Institutionen for datavetenskap

Department of Computer and Information Science

Final thesis

Resource allocation of drones flown in a
simulated environment

by

Anders Wikstrom

LIU-IDA/LITH-EX-G--14/003—SE

2014-03-07

kLmkopmgs umver5|tetj

Linkdpings universitet Linkdpings universitet
SE-581 83 Linkdping, Sweden 581 83 Linkdping

Linkdping University
Department of Computer and Information Science

Final Thesis

Resource allocation of drones flown in a
simulated environment

by

Anders Wikstrom

LIU-IDA/LITH-EX-G--14/003—SE

2014-03-07

Supervisor: Alexander Kleiner
Examiner: Alexander Kleiner

Abstract

In this report we compare three different assignment algorithms in how
they can be used to assign a set of drones to get to a set of goal locations
in an as resource efficient way as possible. An experiment is set up to
compare how these algorithms perform in a somewhat realistic simulated
environment. The Robot Operating system (ROS) is used to create the
experimental environment. We found that by introducing a threshold for
the Hungarian algorithm we could reduce the total time it takes to complete
the problem while only sightly increasing total distance traversed by the
drones.

ii

Contents

1 Introduction 2
1.1 Problem Description 3
1.1.1 Linear Assignment Problem 4

1.1.2 Linear Bottleneck Assignment problem 4

1.2 Notations 4

2 Algorithms 5
2.1 Greedy first 5
2.2 Hungarian algorithm, 5
2.3 Hungarian with threshold 6

3 Implementation 8
3.1 Experiment description 8
3.2 Introduction to ROS - Robot Operating System 8
3.3 Gazebo 10
34 Global Planner 12
3.5 Used RosNodes 12
3.5.1 ROS-nodes create for this experiment 15

3.5.2 Execution oo 15

3.5.3 Simulation 16

4 Results 18
5 Conclusion and Discussion 22
5.1 Possible improvement 0L 22
5.2 Related problems 22

iii

v

List

1.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5
4.6
4.7

of Figures

Two AR.Drone 2.0 Parrot with different protective shells.

Definition of a ROS-message type.
A message from the ROS-topic cmd_vel.
A tf transformation tree with two drones.
An example of a tf ROS-message.
Rviz example Hungarian Algorithm
Rviz example Hungarian With Threshold
Graph of the most important parts of the implementation . .
Maze3map L
Mazed map
LiuB2map

Planner successrates L.
Maze3 max time
Maze4 max time
Liu2B max time
Maze3 total distance
Maze4 total distance
Liu2B total distance,

1. Introduction

Something likely to become more common in the future are computer con-
trolled systems assisting with such operations like distributing aid in the
case of natural disasters, finding missing people or survey an area for dam-
age. In scenarios like natural disasters you might first have to locate areas
that have been damaged or find people that are in need of help and send in
aid.

You might have limited resources. These resources can be be physical
goods such as fuel and food, but also time. If you can not distribute the aid
fast enough, people might get desperate and cause secondary damage like
looting, or in case of distributing medicine, disease might spread further. It
then becomes a trade off between spending your fuel as efficiently as possible
and reaching everyone quickly.

As an example, you could imagine a case where you have a number of
hospitals, each with a limited number of ambulances (or helicopters), and
a number of patients with time critical conditions. In this case, you would
prioritise reaching each patient as soon as possible, and while reducing the
fuel cost desired, it is not critical.

This report evaluates three different assignment algorithms for efficient
resource allocation when planing movement of a group of agents, e.g. am-
bulances, rescue helicopters, flying drones or human rescue personnel. The
first two algorithms are previously existing ones while the third is a to my
knowledge new combination of two algorithms. The algorithms are tested
in a simulated environment with randomized goals and starting locations,
with varied number of agents and several different environments. The goal
of this work is to see if we can find an algorithm that can reduce both the
time taken to complete the overall goal and the resources needed to reach
the goal locations.

In an attempt to bridge the theoretical aspects of these assignment al-
gorithms to a real world practical result the experiment is conducted in an
as realistic environment as possible. While running the experiment with
real drones would be preferred it wouldn’t be practical. To get statistically
significant results while testing the assignment algorithms a lot of runs of
the experiment are required. Thus a simulated environment is used in the
experiment can be automatically run as many time needed.

For the experimental evaluation the Robot Operating System (ROS) [5]

is used. ROS offers a unified platform for creating multi-agent control sys-
tems suitable for the scenarios at hand. It has a simulator that can simulate
close to real world drones and various packages with control interfaces to
the drones that are similar to a real drones, like the AR.Drone 2.0 Parrot
shown in fig 1.1.

Figure 1.1: Two AR.Drone 2.0 Parrot with different protective shells.

1.1 Problem Description

The fundamental problem studied in this report is an assignment problem.
An assignment problem is about assigning a set of tasks to agents based
on a cost for each agent to complete each task. The goal of assignment
problems is usually to minimize the total cost for all the agents to complete
their task. But if you are interested in minimizing the cost of the agent with
the highest cost the problem falls in the category of bottleneck assignment
problems.

If the cost associated with each task is independent of each other the
problem is considered linear. Other types of assignment problems are the
generalized assignment problem and quadric assignment problem involving
more complex relations between the assignments and the costs of completing
the tasks.

In this work we have a mix of both the linear assignment problem and the
linear bottleneck assignment problem since we are interested in minimizing
both the total cost and the maximum cost.

For a small number of agents it would be possible to solve assignment
problems by just trying all combination and pick the one with total cost. But
this soon becomes infeasible because of the way the number of combinations

scale with the number of agents. The number of possible combinations
are n! where n is the number of agents and tasks. That means that for
n = 4 the number of combinations are 24, these could with some patience
be tried by hand. For n = 10 the number of combinations are 3628800,
still possible with a computer, but with n = 30 the number of combinations
become in order of magnitude 1032 and it would not be feasible to try every
combination even with a computer.

This means we need smarter way find the solution. For different classes
of assignment problems there exists different algorithms to solve each much
faster [2].

1.1.1 Linear Assignment Problem

When people speak of the ”assignment problem” without any extra quali-
fications you generally mean the the linear assignment problem (LAP).The
goal of this problem is to find a solution where the sum of the cost for each
agents to complete each task is as low as possible.

LAP requires that the number of agents are equal to the number of
tasks. But if you have a situation with more agents than tasks you can add
extra dummy tasks with a zero cost to satisfy the requirement. LAP also
requires that the costs for each agent to complete each task is know and is
independent of the costs for other agents.

Currently, the best algorithm for this problem is the Hungarian algorithm
[3]. This algorithm was created by Kuhn [7], but was based on work by a
Hungarian called Egervary, thus the name the Hungarian algorithm.

1.1.2 Linear Bottleneck Assignment problem

The linear bottleneck assignment problem (LBAP) is closely related to LAP.
But instead of minimizing the sum of all costs, LBAP minimize the maxi-
mum cost over all agents. There exists several algorithms able to solve this
problem [6]. The algorithm used in this work is the Threshold algorithm
since I found it the easiest to implement.

1.2 Notations

GF - Greedy first algorithm.

HA - Hungarian algorithm, also referred to as Munkres algorithm.
HWT - Hungarian algorithm with threshold.

Total distance or total cost - sum of all paths the drones have to travel.
Max time - The time it takes until all drones have reached their goal.
ROS - the Robot Operating System.

2. Algorithms

Three different algorithms are used. All algorithms assume you have a cost
matrix with rows representing agents (or drones) and columns representing
tasks(or goal locations). The cost for one drone to reach a goal location is
ci,; where i are drones and j are goals.

A cost matrix with four drone and four goals.

€11 C12 €13 Ci4
C21 C22 C23 C24
€31 €32 €33 C34
C41 C42 €43 C44

2.1 Greedy first

This is a naive approach to assigning the goals. First find the minimum task
cost for each drone. Then sort the drones based on this cost, and finally
for each drone pick the task with lowest cost that has not been picked by a
previous drone. A problem with this approach is that the last drone could
end up with its worst possible goal. The complexity of this algorithm is
O(n?).

2.2 Hungarian algorithm

To solve the problem of Greedy First algorithm we can use the Hungarian
algorithm. The Hungarian algorithm can solve the problem of assigning a
goal to each drone where the total cost for all drones are minimized. For the
Hungarian algorithm to work, all costs must be independent of each other.
For this experiment this condition is not entirely true and thus an estimated
cost is used. In general this kind of problems are refereed to as ”the linear
assignment problem”. The Hungarian algorithm is sometimes refereed to as
Munkres algorithm. The Hungarian algorithm uses the fact that adding or

subtracting from entire rows or column of the cost matrix does not change
the final solution. The complexity of the implementation used is O(n?).

Step 1

Subtract the minimum cost min(¢; ;.. ,) for each row from each row and
then do the same for each column.

Step 2

Cover all zeros in the matrix with as few horizontal or vertical lines as
possible. If the number of lines are less than the dimension of the matrix,
continue to step 3.

If the number of lines are equal to the dimension of the matrix an optimal
solution can be found by pairing rows and columns where they share zeros.

Step 3

Find the minimum of all uncovered numbers and subtract the minimum
from all uncovered values and add the minimum to all values covered by
two lines. Repeat step 2 and 3 until a solution is found.

2.3 Hungarian with threshold

While the Hungarian algorithm can minimize the total distance this is often
not what you are most interested in. In most cases you want to minimize
the time it takes to complete the entire problem. Since the drones move
at an approximately constant speed the max time is proportional to the
max cost. What is done in this case is to use the threshold algorithm to
first exclude drone/goal combinations above a computed threshold before
running the Hungarian algorithm on the remaining set of drones and goals.
The threshold is calculated with the Threshold Algorithm. In short the
threshold is calculated by repeated guesses based on the median of the values
between a lower and upper bound until you find the minimum value for the
threshold. Steps 1-4 below describes the Threshold algorithm in more detail.

A sub-problem required for step 3 and 5 for the threshold algorithm is
determining if a perfect matching exists for a bipartite graph. An algorithm
able to do this in polynomial time is described in [1]. The threshold algo-
rithm can be run with a complexity of O(n?%/y/logn)[6, p. 174]. Since this
value is lower than HA complexity of O(n3) the HA complexity dominates
HWT resulting in the the HWT having the complexity of O(n?).

Step 1

First you need to keep track of a lower bound ¢; = min; ;(c; ;) and an upper
bound ¢, = max; j(c; ;) for the threshold.

Step 2

Find the median ¢, of all values in the cost matrix that are above ¢; and
lower than cy,.

Step 3

Check if a perfect bipartite matching is possible by pairing rows and columns
where ¢; ; < ¢p,. If it is possible to create pairs for all rows and columns set
ch = ¢y If not, set ¢; = ¢,

Step 4

If there exist a value between the lower and upper bound,c; < ¢;; < cp,
go back to step 2. If not check for a perfect bipartite matching where the
threshold cr is ¢;. If a perfect bipartite matching exists cp is set to ¢
otherwise it is set to ¢y,.

Step 5

Now set all values in the cost matrix above the threshold ¢ to co and feed
the resulting matrix to the Hungarian algorithm described in the previous
section.

An example of a cost matrix with made up numbers.

N O N o
T O N
S 0 Ot W
W = o W

Cost matrix after Threshold, threshold values is 6.

© 2 3 3
2 o0 5 o
0 oo oo 4
2 5 oo 3
Solved matrix after Hungarian Algorithm

01 00

0 010

1 0 00

0 0 01

Final solution drones 1 — 4 are matched with tasks (2,3,1,4).

3. Implementation

This chapter describes how the experimental setup is implemented. The
implementation is based on the ROS framework that handles most of com-
munication between the different part of the experiment.

3.1 Experiment description

The experiment consists of a group of simulated drones that fly in a simu-
lated environment. They are supposed to move from their starting position
to their goal location in a map with obstacles. The drones all fly at the same
height and thus can not fly over the same location at the same time (In an
indoor environment the drone would interfere with each other if lown over
the same location due to air turbulence). This is a slight violation of one of
the condition of linear assignment problems since the real distances (costs)
are not entirely independent of each other. Instead approximated distances
are used as input for the assignment algorithms.

The maps are a grids of 1x1 meter squares that are either open space
or obstacles, this simple map format is used to make finding valid goal and
starting locations easy.

3.2 Introduction to ROS - Robot Operating
System

Sometimes you end up having to solve an unexpected problem where you
don’t have an existing solution ready to be used. Solutions for different
parts of the problem may have been solved in different systems but they
can’t talk with each other since all have different interfaces and different
methods for communication.

This is a problem the Robot Operating System (ROS) [5] is trying to
solve. It offers a unified platform for creating so called nodes that each solve
a part of a problem, and where each node talk the same language used for
communication. ROS also provides a lot of ready-made nodes that are easy
to utilize when building a new system.

ROS is in it self not bound to any particular programming language.
Core parts (Most ROS nodes) are written in C4++, Python and LISP. There
is some support for Java and Lua. The Operating systems with best support
are currently Ubuntu and MAC OS/X but can be run on any Unix based
operating system.

ROS nodes

A ROS application consists of ROS nodes. Each ROS-node is an indepen-
dent program taking care of a specific task needed for the robot application.
Different nodes have different tasks, some run an algorithm, some provide
visualization of data and some provide services for other nodes needed per-
form their tasks.

ROS message

ROS-messages are packages with language independent data that is used
for communications between different ROS-nodes. ROS-messages are based
on few base data types (like int, string and array) can then be hierarchi-
cally structured into more complicated types in a similar way to C-structs.
ROS-messages are compiled along with ROS-nodes into different languages
and can then be used for communications between different ROS-nodes.
Fig 3.1 shows the structure of a ROS-message called gemoetry_msgs/Twist.
It contains two gemoetry_msgs/Vector3s which in turn contains 3 float64s
each.

ROS topic

ROS-topics are used by nodes to relay information asynchronously to other
nodes that may choose to subscribe to the topics if they need the information
provided. All data on one topic can only consist of data of one ROS-message
type, this makes sure all data transmitted are of the type expected. Fig 3.2
shows a ROS-message of the type gemoetry_msgs/Twist being sent on the
ROS-topic cmd_vel (command velocity) which tells the drones at what speed
they should move.

geometry_msgs/Vector3 linear linear:

floato4d x X: -0.814936391259

floate4d y y: 0.0193206766152

float64d z z: 0.0
geometry_msgs/Vector3 angular angular:

floate4d x Xx: 0.0

floate4d y y: 0.0

float64 z z: 0.00333481658148
Figure 3.1: Definition of a ROS- Figure 3.2: A message from the
message type. ROS-topic cmd_vel.

ROS service

Nodes can also provide services for other nodes. The data types of parame-
ters and returned data are ROS-messages and are defined in a srv(service)
file and is compiled with the ROS package into a class for all languages that
may use it. The program calling the service will block until the result is
returned from the service or until a specified timeout time is reached.

ROS parameter

ROS provides a parameter server where nodes can store information that
can be shared with different nodes. This is useful for storing settings that
are shared by several nodes.

Tf

Tt (transformation) is a framework for performing transformations between
different coordinate systems. Information about how to perform transforma-
tions are published in the ROS-topic called tf. ROS-messages contains infor-
mation about what coordinate frames the transformation can transform be-
tween and the translation and rotation needed to perform each transforma-
tion. For example the odom(odometry) coordinate frame to base_footprint
as in fig 3.4. Odometry frame here is the drones internal coordinate system
and base_footprint is base for drone structure where different parts of the
drone like sonar_link can have an offset to. Tf allows building chains of
transformations where each link can be handled by a different node. Fig
3.3 is an example of a transformation tree used in this work.

Roslaunch

Roslaunch is a utility program for ROS used to launch groups of nodes with
a single command. You run roslaunch with a .Jaunch file that can launch
ROS-nodes with specific parameters, load parameters to the ROS-parameter
server or include other .launch files. This way you can create hierarchies of
Jaunch files to avoid having to duplicate entire launch files if you just need
a slightly modified version . It can also monitor if some node crashes and
either restart it or abort and close all other nodes.

3.3 Gazebo

Gazebo is the simulator used for this experiment. It is a standalone program
but is well integrated with ROS in the form of plugins for Gazebo.

In this experiment a empty world for gazebo is used. The only thing
simulated are the drones. The reason an empty world is used is to reduce
the CPU load. Collision detection with obstacles other then drones is not
needed for this experiment since all the plans made by the global planner

10

’ Recorded at time: 3.155 ‘

Broadcaster: /drone2/fake_localization
Average rate: 100.893

Buffer length: 1.12

Most recent transform: 3.17

Oldest transform: 2.05

Broadcaster: /drone2/ground_truth_to_tf
Average rate: 100.885

Buffer length: 1.13

Most recent transform: 3.07

Oldest transform: 1.94

drone2/base_footprint

Broadcaster: /drone2/ground_truth_to_tf
Average rate: 100.885

Buffer length: 1.13

Most recent transform: 3.07

Oldest transform: 1.94

'
@e_stabiuzed

Broadcaster: /drone2/ground_truth_to_tf
/Average rate: 100.885
Buffer length: 1.13

Most recent transform: 3.07
Oldest transform: 1.94

Broadcaster: /drone2/robot_state_publisher
/Average rate: 50.781

Buffer length: 1.28

Most recent transform: 3.58
Oldest transform: 2.3

y
drone2_sonar_link

drone1/base_footprint

Broadcaster: /drone1/fake_localization
Average rate: 100.781

Buffer length: 1.28

Most recent transform: 3.17

Oldest transform: 1.89

Broadcaster: /drone1/ground_truth_to_tf
Average rate: 100.787

Buffer length: 1.27

Most recent transform: 3.07

Oldest transform: 1.8

Broadcaster: /drone1/ground_truth_to_tf
Average rate: 100.787

Buffer length: 1.27

Most recent transform: 3.07

Oldest transform: 1.8

drone1/base_stabilized

drone1/base_link

drone1_sonar_link

Broadcaster: /drone1/ground_truth_to_tf
Average rate: 100.787

Buffer length: 1.27

Most recent transform: 3.07

Oldest transform: 1.8

Broadcaster: /drone1/robot_state_publisher
\/Average rate: 50.781

Buffer length: 1.28

Most recent transform: 3.58

Oldest transform: 2.3

Figure 3.3: A tf transformation tree with two drones. The circles are co-
ordinate frames, and different ROS-nodes publishes information on how to

transform between them.

11

transforms:

header:
seq: 0
stamp:
secs: 23
nsecs: 915000000
frame_1id: drone2/odom
child_frame_id: drone2/base_footprint
transform:
translation:
x: 4.05811088242
y: 7.48881521578
Z: 0.0
rotation:
X

y: 0.
z: 5.12609203304e-05
w: 0.999999998686

Figure 3.4: An example of a tf ROS-message containing information about
how to transform between the odom and base_footlink coordinate frame for
drone2.

make plans that stays clear of all obstacles. (Since the global planner creates
plans that are collision free with the terrain)

3.4 Global Planner

After drones have been assigned their goals the global planner is called. The
input is a set of initial positions for the drones and a goal for each drone.
This planner created paths the drones can follow to without colliding with
each other on their way to the goal.

The algorithm run by the global planner is prioritized planning [8]. The
basis for prioritized planning is assign a priority to all agents, in this case,
drones. Then find plans for all drones with a single agent motion planning
method where drones with running the motion planning algorithm first are
treated as moving obstacles for later drones.

3.5 Used Ros Nodes

Rviz Rviz is data visualization tool for ROS. Since most ROS-nodes does
not have a GUI to show their current state, you can use Rviz to gather data
sent on different ROS-topics to visualize what is happening.

Figure 3.5 and 3.6 show the map, the drones and the paths the drones
follow. Notice that the drones in the two examples have the same starting
locations but different goals since different assignment algorithms are used.
The drone with the black path gets a goal closer to its starting location due
the threshold used in Hungarian with threshold.

12

Figure 3.5: Rviz example Hungarian Algorithm

Figure 3.6: Rviz example Hungarian With Threshold

13

ROS

e (
multi_run i—> aw_task_deligator]4—> move_base]
(. (.

(A
aw_multi_solver_wrapper » global_planner
. J

results.sqlite |« aw_task_player

[aw_Zd_nav Hgazebo_ros]47

Figure 3.7: Graph of the most important parts of the implementation

A

Y

Move_base: Move_base is navigation module. It can be used to navigate
a map and avoid both static and dynamic obstacles. For this experiment
only the static map planning functionality is used. For this experiment
move_base is used to estimate the distances for all drones to each goal.

This node is much more complex than what is needed for this experiment,
a simpler node running the A* algorithm would suffice.

Gazebo_ros: This is a plugin in gazebo that behaves like a ROS node to
provide ROS integration for gazebo. This publishes information about the
state of the drones flown in the gazebo simulator.

Map_server: Publishes a map image and specifies parameters like resolu-
tion, size and origin. The map is a is a grayscale image where color values
below a set threshold is considered occupied space. The map is fixed in the
map tf coordinate frame on the top of Fig 3.3.

Fake_localization: Provides tf-transformation between the map coordi-
nate frame and the drone base_link coordinate frame.

Ground_truth_to_tf: This node is used for providing the true simulation
position of the drones to other nodes. Publishes transformations to the tf
topic.

14

Robotstate_publisher: This publishes the internal tf-transformations of
different parts on the drone. In this case sonar_link, used to by the drones
to know how high above the ground they fly.

3.5.1 ROS-nodes create for this experiment

Below are the ROS-nodes written for this experiment.

Aw_2d_nav: This node calculates the distance from the current position
and the goal and outputs the distance as the velocity towards the goal with
a max velocity to prevent the drone from flying to fast. This is a very simple
approach but works for this experiment since the the goals are always nearby
and are planned so no obstacles are in the way.

Aw_task_deligator: This node contains the logic of all the assignment al-
gorithms. It provides a ROS-service that provides a list of starting locations
and their goals.

Aw_multiplanner_wapper: To run several drones at the same time and
make sure they don’t collide, a global planner is used. But the global planner
used is not integrated with ROS so this node is used to provide and ROS
interface to the planner.

multi_run: This is not a ROS-node but a Python script used to automat-
ically run the experiment multiple time without manually calling roslaunch
with the correct settings. You can give it a list of different number of drones,
a list with the assignment algorithms you want to test and the map you want
to run on. Then it generates starting and goal locations on free locations
on the map and runs all combinations of drone numbers and assignment
algorithms on that set of starting locations and goals. You can also tell the
script to repeat this process as may times as you want.

3.5.2 Execution

This section describes how a run of the experiment is done.

Initialization: A run of the experiment is initialized with a call to ros_launch
with the desired initial condition. A small Python program (multi_run) is
used to repeatedly do this with different initial condition and settings.

Cost estimation: When all parts of the experimental system have started
the cost estimation is done. The ros-node move_base is used to create path
from each drone to all potential goals, the length of these path are then used
as cost estimates.

15

Goal allocation: When the cost matrix is done for all the drones, the as-
signment algorithm is run, (GF, HA or HWT depending on launch settings).
The result of this step is drone/goal pairs.

Global planner: Now when we know were all drones need to go the global
planner can be run. The global planner creates collision free path for all
drones to reach their respective goals. This step can fail, if for example two
drones need to move in opposing directions in a tight corridor. If this step
fails the experiment run terminates.

Plan execution: The plan we get from the global planner is a list of
waypoints for each drone. Before the next waypoint is sent to each drone
all drone have to be at their previous waypoint. This is done to preserve
the collision free nature of the path, otherwise a fast and a slow drone could
collide if they reach a point in the map where they both have to pass. The
experiment run terminates when all drone have reached their final goal.

3.5.3 Simulation

Three different test maps are used. Each map is run with 4,6,8 and 10
drones. Each map is also run with three different algorithms, Hungarian
algorithm, Hungarian algorithm with threshold and Greedy first. Each com-
bination of these, map, drone count and algorithm, is run 100 times each
for a total of 3 %4 % 3 x 100 = 3600 runs.

All starting and goals locations are randomly placed on the map. The
starting and goals locations are placed on a 1x1 meter grid with 0.5 meter
offset in x and y-coordinates compared to the map so all goals are placed in
the center of the pixels of the map image.

Maze3

Maze3 is a maze with three rooms, each with several entrances and exits.

Maze4

Maze4 is also a maze. It is more difficult for the global planner than Maze3
since there are less open space and less alternative routes.

LiuB2

This map is based on one of the buildings in Linkopings University. Its a
small part of the B-building. Its slightly upscaled to allow more detail since
the walls are a minimum of one meters wide. This map is easy for the global
planner to make plans for since there are a lot of open areas.

16

Figure 3.8: Maze3 map Figure 3.9: Maze4 map

ETTOTT AT — o1

S

Figure 3.10: LiuB2 map

I_

111

17

4. Results

The results presented in this chapter are the result of test run with the
gazebo simulator. Each combination of map and algorithm and number
of drones has been run 100 times. This is done to make sure the results
presented are valid for a broad range of environments and see how the algo-
rithms behave with various number of drones. All error bars in the figures
below show the standard error of the mean.

Success rate

Three different metrics are used to compare the algorithms. First is the
success rate, this is how often the global planner manage to create collision
free paths for all the drones to follow. The global planner is not perfect and
might not find a solution even when one is possible. The most important
factor causing the planner to fail is cases where drones have to pass each
other in a tight corridor. This can in some sense be viewed as a metric for
how easy problems the algorithms generate, but it is highly dependant on
the global planner used and the environment.

In fig 4.1 we can see that the assignments that HWT creates are easiest
for the global planner to make plans for. We can also observe that the
success rate depends on the complexity of the environment. Mazed with
its tight corridors makes it hard while the open spaces in liuB2 allows the
planner to find plans most of the time.

18

maze3 maze4

o oano . Il GF
100%) 950/98 %98% 96% 100%)

90% O HWT

829 84%
75%

Success rate
Success rate

9 9
0% 4 6 8 10 0% 4

6 8
Number of drones Number of drones

liuB2

100%| 950/970}00% . 7100”‘00"0 99%09% 99%9g9
4
8994 91%

Success rate

20%

0%

4 6 8 10
Number of drones

Figure 4.1: Planner success rates

Max Time

The second metric compared is, max time, the time it takes until all drones
have reached their goals. The graphs to the left in figure 4.2 to 4.4 shows
the average improvement compared to the GF algorithm. Only simulation
setups where all algorithms assignments let the global planner make a plan
are included. Since the difficulty of Maze4 for large number of drones we can
see only a few samples remain and the uncertainty become very high but
the difference in time is still large enough for the results to be statistically
significant.

Overall the results are similar for all maps, HWT shows an significant
improvement over HA and GF. The relative improvement is greater for sim-
ulation runs with larger amount of drones. In the figures to the right we
can observe that the max time for HWT stays about the same regardless
of number of drones. This can be explained be two opposing influences on
the result. As more drones are added on the map the more likely there is
that there is a goal close to the drones resulting in lower max times. The
second opposing effect stems from the costs used as input to the algorithm
are estimates and assumes all drones can go where ever they need without

19

considering each other the global planner will introduce an unpredictable
influence on the results. As the number drones increases the cost estimates
are more likely to be off leading to increased max time.

1209

maze3

maze3 45

110%

100%)

90%

- " T = GF 2
40/ mEE HA
3 HWT

100% 100%

g
g 87% 55% g
g 80% 77% “E’
F 74% F
70%)
60%
50%)
40% 6 8 10
Figure 4.2: Maze3 max time
maze4
1209 maze4 60,
oF Bl GF
N HA HA
110% 50| =3 HwT
3 HWT
100%|. 100% 100% 100% 100% 4
9% 2% 40 o ,
90% 89% _
_ 8% 3 4
B o, 82%) 0
QEJ 80%) & 78% “E’ 30
= IS 5
70%) 689 2
60%)
10
50%)
40%
4 6 8 10
Figure 4.3: Maze4 max time
120 liuB2 120 liuB2
=m GF Em GF
1100/ | HEE HA = HA
100r 3 HWT
100%| 100% 100%
92%
90% -
_ 3
8 83% “H k)
o 80% @
: by :

70%]|

60%

50%]|

111}

Figure 4.4: Liu2B max time

20

Total distance

The third metric is the total distance the drones have to travel to reach their
goals. As seen in figure 4.5 to 4.7 HA and HWT gives similar results, both
show significantly lower total distances than GF. In 4.7 we can see that HA
gives slight better results than HWT. This is expected since what HA does
is minimizing the total cost, and the cost used for input to the algorithms
are estimates of the distances from drones to goals.

maze3

maze3

120¢

110%

100%

©
3
X

80%.

Distance (%)
Distance (meter)

70%

60%

50%.

Figure 4.5: Maze3 total distance

maze4 100, maze4
== Gr
= HA
1 HwT

100%

90%.

80%

Distance (%)
Distance (meter)

70%

60%.

50%

Figure 4.6: Maze4 total distance

liuB2 300 . B2 .
[282
B HA

250r] HWT 243)

100%

90%.

80%

Distance (%)
Distance (meter)

70%

60%.

50%

40%

Figure 4.7: Liu2B total distance

21

5. Conclusion and Discussion

In this report we compared three different assignment algorithms. The
Greedy First algorithm is simple to implement and has the lowest time
complexity but is not good enough when it comes to the results. It gener-
ates solutions that are hard to solve for the global planner and the plans
have the longest total distances and highest max time.

The Hungarian algorithm is a well documented algorithm which makes
it easy to find examples on how it works and how to implement it. The
Hungarian algorithm performs the best for the problem it is meant to solve,
namely minimizing total distance (or total cost).

The combined algorithm Hungarian with Threshold give the lowest max
time of all the algorithms. If you compare the total distances for HWT
with HA, HWT is equal or marginally worse than HA, but if max time is
of interest HWT is a big improvement over running HA alone. This makes
HWT the best algorithm in most cases.

5.1 Possible improvement

One could test on what scales the computational complexity of the algo-
rithms tested would become important. This is not done in this work since
other parts of the experiment used could not be run with high enough num-
ber of drones to make the difference significant.

The global planner in this experiment uses a prioritized planning algo-
rithm. This algorithm does not guarantee that optimal plan is found or may
even fail to find a plan. Using another better planner here would remove
some of the noise in the results. For this experiment the speed of the planner
was prioritised over more optimal plans.

5.2 Related problems

In the real world, there are a lot of situations that does not fit into the
problem categories of the LAP and LBAP. Even this experiment does not
fully comply with the linear part of the problem since the drones can block
each other, but it is still useful as an approximation. If a problem is to

22

complex to be represented as LAP the problems can generally not be solved
optimally in polynomial time. A lot of work is done to find algorithms able
to solve these kind problems. In the work done by Lantao Liu and Dylan
A Shell[4] they present an algorithm for generalized bottleneck assignment
problem. Their aim is not to always find the optimal solution but a solution
that is close enough to the optimal solution to be useful. This is a trade off
often needed when you venture beyond linear assignment problems.

23

Bibliography

[1]

H. Alt, N. Blum, K. Mehlhorn, and M. Paul. Computing a maximum
cardinality matching in a bipartite graph in time o(nl.5mlog n). Infor-
mation Processing Letters, 37(4):237 — 240, 1991.

George Bernard Dantzig. Linear programming and extensions / George
B. Dantzig. Princeton, N. J. : Princeton Univ. Press, 1963, pr. 1968,
1968.

Harold W. Kuhn. The hungarian method for the assignment problem.
50 Years of Integer Programming 1958-2008, page 29, 2010.

Lantao Liu and Dylan A Shell. Physically routing robots in a multi-robot
network: Flexibility through a three-dimensional matching graph. The
International Journal of Robotics Research, 32(12):1475-1494, 2013.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source
robot operating system. In ICRA workshop on open source software,
volume 3, 2009.

Silvano Martello. Rainer Burkard, Mauro Dell’Amico. Assignment prob-
lems [online resource], 2012.

Alexander Schrijver. On the history of combinatorial optimization (till
1960). Handbooks in operations research and management science, 12:1—
68, 2005.

J.P. van den Berg and M.H. Overmars. Prioritized motion planning for
multiple robots. Inst. of Inf. & Comput. Sci., Utrecht Univ., Netherlands,
2005.

24

P& svenska

Detta dokument halls tillgangligt pa Internet — eller dess framtida ersattare —
under en langre tid fran publiceringsdatum under forutsattning att inga extra-
ordindra omstandigheter uppstar.

Tillgang till dokumentet innebar tillstand for var och en att lasa, ladda ner,
skriva ut enstaka kopior for enskilt bruk och att anvénda det oftérandrat for
ickekommersiell forskning och for undervisning. Overféring av upphovsratten
vid en senare tidpunkt kan inte upphava detta tillstand. All annan anvandning av
dokumentet kréver upphovsmannens medgivande. FOr att garantera &ktheten,
sékerheten och tillgangligheten finns det 16sningar av teknisk och administrativ
art.

Upphovsmannens ideella ratt innefattar ratt att bli n&mnd som upphovsman i
den omfattning som god sed kréver vid anvandning av dokumentet pa ovan
beskrivna satt samt skydd mot att dokumentet andras eller presenteras i sadan
form eller i sddant sammanhang som &r krankande for upphovsmannens litterara
eller konstnérliga anseende eller egenart.

For ytterligare information om Linkdping University Electronic Press se
forlagets hemsida http:/mwww.ep.liu.se/

In English

The publishers will keep this document online on the Internet - or its possible
replacement - for a considerable time from the date of publication barring
exceptional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for your own use and to
use it unchanged for any non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional on the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be
mentioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linkoping University Electronic Press
and its procedures for publication and for assurance of document integrity,
please refer to its WWW home page: http://www.ep.liu.se/

© [Anders Wikstrém]

