower time as the under-
lying structure has been more or less learned and most activities are as short as
they ever will be. This can be seen in Figure 6.5, where the time is normalized on
the number of samples of each trajectory to remove the effect that long observed
trajectories take longer time to model than short observed trajectories.

The data set has exact positions for the UAV both from a Vicon vision system and
in the simulation. We introduce the assumption of observation noise in order to
cluster the different trajectories. The assumed the observation noise to be higher
for the real flight data to allow for larger variations within the initial activities
due to the lack of merging operations. We observed that the constraints on and
calculations of which intervals to merge and not to merge, close to intersections,
is not always sufficient, merge operations where therefore omitted in this experi-
ment

The State Space Graph at various stages of the experiment is shown in Figure
6.6 and Figure 6.7. The resulting models display a corresponding description
of the observed trajectories with a high model quality. The resulting state space
model of the real flight trajectories capture several parallel activities that were
scheduled for merge but were not since we disabled that operation. This resulting
model also highlighted a need for a tighter lock of the endings of activities and
their intersection points, such as in the case of the top-middle node.

6.2 UAV Case Study 63

0 20 40 60
0

0.05

0.1

Learning time − simulation
T

im
e

/ #
 tr

aj
ec

to
ry

S
am

pl
es

 [s
]

Trajectories
0 10 20

0

0.05

0.1
Learning time − UAV flight

T
im

e
/ #

 tr
aj

ec
to

ry
S

am
pl

es
 [s

]

Trajectories

Figure 6.5: The learning time of the framework for simulated respective
real flight after a number of trajectories. The time is normalized using the
number of samples of the observed trajectory to illustrate that the time cost
shrinks with the the learning of new activities and stabilizes when all ac-
tivities have been learned. The normalization is performed since Gaussian
process regression is cubic to the number of data points, so the learning takes
longer with longer observed trajectories. The x-axis indicates how many ac-
tivities that has been processed so far.

(a) 1 path (b) 6 paths (c) 10 paths (d) 11 paths (e) 72 paths

Figure 6.6: Learning of simulated flight trajectories. The top row shows the
history of observed trajectories and the bottom row shows the incrementally
learned model after various number of observed trajectories. The bottom
row also shows the next observed trajectory in blue. The color of each activity
transitions from green at its start point to red at its end point.

64 6 Experiments and Result

(a) 2 paths (b) 3 paths (c) 6 paths (d) 8 paths (e) 25 paths

Figure 6.7: Learning of real flight trajectories. The top row shows the his-
tory of observed trajectories and the bottom row shows the incrementally
learned model after various number of observed trajectories. The bottom
row also shows the next observed trajectory in blue. The color of each activ-
ity transitions from green at its start point to red at its end point.

7
Discussion and Conclusion

Learning and recognizing spatio-temporal activities from streams of observations
is a central problem in artificial intelligence. In this thesis, we have presented an
unsupervised stream processing framework that learns a probabilistic and con-
tinuous representation of observed spatio-temporal activities and their causal re-
lations from observed trajectories of objects. It provides a fundamental layer
to build from for continuous maintenance and integration of high-level and low-
level knowledge by combining symbolic and quantitative models to archive learn-
ing, recognition, prediction and simulation on the presented abstraction levels.
The framework has been evaluated in two different experiments involving both
simulated and real data.

This chapter starts with a general discussion and overview of the framework. The
section after covers an algorithmic complexity analysis of the framework and
the SGPUS algorithm in comparisons with alternative techniques. After this an
extensive analysis of the qualitative performance of the abilities of the framework
and the experimental results is presented in the subsequent section. Finally, this
thesis is concluded with a conclusion and a final section about future possibilities
building upon this work and where to go from here on.

7.1 The Framework

The aim of the framework is to provide a system with the ability to detect and
predict dynamic normative behaviors from observations. It is especially designed
with the aim of running in real time, and to be able to perform unsupervised
learning of new behaviors and updating the models. Everything is modeled using
probabilistic approaches, so a confidence will be available in every regard.

65

66 7 Discussion and Conclusion

The system’s understanding of the world is in terms of activities and causal re-
lations between the activities, where activities are trajectories in the state space.
The state space consists of a Euclidean space containing all state properties of
interest, such as for example positions, velocities, redness, humanness and so on.
Any property that is continuous can be used. Discrete properties can be used,
although it is not recommended, and they will be made fuzzy in their represen-
tation since the model is continuous and values may be interpolated or extrapo-
lated. A conversion back to a discrete value is left to the user of the framework,
e.g. by thresholding. The models used can be constructed by humans and up-
dated fully supervised. However, the strength of letting the framework run and
learn unsupervised [D12] is that the system can then adjust its understanding of
the world when what is observed diverges from what its model expects.

The framework currently tries to learn the minimal unique set of atomic activities,
and the causal relation of these. The atomic activities are modeled using Gaus-
sian Processes, which provide a continuous trajectory through the state space,
with a certainty at every point in the state space. The certainty, or variance of
the Gaussian distribution, has a dual interpretation and purpose. When an ac-
tivity model is supported by very few observations, it is still largely uncertain
if it captures the observed activity or not. An activity model captures the ob-
served activity if instances of that observed activity are always explained by the
model with high enough probability/confidence. When an activity model has
accumulated a very large amount of observations, the confidence of the model is
expected to be higher, and the variance can more and more be seen as the width of
the modeled trajectory. This means that we expect observations of the activity to
fall within the variance of the model such that the probability/confidence of the
model explaining the observations is high enough. Our current way to achieved
this is to weight the likelihood of the different activities according to their evi-
dence, where the evidence is the number of observed trajectories an activity has
explained so far. The activity model is limited by the fact that it cannot model a
trajectory which intersect itself. This is currently assumed to not happen, but an
easy work-around is to split any such observations into non-intersecting pieces.

The context learned by the presented framework is the relations between the ac-
tivities, and this context is modeled using two graphs. The Activity Transition
Graph is a Markov-chain, where each node is an atomic activity and the edges
are temporally directed transitions between the activities. Each edge has a transi-
tion probability, which is learned by observing objects transitioning in the graph.
This graph allows for reasoning over the causal relations of activities [D9]. The
second graph is called the State Space Graph, and it is a directed graph connect-
ing the activity models spatially, where the edges are activities and the nodes are
intersection points [D8]. These two graphs are both learned at the same time by
creating, merging, separating and updating activities based on observations. An
activity not explained well enough by the model, according to a user parameter, is
deemed as novel/unknown [D10] and created as a new activity [D1]. Activities
that are too similar, utilizing the same measurement, are merged. The separa-
tion functionality is not yet a part of the current framework, which introduces

7.2 Computational Complexity and Performance Factors 67

some limitations that make the framework less invariant to the order in which
the observations are learned. Observed trajectories are recognized as chains of
activities [D6], and recognized activities are updated with the matching interval
of the observed trajectory [D2]. The size of the activity model does not increase
as a consequence of the number of observed trajectories and only depend on the
structural information provided by these observations. This allows for an endless
number of integrated observations without performance bottlenecks [D5].

Trajectories through the State Space Graph can be made continuous by applying
fusion on the activities involved; this provides a resulting continuous trajectory
similar to that of a single Gaussian Process. The segmentation of atomic activities
into short sparse Gaussian Processes makes the use of Gaussian processes feasi-
ble in large real world scenarios. It also makes real-time performance feasible in
practice for the learning and updating of the Gaussian Processes models used for
modeling activities. Since Gaussian processes are generative probabilistic models
we can generate example data in the form of trajectories with arbitrarily high res-
olution for any activity or activity-chain. This means that we can generate data
sets with the same statistical properties, i.e. regarding activity transitions and
activity width, and on the same form as the observations used to learn models
in the frameworks knowledge base [D8]. This allows for prediction both within
individual activities and over chains of activities [D7] both forwards and back-
wards in time [D11].

7.2 Computational Complexity and Performance
Factors

The framework is dependent on various parameters which effect its computa-
tional and qualitative performance. The number of support points N of each
activity is determined by a minimal distance minDistance between each support
point, so the actual number of support points of an activity is dependent on its
length L:

N =
L

minDistance
(7.1)

The hyper parameter optimization of a Gaussian process has a complexity of
O(M3) (Rasmussen, 2006) in the number of support points, which is currently
performed on every new observed trajectory. This could potentially be replaced
by sparse GPs (Snelson and Ghahramani, 2005, 2007) which have a complexity
of O(K2M) where K < M, M is the original number of support points and K is
the number of sparser support points. The GP model of the observed trajectory
is used by the SGPUS algorithm to make the GP sparse or for combining mul-
tiple GPs in updating and merging operations of the framework. SGPUS has a
complexity of O(NM2 + N3) where M is the original number of support points
and N is the new number of support points, which is usually much lower than
M. N is determined by Equation 7.1 but can be bounded by having a strict max-
imum number of support points N or a strict maximum length L. Although not

68 7 Discussion and Conclusion

investigated here, it should be possible to have activities longer than a constant
length split into a chain of sub-activities and treated as a single GP by SGPUS by
utilizing fusion as described in Section 3.3. As a consequence the computational
cost could potentially be greatly reduced by a more systematic utilization of lo-
cal GP models. This would however introduce additional approximations since
Gaussian process models are only influenced by their own support points. For
example, a split in the middle of a turning trajectory might not provide two well-
connected half-turns since neither model will be aware of the others continuation
of the turn. Consequently, care has to be taken when selecting the points to split
activities to sub-activities.

The strength of the SGPUS compared to other sparse GP techniques is that it has
a very low complexity when incremental in its inclusion of new data. SGPUS
has a higher complexity in the number of data points M with a complexity of
O(NM2 +N3) compared to O(MN2). However if the data points come in clusters
that have a uniform distribution over the input variable (e.g. similar trajectories)
then these can be included cluster after cluster making the variable M depend
on each individual cluster size rather than total number of data points. A con-
sequence of this is that SGPUS has a complexity that is linear in the number of
observed trajectories. To make such an iterative approach work we have to assume
that all (or at least most) trajectories used by SGPUS contain the structure that
we want to capture. This is essential in order for the final sparse GP model to
converge towards this structure. To make a summary of the limitations: the num-
ber of support points must be high enough to capture the sought structure, and
each input (each trajectory) must contain enough of the sought structure. In the
second experiment with the UAV scenario we downsampled the observed trajec-
tories. If the down sampling would have been too large, then we might have been
unable to model all the interesting structures since these structures would not be
contained sufficiently in the used input data to SGPUS.

The iterative approach, of learning one trajectory after another, does introduce
additional problems and approximations. Specifically the convergence seems to
be slower than if all data is used at once. That the convergence can be slower
is however not a matter of too much concern, since data in most cases will be
in abundance. The models are built to be able to assimilate large numbers of
observations, as expected with systems working continuously for long periods of
time in the real world. The effect of the convergence on the quality of the State
Space Graph, and that of reproducibility and completeness, is however a matter
that has to be investigated further, together with the stability and robustness of
convergence of SGPUS.

There are parameters that let the user adjust various parts of the framework be-
tween on one hand slower but more exact calculations, and more approximative
but faster on the other. SGPUS uses a parameter that specifies the maximum
number of iterations, where each iteration improves the result more or less. The
calculation of the length of a GP is performed using an approximate Riemann in-
tegral, where a parameter sets the step length. The shorter step length, the more

7.3 Discussion 69

exact length we get. The length of a GP is used similar to the way L is used in
Equation 7.1 or the length on an activity used to compare with lthreshold in Sec-
tion 5.2. The local likelihood in Equation 4.5 is calculated at points on an activity
with a certain distance between each point, as used in Section 5.2. The shorter
distance, the higher resolution but also the slower is the computations.

Each operation of the framework is linear in the number of activities, as the lo-
cal likelihood (Equation 4.5) is currently calculated for all known activities. An
octree or similar data structure should make it possible to reduce the number
of activities necessary to compare with, if the underlying structure is somewhat
sparse. The framework is also linear in the dimension of the state space if the di-
mensions are assumed independent as they are in this work. This is the case for
both mappings to and from time parameter and attributes of the activity model.
In the case of the time-to-attribute mapping there is in effect one GP for each
attribute, which corresponds to one dimension. In the case of the attribute-to-
time mapping the squared exponential kernel used (Equation 2.8) is internally
the function of the L2-norm of two attribute vectors, which is a linear operation
that produces a scalar. If the dimensions of the state space are not assumed to be
independent the complexity is quadratic.

7.3 Discussion

A higher dimensional state space makes it easier to discriminate between observa-
tions of different activities. As a consequence, more activities can be learned, de-
tected and predicted. The increased ability to discriminate activities is illustrated
in the T-crossing experiment (section 6.1), where the use of positions and veloci-
ties allow the framework to differentiate between turning and not turning much
earlier than with only positions. With an assumption of independence between
the dimensions, the computational complexity of the framework and its opera-
tions is linear in the number of dimensions of the state space with a low constant.
As a consequence, it is encouraged to include all available properties (directly or
indirectly observable) since this significantly improves the framework’s activity
discrimination potential. By treating dependent variables as independent, each
variable has to be modeled on its own which can lead to larger uncertainty. Treat-
ing them in accordance to their actual dependencies has some possible advan-
tages, such as more true probability density shapes of the activity models and a
stronger ability to compensate for a lack of data or too few support points. The
time complexity is however squared in the number of dimensions of the state
space without the independence assumptions, so this will need more considera-
tion and evaluations in future work. It is important to scale the dimensions in
different ways when using kernel weight from equation 2.10 since then only a
single kernel parameter will determine the smoothness of all of the dimensions.
This scaling can be hard to know beforehand and it is therefore recommended to
use weights from equation 2.11, which let the software optimize the smoothness
parameters of each dimension.

70 7 Discussion and Conclusion

We show in the UAV flight pattern experiment (section 6.2) that our framework
is capable of learning observed activities in real-time [D4] using real-world data
[D3]. Figure 6.5 indicate that the framework’s performance can increase by learn-
ing new activities. The performance of the framework is limited by two factors:
the GP modeling of each observed trajectory and the SGPUS calculations during
create/update/merge operations. This is supported by both the computational
complexities of the operations as described in section 7.2 and by the empirical
results of the experiments (Figure 6.4). In the figure we can see that the incor-
poration of new observations into known activities (perform update operations)
and GP modeling of the observed trajectory (pre-processing trajectory) are the
two tasks that take the most time. The create operation takes a long time because
it might have to split activities, which requires running SGPUS for each resulting
activity. The current implementation of the create operation does not make all
splits simultaneously, but instead does it recursive and therefore performs a lot
of extra SGPUS calculations. Both pre-process and create/update/merge have
a computational time that depends on (1) The number of points as input (com-
putational complexity) and (2) The number of iteration of the GP optimization
and of the SGPUS (a large computational complexity constant). The former can
be reduced by making the pre-process clustering of individual observed samples
larger with the effect that less observation structure will be available. The latter
can be lowered by adjusting the parameter of maximum number of iterations or
changing the stopping criteria, with the effect that the model of the observed data
will be mer approximate.

It is in general the case that the performance of the framework has potential to
decrease over time due to two different processes:

1. An increase in the number of shortened activities due to additional inter-
sections, by the learning of new activities.

2. The increased resistance to change of increasingly well supported activities,
by the number of incorporated observed trajectories.

The first process increases the performance since shorter activities means shorter
Gaussian process models. If the structure of the activity transitions is dense then
there will be many short activities rather than a few long. So if there is a domain
structure that contains many activity transitions, then the performance will grad-
ually increase with the learning of new activities as these will split longer activi-
ties into shorter activities. This affects the create, merge and update operations.
The second process can increase performance since the parameters optimized in
SGPUS will start closer and closer to their targeted optima the smaller change
that is required by a well supported activity in update operations. This is the
case since the combining described in section 3.3 weights the combined GPs in
accordance to their amount of evidence, and a new observed trajectory has only
1 as evidence amount while an already learned activity can have arbitrarily high
evidence. The variable step-length of the gradient descent used by SGPUS can
be made to take advantage of this, so that the number of iterations required in
the gradient descent can be decreased significantly. What this means is that more

7.3 Discussion 71

observed trajectories makes the update operations cheaper.

A generally better adaptive step-length for gradient descent in SGPUS would
also make it faster. It has been observed that the gradient steps of the observa-
tion noise vector σ2

1...N and kernel parameter θ1 get stuck in a competing position
close of convergence and therefore does not let the stop criterion of the gradient
descent be fulfilled, with the consequence that it will run for the maximum num-
ber of iterations. The current step-length adaptation of θ1 might not be consis-
tently stable either if two local optima are close by since the doubling and halfing
of the step-length might make it step over into the other. There also exist much
faster non-linear optimization methods which can make use of the Hessian or
higher gradients.

Analytical integration of a Gaussian process over its range is another speed im-
provement that should be possible to make. It would make the calculation of ac-
tivity lengths much faster and more accurate, which is used by the create, update
and merge operations, and it would replace the Riemann sum currently used. It
should also be possible to perform closed form analytical integration over prod-
ucts of Gaussian processes over their range, making it possible to calculate the
KL-divergence (Rasmussen, 2006) or Bhattacharyya distance (Schweppe, 1967)
between activities. This could be an even better similarity measures between
activities than what is currently used, since they are continuous rather than sam-
pled and reflect theoretical properties more in line with what is actually sought
after in the notion of similarity between probabilistic distributions. These sim-
ilarity measures are defined for Gaussian processes with the same number of
support points by using the duality of Gaussian processes and Gaussian distribu-
tions. To extensively use SGPUS to temporarily re-sample activities for similarity
comparison is however quite time consuming compared to closed form analytic
evaluations of the similarity measures mentioned. These calculations should be
bounded by the complexity of the compared activities’ mean and variance func-
tions (equation 3.12-3.13) with a complexity of O(N2) in the number of support
points of each activity, and with a very small constant for the evaluation of the
analytical expression. An additional advantage of using a continuous similarity
measure of the activities’ GPs is the increased accuracy (no longer an approxima-
tion) and that it could provide a highly efficient way to compare activities in the
future extensions of complex activities and activity equivalence classes.

It is common for trajectory clustering methods to either use average trajectories
(e.g. centroids), cluster prototypes (e.g. a random trajectory from the set) or en-
velopes (i.e. linear splines between a set of points or a set of Gaussian distribu-
tions) (Morris and Trivedi, 2013). Our activity model provides a continuous prob-
abilistic envelope capable of providing a Gaussian distribution for each real point
along the activity mean-line, from start to end of the activity. It incorporates the
probabilistic nature of groups of individual trajectories that can be both noisy
and be of various quality (such as be of different sample rate or contain missing
data).

Another difference to common methods in trajectory clustering is our use of tra-

72 7 Discussion and Conclusion

jectory normalization without loss of behavioral semantics accuracy, and the use
of the inverse mapping for the activity similarity calculations. The loss of time-
dependent information, such as velocity and acceleration, is a common effect of
simple normalization techniques (Morris and Trivedi, 2013) and we solve this
by explicitly having velocities and other properties as dimensions in the state
space. This makes the interesting time-dependent properties invariant in regards
to the normalization of activities’ time parametrization (t ∈ [0.0 1.0]) and of re-
sampling. Extending the dimensionality of the state space does not limit the
performance in a significant way since the framework’s operations are linear in
the number of dimensions of the state space. These properties can for example
be estimated from the observed data points by applying a Kalman filter. The nor-
malization in time parametrization solves the issue of comparing trajectories of
unequal length (Morris and Trivedi, 2013). Additionally, our use of the inverse
mapping in the activity model let us compare overlapping parts of trajectories to
each other.

The inverse mapping used by us have some limitations. The mapping is modeled
using a Gaussian random field with a Gaussian kernel and is therefore localized
as the super position of a set of multivariate Gaussian distributions in the state
space. This means that a radial projection of a state space point onto the mean
function of an activity is only accurately performed when the state space point is
close enough to the activity. If it is not, then the projection is biased towards the
mean state of the mean function of the activity. We would like to find a better
solution that allows an inverse mapping that always project a state space point to
the closest radial point on the mean function. A general analytic formulation of
this does however seem to be impossible to find in the general sense since it is an
equation of a sum of different exponential functions.

The key to our on-line learning approach is that new structures in the form of
novel activities are incorporated in the knowledge base directly upon observation
[D10], compared to off-line approaches that start with all data and searches for
structure. We perform a bottom-up clustering. Off-line cluster methods usually
need to perform a pairwise comparison of all trajectories which is very compu-
tational expensive due to the quadratic complexity in the number of trajectories
which can be very large (Morris and Trivedi, 2013). Our on-line method in com-
parison has a linear complexity in the number of activity models for adding a
new observed trajectory.

The on-line approach provide several benefits such as adaptivity and reduced
processing time but it also has some problems which need to be considered. The
first main problem is that of reproducibility, meaning if the model will converge
towards the same result regardless of the ordering of the trajectories observed.
The other problem is that of the quality of the solution, meaning if the end result
will find a global solution or a local solution and how the quality may vary. The
most striking current shortcoming on reproducibility is described in section 5.2.4,
with an example in Figure 5.9. We present a possible solution using a detail
hierarchy of local sub-activity models for each activity model. Each level in the

7.4 Conclusion 73

hierarchy is supposed to capture a specific level of detail so that the best possible
candidate clusters for an activity to split into is available without running any
cluster algorithm. if this is a feasible solution and how much it would impact
performance is however unknown and left for future work.

There exist a lot of work regarding traffic behavior understanding (Morris and
Trivedi, 2013) and we would like to compare our performance on common data
sets in future work. Our framework do have some issues in regard to this domain
that has to be solved in the future. We do not yet explicitly support activities that
are static in the state space, e.g. to stand still. Neither is the support for example
multiple lanes in the traffic domain very good, at least not for modeling that cars
can change lanes at arbitrary points. The contextual structure to support this is
not yet a part of our framework and we view this as future work.

7.4 Conclusion

Learning and recognizing spatio-temporal activities from streams of observations
is a central problem in artificial intelligence. In this thesis, we have proposed an
unsupervised stream processing framework that learns a probabilistic and con-
tinuous representation of observed spatio-temporal activities and their causal
relations from observed trajectories of objects. An activity is represented by a
Gaussian process and the set of activities is represented by a State-Space Graph
where the edges are activities and the nodes are intersection points between ac-
tivities. To reason about chains of related activities an Activity Transition Graph
is also learned which represents the statistical information about transitions be-
tween activities. To show that the framework works as intended, it has been
applied to a small traffic monitoring example and to learning the flight patterns
of a quadcopter UAV.

The experiments show that our framework is capable of learning observed activi-
ties on-line in real-time using real-world data. The framework performs on-shot
learning, meaning that a single observed trajectory is enough to learn a new activ-
ity model, which can be used for immediate recognition, prediction and simula-
tion of activities and activity-chains. Due to the low complexity of the algorithms
the solution is scalable to real-world situations. The approach has a time complex-
ity for activity learning and recognition that is linear in the number of learned
activities, in the number of observed trajectories and in the dimension of the state
space. The learning of each activity’s GP model is cubic in the number of support-
ing points. However, by keeping a strict maximum number of supporting points,
the complexity can be bounded.

The framework provides a fundamental layer to build from for continuous main-
tenance and integration of high-level and low-level information. It combines sym-
bolic and quantitative models to archive learning, recognition, prediction and
simulation on multiple abstraction levels. It is capable of doing this on the cur-
rent levels of abstractions consisting of the low-level atomic activity models and
the higher level of the State-space Graph and Activity Transition Graph, where

74 7 Discussion and Conclusion

activities are viewed as discrete states and the activity transitions are in focus.

The models used for knowledge representation provide an easy way for humans
to understand the knowledge structure, and to add, remove or edit the knowledge
base at any time. This is especially useful in domains where experts can provide
prior knowledge. Since the framework have the ability of unsupervised adaptive
domain knowledge acquisition and maintenance, these priors do not have to be
entirely correct and will be modified and possibly extended by the framework, if
allowed, as new information is observed.

7.5 Future Work

We would like to find statistically significant equivalent classes of activities, mean-
ing activities that are similar to each other in different regards. There are many
ways activities can be similar, but two main categories of similarity can be dis-
cerned: Similarity based on activity models (i.e. how the trajectory looks like
and which state variables that are active or statistically significant) and similarity
based on contexts such as activity transition configurations (i.e. activities of one
kind follow after activities of a second kind leading to activities of a third kind.).
This distinction between the two categories is in a sense connected to how we
might expect to derive the classes of respective category. Classes in the former
category are most likely best found by various ways of correlating activity trajec-
tories in a bottom-up way. The latter is most likely easiest to find by building
on the previous category classes and correlating sequences of transitions of var-
ious classes of activities. Figure 7.1 illustrates what we are after with this next
step. Activities here have a more crisp representation than what we are currently
capable of.

Figure 7.1: Some of the expected activities and transitions between them
that are expected to be found in a T-crossing.

7.5 Future Work 75

Two aspects that we are interested in exploring further is how to learn complex
activities as discrete entities and how to make the activities dependent on the
context. Currently complex activities are learned as chains of activities, but they
are not treated as activities of their own. Regarding context there are at least
two interesting aspects. First, how to generalize from activities in a particular
situation, for example the activities in a particular T-crossing, to an activity in
a wider range of situations, such as the activities in any T-crossing. This would
correspond to learning the activities in a T-crossing context. A T-crossing context
is different from a complex activity in that a context can contain disjoint activ-
ity graphs, for example in the crossing where no U-turns are expected and all
the possible paths in and out of the crossing would be contained by the context.
Second, how to take other objects and the state of the environment into account.
The same observation could correspond to several different activities depending
on this. For example, observing a car slowing down in a crossing could be either
because it is going to turn, that there are other cars in front of it that are slow-
ing down or because there is a red light. The framework is designed with these
extensions in mind and provides the necessary building blocks.

A future prospect of the framework is to provide an efficient way for developing
stream processing and robotic systems. A priori information can be introduced
by humans constructing and editing models. The system can then refine the
models using observations and learn new non-modeled behavior. These models
can then again be edited by humans and let to be refined by the system once more.
By letting humans labeling activities and contexts, the models and the framework
can be integrated into stream processing or robotic solutions. A long term goal
is to provide a reduction of feasible classes of activities and contexts to canonical
forms, so that these can be stored and shared between systems and projects. A
catalog of behaviors that can be used for any system to detect and predict, or even
modify to better suit the current needs and environment of an application. These
would then be modifications that still make it possible to communicate about
the behaviors using a common language between agents and between agent and
human.

We see this work as a step towards learning activities unsupervised for robotic
systems to adapt to new circumstances autonomously and to learn new activities
on the fly that can be detected and predicted immediately.

Bibliography

J. Aggarwal and M. Ryoo. Human activity analysis: A review. ACM Comput.
Surv., 43(3), 2011. Cited on page 3.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, New York,
2006. ISBN 978-0-387-31073-2. Cited on page 52.

P. Boyle and M. Frean. Dependent gaussian processes. In In Advances in Neural
Information Processing Systems 17, pages 217–224. MIT Press, 2005. Cited on
page 15.

P. Brézillon. Context in problem solving: A survey. The Knowledge Engineering
Review, 14:1–34, 1999. Cited on page 3.

S. Coradeschi. Anchoring symbols to sensory data. PhD thesis, Linköping Univer-
sityLinköping University, Department of Computer and Information Science,
The Institute of Technology, 1999. Cited on page 2.

G. Cugola and A. Margara. Processing flows of information: From data stream to
complex event processing. ACM Comput. Surv., 44(3):15:1–15:62, June 2012.
ISSN 0360-0300. doi: 10.1145/2187671.2187677. Cited on pages 10 and 11.

M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg. Accurate scale estimation for
robust visual tracking. Proceedings of the British Machine Vision Conference
BMVC, 2014a. Cited on page 19.

M. Danelljan, F. Shahbaz Khan, M. Felsberg, and J. van de Weijer. Adaptive color
attributes for real-time visual tracking. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) 2014 :. IEEE, 2014b. Publi-
cation status: Accepted. Cited on page 19.

D. de Leng. Extending semantic matching in dyknow to handle indirectly-
available streams, 2013. Cited on page 11.

C. Dousson and P. Le Maigat. Chronicle recognition improvement using temporal
focusing and hierarchization. In Proceedings of the 20th International Joint
Conference on Artifical Intelligence, IJCAI’07, pages 324–329, San Francisco,
CA, USA, 2007. Morgan Kaufmann Publishers Inc. Cited on page 11.

77

78 Bibliography

C. Dousson and P. L. Maigat. Chronicle recognition improvement using temporal
focusing and hierarchization. In Proc. IJCAI, 2007. Cited on page 3.

M. Endsley. Situation awareness global assessment technique (sagat). In
Aerospace and Electronics Conference, 1988. NAECON 1988., Proceedings
of the IEEE 1988 National, pages 789–795 vol.3, May 1988. doi: 10.1109/
NAECON.1988.195097. Cited on pages 1 and 6.

R. Gerber and H.-H. Nagel. Representation of occurrences for road vehicle traffic.
Artificial Intelligence, 172(4–5):351–391, 2008. Cited on page 3.

A. Girard, C. Rasmussen, J. Candela, and R. Murray-Smith. Gaussian process
priors with uncertain inputs - application to multiple-step ahead time series
forecasting. In Proc. NIPS, 2002. Cited on pages 15 and 40.

N. Guillarme and X. Lerouvreur. Unsupervised extraction of knowledge from
S-AIS data for maritime situational awareness. In Proc. FUSION, 2013. Cited
on page 18.

F. Gustafsson. Statistical Sensor Fusion. Studentlitteratur, 2010. ISBN
9789144054896. Cited on page 22.

F. Heintz. DyKnow : A Stream-Based Knowledge Processing Middleware Frame-
work. PhD thesis, Linköping UniversityLinköping University, The Institute of
Technology, KPLAB - Knowledge Processing Lab, 2009. Cited on page 11.

F. Heintz and P. Doherty. Dyknow : An approach to middleware for knowledge
processing. Journal of Intelligent & Fuzzy Systems, 15(1):3–13, 2004. Cited on
page 11.

F. Heintz, P. Rudol, and P. Doherty. From images to traffic behavior - a uav track-
ing and monitoring application. In Proc. FUSION, 2007. Cited on pages 3, 4,
and 10.

F. Heintz, J. Kvarnström, and P. Doherty. Bridging the sense-reasoning gap: Dy-
know - stream-based middleware for knowledge processing. Advanced Engi-
neering Informatics, 24(1):14–26, 2010. Cited on page 1.

C. T. M. Keat and C. Laugier. Modelling smooth paths using gaussian processes.
In Proc. FSR, 2007. Cited on page 13.

K. Kim, D. Lee, and I. Essa. Gaussian process regression flow for analysis of
motion trajectories. In Proc. ICCV, 2011. Cited on pages 13, 18, 39, 40, 41,
and 42.

S. Kim and J. Kim. Occupancy mapping and surface reconstruction using local
gaussian processes with kinect sensors. IEEE T. Cybernetics, 43(5):1335–1346,
2013a. Cited on page 22.

S. Kim and J. Kim. Continuous occupancy maps using overlapping local gaussian
processes. In Proc. IROS, 2013b. Cited on page 13.

Bibliography 79

D. Makris and T. Ellis. Learning semantic scene models from observing activity
in visual surveillance. IEEE Transactions on Systems, Man, and Cybernetics,
Part B, 35(3):397–408, 2005. Cited on page 18.

B. T. Morris and M. M. Trivedi. Understanding vehicular traffic behavior from
video: a survey of unsupervised approaches. Journal of Electronic Imaging, 22
(4):041113–041113, 2013. Cited on pages 4, 17, 18, 19, 71, 72, and 73.

H. Nyquist. Certain topics in telegraph transmission theory. American Institute
of Electrical Engineers, Transactions of the, 47(2):617–644, April 1928. ISSN
0096-3860. doi: 10.1109/T-AIEE.1928.5055024. Cited on pages 28 and 34.

M. Osborne. Bayesian Gaussian Processes for Sequential Prediction, Optimisa-
tion and Quadrature. PhD thesis, PhD thesis, University of Oxford, 2010. Cited
on page 23.

C. Piciarelli and G. L. Foresti. On-line trajectory clustering for anomalous events
detection. Pattern Recognit. Lett, pages 1835–1842, 2006. Cited on page 18.

C. E. Rasmussen. Gaussian processes for machine learning. MIT Press, 2006.
Cited on pages 13, 17, 21, 67, and 71.

M. Schneider and W. Ertel. Robot learning by demonstration with local gaussian
process regression. In Proc. IROS, 2010. Cited on pages 15, 21, and 22.

F. C. Schweppe. On the bhattacharyya distance and the divergence between gaus-
sian processes. Information and Control, 11(4):373–395, 1967. Cited on page
71.

M. Smith, S. Reece, S. Roberts, and I. Rezek. Online maritime abnormality detec-
tion using gaussian processes and extreme value theory. In Proc. ICDM, 2012.
Cited on pages 15 and 55.

M. Smith, S. Reece, I. Rezek, I. Psorakis, and S. Roberts. Maritime abnormality de-
tection using gaussian processes. Knowledge and Information Systems, pages
1–26, 2013. Cited on page 13.

E. Snelson and Z. Ghahramani. Sparse gaussian processes using pseudo-inputs.
In Proc. NIPS, 2005. Cited on pages 15 and 67.

E. Snelson and Z. Ghahramani. Local and global sparse gaussian process approx-
imations. In Proc. AISTATS, 2007. Cited on pages 15, 23, and 67.

M. Tiger and F. Heintz. Towards learning and classifying spatio-temporal activ-
ities in a stream processing framework. In STAIRS 2014 : Proceedings of the
7th European Starting AI Researcher Symposium, number 264 in Frontiers in
Artificial Intelligence and Applications, pages 280–289, 2014. Cited on page 6.

J. Wang, D. Fleet, and A. Hertzmann. Gaussian process dynamical models for
human motion. IEEE Trans. Pattern Anal. Mach. Intell., 30(2):283–298, 2008.
Cited on page 13.

80 Bibliography

X. Wang, X. Ma, and E. Grimson. Unsupervised activity perception by hierarchi-
cal bayesian models. In Proc. CVPR, 2007. Cited on pages 17 and 19.

Appendix

A
Variance Estimation Derivation

In section 3.4.1 we formulate a least squares error function over the estimated
variance function of the estimated Gaussian process (equation 3.17):

E(θ1, σ
2
1 , . . . , σ

2
N) = E(φ) =

1
2M

M∑
k=1

(σ2
est(xk |φ) − σ2

obs(xk))
2 (A.1)

We want to use this error function in the gradient descent, and to do so we must
differentiate it with respect to the variables we want to optimize over. These are
{θ1, σ

2
1 , . . . , σ

2
N }. The variance function in the expression is defined in equation

3.13 as

σ2(x∗) = k(x∗, x∗) − k(x∗, x)(k(x, x) + σ2
i δij)

−1k(x∗, x) (A.2)

= k(x∗, x∗) − k(x∗, x)

k(x, x) +

σ2

1 0 0

0
. . . 0

0 0 σ2
N

−1

k(x∗, x) (A.3)

= k(x∗, x∗) − k(x∗, x)V −1k(x∗, x) (A.4)

where the last equation make use of the substitution V =
[
k(x, x) + σ2

i δij
]
.

The kernel used is the squared exponential kernel (Gaussian kernel) defined in
equation 2.8 as

k(x1, x2) = θ2
0e
−
||x1−x2 ||22

2θ2
1 (A.5)

83

84 A Variance Estimation Derivation

The derivative of the kernel function with respect to the variable θ1 is

d
dθ1

k(x1, x2) = θ2
0e
−
||x1−x2 ||22

2θ2
1
||x1 − x2||22

θ3
1

= k(x1, x2)
||x1 − x2||22

θ3
1

(A.6)

The gradient of the error function in equation A.1 is used to simplify the ex-
pression before evaluating the individual derivatives of the error function. The
substitution e(φ) = (σ2

est(xk |φ) − σ2
obs(xk)) is used to get a more compact notation.

The gradient simplification and the two different derivatives are derived in the
equations A.7-A.11, A.17-A.22 and A.12-A.16 respectively.

∇E(φ) =
1

2M

M∑
k=1

∇(σ2
est(xk |φ) − σ2

obs(xk))
2 (A.7)

=
1
M

M∑
k=1

(
σ2
est(xk |φ) − σ2

obs(xk)
)
∇σ2

est(xk |φ) (A.8)

=
1
M

M∑
k=1

e(φ)∇σ2
est(xk |φ) (A.9)

=
1
M

M∑
k=1

e(φ)∇
(
k(xk , xk) − k(xk , x)(k(x, x) + σ2

nδij)
−1k(xk , x)T

)
(A.10)

=
1
M

M∑
k=1

e(φ)∇
(
k(xk , xk) − k(xk , x)V −1k(xk , x)T

)
(A.11)

d

dσ2
i

E(φ) =
1
M

M∑
k=1

e(φ)
d

dσ2
i

(
k(xk , xk) − k(xk , x)V −1k(xk , x)T

)
(A.12)

= − 1
M

M∑
k=1

e(φ)
d

dσ2
i

(
k(xk , x)V −1k(xk , x)T

)
(A.13)

= − 1
M

M∑
k=1

e(φ)k(xk , x)
d

dσ2
i

(
V −1

)
k(xk , x) (A.14)

= − 1
M

M∑
k=1

e(φ)k(xk , x)V −1 d

dσ2
i

σ2

1 0 0

0
. . . 0

0 0 σ2
M

V −1k(xk , x) (A.15)

= − 1
M

M∑
k=1

e(φ)k(xk , x)V −1 êi êi
T V −1k(xk , x) (A.16)

In the step between A.14-A.15 we applied the rule d
dMij

M−1 = M−1 d
dMij

(M)M−1.

êi is the identity vector with zeros at all positions except for the i−th place where
there is a 1. êi ê

T
i is therefore an N times N matrix filled with zeros except at the

85

diagonal element (i, i) where there is a 1.

d
dθ1
E(φ) =

1
M

M∑
k=1

e(φ)
d
dθ1

(
k(xk , xk) − k(xk , x)V −1k(xk , x)T

)
(A.17)

= − 1
M

M∑
k=1

e(φ)
d
dθ1

(
k(xk , x)V −1k(xk , x)T

)
(A.18)

= − 1
M

M∑
k=1

e(φ)
(

d
dθ1

(
k(xk , x)T

)
V −1k(xk , x)T

+ k(xk , x)
d
dθ1

(
V −1

)
k(xk , x)T

+ k(xk , x)V −1 d
dθ1

(
k(xk , x)T

)) (A.19)

= − 1
M

M∑
k=1

e(φ)
(

2
d
dθ1

(
k(xk , x)

)
V −1k(xk , x)T

+ k(xk , x)
d
dθ1

(
V −1

)
k(xk , x)T

) (A.20)

= − 1
M

M∑
k=1

e(φ)
(

2
d
dθ1

(
k(xk , x)

)
V −1k(xk , x)T

+ k(xk , x)V −1 d
dθ1

(
k(x, x)

)
V −1k(xk , x)T

) (A.21)

= − 1
M

M∑
k=1

e(φ)
(

2
dk(xk , x)
dθ1

V −1k(xk , x)T

+ k(xk , x)V −1 dk(x, x)
dθ1

V −1k(xk , x)T
) (A.22)

The resulting expressions are as follows:

d
dθ1
E(φ) =

−1
M

M∑
k=1

(
2
dk(xk , x)
dθ1

V −1k(xk , x)T + k(xk , x)
dV −1

dθ1
k(xk , x)T

)
e(φ) (A.23)

d

dσ2
i

E(φ) =
−1
M

M∑
k=1

(
k(xk , x)V −1 êi ê

T
i V
−1k(xk , x)T

)
e(φ), i = 1 . . . N (A.24)

They can be evaluated using the derivative of the kernel function found in equa-
tion A.6.

86 A Variance Estimation Derivation

Upphovsrätt

Detta dokument hålls tillgängligt på Internet — eller dess framtida ersättare —
under 25 år från publiceringsdatum under förutsättning att inga extraordinära
omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för icke-
kommersiell forskning och för undervisning. Överföring av upphovsrätten vid
en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ
art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman
i den omfattning som god sed kräver vid användning av dokumentet på ovan
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan
form eller i sådant sammanhang som är kränkande för upphovsmannens litterära
eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se förla-
gets hemsida http://www.ep.liu.se/

Copyright

The publishers will keep this document online on the Internet — or its possi-
ble replacement — for a period of 25 years from the date of publication barring
exceptional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for his/her own use and
to use it unchanged for any non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional on the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be men-
tioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity, please
refer to its www home page: http://www.ep.liu.se/

© Mattias Tiger

http://www.ep.liu.se/
http://www.ep.liu.se/

	Front Page
	Title Page
	Library Page
	Abstract
	Sammanfattning
	Contents
	Acknowledgments
	1 Introduction
	1.1 Introduction
	1.2 Problem Overview
	1.3 Objectives
	1.4 Contributions
	1.5 Outline

	2 Background and Related Work
	2.1 Stream Processing and Stream Reasoning
	2.2 Motivation for Using Probabilities
	2.3 Gaussian Processes
	2.3.1 Kernels
	2.3.2 Gaussian Process Regression

	2.4 Related Work

	3 Sparse Local Gaussian Processes
	3.1 Sparse Local Gaussian Processes
	3.2 Combining Gaussian Distributions
	3.3 Combining and Fusion of Gaussian Processes
	3.4 Sparse Gaussian Process by Uniform Sampling
	3.4.1 Variance Estimation
	3.4.2 Mean Estimation
	3.4.3 The SGPUS Algorithm

	4 Activities
	4.1 Activities
	4.2 Modeling Spatio-Temporal Activities
	4.3 The Activity Model
	4.4 Evidence
	4.5 Activity similarity

	5 The Activity Learning and Classification Framework
	5.1 The Framework
	5.2 Activity Learning
	5.2.1 Learning New Activities
	5.2.2 Merging Activities
	5.2.3 Updating Activities
	5.2.4 Separating Learned Activities

	5.3 Activity Recognition and Prediction
	5.3.1 Activity Recognition and Prediction
	5.3.2 Activity Chain Recognition and Prediction

	6 Experiments and Result
	6.1 T-Crossing Case Study
	6.2 UAV Case Study

	7 Discussion and Conclusion
	7.1 The Framework
	7.2 Computational Complexity and Performance Factors
	7.3 Discussion
	7.4 Conclusion
	7.5 Future Work

	Bibliography
	A Variance Estimation Derivation
	Copyright

