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Abstract

Communication through text messaging, SMS (Short Message Service), is
nowadays a huge industry with billions of active users. Because of the huge
user base it has attracted many companies trying to market themselves
through unsolicited messages in this medium in the same way as was previ-
ously done through email. This is such a common phenomenon that SMS
spam has now become a plague in many countries.

This report evaluates several established machine learning algorithms
to see how well they can be applied to the problem of filtering unsolicited
SMS messages. Each filter is mainly evaluated by analyzing the accuracy
of the filters on stored message data. The report also discusses and com-
pares requirements for hardware versus performance measured by how many
messages that can be evaluated in a fixed amount of time.

The results from the evaluation shows that a decision tree filter is the best
choice of the filters evaluated. It has the highest accuracy as well as a high
enough process rate of messages to be applicable. The decision tree filter
which was found to be the most suitable for the task in this environment
has been implemented. The accuracy in this new implementation is shown
to be as high as the implementation used for the evaluation of this filter.

Though the decision tree filter is shown to be the best choice of the filters
evaluated it turned out the accuracy is not high enough to meet the specified
requirements. It however shows promising results for further testing in this
area by using improved methods on the best performing algorithms.
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Chapter 1

Introduction

This work is a study together with Fortytwo Telecom (www.fortytwotele.com)
into the applicability of established classifiers acting as filters for unsolicited
messages (e.g. spam) in SMS (Short Message Service) communication. As
the reliance on communication by email has steadily increased in society,
spam mails have become a bigger and bigger problem and the necessity to
have accurate and fast spam filters is almost considered a must now for any
email provider to provide a good service to its customers. As the market
for text-messaging between mobile phones has grown, the spam advertising
phenomena has also spread over to this market.

The algorithms tested to be used as filters are in the machine learning
algorithms branch of artificial intelligence. These algorithms are built to
learn from data and then apply what it has been taught on previously unseen
data. This is a technology which has had much practical use for many years
now for spam filters and is still heavily researched. Some of these algorithms
nowadays have been applied to email services on the Internet to protect their
users from becoming overflowed by unsolicited messages and this study will
see if they can also be successfully applied to the SMS domain.

This domain has different characteristics and requirements from filters
used by email providers. SMS-messages always contains very little data to
analyze in comparison to emails. They are also normally paid for by the
sender, they are expected to always arrive after being sent and they are
expected to arrive relatively quickly. Emails on the other hand are normally
not paid for, the urgency is not as critical and it is not completely uncommon
that legitimate emails are caught in spam filters. The purpose is therefore to
evaluate the applicability of established machine learning algorithms tested
for filtering spam in email messages, and instead test them on this domain.
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1.1 Background

Fortytwo Telecom is a ”leading telecom service provider and an SMS gate-
way provider offering good-quality mobile messaging services worldwide.” [8].
They were interested in examining the accuracy and speed of different types
of spam filters than their current ones and showed an interest in statistical
classification and interpretable classifiers like decision trees.

After meeting and discussing what they wanted to achieve, we eventu-
ally agreed on four classifiers that were going to be evaluated. The classifiers
were a naive Bayes classifier, a decision tree classifier a support vector ma-
chine and a dynamic Markov coding classifier. They had a few concrete
requirements for how they should perform, namely that the filters could not
use more than 1 GB of memory, at least 10.000 messages should be possi-
ble to filter per second, and lastly that not more than around 0.1% of all
non-spam messages were allowed to be stopped by the filter.

1.2 The Mobile Phone Network

The network which the data travels through for SMS communication consists
of many parts. To get an overview of where a solution for an SMS spam
filter might be applied the major parts of a GSM network is explained briefly.
The most relevant parts and terminology to this work would be the BTS
(Base Transceiver Station), the BSC (Base Station Controller), the MSC
(Mobile Switching Centre), the SMSC (Short Message Service Center), the
VLR (Visited Location Register), the HLR (Home Location Register) and
the EIR (Equipment Identity Register).

Figure 1.1: An overview of a GSM network.
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1.2.1 Communication Infrastructure

The antennas in figure 1.1 is the base transceiver station which normally con-
sists of an antenna and radio equipment to communicate with mobile devices
and its base station controller. The base station controller is commonly
responsible for many transceiver stations at the same time, and amongst
other things forwards communication coming from mobile devices through
a transceiver station to the mobile switching centre as well as communica-
tion coming from the mobile switching centre to a mobile device. It also
handles the handover between different base transceiver stations if a mobile
device moves between different cells of the network.

Just as the base station controller is responsible for handover between
different transceiver stations, the mobile switching centre is responsible for
handovers between different base station controllers if a mobile device en-
ters a cell with a transceiver station not under the current base station
controller’s control. Besides handovers it is is also responsible for making
connections between a mobile device to other mobile devices or the PSTN
(Public Switched Telephone network), the normal phone network for station-
ary phones. The base station controller is connected to several databases
such as the visited location register, home location register and equipment
identity register.

1.2.2 Databases

The visited location register keep information about the current where-
abouts of a specific subscriber inside the area it is responsible for to be
able to route a call to a mobile device through the correct base station con-
troller. The home location register keeps information about a subscriber’s
phone number, identity and the general location amongst other things. The
equipment identity register keeps information about all mobile devices IMEI
(International Mobile Equipment Identity) which is unique for each mobile
device - that should be either banned or tracked if for example the device
would be stolen. The most relevant part for this study is the short message
service center. This service is responsible for storing and forwarding mes-
sages to a recipient. This is done on a retry-schedule until the message is
finally sent to the recipient. If it is sent successfully the recipient returns an
acknowledgement and the message is removed from the system. If enough
time has passed and the message has become expired without a successful
delivery, the message is also removed. This is the service where a SMS filter
could likely reside.

1.3 Purpose

The purpose of this Master’s thesis is to evaluate several established machine
learning algorithms in a mobile phone text-messaging domain where the
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length of a SMS (Short Message Service) in this domain is limited to the
size of 140 bytes. The maximum number of characters would normally
vary between 70 to 160 depending on the encoding chosen by the sender.
The best algorithm according to the evaluation should be implemented and
tested on real data from Fortytwo Telecom. The main challenges are to
find an algorithm which filters messages fast enough, has reasonable space
requirements and has a considerably low false positive compared to its true
positive.

1.4 Limitations

No more than four algorithms are going to be evaluated. The algorithms
were chosen during the pre-study by mainly comparing and trying to find the
algorithms with the best accuracy as well as discussions with the supervisor.
Though the naive Bayes algorithm was chosen partly because of its simplicity
and its tendency to be used as a baseline to other algorithms in studies. The
DMC algorithm was chosen not only because of its high accuracy shown in
some of the literature study [2] but also because of how it stands out from
the other algorithms in how the messages are processed. This is explained
at more detail in the chapter Learning Algorithms.

It was decided to only do deeper tests on one configuration of each type
of algorithm evaluated because of time constraints. This means that each
algorithm is tested with a varying number of features used such as 500,
1000, 1500 or 2500. Each test also vary the size of n-grams used. Either
unigrams are used in the test, or unigrams combined with bigrams. Some
of the algorithms can have their own specific configurations as well, these
specific settings did not change but instead used a common configuration for
each test. In total there were four different algorithms evaluated and each
were trained and tested with three different sizes of available tokens for the
algorithm.

The experiments were not done on the targeted server hardware. There-
for the requirement that at least 10.000 messages had to be filtered per
second could not be strictly evaluated but performance of the classifiers is
taken into account in the analysis. A lower amount could be acceptable
after discussion. The framework which ran the experiments was also not
optimized for speed. A careful implementation might increase the compu-
tational performance.

1.5 Prestudy

Before beginning this work it was necessary to get an overview of other
studies evaluating machine-learning algorithms in this field. It was found
that using machine learning algorithms is a very popular method to try to
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specifically combat the problem of spam for emails and that many of these
filters could give an accuracy in classification of above 90% [1].

It was found that emails have a slightly different message structure in
comparison to SMS messages such as containing a subject field as well as a
message body which may contain HTML markup, graphical elements and
pure text. SMS messages on the other hand simply have a message body
typically with pure text. These differences would not change the possibility
to evaluate spam filtering for SMS any different than for emails, though it
shows that emails may have more data to analyze in a single message. This
was assumed to be not only for bad, since less data to analyze should increase
the processing speed. But it also likely decreases the accuracy by having less
information to base a decision on. Also as mentioned in section 1.3 an SMS
message has a very limited amount of data that it can contain in comparison
to emails.

During the study we found that there had been many evaluations per-
formed for different machine learning algorithms in the email message do-
main but the single focus for most of these had been accuracy without
unfortunately comparing the processing speeds.

There were several potential filters that showed a high accuracy, com-
mercial as well as non-commercial such as the Bogofilter. After comparing
evaluations from earlier works for filtering emails the filters of interest was
narrowed down to a few non-commercial ones. Support vector machine, dy-
namic Markov coding(DMC) and prediction by partial matching(PPM) all
showed some of the best results in several evaluations [2] [4]. Of these three
DMC and PPM both were very similar in approach, however DMC most
often showed a higher accuracy thus it was decided to not use PPM in favor
of DMC.

The third algorithm chosen was the C4.5 algorithm [18]. The C4.5 algo-
rithm was said to give average results on text classification problems [14].
What was intriguing about this algorithm however was its clear presenta-
tion in its output. The algorithm outputs a decision tree which is then
used when filtering messages. This presentation makes it very easy for ex-
perts and non-experts alike to quickly understand what the filter is doing
at any time. This simplicity of the filter could be helpful if non-experts are
supposed to maintain it.

The last algorithm chosen for evaluation was a naive Bayes algorithm.
This is because it was found to commonly be used as a baseline for accuracy
during these types of evaluations.

1.6 Methodology and Sources

The first step of this thesis was a literature study to find out which filters
showed the best performance in the email-domain of messages. The litera-
ture study also aimed to find a good experimental methodology for how to
compare spam filters.
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If free existing implementations of these algorithms were found, these
would be utilized to test the algorithms that were candidates for imple-
mentation. Otherwise an implementation of the algorithm will have to be
done.

To compare the performance of the different algorithms, they were evalu-
ated on four different metrics. How many messages per minute that could be
filtered through each algorithm to see if the algorithm would be fast enough
as a filter. How much memory that was consumed for a loaded filter with no
workload, this was necessary so the memory limit was not exceeded. It was
also interesting to know how fast a new filter could be trained from a set of
training data if a filter needed to be updated. Lastly the most important
metric was the accuracy so that the filter would not misclassify too many
messages.

Each result from batches of messages filtered, were plotted with a ROC
curve to analyze how well each filter classified or misclassified the batches
of messages and to find a possibly optimal classification threshold for each
model. ROC curves are discussed in section 1.6.4.

For a better statistical accuracy on the tests of the filters and to com-
pute the confidence intervals for the ROC curve, a k-fold cross-validation
discussed in section 1.6.3 was used for each of configuration. By using k-fold
cross-validation it also means that less data of classified messages was needed
for achieving a strong statistical accuracy and thus less time classifying the
data.

1.6.1 Methods of Measurement

Several methods are typically used for comparing results of classifiers. Some
relevant methods here are precision, recall, accuracy, true positive, false
negative, true negative and false negative-rates.

True positives from a classifier is spam classified correctly as such, and
false positives would be non-spam classified incorrectly as spam. Conversely
false negatives are spam not classified as such and true negatives would be
a message that is correctly identified as such.

Precision, recall and accuracy, where tp stands for true positive, fp for
false positive; tn for true negative and fn for false negative are defined as:

tp
tp+fp

e Precision =

e Recall = tpipfn

tp+tn

o Accuraty = gt ppTm

In this study, precision tells the fraction of the message classified as spam
to actually be spam. Precision needs to be very high if many messages are
blocked, otherwise too many legitimate messages would be blocked as well.
The other possibility is that very few messages are blocked, and in that case

10
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the precision could go down as well and still not block too many legitimate
messages. Of course the former one is sought for.

Recall is here the fraction of the spam messages that are actually classi-
fied as such, which of course should preferably be as high as possible to stop
as many of them as it can.

Accuracy shows the fraction of messages that are correctly classified. It
is important that the accuracy is high to have a low amount of legitimate
messages be wrongly classified as well as to catch as much spam as possible.

These Methods as well as processing time gives us the necessary informa-
tion needed to properly compare the different filters in respect to hardware
requirements as well as the classification rate.

1.6.2 WEKA

WEKA (Waikato Environment for Knowledge Analysis) [11] is a machine
learning framework and a possible candidate to test several of the algo-
rithms on. WEKA is a program written in Java, which contains tools for
a testing environment is supplied with many different machine learning al-
gorithms. This free framework has very customizable tools for reading and
pre-processing data for the machine learning algorithms. It also allows rep-
resenting results from evaluations of algorithms through graphs, pure text
as well as other means such as graphical presentations of the result of some
of these algorithms such as decision tree constructs.

WEKA was used to read stored SMS communication data from a file and
create a structured presentation from it which the learning algorithms could
understand. It was also used to evaluate how well the performance was by
measuring their time to completion as well as accuracy of each filter. These
results were then stored by saving several time stamps between start and
finish as well as saving special graphs called ROC curves showing the accu-
racy of each evaluated filters. ROC curves are mentioned more thoroughly
in section 1.6.4.

1.6.3 K-fold Cross-validation

K-fold cross-validation splits data into k subsamples(or folds) where k is the
amount of folds wished for. While one subsample is used for evaluating the
filter, the other k-1 subsamples are used for training, this way the training
data can still remain relatively large. This is done k times so that each
subsample will be used for evaluation once and in the rest of the folds it will
be used for training the filter.

The results from the training data can be averaged to get an estimation of
the filters performance, both as ROC curves but also to average the speed of
classification or training. Ten folds were used the experiments in this study
when evaluating the filters.

11
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1.6.4 ROC Curve

A ROC curve (Receiver operating characteristic) is a plot typically used to
show the performance of how accurate a classifier’s classification rate is. The
axes correspond to the true positive rates(¢pr) and false positive rates(fpr)
respectively. The x-axis is based on the fpr which could represent for exam-
ple legitimate messages classified as spam. The y-axis for ¢pr representing
for example spam classified correctly as spam. The plot is built by having
classified test data cases scored and successively decreasing a classification
threshold value to compute new points in the plot based on current fpr and
tpr values. A high score shows it is very likely that the training data in this
case could be spam while a low score tells us it is most likely legitimate. The
threshold value decides if a case will be marked as spam or as a legitimate
message depending on if the classification score is higher or equal to the
threshold, or if its not.

To properly use ROC curves for comparing the accuracy of different
classifiers, the variance must be taken into account. If we are using k-fold
cross-validation we get k results of test performance, one for each fold. Be-
cause of these several test cases we can extract a variation when generating
the finalized ROC curve. )

o
©
T

=3

)
T

|

True positive rate
2
T
- T,
|

| |
0 02 04 06 038 1
False positiverate

Figure 1.2: Multiple curves plotted by data from independent folds. Figure
is from [6].

But simply merging the resulting curves created by the test cases from
a cross-validation to plot the finalized ROC curve removes the possibility
to take the variance into account, which is one of the reasons to even have
several test folds.

To do this we need a ” method that samples individual curves at different
points and averages the samples” [6].

One method to do this is called Vertical Averaging which is appropriate
to use when we can fix the fpr. In this case we can control it to an extent.
It has fixed fpr values and as the name implies averages the tpr of each

12
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curve from the test fold for each given fpr value. The highest tpr values are
extracted from each fold for each fpr value and if a corresponding fpr value
does not exist in the curve, the tpr value will be interpolated between the
existing points. The ipr values for the given fpr are averaged and stored.
And so the fpr value is incremented by a set amount and the same procedure
is repeated again. So essentially for each given fpr value in the plot, the tpr
value is given by the function R(fprate) = mean|R;(fprate)] where R; is
each ROC curve generated from the test folds.

By having the averaged ROC curve and the generated ROC curves from
each test case, we can now find the variance for the ¢pr for each given fpr
and the result could be something like in figure 1.3.

771 7 71 T 1

o =3 o
> I ©
T T T
| | |

True positive rate

o
N
T
|

I | I | I | I | I
00 0.2 0.4 .. 06 0.8 1
False positive rate

Figure 1.3: ROC curve plotted with confidence intervals computed by ver-
tical averaging based on data from multiple folds. Figure is from [6].

In a ROC curve, one of the measurements used to compare the general
performance would be by comparing the AUC (Area Under Curve), and the
larger the area is the better. But many times such as in this study it may
be interesting to only study a specific area of the curve. In this study it is
important for the fpr to be in the range around zero to a half percent to be
near the rate of 0.1% acceptable for legitimate messages of being filtered.
So therefor the area of interest is at the very beginning of the curves.

1.7 Thesis Outline

Altogether there are six chapters and two appendices in this report. The first
chapter gives a short summary about what the thesis intends to accomplish.
Chapter two intend to explain common preprocessing of messages which
is shared by all but one of the filters.
Chapter three gives an overview of each of the classifiers used in this
study.
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Chapter four examines the results from the experiments done by testing
each of these classifiers as SMS spam filters and concludes which classifier
was the most suitable among them.

Chapter five explains the implementation of the filter which showed the
best performance in the experiments and validates its performance.

The last chapter gives a discussion about the study and talks about
future improvements.
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Chapter 2

Preprocessing

Most spam filters for email services today incorporate several different layers
of filters. The simplest level of filtering is the whitelisting and blacklisting of
email addresses or specific words in a message - set by the operator. These
are used to either keep or filter incoming email-messages.

Another layer may for example use specific predefined sentences or email
addresses set by the user to once again decide if a message should be kept or
not. If a message reached this layer the message must have already passed
every layer above it first, and to reach the user it would normally need to
go pass every level.

The layer this thesis is going to focus on is a layer where the whole
message is more thoroughly scanned for patterns of spam in the text and
by training the filter on already classified spam data to find these specific
patterns. The most common algorithms used for this type of filter are from
the field of machine learning algorithms, which can be seen in the amount
of successful commercial applications applying them and these are the type
of filters that will be evaluated in this thesis.

2.1 Overview

Of the four evaluated algorithms used for spam filtering, naive Bayes, a
C4.5 implementation of decision tree learning and support vector machines
all require pre-processing both when training the filter and when classifying
the incoming messages. Because of the nature of these three algorithms,
they need each message to be represented structurally somehow to train
and classify them. The bag-of-words, also referred to as the vector-space
model was chosen for the representation and it is one of the most common
approaches for this type of problem [10].
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Message Tokenization Stemming Representation
“I am coming” [o1“ o1 [.]JO
[1] “am” [1] “am” [m] 1
B o B » Complete
[2] “coming 2] "com {;]] : Feature Vector
[.]O

Figure 2.1: An overview of the pre-processing stage.

There are about four major steps used for pre-processing a message and
create a proper representation of it that the classifiers can understand. As
seen in the figure, it is the incoming message, the tokenization where mes-
sages are split up into words, the stemming where only the roots of words are
kept and lastly the representation where each word is fitted into a possible
slot in a feature vector.

2.1.1 Message

There are a few but major things that can structurally differ between mes-
sages apart from the content. There is the possible difference in encoding
of a message for the computer. The choice of encoding can both decide the
character space, but also the size and complexity for representing different
characters.

There are many character encodings, so it is important to agree on a
common encoding when communication to be able to properly read the
contents of an incoming message. Some of the most common encoding are
ASCII and UTF-8, while in this work the UCS-2 encoding were to be used
for all incoming SMS-messages. It is a simple fixed-length format which uses
2 bytes to represent each character. Except for latin symbols it supports
most other modern languages today to a varying degree from Arabic script
to Chinese and Korean.

The other major part except the encoding of a message is the language it
is written in. Depending on the language there may be many parts in a filter
that could fail. If for example the filter is trained to analyze the contents of
Swedish text messages but the message arriving is written in English, the
filter might be confused without former training data of this.

2.1.2 Tokenization

Tokenization is the step in the processing where a complete message is di-
vided into smaller parts by finding single characters or longer patterns which
corresponds to a set delimiter. As is seen in figure 2.1 the message” I am
coming” has been divided into the tokens I, am, coming by the whitespace
delimiter.
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For the tokenization of messages it was to be assumed that the messages
being filtered were from roman text. This was an important assumption
since some languages are very difficult to tokenize because of their structure.
The Chinese written language for example do not necessarily use as many
common obvious delimiters as is used in the latin alphabet(i.e. whitespace
or an interrogation point). Therefor it is difficult to tokenize a sentence,
because the sentence could just be one single long word.

The delimiters being used were adapted from this assumption. To find
relevant tokens from this text, common delimiters for words such as space
and commas were used, these are shown below.

\e\n\t.,;:77()7!

N-grams

N-grams are a combination of N items from a sequence, in this case a se-
quence of written text of words or characters. The idea is to create a bigger
word space to be able to attain more information by finding words that
are commonly next to each other in a specific type of message. The size
of N-grams in filters are usually between one(unigram), two(bigram) or
three(trigram). While nothing is stopping us from having larger n-grams
than that, the word space seems to become unmanageable and you need
more training data.

In the evaluation of the performance of different filters in this thesis, word
n-grams up to the size of two were used for the three filters using feature
vectors to function, to try and find an optimal configuration for these.

2.1.3 Stemming and Letter Case

Stemming is an optional step after the tokenization of a message where each
word token of the message is reduced to its morphological root form [4]. A
problem with stemmers though is that they are dependent on the language
they are created for which could give wrong or no results if a message of
another language was incoming. An example is shown below how differ-
ent words are all stemmed to the same morphological root form, which is
the word ’catch’. Catching == Catch, Catched == Catch, Catcher ==
Catch. Choosing if upper- and lowercase representation of the same letter
is distinct or not is another of the optional steps in the pre-processing with
the same goal as stemming. This goal is to reduce the word space dimension
as well as to improve the prediction accuracy for classifiers by overcoming
the data sparseness problem in case the training data may be too small in
comparison to the word space dimension [4].

Stemming of words and upper- and lowercase representation of letters
has shown ”indeterminate results in information retrieval and filtering” [4]
for spam filtering of email. I decided to use only lower case letters in the
token representation to shrink the word space, while stemming of English
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words were used in half of the tests to analyze which token representation
showed best performance.

2.1.4 ‘Weaknesses

A Clear weakness when using feature vectors is the possibility for a mali-
cious sender to avoid words getting caught in the feature vector by spelling
common spam words such as ”Viagra” in different fashions. For example
the character '’ can be represented in at least 12 different ways "I, i, 1,
1, ||,'1',%, i,:, I, I or . The whole word can also be altered by inserting
extraneous characters such as V_i_a_g r_a, which makes the total amount of
combinations at least 1,300,925,111,156,286,160,896 [12].

Another method used to try and decrease the effectiveness of a filter
depending on if it is a bayesian filter would be Bayesian poisoning. This
method aims to input specific words into the sent message, which would
degrade the accuracy of the of the classifier. The person, likely a spammer,
trying to cause a Bayesian poisoning would in that case try to fill the message
with words commonly not found in a spam message. This would be to mask
the real message among these other, for the spammer, more favorable words.

2.1.5 Representation

The representation is how a message should be formatted so that the clas-
sifier can understand and analyze what distinctive properties each message
has. A typical example of this it the bag-of-words representation which is
used in this work.

The representation is a N-dimensional feature vector, that is a vector
with each axis(i.e. feature) representing a specific word or longer sentence
and the value for each feature depending on if there is token in the message
corresponding to it or not. There are two common representations usually
used for the feature vector, firstly the binary approach were each feature of
the feature vector either just represents if a word or sentence exist in the
message or not (0,1), and secondly the numeral feature vector which shows
a count of how many times the word or sentence appeared in said message
(0,1,2,..).

As can be seen in figure 2.2, the binary feature vector either has the
count 0 or 1 for each feature, while the numeral feature vector keeps a count
of the total hits for each feature. We can see that the message has 2 tokens
corresponding to the feature three and the numeral example represents this
as expected. All the other features that did not correspond to any token in
the message is set to its default value of 0.
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three plus three is six

0 0
three 1| three 2
plus 1 plus 1
is 1 is 1
Six 1 Six 1
0 0

Binary Numeral

Figure 2.2: Showing the simple difference of the result for the message ”three

plus three is six” when using a binary and a numeral representation.

Once all the training data is pre-processed by the filter each feature will
be assigned a permanent position in the feature vector so that any classifier
relying on the representation always get an identical representation for each
incoming message - apart from difference in feature counts of course which
will by the only thing varying for each feature vector.

A spam filter might train on a huge amount of messages and the fea-
ture vector may grow larger in dimension with each message to be able to
represent every single token from each and every message. This will be a
problem not only for saving space and memory, but also for a definite loss of
performance in speed in many filters when the vector grows too large as well
as the need for more training data with more features. To combat this and
reduce the dimension of the feature vector, a feature selection is used [4].

Feature Selection

A feature selection is used to decrease the number of total features in the
representation. The goal of the feature selection is to both decrease the
number of features in the representation as well as to keep the most relevant
ones needed for a good classification result. These more relevant features
usually distinguish themselves by appearing much more often in one class
of messages than another. For example a word such as PRIZFE appearing
likely much more often in spam than in normal messages. Knowing this it
could then possibly be chosen as on of the features that should be kept.

It was decided to use information gain as the feature selection algorithm
in this thesis, as it is both commonly used and simple to understand. Infor-
mation gain give out a rating for how well a certain feature in the feature
vector can sort messages. For example into a collection of spam messages
and a collection of legitimate messages by comparing the entropy in the
original collection with the entropy in the following collections following a
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split on the feature. The less mixed the collections are between legitimate
and spam messages, the higher the rating will be.

Entropy which is used to find the information gain for a feature, can be
seen for this work as how homogeneous a collection of classified messages is.
The definition of entropy is ” A measure of "uncertainty” or "randomness”
of a random phenomenon” [13]. A low entropy means that a collection is
very homogenous, while a high entropy means that it is more heterogeneous.

For the feature selection we want to find those features that splits our
collection of messages into as homogeneous collections as possible. If we
have a collection of for example both spam and legitimate messages, we
want to find a feature that is common in spam messages and is not common
in legitimate ones. As an example we can assume that PRIZF is common in
spam, and we want to take all the messages with the word PRIZFE in them
to one collection, and the rest of the messages to another.

Type PRIZE
Spam Yes
Legitimate| No

Legitimate| Yes
Legitimate| No

Spam Yes
Spam Yes
Spam Yes
Spam Yes

Figure 2.3: A collection of classified messages of either type Spam or Legit-
imate and which either contains the feature PRIZE or not.

Now we get two collections, and if our assumption was correct, one col-
lection should have a higher rate of spam and the other collection should
have a higher rate of legitimate messages than in the original collection.
To calculate the entropy, the formula H(X) = — > nP(x;) * logy(P(z;)) is

i=1

used where n in our case is the number of outcomes(which is for us spam or
legitimate). P(x;) here is the probability for a feature x to belong to class i
and the log base b is chosen to be 2. To get the original collections entropy
we calculate

H(Spam) = —g * logg(g) - g * logg(%) =0.95
and the new entropy if we split the collection on the word PRIZE we get

) 5 1 1
H(PRIZE =Yes) = —5* logg(é) o 1092(6) = 0.65
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and

H(PRIZE = No) = 0 * 1092(9) 2 * lng(g) =0

2 2 2 2
From the results we can see that the two new collections have a lower entropy
than the original collection, which indicates that the feature PRIZE might
be a good feature to select. This is a simplified example where only binary
values for the features are used and thus only one test necessary per feature.
For a numerical feature it would be necessary to split on each available value
of the feature like x <= and x > where z is a value that the feature might
have.

The formula for information gain is IG(T,«) = H(T) — H(T|«). This is
the expected reduction in entropy of the target distribution 7" when feature
a is selected. H(T) is the entropy for the original collection, and H(T|a) is
the entropy of the new collections following the split on a. So as long as the
information gain is larger than zero if means that if a split would occur on
that certain feature, the new collections would be more homogenous than
the original collection.

The features were all of either binary or continuous values, where for
binary values only one run-through for the information gain to be had is
necessary, while for the continuous features, tests will need to be done on
all possible binary splits of the feature. For example if the range of values it
can take is 1, 2 and 3, two tests on the same feature are necessary to check
the information gain of binary split. One would be for {1} and {2,3} and
one would be for {1,2} and {3}.

After having calculated the information gain for each available feature,
it is easy to rank the features from highest score to the lowest to find those
which best represents either a spam or legitimate message. When this is done
a limited amount of features will be chosen which hopefully best represent
each of the different types of messages.

2.2 Summary

The data for text representation can be encoded in many different ways and
for different purposes, depending on what alphabets you wish to support. In
this work a 2 byte fixed-length format encoding called UCS-2 is used for all
tests of the different filters. This encoding support all the major alphabets
in the world but the data is assumed to mainly contain characters of the
latin alphabet.

Before any data is fed to a filter a pre-processing is performed which con-
sists of a tokenization part and optionally n-gram construction and stem-
ming. The tokenization splits a message into smaller parts called tokens.
The splits are done on defined characters or patterns resulting in several
substrings when the tokenization has finished.
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The n-gram process creates new tokens by stepping through the existing
sequence of tokens and for each step combining the current token with the
N tokens ahead of it. This process creates a bigger word space which can
give more information from a message. While the n-gram can be of any size,
too large and the word space becomes unmanageable.

Stemming is in someways the opposite of the n-gram process. It tries to
decrease the word space by only keeping the stem of a word. The idea is
that a word space too large can be difficult to train a classifier on for several
reasons. If a word space is too large it can be difficult for a filter to represent
a big enough part of the word space. A larger word space also means that
more training data is necessary.

Tokenization for messages in this work uses only the most typical de-
limiters used in written text, including whitespace, interrogation point and
period.

In half of the tests stemming of the messages was done, adapted for the
english language. It was used to shrink the word space at the cost of a loss
of information for reasons of testing if this would improve the performance
for a reasonably large number of features.

There were also tests with different sized n-grams of features to increase
the word space while also increasing the available information in each mes-
sage to test how this would impact on the results of the filtering.

It was decided to use information gain in the feature selection step to
rank the features and use the ones most highly ranked for the specific domain
for reason that this method seems to be in common use in spam filtering
when deciding on features for the feature vector. Information gain is also
used in the C4.5 algorithm during construction of its decision tree.
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Chapter 3

Learning Algorithms

This chapter gives an overview of each of the machine learning algorithms
by discussing firstly how they are trained with the help of training data and
lastly how messages are classified. The classifiers are discussed in the order
naive Bayes, decision tree, support vector machine and dynamic Markov
coding.

3.1 Naive Bayes

The naive Bayes algorithm applied to spam filtering was first brought up
in 1998 and led to the development and practical use of many other ma-
chine learning algorithms [10]. The implementation of a naive Bayes machine
learning algorithm is very simple, can be quite computationally effective and
show reasonably high prediction accuracy compared to its simplicity. Al-
though it is now outperformed by many newer approaches, researchers com-
monly use it as a baseline to other algorithms and it is one of the reasons
to why I chose to use it in my evaluation.

The naive Bayes formula is based on the Bayes theorem but with an
assumed conditional independence. It means that the features are com-
pletely unrelated to each other when calculating the conditional probability
for them. While this assumption is generally not correct, it has been shown
that classification using this method often performs well. It was decided to
use multinomial naive Bayes classifier since it seemed designed for text doc-
ument classification and take word counts into account which fits a numeral
feature vector that is used in this study.

The formula for Bayes theorem is:

P(C]X) = P(C) x P(X|C)/P(X)

Where X is our feature vector and C' is the expected class. Since the de-
nominator will be constant we are only interested in the numerator. We can
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use the following formula.
P(CJ|X) = P(xh T2, L3y eeny xnlcj)wP(Cj)

In this case, z,, are features of the feature vector where n is the feature
number from one up to the feature vector’s dimension size and C; is the
class type (for example spam or legitimate). By calculating the posterior
probability for C; given X and knowing that each feature of X is assumed
to be conditionally independent for naive Bayes we can rewrite the formula

P(l‘l,xg, T3y eeny l‘n|CJ)
into

H(X) = [[ nP(ax|C;)

k=1

and the formula will be calculated in the following form where the C;
with the highest posterior probability will be the one labelled to X.

P(C;|X) = P(Cy) [ nP(xk]C;)
k=1

Knowing this we can see that there are two type of parameters needed
to be found during training, the class probability and the conditional prob-
ability for each feature given a class.

3.1.1 Training

To construct the classifier, we first need to get each feature from the training
data processed to get the parameter estimates for it. This process estimates
how likely it is for a certain feature to be found in a message for a certain
class C; relatively to other features. The parameters for the features are
calculated as:

P(tle) = (Tee + 1)/((Y_ Tewr) + V)

t'eV

T,: is the total number of occurrences in class C of feature t and ) Ty,
teV
is the total number of tokens found in the documents of class ¢. 1 in the

numerator and |V| in the denominator are for smoothing which will prevent
any probabilities to become zero, where |V is the total number of features
existing [15].

We will assume that we are working with numeral feature vectors so the
feature count can go from 0 ... n where n is a positive number. Let us
assume we have the training data from table 3.1.
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Class Words
Spam Buy tickets today
Spam tickets tickets tickets
Spam You won
Legitimate | Have you got the tickets
Legitimate Where are you now

Table 3.1: This table shows an example what of words documents in a
training data set may contain, and the document class

With the following documents as training data we can now calculate the
class probability and the conditional probability of a feature.

Seeing from the table there are three documents of type spam and two
documents of type legitimate. The probability the spam class is P(Spam) =
2 and for the legitimate it is P(Legitimate) = 2.

And now for the feature we will use the token tickets as an example. We
first count the total word count of ticket found in the documents labeled as
spam which is 4.

441
>, Ter + |V

t'eV

P(tickets|Spam) =

Then we count the total number of tokens in the class ’Spam’ which is

441
8+ V]

P(tickets|Spam) =

And lastly we count the total number of features that we are using, which
in this example would be 11 (buy, tickets, today, you, won, have, got, the,
where, are, now).

4+1 )

P(tickets|Spam) = RSril - 19

The same will be done for P(tickets|Legitimate) which is:

1+1 2
P(tickets|Legitimate) = 3 —&J—rll =%
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Class Words
unknown | where are the tickets

Table 3.2: An example message to be classified.

Probability Value
P(Spam) = g
P(Legitimate) = %

P(where|Spam) = ps

P(are|Spam) = e

P(the|Spam) = %9

P(tickets|Spam) = =

P(where|Legitimate) = =

P(are—Legitimate) = 2%

P(the—Legitimate) = =

P(tickets|Legitimate) = 2%

Table 3.3: Results for each feature.

This calculation will be done for all features available over the whole
training set. The results are what is later used in the classification part to
find the probability for a message to be either legitimate or spam.

3.1.2 Classification

Using table 3.1 as an example, an example of how a possible classification
would be done will be explained. Let us assume we want to classify the
message:

The values for the necessary parameters are as seen in table 3.3

When we have all the values we want to calculate the probability for the
document to belong to spam class and the probability for it to belong to the
legitimate class.

P(Spam|unknown) = P(Spam) x P(where|Spam) = P(are|Spam)
P(the|Spam) x P(tickets|Spam)
3 1 1 1 5
Sk —— % — ok —
5 19 19 19 19
=2,3%107°
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P(Legitimate|lunknown) = P(Legitimate) x P(where|Legitimate) * P(are|Legitimate)
x P (the|Legitimate) * P(tickets|Legitimate)
2 2 2 2 2
=k ok %k —
5 20 20 20 20
=4,0%107°

Seeing from the results in table 3.3 that P(Legitimate|unknown) is
larger than P(Spam|unknown) the classifier would in this case have classi-
fied our new message as a legitimate message and not as spam.

While the conditional independence assumption makes calculation of the
posterior probability of each feature conceptually simple, computationally
efficient, and in need of little training data because of a small amount of
parameters. The draw back is also caused by this, since no information are
taken into account how different words might relate to each other. If in
examples where this assumptions proves mostly correct this would of course
not be a drawback.

3.2 (C4.5 Decision Tree Learning

The decision tree learning algorithm used in this study is the C4.5 algo-
rithm. This algorithm is an extension of an earlier algorithm called ID3
with improvements such as support for continuous feature values [18]. As
all the other algorithms in this study it first needs training data to train it.
With the training data it starts from the root node and recursively splits it
on the most appropriate feature it can find by the use of some feature selec-
tion technique [4]. When splitting occurs a decision node is created which
controls what sub-branch to choose at this point when an incoming message
is being classified. The decision node remembers what feature the training
data split on and what the feature values is needed for each of the branches.

After recursively splitting the data it will eventually arrive at a node
where splitting the training data again either is not possible or where there
is no more decrease in the information entropy of the training data. In this
case a leaf is created and labeled by the majority class in the current training
data.

When the creation of the decision tree is done, it is typically but op-
tionally, pruned to decrease the size and preferably give improvement in the
trees performance to classify future data. This is done through a heuristic
test called Reduced-error pruning [18] which estimates the error of a node
compared to its branches to decide if it should be replaced by a leaf.
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3.2.1 Training

To start construction of a C4.5 decision tree, a training data set of classi-
fied feature vectors such as C' = ¢y, co, .., ¢, Where ¢y, ca, ..., ¢, TEpresents
different classes as to which the training data can be classified in.

The construction starts at the root node with the training data set T to
use for construction. It begins by recursively doing several checks based on
Hunt’s Method [18].

1. T only contains one type of class, the tree becomes a leaf and is as-
signed to the class of the data set.

2. T contains no cases, the current tree becomes a leaf and C4.5 decides
which class the leaf should be associated with by finding the majority
class of the trees parent.

3. T contains a mixture of classes and should be tried to split on a single
feature with the purpose that each subset is to be refined so that they
move closer to having only one class in its collection of cases. The
feature have one or more mutually exclusive events with outcomes
01,03, ...,0,, giving the subsets T1,T5, ...,T,,. The current tree node
will become a decision node based on the feature chosen. The outcomes
will be the n branches and they are recursively processed. The ith
branch having the outcome O; will construct the subtree with the
training data T;.

Splitting

To split the training data set on the most appropriate feature, it is chosen
based on testing the information gain or information gain ratio of each pos-
sible feature in the feature vector. The feature with the highest information
gain ratio is then used to split T" on, although each subset of T' can not be
too small in its number of cases. The minimum number of cases can vary
but the default value in C4.5 is 2.[10] If any of the subsets is below the
minimum number, no split will occur and a leaf node will be created instead
of a decision node which stops the recursion on this branch.
In C4.5 there are three different kinds of splits that can be performed.

(a) Split on a discrete feature which for each outcome will produce a branch

(b) Split similar to first test but where different outcomes may be grouped
together. Instead of having one branch for one outcome, several out-
comes may share the same branch.

(c) Split on an feature with continuous numeric values. This is a binary
split, two outcomes. To split 7" on a continuous feature f with a feature
value A, the conditions should be such that A <= Z or A > Z where Z
is a value for a possible split.
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The split used in this study is split ¢) and information gain ratio is used
as comparator for the split. As an example of how the information gain
ratio from a split on a feature would be calculated, I will denote by |T'| the
total number of cases, T} represents a possible subset after a split on T' by
a decision node and freq(c;, T;) represents the frequency of a class ¢; in the
subset T;. Lastly proportion(c;, T;) will denote freq(c;,T;)/(|T)).

The information gain ratio is the chosen comparator for which feature to
split the training data on. Information gain shows a bias to splits with many
outcomes while information gain ratio solves this problem. Information gain
and entropy which is relevant here is discussed in section 2.1.5.

given the formula IG(T,a) = H(T) — H(T'|a) for information gain, let
us us assume there are two features of interest which result in the following
two trees.

[33+,28-

<

[19+4,7] [14+,21-] [24+,10-] [9+,18]

Figure 3.1: Example of two different splits for a decision node on either
feature 1(f1) or feature 2(f2) while using the same training data.

In the figure the positive class is denoted by ¢; and the negative is cs.
To find which of these splits creates the best result we firstly calculate the
entropy for if there would be no split, that is to say if a leaf would be created
instead. We can see from the figure that |T| = 61, freq(c;,T) = 33 and
freq(ca, T) = 28. Then knowing this the current entropy can be calculated.

H(T) = —proportion(cy,T) * loga(proportion(ci,T))
—proportion(ca, T') * loga(proportion(ca, T))

33 33 28 28
= (D) +loga(5]) — (1) * loga(5)
~ 0,995

Now when the current entropy is known, the entropy for choosing one
of the splits should be sought after. The feature f1 will be chosen in this
example using the equation H(T|a)) where « is the chosen feature.

H(T|f1) = Z 2H(T;) — proportion(cy,T;) * loga(proportion(ci,T;))

—proportwn(cQ, i) * loga (proportion(ca, T;))

Here T; are the two data sets created by a split on feature f1 giving the
entropy for set 1:
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7)

19 19 7
H(Ty) = ~5 xloga(—=) — — * logg(%

26 26
~ 0.84

The entropy for set 2:

15

15
N 22 v loao (22
35) ~ 35 *lo92(55)

~ 0.98

20 20
H(T) = ~3 * loga(

The information gain is then found by the equation:

IGT(t,a) =0.24 — H(T|f1) = 0.995 — 2—? % 0.84 — % % 0.98 =~ 0.075

So by choosing feature f1 the information gain is 0.075. Doing exactly
the same steps for f2 we get an information gain of 0.10. To find the
information gain ratio we divide the information gain by the potential split’s
intrinsic value.

Using the formula:

IV(Tya):‘veva%es(a) \{zeT|val‘1’?‘(m,a)7v}\ % 1092( |{:136T\val|7;ﬂe|(z,a)7v})

The intrinsic value for the first split is &~ 0.984 giving us a gain ratio
of 0.076 for f1 while the gain ratio for f2 turns out to be 0.101. In this
case it turned out to be no real difference from the information gain. Seeing
as how f2 gives the highest information gain ratio, this is the feature that
should be chosen. The training data will be split into two sets and each
set will continue building a new subtree. On the other hand if there would
have been no information gain to be had or if the average information gain
from all possible splits would have been higher that the current split’s, the
current node would become a leaf. I would be given a class distribution
of each class’ probability based on the training data set distribution. The
recursion would then stop for this branch.

Pruning

When construction of the tree is done it may optionally be pruned to combat
over-fitting using a method called reduced-error pruning. Over-fitting occurs
when the tree does not generalize well such that its a higher classification
error rate on the test data on the training data. The tree being too complex
can cause this. The noise in the data could then have more of an effect on
the leaves; it could also be because of for example too little training data.

The construction starts at the root node. There are two different meth-
ods of pruning offered in C4.5; subtree replacement and subtree raising. In
the implementation the later one is optional if pruning is done.
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Pruning is done in a left to right, top to bottom fashion where the deci-
sion nodes nearest the leaves are compared for pruning and then recursively
working downwards to the root of the tree. The aim is to find decision
nodes or a subtree from one of the decision nodes, that has a theoretically
lower classification error rate, and if so found then replace the current node
with a leaf, or to the compared subtree. Through this process the average
error rate on the training data should decrease and hopefully make the tree
First subtree replacement is examined, and if no pruning is done, optionally
subtree raising is examined.

The error estimate is given by calculating the upper confidence interval
Uq¢(E, N) for the binomial distribution of the leaf for a set confidence level
(default is 25%). Here E is the number of incorrectly classified training
examples in this node, and N the total number of training examples. Given
the total number of examples and the total number of errors in the leaf (the
sum of the minority classes) the error estimate is given by N % Uqp(E, N),
multiplying the upper confidence interval by the number of total cases in the
leaf. The confidence level for is used as a tool for how hard to prune a tree,
and the higher the confidence level the less amount of pruning is done. The
calculation of the error is based on the already existing distribution from
the training data, thus no extra data is used to compute errors in the tree.

Subtree replacement is when a decision node is found to have a theoret-
ically lower classification error rate; would it be a leaf; than its branches’
weighted sum of error. If that is the case a leaf would replace the decision
node and a class distribution giving each class probability will be created
for the leaf.

Figure 3.2: Example of how a subtree replacement is done.

In this example it is found that the decision node with the feature winner
has a lower estimated error than its branches. Therefor a subtree replace-
ment is done. The decision node is remade into a leaf and the probability
distribution from its earlier branches constitutes the leaf. 1’ in the figure is
the new probability distribution for the leaf.
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Subtree raising on the other hand will compare a decision nodes biggest
branch’s error estimate to the error estimate of the tree starting from the
node. If the tree of the biggest branch has a lower error estimate the tree’s
root node will replace the parent node and the training data the smaller
branch will be redistributed to the larger branch’s nodes. The effects of
subtree raising is said to give ambiguous results, in some cases it may im-
prove the precision of the classifier [19].

Figure 3.3: Example of how a subtree raising is done.

Here winner is shown is shown to have a lower error estimate than what
the decision node with the feature welcome has. The decision node winner
and its branches are moved to replace the welcome node. The training cases
from the former right branch is being redistributed to winners left and right
branches. The new distributions in this example are 1’ and 2.

3.2.2 Classification

Classification is done by beginning at the root node and going down one
of the branches in the current decision node until a leaf is reached. The
choice of branch taken when in a decision node is based on which feature
the decision node decides on and what the threshold is for the feature. If a
feature in the message being classified has a feature count of equal or lower
for the specific feature chosen by the decision node, the left branch will be
chosen, otherwise the right branch is chosen.

As an example assume that a message with the following feature vector
seen in table 3.4 is chosen.
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Feature | Value
free 1
thanks 0
charge 1
welcome 0
winner 2

Table 3.4: This table shows a feature vector.

Good Bad Good Bad

Figure 3.4: Example of a a clasification process for a decision tree.

In the example there are only natural numbers since in the spam filtering
context there are only counts of words. The root node in this decision tree
decides on the feature free and its threshold is less or equal than 1 for the
left branch and larger than 1 for the right one . The example feature vector
only has a value of 1 for this, which means the left branch is taken. In
the next node the feature vector once again takes the left branch. For the
last decision node for this branch the value for the feature winner exceeds
the threshold meaning that the right branch is finally taken. A leaf node is
reached and a decision is given. In the example a good result means that it
is a legitimate incoming message and a bad result means it is spam. In this
case the message was classified as spam and will be blocked.

When a leaf in the tree has been reached, it returns what class label C
it has along with its probability. The probability is given by the ratio of %
K is here the number of training examples in this node from class C' and N
are the total number of training examples which reached this node.

3.3 Support Vector Machines

The support vector machine, or SVM are today seen as one of the best
off-the-shelf machine learning algorithms. The main idea of this classifier is
to treat each feature vector as a point in a high-dimensional space, where
the size of the space is controlled by a kernel function. In text classification
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a simple linear kernel is often used due to the space already being large,
resulting in an n-dimensional space where n is the number of features in the
feature vectors. The goal is to find a hyper plane in this space that can
separate any point given feature vectors into two different classes, such as
spam and legitimate messages. The hyper plane should not only separate
the points in space though, but the goal is to find the hyper plane which
have the largest possible margin from all points in the training set.

3.3.1 Training

Assume that we have two classes, where y € {1,—1} is a class label and
x € R"™ is a vector built from the training data as discussed in section 2,
with n being the dimension of the feature vectors. Thus we have a training
set of pairs (z1,y1) to (zn,yn) where n is the number of training cases.

Now a hyper plane w -z — b = 0 would be sought that has as large
geometric margin as possible to the nearest points and where the constraint
is that for each case y;(w - x; — b) > 1 for all i. Here w is the normal vector
of the plane. The geometric margin is twice the size of the margin to the
nearest point from the hyperplane.

Now a hyper plane w-z—b = 0 would be sought that completely separates
the two classes where the hyperplane is as far away as possible from each of
the nearest points for each class. To find this hyperplane let us assume we
have two hyperplanes y;(w - z; — b) = 1 and y;(w - x; —b) = —1 as seen in
figure 3.5 which both separates the data and do not overlap. As can also be
seen the margin between these two planes is defined as 2/(||w||).

To find a plane which separates the two classes the best the margin
between these two planes should be as large as possible meaning w should
be small. The constraint w-oz —b > 1 for y; = +1 and w-x — b < 1 for
y; = —1 is added to stop any data point to appear in the margin. The first
constraint would be applied to the class which in figure 3.5 is separated by
yi(w - z; — b) = 1 and the second constraint for y;(w - x; —b) = —1. To
simplify it these two constraints can be written as y;(w - z; — b) > 1 for all
1 <7< n.

We can formulate this problem into a constrained optimization problem
with the objective Mir}uirilize||w||. This is subject to the constraint

yi(w - x; — b) > 1 for i from 1 to n mentioned earlier [3].
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Figure 3.5: During training, the only cases that have an effect on the hyper
plane will be the ones with a point just on the margin, called the support
vectors. The two different shapes represents two different classes.

From figure 3.5 we can see that the smaller the norm of w becomes the
larger the margin and thus w should be minimized to find the hyper plane
which best separates the different classes. The norm of w contains a square
root, but it can be removed without changing the result to simplify the
calculations and 1/2 is multiplied as well for the same reason. The objective

thus becomes Minirglize(%) * w2,
w,

Often it is not possible to find a hyper plane which can completely split
the two classes. Instead the cases that prohibit a hyper plane from splitting
the two classes must be taken into account when trying to minimize the
margin. A solution for this is the so called Soft Margin method which
allows mislabeled classes. When using this method, the earlier constraint
will be modified to

yi(w-z; —b) > 1—v;

where v; is the error for how far inside of the margin a point is. The
objective changes as well into

C e . 2 }
Mlllul}l%lze{(l/2) *w” + C x an}

i=1

to take into account this error [7]. This is called the soft-margin sum and
here C' is a constant called the regularization parameter that controls how
much the penalty of the errors that should be taken into account. The size
of the penalty will be on the cost of the margin size.

When a optimum has been found a hyperplane w-z —b = 0 is given and
classification on the trained classifier can now be done.
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3.3.2 Classification

Classification for a linear SVM is a simple task. Since the hyper plane is
found and the incoming message should have been transformed into a fea-
ture vector, the margin between the hyper plane and the feature vector is
calculated. w -z — b Here the feature vector is « and the value of the result
decides how the incoming message will be labelled. If the value is less than
zero it will be labelled as one class, and if the value is larger than zero it
will be labelled as the other. The threshold value of zero can of course just
as the other classifiers be varied to control how strict classification should
be done to decrease the false positive rate or increase the true positive one
during classification.

3.4 Dynamic Markov Coding

Dynamic Markov coding (DMC) comes from the field of statistical data
compression but just like other compression algorithms like prediction by
partial matching(PPM) it has been shown to perform well for classification.
What distinguishes the DMC algorithm from the other filters in this thesis
is that DMC does not require any pre-processing of messages, instead a
message is modeled as a sequence.

” By modeling messages as sequences, tokenization and other error-
prone preprocessing steps are omitted altogether, resulting in a
method that is very robust” [2]

The three previously mentioned filters all rely on some type of pre-
processing and at least in this thesis tokenization of messages to construct
the feature vectors to represent each message in a bag-of-words approach.
The DMC algorithm on the other hand directly process a message as a
stream of bits when classifying what type of class a message might be. By
using bit streams instead of tokenizing messages, DMC can avoid the draw-
backs that tokenization can incur as mentioned in the earlier pre-processing
topic 2.1.4. By having no pre-processing the filter also saves time by not
needing to tokenize an incoming message, which can take up a big part of
the filtering time.

The basic idea of using data compression in classification and
other machine learning tasks has been reinvented many times.
The intuition arises from the principal observation that compact
representations of objects are only possible after some recurring
patterns or statistical regularities are detected [2].

The intuition to use a compression algorithm for a classification task is
that just as classifiers they try to find recurring patterns. While algorithms
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in data compression search for distinctive patterns in a data to create a
smaller representation, a classifier similarly finds the patterns to classify
data. Statistical data compression algorithms create a statistical model of
the source to be compressed. This model gives the probability distribution
of the source, which in turn can give a estimated probability of the source.
Having this information the algorithm can then find proper codes to com-
press the source as, but for classification this last step is omitted and the
statistical model is instead used to compare how well an incoming message
compares to the model.

3.4.1 Training

The training part of a DMC classifier is the construction of the statistical
models mentioned previously. Each model is constructed as a finite state
machine and every state has a probability distribution over which state to
transition to. The probability distribution is used to predict which binary
digit is in the next step of the source.

The model can start out in any kind of predefined state such as a model
containing a single state. Another possibility is to start out with a order-7
binary Markov model where the next state depends on the previous 7 states.
This starting model is used in the study and it is custom for byte-aligned
data. It has been shown that starting out with a larger model like this can
improve the results of training the model.

When building a model, a collection of training messages belonging to
the certain class which the model is supposed to represent is read. These
messages are read as a stream of bits. It is read bit by bit and updates the
current states transition frequency count by one while transitioning through
them from the current state to the next. When a transition in the model
has reached a high frequency count, an expansion process will occur creating
new states which gives a more complete statistical model of the training
messages.

To show how the construction of a model is done, let us assume that our
model started out as a single state and that the training process has run a
few steps. Our current model is in figure 3.6 and has already expanded one
state. The model shows one output transition going from A to B and one
from B to A, otherwise they go back to themselves. The current state is in

A.
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0f=4

12 1=4 0f=12
Figure 3.6: Markov model before expansion.

The training data is said to be read as a stream of bits instead of char-
acter by character as how PPM does or token by token as how the previous
algorithms in the study do. For the example the stream could look some-
thing like the following.

...001011100110...

This means that the next state to go to would be state B and the tran-
sition from A to B would need to increment the frequency count. For each
state transition, a check will always need to be made to see if the model
should be expanded. The model is expanded When both the inbound tran-
sition has reached a set threshold for the frequency, and the output frequen-
cies of the target state has reached a threshold. If these requirements are
met, cloning will be done on state B.

The cloned state B’, will have its outbound transitions pointing to the
same states as state Bs outbound transitions points to. The outbound
transition from A to B will start pointing to the new state B’. The outbound
transition frequencies from state B will be redistributed between itself and
state B’.The distribution depends on a proportion of the number of times
the cloned state was reached from the former state, relative to the outbound
frequency count from the target state is [2].

Figure 3.7: Markov model after expansion.
In figure 3.7 we can see that the transition from A to B caused a state

cloning operation. State B had before the transition a total outbound fre-
quency count of 16(12+4), so when the state cloning operation occurs there
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is 4 times more outbound frequency counts than the inbound frequency from
a A to B. This means that the new clone will be assigned a quarter of the
frequency counts on its outbound transitions while state B will retain three
quarters. Only after the ratio of distribution is calculated is the transition
updated, that is why we see the ratio % instead of 1—56.

Through this cloning process of states during the construction, this is
how the model continuously grow as it is trained. With more and more
data it will increase the number of states in the model and thus making the
predictions of the transitions able to depend on deeper context information.
That means that the model should be able to return a higher probability
during classification on a message that has a pattern that strongly relates
to the class of the model.

The training of a model is finished when all the training data belonging
to that class has beed processed. The starting state is where each cross-
entropy calculation will start from in the given model, is set and there is
nothing more to be done for training.

3.4.2 Classification

There are several ways to do classification utilizing the Markov models built,
respectively for the case. One of the methods used by Bratko et al. [2] and
utilized in this study as well is Minimum cross-entropy (MCE) H (X, M). If
doing compression it would tell how many bits in average per symbol the
compressed data would be, compared to the original source when using the
model M.

1
H(X,M)= ET>p(m x L(x|M))

Where z is an incoming message, M is the statical model constructed
from training data of one class type and L(xz|M) is the shortest possible
code length after compression and |z| is the length of the message. The
exact cross-entropy would need the source distribution to calculate but

1
H(X, M)~ m*L(x\M)

is a good approximation if X is long enough and the model M is a good
representation for the patterns in X.

The cross-entropy ... determines the average number of bits
per symbol required to encode messages produced by a source ...
when given a model ... for compression [2].

By comparing the cross-entropy for the source X over each model repre-
senting a message class, classification of the source can be done by choosing
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the model resulting in the lowest entropy. The intuition is simply that if
there is a low cross-entropy, the model would compress the message well. If
so it is also likely that it belongs to the class that this model is representing.

To classify a message the cross-entropy for a message for different models
is compared and the one with the lowest entropy is generally chosen. How-
ever finding the exact cross-entropy requires the source distribution which
will not in general be known by the model. The model will instead give an
estimate and with a long enough message x it will likely be near the real
Ccross-entropy

The approximation of the cross entropy is:

1
H(X,M) = m>0<L(JU\Z\4)

Here L(x|M) is defined as:

L(z|M) = ~log(}_(la])f (x:|z}_}, M)

i=1

Each probability given by f for x; is dependent only on a limited number
of states before, this depends on the order of the Markov model. The larger
the model is the more context information and the better the approximation
should be. The equation H(X, M) can be rewritten to H (X, M, d) where z
is simply substituted by d, and the final equation for classification is:

c(d) = argmin(X, M., d) =
ceC
1

=~ zOg<Z<|d|>f<di|dzi:i, M.)).

Here ¢(d) is the equation which, given a document d returns the class
type c for the model M, that achieves the lowest cross-entropy of all models
available.

For a simple example of how the extremely short message A’ would be
classified, let us first look at its binary value. The binary value for UTF-8
encoding would be '01000001’. Let us use the model in figure 77, here we
start in state A.

The order in which to read the bits should not be important as long as
it is consistent, so reading from left to right the first digit is a 0. This gives
us our first probability:

5
512 0.71

The current state has switched to B’ and the new digit is now 1 which

switch back to state A again which gives us the probability:
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1

—— =10.25
1+3

Current state is now A again and the following 5 digits are zeros. This
means it continues on as the two first step and the only difference is that
the state will remain the same. This accumulates on until the end of the
message is reached.

log(Y _ ld| f(dildi=}, M) =

=1
10g(0.71 % 0.25 % 0.71 % 0.75 % 0.75° % 0.42)
~ 10g(0.0167)
~ 5.89

Here M, is our example model and where d is our message 'A’. If the
length for this message is 8, then the cross-entropy would be:

H(X,M.d) = % * 5.89 = 0.73625.

This is how a cross-entropy calculation between a message and a model
is done. When classifying the message, the class which model returns the
lowest cross-entropy can be chosen. Other methods such as in a two-class
example such as done in this work (i.e a spam class and legitimate class) is to
make a division between the result from the spam model, and the result from
the legitimate model. Thereafter a threshold value can be set which decides
if a message should be classified as spam or as legitimate depending on if
the value given by the ratio between the two results exceeds the threshold
or not. Thus it creates more control and fine-tuning for operation a filter
like this.
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Chapter 4

Evaluation of Algorithms

After the four machine learning algorithms had been chosen, analysis on
each of them were done to see how viable it was to use them for filtering
SMS-data. The most important of the requirements to follow would first
and foremost be to keep the low false positive rate that was asked for as
mentioned in section 1.1. Second most important requirement would be for
the filter to be fast enough. Since the space limitation was rather generous
I did not expect it to break the limit. Training of filters is not expected
to be run often enough to justify discarding a classifier because of it. The
testing on the naive Bayes, C4.5 decision tree and the SVM algorithms were
done using the WEKA testing environment whilst a free implementation of
DMC were not found and therefor was created. The DMC implementation
was done in Java.

4.1 System

Testing was done on a standard laptop computer with a 2GHz Intel Core 2
Duo and 1 GB of RAM.

4.2 Settings

A ten-fold cross validation as mentioned in section 1.6.3 was performed for
the evaluation of each configuration of each filter. The results of these evalu-
ations were then averaged to get a good estimate of each filters performance.

The filters were tested with a feature vector size of 500, 1000, 1500 and
2500 words.

Each test configuration only used a lower-case representation of char-
acters; this resulted in a smaller word space since capital characters were
not represented. While losing some information by not representing capital
characters, it also meant that the size of the training data might not need
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to be as large. By removing this information from the data it can possibly
decrease performance in the classification accuracy but it was argued that
by using a smaller word space a not as big of a feature vector size would
be necessary. Also not as many messages would need to be classified since
a smaller amount of training data should be needed because of the smaller
word space.

Stemming was used in half of the tests to see if there was any improve-
ment. Once again the same reasoning was used, with less permutations of
each word, with stemming on, the word space would be smaller and some
information would be lost. The same number of features in the feature vec-
tors could instead be used to represent more words than in a bigger word
space with stemming off.

N-grams in the size of unigrams and bigrams of tokens were used to
represent features in the feature vector. The tests vary between unigrams
and unigrams coupled with bigrams. By using bigrams the word space
will become expanded instead and more information will be available, it
was argued that there could be more distinct information to get between
correlation of tokens than by lowercase and uppercase characters. So the
decision was based on hopefully finding pair of tokens that were especially
distinctive to either spam or legitimate messages.

4.3 Data

To analyze the performance of the algorithms, data for training and testing
them were necessary. Generally the more data, the better the classification
accuracy should be up to a point. To get a convincing result real communi-
cation data was used for the test. Data for training and testing them was not
classified if it was a spam or a legitimate message and this had to be done
manually. A total number of 14007 messages were classified, where 8141
were classified as legitimate messages while 5866 messages were classified as
spam.

4.4 Speed and Memory Consumption

Comparing the difference in precision, recall, accuracy are important metrics
for examining how correctly classification is done. However knowing build
times of a filter, memory consumption and most importantly, classification
speeds are also very relevant. An SMS-server may need to handle many
thousands of new incoming messages per second and in such an environment
the filter cannot become the bottle-neck for the operation.

The filters using a naive Bayes, C4.5 decision tree or SVM classifier does
not only consume time for the classification stage. Each assume the messages
to be represented as bag-of-words which require them to be pre-processed.
In the first part of this analysis the time needed for training is presented,
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Using stemmer: False True
Feature selection time: | 16.5 min | 15 min

Table 4.1: This table shows the feature selection times with unigrams.

Using stemmer: False True
Feature selection time: | 78 min | 73 min

Table 4.2: This table shows the feature selection times with unigrams +
bigrams.

here DMC is left out since it does not use feature selection nor the bag-of-
words presentation. This includes feature selection and classifier training.
The second part goes through the time consumption when classification is
done. Feature vector construction and classification time is mentioned here.
Lastly the memory usage is presented for each of the classifiers using different
setups.

4.4.1 Time Consumption (Training)

Classifiers that are depending on the bag-of-words representation which in
these experiments are naive Bayes, C4,5 and SVM require feature selection.
Feature selection is done firstly before training the classifier to limit the
scope and find the relevant features.

Tokenization of the training messages was only a fraction of the total
training time. The tokenization part varied between 5-15 seconds depend-
ing on if stemmers were used, and if bigrams were included or not. Because
of this small difference, it was deemed unimportant to take it into consider-
ation.

The result from table 4.1 and 4.2 shows that with the hugely increased
dimension from adding bigrams, the time consumption also increases greatly.
If a fast construction time would be important this likely would cause a
problem for larger sets of training data. In this domain the filters are not
expected to update with such frequent rate that this would case a problem.

DMC was given a separate average 'training time’-table, since it does not
share the same underlying architecture of using a bag-of-words representa-
tion for messages like the other three classifier. Big and small represents
the big and small threshold values used during construction of the DMC
classifier for controlling how fast the Markov-chain model should expand.

DMC has by far the fastest training time of all classifiers evaluated as
seen in table 4.3 and 4.4. The small difference in construction times for
the different setups of DMC should be related to the fact that the lower
threshold setups will expand nodes faster, and thus spending more time
constructing new nodes compared to when using a higher threshold setting.
The implementation made for the test is also far from optimal, so it is likely
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# of features: 500 1000 1500 2500
Naive Bayes 1 sec 1 sec 1 sec 1 sec
C4.5 6.5 min | 16.5 min | 30 min | 48 min
SVM 4.5 min 6 min | 7min | 7 min

Table 4.3: This table shows the average training time for naive Bayes, C4.5
decision tree and SVM.

Big/Small: 2/2 4/4 1 5/5 6/6
DMC 4.5sec | 3.5 sec | 4sec | 1.9 sec

Table 4.4: This table shows the average training time for DMC

that the implementation is also a bit at fault. Interestingly it is by far the
fastest, even when the time for feature selection for the other classifiers is
not included.

Naive Bayes time complexity is O(pN) where N is the number of training
cases and p the number of features. It is not apparent in the tests but it
might be just too few tests, since the times recorded would vary with up to
twenty seconds between different folds during cross-validation. Still it has
a several times faster construction time speed compared with C4.5 decision
tree and SVM.

C4.5 has a time complexity of O(p x N x log(N)) for constructing the
tree and a time complexity of O(N) for subtree replacement which was used
for pruning. The time differences for increasing number of features become
quite large when the feature number reaches 2500 and is by far the slowest
to train.

SVM using the SMO algorithm to solve the optimization problem has
at least a time complexity of O(N * L) where L is the final number of sup-
port vectors [5]. It is difficult to say something about the time increase for
increasing the number of features. It only increases time by a small margin
when increasing the number, as it should considering its time complexity.
It is much faster than C4.5 in time consumption for large number of fea-
tures, but it does not come close to the speeds of the DMC or naive Bayes
classifiers.

4.4.2 Time Consumption(Classification)

Construction time however, is not the only thing to take into account. What
is more pressing is the classification times for each classifier. Classification
time depends on two factors, namely pre-processing and the classifier itself.
Pre-processing tokenize a message and optionally stemming and building
n-grams is included here. When this step is done the feature vector is
constructed from the information extracted. After this step the classifier
comes into play and uses the newly built feature vector to do a classification
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Using stemmer: | False | True
500 features 9500 | 5800
1000 features 6800 | 4750
1500 features 5100 | 4000
2500 features 3800 | 3000

Table 4.5: This table shows the average number of messages, per second,
being tokenized and having feature vectors constructed for with unigrams.

Using stemmer: | False | True
500 features 5000 | 2800
1000 features 4300 | 2300
1500 features 3200 | 2200
2500 features 2800 | 1900

Table 4.6: This table shows the average number of messages, per second,
being tokenized and having feature vectors constructed for with unigrams
+ bigrams.

of a message. As mentioned in section 1.1 the number of messages to be
possibly to filter per second should be at least around 10.000. Taking into
account however that the experiments were done on different hardware, a
bit less than this was acceptable as mentioned in section 1.4.

Having a larger number of features means that there will be a large
number of indexes in the feature vector for each token to compare with to
know if it have a place in the feature vector model. The time increase for
using more features gradually decreases. Where for example in table 4.5 the
difference in messages per second from 500 features to 1000 is 2700 messages
per second. The difference from 1000 features to 1500 is only 1700. Such a
curve is a sign of the use of a binary search with time complexity O(log(n))
where n in this case is the number of features in the feature vector. This is
what is used by the chosen feature vector format in WEKA. A more efficient
data structure like a hashmap might be preferable.

Obviously including the bigrams would slow feature vector construction
down even further. Not only will it take a bit of time to make bigrams out
of the tokens (k-1 bigrams where k is the number of tokens in a message),
but there will also need to be more searches to the feature vector model.
Stemming might lessen the number of searches being done to against the
feature vector model, but the stemming processing itself is obviously also
costly since it needs to compare a word root’s possible suffix and thus again
some kind of search will be implemented.

Using both bigrams, stemming and having a high number of features
affects the speed for constructing feature vectors greatly. If accuracy in
classification does not suffer by excluding one or more of them, it would be
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# of features: 500 1000 1500 2500
Naive Bayes 315000 | 270000 | 220000 | 175000
C4.5 87000 | 73000 | 70000 | 66000
SVM 63000 | 40000 | 26000 | 22000

Table 4.7: This table shows the average number of messages per second
classified by the bag-of-words dependent classifiers.

Big / Small: 2/2 4/4 5/5 6/6
DMC 14000 | 14000 | 14000 | 14000

Table 4.8: This table shows the average number of messages by per second
classified by the DMC classifier.

beneficial to do so. There is a possible trade-off between accuracy and speed
in the application domain. It is important that the speed of the filtering
system is fast enough to be able to filter all incoming messages, but it can
not be allowed to affect the accuracy rate to a high degree. If the filter will
end up having a too high proportion of false positives because of cutting
down on one of these options, then it is not a viable solution to solving
possible speed issues.

The fast classification speed for the naive Bayes classifier shows that there
is no discussion about it that this classifier will be fast enough for the speed
requirements stated in section 1.1. Here all of the other results are very
acceptable as well, while again the results from the classifier tables do not
include the time it takes to prepare a feature vector for their classification
process. DMC is not dependent on pre-processing, and is thus much faster in
total to classify messages. With pre-processing included which is definitely
the bottle-neck many of the results are acceptable, though as can be seen
from table 4.6 there are some very low speeds especially when using 2.500
features. A pre-processing which can at most handle around 3.000-4.000
messages per second will most likely not be fast enough to filter enough
messages per second on the goal hardware.

As can be seen the speed for classifying messages for the DMC classifier
is constant. This is as it should with the time complexity of the DMC
classification task being linear in the length of the testing data.

4.4.3 Memory Consumption

Even though memory is quite abundant and the limitation of 1 GB of RAM is
not expected to be breached, it were still necessary to inspect. The first three
classifiers dependent on the bag-of-words representation was all below 5MB
of memory usage. While the naive Bayes and C4.5 decision tree classifiers
never reached above 1 MB of memory usage in any setup, SVM topped at
near 5 MB. DMC however with its different approach to handling messages
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Big / Small: 2/2 441 5/5| 6/6
DMC 180MB | 118MB | 84MB | 77MB

Table 4.9: This table shows the size of the DMC classifier’s Markov model
for different settings.

by directly inputing their bit-streams into a Markov chain model fared a bit
differently.

A problem with the DMC classifier is that there are no methods like fea-
ture selection or pruning to decrease the amount of data taken into account
while training the classifier. As more training data are used, the memory
consumption of the classifier will also increase. It would not be unexpected
if in a real situation more training data would be used. The would have to
be several times larger than the amount used here though to possibly break
the memory limit of 1 GB of RAM as is mentioned in section 1.1.

There are solutions though to the continued growth of the Markov model.
By keeping a count of how many nodes that have been created the thresholds
can be set to increase step by step as the node count increases, to slow down
the expansion of the model. This should also mean though that the rate of
learning decreases.

4.5 Classification Accuracy

Even though the speed of the filter has to be fast enough, the accuracy has
to be high as well to catch enough spam. The precision has to be high as
well since catching many legitimate messages would turn into bad business
and unhappy customers. The classifiers will be presented by firstly naive
Bayes, then C4.5 decision tree, SVM and lastly DMC.

The diagrams shown are the ROC-curves from the results of classifying
training data. It has been limited in x-axis to 0-10% false positive rate, while
the y-axis has been limited to 80-100% of true positive rate to highlight the
more interesting and relevant area of the filters.

4.5.1 Naive Bayes

Naive Bayes is the simplest of the filters evaluated. As mentioned in sec-
tion 3.1 each feature from the feature vectors used in this filter is statistically
independent from the next. Because of this reason and the results from lit-
erature showing the classification accuracy achieved by filtering email, the
false positive rate of the naive Bayes algorithm was expected to be lower
than the other three algorithms. The other filters in this evaluation do not
have the assumption of conditional independence between features but take
into account the possible correlation of each of the features (where the DMC
filter though, does not have features at all).
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The first test with the result shown in figure 4.1 was configured using no
stemming, and only unigram.

The recall for this setup when using only 500 features is very low but a
large increase can be seen for each time . The classification gets better with
more features represented, but it is obvious that a continued increase in the
number of features would hardly increase the result much more.
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Figure 4.1: ROC curve for Naive Bayes using maxgram 1 and no stemming.
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Figure 4.2: ROC curve for Naive Bayes using maxgram 1 and stemming.

The use of stemming in this configuration shows almost no change in
the result seen in figure 4.2. Even for a low number of features we can not
see any clear gain. It even shows some slight loss in accuracy compared to
when stemming is not used. Clearly this setup is not favorable since no clear
improvement can be shown. Preprocessing using a n-gram builder is shown
in section 4.4.2 to be very slow as well.

49



4.5. CLASSIFICATION ACCURACY CHAPTER 4. EVALUATION

The next configuration seen in figure 4.3 used unigrams and bigrams
with no stemming.

Ulga l|I!|IIlII'|lI|IlI

0,96 '““.“n.“unuuuu..

; o
@ 0,94 '.!'
§ 0,92 E'
g 5
Z 08 B s
: : 1000
& 088 "
5 e nn2s00
= S

0,82 /
08
0 002 004 006 008 01
False Positive Rate

Figure 4.3: ROC curve for Naive Bayes using maxgram 2 and no stemming.

The result was not as expected. With an increased word space because
of the use of bigrams it was expected that the precision would increase com-
pared to the earlier unigram tests if enough features were used. As is shown
in figure 4.3 the ROC curves are significantly worse in precision than com-
pared to the two earlier tests which only uses unigrams. A likely reason
could be that the increased word space because of the bigrams makes it
more difficult to match features to a message, thus many filtered messages
might have too few features for the filter to classify them correctly by. The
two curves with a larger number of features show a big improvement in the
precision as the number of features increase. Compared to the two earlier
tests, where an increased number of features only gave a minimal improve-
ment this configuration still has room for a more features to further increase
the precision and accuracy.

Just as in the earlier test which used unigram and stemming figure 4.4
which uses bigram and stemming shows an early increase in precision and
accuracy. Again, the larger word space incurred by using bigrams is both for
good and bad. It does give the possibility of getting more information about
the type of the message, while it also make it more difficult to match the
more specific features in a message given by bigrams compared to finding
single words from given from unigrams. Thus more features are generally
used to be able to represent more messages, and this I find might be the
case here, where more features might possibly improve the result even more.
Still I would say the stemming does not do much difference when using
large number of features. For large numbers the results are very similar to
figure 4.3.
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Figure 4.4: ROC curve for Naive Bayes using maxgram 2 and stemming.

The best setup for this classifier was shown to the one using unigrams.
It was not clear what gave best results between using or not using stemming
since the differences looked marginal. Stemming however would slow the
filter down.

4.5.2 Decision Tree

The C4.5 decision tree classifier has shown high classification rates on filter-
ing email data. It is also a classifier that is easy to follow how exactly it is
working and why a message is assumed to be one class or another when a
message is being classified. This is because of decision trees intuitive con-
structing. The classifier is easily visualized when the decision tree has been
constructed. By being able to examine the visualization it becomes more
interpretable, this may be important in helping to understand the classifier,
if it will be maintained by domain experts that may not know much about
machine learning.

J48, the implementation of the C4.5 decision tree classifier used in WEKA
is the implementation tested, the settings used subtree replacement as the
pruning option. No subtree raising was used because of the ambiguous re-
sults mentioned in the literature regarding this as noted in section 3.2.1.

The first configuration used unigram features and no stemming as seen
in the figure below.
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Figure 4.5: ROC curve for J48 using maxgrams 1 and no stemming.

Figure 4.5 shows a continued increase in precision for each increment of
the number of features in the 0-1% for the false positive rate. The precision
of the C4.5 classifier is better than the the tests for naive Bayes. It has a
higher recall rate while the false positive rate on the false positive-axis is still
very much below 1%. The C4.5 classifier outmatches the naive Bayes clas-
sifier in the general scope while it naive Bayes still show quite close results
in the early stage of the curves. Having the classifier taking into account
the correlation between the features as well as the possibility to prune the
decision tree to remove noise and over-fitting seems to make C4.5 decision
tree a better choice for this domain.
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Figure 4.6: ROC curve for J48 using maxgrams 1 and stemming.

Figure 4.6 shows the result of using unigrams and stemming for pre-
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processing. What is interesting in these results is that compared to when
not using stemming the top accuracy takes longer to reach in the lower
n-grams. A reason could be that the dependence between the features be-
comes distorted by the stemming. The stemming is making the word space
smaller, and in the process combines former different features together, thus
the former features different dependences gets summed up possibly making
erroneous assumptions of dependability. The setup which uses of 2.500 fea-
tures shows some improvement though. Sadly this setting is way too slow
to use if we want it to be able to handle as many messages as required. The
slightly better result could be inaccurate because of the confidence interval

of the curve.
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Figure 4.7: ROC curve for J48 using maxgrams 2 and no stemming.

Compared to the results from the naive Bayes tests, using unigrams to-
gether with bigrams for C4.5 decision tree worsen the accuracy as seen in
figure 4.7. Even with a higher number of features the results would only
marginally increase, possibly the dimensionality in this case is too high for

the amount of training data.

The result of using stemming for the C4.5 classifier together with un-
igrams and bigrams showed only a minimal improvement for the curve in
figure 4.8 with the lowest number of features. Apart from that, the curves
with the higher number of features incurred a small drop at the most crit-
ical section of the curve; that is where the false positive-axis is less than
1%. Even though as a whole, the AUC of the setup using stemming does

increase showing a general improvement.
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Figure 4.8: ROC curve for J48 using maxgrams 2 and stemming,.

It was a surprise that the result from this setup would be worse than
the setup which only used unigrams and no stemming. It gives a small
improvement for small n-grams but for the largest one. But once again, even
if using stemming the dimensionality created by using bigrams together with
this classifier could possibly increase the amount of training data needed to
find a more correct correlation between the different features used.

The two configurations which showed the best results for C4.5 decision
tree were the same ones as for naive Bayes. Unigram coupled with using
or not using stemming. The single best result proved to be unigrams with
stemming and a feature number of 2.500. This was deemed to be too slow
for the filter though and then the second best results are with a setup not
using stemming and a feature number around 1.500. Increasing the num-
ber of feature vectors for this setup even more did not give any significant

improvement.

4.5.3 Support Vector Machines

The SVM classifier has shown in the experiments done in this study to
be one of the fastest, yet also one of the best classifiers in respect to its
accuracy. It is also probably the most difficult implementation-wise of the
four classifiers and there are several different variations, each of which take
a different approach to solving the underlying optimization problem.

The experiments were run with a SVM with linear kernel using the
WEKA implementation which in turns uses the SMO algorithm [16].

The first configuration uses unigram features and no stemming.
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Figure 4.9: ROC curve for SVM using maxgram 1 and no stemming.

Just as the results from the C4.5 tests the results in figure 4.9 are also
close to the acceptable range for false positives which should should be near
0.1% while still having a rather high recall rate. The difference between 500
features and 1000 is rather large, but the next increase from 1000 to 1500
is smaller. Oddly enough an increase to 2.500 features gives a worse result.
This could happen because the curve is not exact and have some variation
which might have given the curve with a bit optimistic results. A contin-
ued increase of features make little difference in the accuracy of the classifier.

The results for the following configuration using unigrams and stemming
are shown in figure 4.10. As we have seen in previous tests, the stemming
may help classifiers if you use a smaller amount of features. When working
with 500 features, the accuracy does improve, but when the number of
features increases, there are diminishing returns from the stemming process.
Although marginally, it shows that the recall rate for the classifier with 1500
features increases slower with stemming than without stemming at higher
rates of false positives, it is difficult to see any difference at all.
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Figure 4.10: ROC curve for SVM using maxgram 1 and stemming.

Figure 4.11 show the results from a configuration using unigrams, bi-
grams and no stemming
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Figure 4.11: ROC curve for SVM using maxgram 2 and no stemming.

Just as seen with the results from C4.5 decision tree, the results with
unigrams and bigrams seen in figure 4.11 are worse than only using unigrams.
The dimensionality increases as bigrams are used, and comparing the results
between the classifier using 1000 features and the one using 1500 features
there is a bigger improvement in each step than in figure 4.9 and 4.10. Still
though at 2.500 features it has not yet shown any better results than of
those setups using unigrams.
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Figure 4.12: ROC curve for SVM using maxgram 2 and stemming.

The setup using stemming with bigrams does give a big improvement in
precision for a small number of features as seen in figure 4.12. The results
for the setup worsen though compared to not using stemming when using
2.500 features. Looking at the curves given by the unigram setups, there
is no real increase between using 1000 or 1500 features. However, it seems
again, comparing the two best performing curves in figure 4.12, as if there
could still be some increase both in a higher true positive rate, and a lower
false positive rate even for low values of the false positive rate. But how
much more do the number of features need to be increased for it to show
better results than the setups with unigrams.

The best setup for this classifier is when using unigrams and no stemming
and either 1.500 or 2.500 features. The number of features did not make a
large difference.

4.5.4 Dynamic Markov Coding

There have been reports in the literature [2] that the DMC classifier proved
impressive results compared to other established classified, with the highest
correct classification rate of all in some of the experiments. This classifier
stands out compared to the other ones used in this study, partly because
there is no sensible way in which to get an overview of the models used
for the classification tasks. Markov chain-models are used for this task as
mentioned in section 3.4 and they can be incredibly large depending on the
size of the training data. Even if the size of these models would not be very
large, they are not very descriptive for the human eye.

Something especially noted about DMC is the fact that while the other
classifiers in this study uses a bag-of-words representation, feature selection
and in some cases other methods to limit the scope of the training data DMC
used no method like that. This was something that would be interesting to
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take notice of if it would be possible to see its effects of in the evaluation
phase.

As there was no publicly available implementation either in WEKA or
otherwise one was created specifically for this experiment. Implementing a
DMC classifier is a fairly easy task where the main challenge is the training
phase when constructing the Markov chain-models. New nodes are contin-
uously created as the training data is fed. This in turn means that new
connections between nodes are created and old connections need to be re-
routed. Implementing the main classification part is similar to how classifi-
cation would work for a decision tree with three differences. The differences
are that firstly it is a graph that is travelled instead. Secondly probabilities
need to be stored for each time a choice is done to travel through a connec-
tion from a node instead of ones at a leaf. And lastly the process is done
when the messages has been sequenced as opposed to when a leaf has been
reached in a decision tree.

Classification is done by calculating the cross-entropy for each of the
models representing either spam or legitimate messages as described in sec-
tion 3.4.2. The result from the spam model is then divided by the results
from the legitimate model, and the logarithmic of the result is calculated.
This gives a value ranging from negatives to positives, where zero would be
an indecisive value of the classifier. A threshold is set just as the other clas-
sifiers, and when the threshold is exceeded for a message it will be classified
as spam and if not as a legitimate message. This is the threshold used for
construction the ROC-curve.

The curves are labelled by value of the small threshold for expanding the
DMC models, followed by the big threshold.

The settings of the DMC classifier compared to the other three, is not as
apparent as to what would be a better setting. The value for the thresholds
mentioned in section 3.4.1 referred to as the small and the big threshold,
governs how DMC should expand its models. Good values for these thresh-
olds are very much a guessing job. Where the other three classifiers usually
show some steady improvement while increasing the feature size, you would
think that by letting DMC expand its Markov chain models as fast as pos-
sible (thus a low value for the big and small threshold) would give the most
fitting models, but this is not the case as figure 4.13 shows.

The best results are given by two of the larger thresholds, namely 5,5 and
6,6. It was a surprise that the lower threshold settings would give a worse
result than the higher end ones. Having the model expand quicker would
yield more information about what makes up, respectively, a spam message
and a legitimate message. Although by keeping the threshold values high
and thus having a slow expansion, could give a more accurate probability
value for each node transition, seeing as the nodes in this case would contain
more cases to work on for each transition from a node. Still, even the best
of results from the DMC classifier in this case showed worse results than
the naive Bayes classifier, and is far behind both the C4.5 decision tree and

58



4.6. CONCLUSION CHAPTER 4. EVALUATION

SVM classifier. The poor result might show that it is not suitable to use for
messages as short as these are. The experiments for DMC in the literature
was done for email messages which are likely most often considerably longer
and thus have more to analyze.
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Figure 4.13: ROC curve for DMC, settings for small and big threshold

4.6 Conclusion

It is quite apparent from early tests which of the classifiers that were the
real contenders. The DMC classifier had some initial unexpected tests which
showed great results. This was only shown though when a small amount of
training data was used and is not shown in the experiments. But as the data
increased it seemed to have been more of a fluke. The naive Bayes classifier
were achieving quite similar accuracy as the results of C4.5 decision tree and
SVM. C4.5 and the SVM classifier however showed the strongest and most
stable results, and in the end were the ones with the highest tpr for large
fpr and with an acceptable ratio between true and false positive rate when
fpr was below one percent.

The result of C4.5 and SVM are very similar when comparing the best
curves in the figure 4.14. Both shows a large tpr for fpr at 1% and above.
The setup decided to show the best accuracy for the ROC curves is the
unigram without stemming-setup.

In the tables 4.10, 4.11 and 4.12 we can see a more detailed view on the
results seen in the figure. The tables shows the 95% confidence interval for
the C4.5 decision tree and SVM classifier at relevant fpr values and with a
varying number of features.
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Figure 4.14: Results from the two contenders. SVM and C4.5 decision tree
using unigrams and no stemming with 1.000, 1.500 and 2.500 features.

The results from the tables 4.10, 4.11 and 4.12 shows much broader
confidence intervals for small fpr compared to larger ones. In most of the
tables C4.5 has a small lead over the SVM classifier. They have similar con-
fidence intervals in each test. SVM shows worse accuracy when the number
of features are increased to 2.500. This is possibly because of overfitting
and might be improved by tuning the regularization parameter mentioned
in section 3.3.1.

The experiments showed that the best setup was when using 1.500 fea-
tures, unigram and no stemming. It proved to give a good precision and
accuracy as well as speed. 2500 features might be wished for to get a slight
increase in accuracy, but it could also make the filter slower. The choice of
not using bigrams and stemming also gives a decrease in classification time.
This was the reasons for the preferred setup.

Performance wise the C4.5 classifier is faster than the SVM classifier to
classify an incoming message. Both however are well above the requirements
at these data sizes. They are similar in speed and memory consumption
except for C4.5 being slower when building. This is a process that should
not need be done very often though.

Comparing accuracy we can see that the value for tpr varies quite a bit
for low values of fpr but they are similar in their confidence levels.

Looking at it from an implementation viewpoint, C4.5 seems more straight-
forward. Decision tree construction in general is a common task while the
implementation of a quadratic programming problem seems to me less in-
tuitive and a trained SVM-classifier may be more difficult to interpret for
non-experts.

For this reasons the classifier that was chosen to be implemented was the
C4.5 classifier.
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FPR: 0.1% 0.4% 1.0%
C4.5 | 0.228-0.572 | 0.802-0.928 | 0.952-0.986
SVM | 0.012-0.224 | 0.489-0.921 | 0.973-0.979

Table 4.10: This table shows the confidence interval of the tpr for given fpr
positions. The SVM as well as the C4.5 decision tree classifier uses unigram
and no stemming with 1.000 features.

FPR: 0.1% 0.4% 1.0%
C4.5 | 0.216-0.580 | 0.809-0.943 | 0.973-0.979
SVM | 0.123-0.467 | 0.863-0.981 | 0.972-0.980

Table 4.11: This table shows the confidence interval of the tpr for given fpr
positions. The SVM as well as the C4.5 decision tree classifier uses unigram
and no stemming with 1.500 features.

FPR: 0.1% 0.4% 1.0%
C4.5 | 0.239-0.523 | 0.800-0.940 | 0.969-0.981
SVM | 0.091-0.431 | 0.695-0.945 | 0.974-0.982

Table 4.12: This table shows the confidence interval of the tpr for given fpr
positions. The SVM as well as the C4.5 decision tree classifier uses unigram
and no stemming with 2.500 features.
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Chapter 5

Implementation

In this chapter an overview and some of the more interesting parts in the
implementation and the thoughts behind them will be represented as well as
an overview. After having evaluated the possible classifiers, it was decided
to implement a version of the C4.5 classifier itself. To achieve this it was
important to understand well not only how the classifier was designed, but
also the pre-processing part. For the C4.5 classifier there were already two
existing implementations, in addition to the already studied literature, to
dive in and examine. Both WEKA’s J48 [11] implementation in Java and
the open source implementation of C4.5 [18] in C were very helpful in trying
to finish the implementation.

The filter is implemented at the short message service center stage in
the network which is mentioned in section 1.2.2 about the mobile phone
network.

In figure 5.1 there are several filters for incoming messages, so the de-
cision tree filter is only one of several evaluating messages. If any of the
filters would classify this message as inappropriate, it would be discarded.
Otherwise the message will be stored in the short message service center
until it is sent forward to the recipient.
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ﬂhort Message Service Centh

Message
An incoming message to the network.

pe

«

Filter: 1
Filter evaluating the message.

@

Filter: 2
Filter evaluating the message.

@

Filter: decision tree filter
Filter evaluating the message.

@

Filter: ..N
Filter evaluating the message.

L

The Result

Message is accepted and stored by
the network depending on the results
from the filters.

Figure 5.1: An overview of where the filter is placed in the network.

5.1 Programming Language

The language used for implementation was C++, and the compiler was
G++ [9]. The version of the compiler used was 4.6.2 to have the necessary
support for the new string type ul6string. This was necessary in order to
map the filter implementations message data type to the server’s that it was
implemented on.

5.2 Overview

There are two major steps in this filter shown in figure 5.2. There is the
pre-processing and the classifier step. Except for this there are also two
modes of the filter, the training mode and the filtering mode.

In the training mode the first thing that is done is to load the training
data, which here is the necessary classified messages. The pre-processing
step consists of creating a feature vector template and then building the
feature vectors for the training data. The first part of this consists of firstly
tokenizing the incoming messages, and then do a feature selection over all
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the tokens using information gain which is discussed in the Feature Selection
section 2.1.5. The top n features with the highest information gain will be
chosen as valid features in this filter, where n is the number of features asked
for during the setup of the filter training. The feature selection part is the
most time consuming part of training the filter.

The second part in pre-processing, the message representation part to
construct feature vectors from the training messages. It begins by trying to
match the tokens from a message to a valid feature in the feature template.
When a token from a message matches a valid feature, the feature count will
be incremented by one, starting from zero if there are no tokens matching
that feature. When all the tokens have been checked a feature vector for
the current message has been constructed and it starts over with the next
message in the training data until all messages have been a representation.

Training Filtering
Incoming training messages Incomingme;sage ;
A batch of classified training b MESEEES & re{adA in to memory
messages are read in to memory and begins the training process.

and begins the training process.

/F h 4 \ (" h )

eature vector template training Message representation

The classified messages are tokenized and a A feature vector is built for the incoming
feature selection is done creating a vector message using the feature vector template.
template.

\_ e J

& e = = \

Classification
The classifier uses the representation of
the message to travel the decision tree and

Message representation
A feature vector is built for each training

\message using the template. / deciding on that class if belongs to.
S [ | \ \_ — J
Training the classifier The result
The classified feature vectors are used to The filter tells the server if it should
train the classifier, and a decision tree is be blocked or not.
created.
\_ [ | /
The result

A feature vector template and a
decision tree is the result of the
training.

Figure 5.2: An overview of the filter, showing the parts for classification and

learning. This includes tokenization, feature selection as well as decision tree

construction and classification tasks.

The last part in training is to receive the classified feature vectors, which
has just been constructed from the training data, and send them to the
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training classifier part. Here the vectors are used to construct and optionally
prune a decision tree following the steps discussed in section 3.2. When done
a feature vector template and a classifier has been constructed, and the filter
is ready to be used.

The filtering mode only has one incoming and unclassified message at a
time. It is unclassified since of course we can not know beforehand what type
a message is which is not a part of the training data. This phase contains a
pre-processing and a classification step.

The pre-processing stage contains a message representation step, which
is carried out exactly as mentioned in the pre-processing stage.

When a representation of the message is finished, it is sent to the classifier
which is the decision tree, to be evaluated. When the evaluation is done the
filter will ask the server to either keep forward the message or to discard it.

5.3 Pre-processing

There are two major parts of the pre-processing, it is the feature vector
template training which is only found in the training mode, and there is the
message representation parts which is found in both stages. An overview
for each of these parts are shown in the figures 5.3 and 5.4.

The two parts seem similar at first since both tokenize their messages.
But to construct a feature vector template it is assumed that a batch of
incoming classified messages are fed at once, to be able to complete the
feature selection step. With only a single message or a batch of messages
where each one belongs to the same class would of course make feature
selection impossible. This step would in such a case result in no grading
for different features. Look at the Feature Selection section of chapter 1 for
more on this.

Feature vector template training
Incoming training messages ]:> The classified messages are tokenized and a

feature selection is done creating a vector
template.

Feature selection ;

okenize messages and build n-grams
A message is run through a tokenizer, split
depending on any delimiters chosen. They
may optionally be used to create larger n-
grams and then stored with the message.

All classified messages have been tokenized
and a limited amount of the tokens will be
chosen as features in a final feature vector
template.

Figure 5.3: Steps on how to build a feature vector template in the imple-
mentation. This includes tokenization, n-gram construction and also feature
selection.
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Message representation
[Inmming message ]:> A feature vector is built for each training

message using the template.

Build the feature vector okenize messages and build n-grams

The tokens are analyzed and matched to A message is run through a tokenizer, split
the corresponding features completing depending on any delimiters chosen. They
the feature vector. may optionally be used to create larger n-

grams and then stored with the message.

Figure 5.4: Steps on how to build feature vector in the implementation.
This includes tokenization, n-gram construction and creating a vector rep-
resentation

The message representation step does not have the this assumption. Mes-
sages are processed and sent forward one at a time for this step and it has
no need to know if a message is classified or not. When building a feature
vector though, a template for feature vectors must already exist this step
relies on the feature vector template training to have completed. If this is
not the case the feature vector builder can not assign any features since
there have been no valid features to use yet.

A more detailed discussion for the tokenization, the feature selection and
the feature vector builder are in the following subsections.

5.3.1 Tokenization

The sections 2.1.2 about tokenization and 2.1.2 is relevant for this area of
discussion. The tokenizer is implemented to read the string consisting of
the message to start from the first and end at the last character. There are
two positions stored at all time, a start position and the end position. The
algorithm 1 first search for the position of the first character which is not a
delimiter, starting the search at the end position. Next it start search for the
first character which is a delimiter starting from the start position and sets
the end position to this value. A token is saved consisting of the characters
between the start position to the current one. The algorithm then continue
repeating these steps until the start position is the same as the end of the
message.

This was a very straight-forward implementation and not much thought
needed. Some things to mention are that the tokenizer only handles de-
limiters of length one. That means it does not handle a delimiter value
consisting of several character, but it does handle several delimiters in a
row. Thus it cannot handle a specific pattern delimiter but can only ana-
lyze on character each step. The tokens are also stored in the order they
were extracted, this is critical for the n-gram builder to work.
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Data: begin,end=0

Data: message

Result: tokens

while begin is not end of message do
begin = nonDelimiterCharacterPosition(message,end);
end = delimiterCharacterPosition(message,start);
tokens += startToEnd(start, end, message);

end

Algorithm 1: Tokenization algorithm

In this implementation the n-gram constructor is a part of the tokenizer,
the algorithm can be seen below as algorithm 2. N-grams are optionally
constructed after the message has been tokenized and does so by reading
the tokens from first to last. It sequentially adds every token between the
i-th token to the i-th+n token together to construct a new n-gram which is
stored with the message object. Here ¢ is the current token number in the
loop and n is the wished size of the expected n-gram. This loop is repeated
starting from the min The size of the n-grams are an option for the training
of the filter.

Data: originalTokens
Data: n-gramTokens
Result: n = mingram
while n is smaller or equal to maxgram do
while i+n is smaller than or equal to #originalTokens do
n-gramTokens.add (original Tokens(i) to originalTokens(i+n);
end
end
original Tokens = n-gramTokens;
Algorithm 2: N-gram algorithm

5.3.2 Feature Selection and Message Representation

The first problem encountered, which needed some assistance, was already
before the feature selection stage of this implementation. The problem was
how to represent messages as feature vectors before any feature selection was
done. To have each feature vector object contain a huge vector with indexes
to every possible token proved to consume a large amount of memory and
was not very efficient.

Knowing that experiments had already been carried out in WEKA build-
ing feature vectors with the training data that was going to be used with this
implementation, we investigated how this problem had been solved there.
The solution was simply to have a unique identifier for each word encoun-
tered, where the identifier was the word. This was then used to map each
word to a counter, which increase by one each time another identical word
was found in the same message. Thus there was a map with word to counter
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structure.

It was then expanded on, so that when a feature vector template was
constructed, a word in the template was simply mapped to a index value
from 0...n where n is the total number of feature. So then a feature template
when constructing a feature vector added features to the vectors by mapping
a word’s index value to a counter instead of a word to a counter. The
feature vector then got its own mapping structure with index number to
word count instead. The idea was that it would be simpler to handle the
access of features from a feature vector using index numbers from 0...n to
catch the i-th feature than to iterate through a map structure. This made
the implementation of the classifier feel more intuitive when communicating
to a feature vector.

The other idea behind it was that when a feature was being processed
by the classifier; it would be faster to do number comparisons than string
comparisons when accessing a certain feature.

Message: See you tomorrow, bye bye

1 1
Token value: |Index: Index #: Count:|
bye 7 (—]_>
buy [20 | 7 2
can 1 8 0

*see e] >0 1

Vector template Constructed vector

Figure 5.5: The structure for the feature vector template word to index, and
the feature vector index to word count structure.

From the figure the implementation structure can be seen. When con-
structing a feature vector, the words are mapped to preset index numbers
which are created during the template training. When having the index for
a certain word found in an incoming message, the count can be added to
the feature vector for the corresponding feature.

Both the feature selection and the message representation step assume
that an incoming message is already tokenized. The pseudo-code seen in
algorithm 3 shows how a feature vector template is constructed using a fea-
ture selection method After the training messages have temporary feature
vectors, each token would be given a distribution count, saying how many
messages with a certain token that were spam messages, and how many
messages that were legitimate messages. This is illustrated in algorithm 4.
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Data: chooseNFeatures

Data: allMessages

Data: currentMessage

while currentMessage is not end of allMessages do

while currentMessage has more tokens do

currentToken = currentMessage.getNextToken();

if globalTokenIndex does not contain currentToken then
globalTokenIndex += currentToken;

end

currentMessage.add Token(global TokenIndex.getIndex(currentToken));

currentMessage = allMessages.next();
end

end
Algorithm 3: Feature vector template construction 1

Data: currentMessage

foreach currentMessage in allMessages do

foreach token in currentMessage do

if currentMessage = “spam” then
tokenDistributions[token|[SPAM]++;
totalCountForType[SPAM]++;

nd

Ise
tokenDistributions[token|[LEGITIMATE]++;
totalCountForType[ LEGITIMATE];

end

[CIN¢]

end
end
Algorithm 4: Feature vector template construction 2

After this the information gain score for each token was easily found by
using the distributions given, and each token could be ranked for the feature
selection as in described in the Feature Selection section of chapter 1. This
is illustrated in algorithm 5.

When each feature have been given a score the global index is sorted
in descending order from highest to lowest score. The features at po-
sition chooseN Features and below are all removed. Next each feature
is given a index number which will be the number representing the fea-
ture in a message’s own feature number. That means that each feature
for a message’s feature vector will only be represented by a number from
1...chooseN Features. When a classifier later asks for a certain one it simply
just asks for a number.
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Data: chooseNFeatures
Data: allMessages
Data: currentMessage

Data: mapTokenToScore
forall the token in globalTokenIndex do
| mapTokenToScore += informationGain(token);
end
sortDescending(mapTokenToScore);
for index=chooseNFeatures to #mapTokenToScore do
| remove(mapTokenToScore, index);
end
clear(globalTokenIndex);
Data: indexNumber = 0
foreach token in mapTokenToScore do
globalTokenIndex.add(token, indexNumber);
indexNumber++;
end
Algorithm 5: Feature vector template construction 3

5.4 Classifier

As can be seen in the overview, the classifier has only two major parts, either
to train the classifier in the training phase or to apply it in classification
problems in the filtering phase.

Training the classifier
[Classified feature vectors }z> The classified feature vectors are used to

train the classifier, and a decision tree is

created.

Construct the decision tree

The feature vector set is recursively split into
two new branches for each split. When a split
is not possible anymore a leaf is created.

Optional pruning

The tree has been constructed and can be
pruned. The pruning is done in a left to right
top to bottom approach and tries to decrease
the estimated classification error of the tree.

L 2

The result ]

A decision tree is has been constructed

Figure 5.6: The flowchart of the major steps of training a decision tree. This
includes node splitting, leaf creation and pruning.

When training the classifier there needs to be more than one classified
message with a presentation that the classifier can understand. In this
implementation the presentation is feature vectors. The training of the
classifier will not be possible with a single message or a single-class collection
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of training messages for the same reason as mention in the previous section
Feature Selection. If that is fulfilled there are two thing to do to train the
classifier. Firstly it is constructing the decision tree. This is done by testing
to split the current training data on different features and different feature
values, and grading each split using information gain and information gain
ratio. The feature together with the feature value achieving the highest
information gain ratio is chosen and the process is continued until no more
splits are possible, then a leaf will be created. This is just the same as in
the Decision Tree Learning section of chapter 3 on how splitting is done.

This proved to show some obstacles, especially how to split and move
messages up to different branches of the tree. Since the implementation for
building the tree was recursively done for simplicity of implementation, if all
necessary messages were to be copied into the next recursion memory could
increase much and would be unnecessarily slow. This was solved though and
the results can be seen in subsection 5.4.1.

The next is the optional pruning in the implementation. The pruning is
done in a left to right top to bottom approach and tries to decrease the size
of the tree and the estimated classification error of the tree. When these
steps are done a ready decision tree is the result.

Classification
&Feature ot On b The classifier uses the representation of

the message to travel the decision tree and
decide what class if belongs to.

Travelling the tree

L Travels the tree through the decision nodes until

The result reaching a leaf. Each decision node has a

The filter tells the server if it should be corresponding feature, and depending on the

blocked or not. feature vectors value chooses one or the other
branch. When reaching a leaf it returns the result.

Figure 5.7: The flowchart for the steps of the classifier. This includes node
traveling and leaf results.

When classification is done the only thing expected is that the message
has a correct representation for the classifier to read. The message will
travel, starting from the root node until it reaches a leaf. It navigates
through the different branches as described in the section 3.2. When a node
is reached in this implementation, a probability is given for the first class
type in the training data no matter if it is the majority class type in this
leaf or not. During the experiment spam messages were always classified as
the first class type, or as class type '0’. So when the probability which is a
value between 0...1 is given for for a message, it tells how likely it is to be
of the first class type. This is then used by a threshold value which can be
changed. If the probability is more than or equal to the threshold, the filter
will tell the server to block the message, otherwise it will report nothing.
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The threshold makes it possible to vary how strict the filtering should
be. This is a highly important to control the general rate of false positives
and true positives of the classification task. If the probability given by a
leaf would be equal to or larger than the set threshold the result would be
to tell the server to discard the message, otherwise it is just forwarded.

5.4.1 Training the Classifier

The tree structure is implemented to be built of a number of nodes. Each
node is an independent object which can either represent a decision node or
a leaf. Each decision node contains a flag telling us it is a decision node, the
feature vector it splits on, the value which it is split on and two references
for its child nodes. Thus each split is a binary split just as the one men-
tioned in section 3.2.1 has been. If the node would represent a leaf instead
the same flag as mentioned, will be set to tell us that it is a node. It will
contains a probability telling us how likely it is that a message reaching this
node belong to the first class type.

Input: currentNode, trainingData
buildNode(currentNode, trainingData) Data: splitInformation
splitInformation = getSplitInformation(trainingData);
if splitInformation.action == LEAF then
currentNode.type = LEAF;
currentNode.probability = calculateProbability(trainingData);
return;
end
Data: rightBranchTrainingData

forall the message in trainingData do
if message.feature Value(splitInformation.feature) larger than
splitInformation.feature Threshold then
rightBranchTrainingData = message;
trainingData.remove(right BranchTrainingData);
end
end
buildNode(currentNode.left BranchNode, trainingData);
buildNode(currentNode.right BranchNode, rightBranchTrainingData);
Algorithm 6: Decision Tree construction algorithm

Algorithm 6 shows how the tree is being constructed recursively node by
node going through each left branch before the right branch. The decision
for if to split a node or not is decided by calling the getSplitInformation
method. The method analyses if a split is possible by seeing if there is
enough training data available. To allow a split, a minimum amount of
training messages has to be exceeded. If this is the case it calculates the
information gain and information gain ratio for every feature by being fed
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the training data in the current node. If it finds that a split is possibly
it returns which features and which feature values the node should split
messages on. The feature with the highest information gain ratio is then
chosen. If several splits have the same ratio the first one is chosen. Each
possible split must also have an information gain higher than the average
information gain of all the possible evaluated splits for it to be chosen. If
doing a split is not possible, then it will tell the buildNode algorithm to make
a leaf out of the node.

When the current node becomes a decision node the training data are
split into two groups, the messages with the current feature having a value
over the split threshold is moved to the right branch, while the others are
moved into the left. And so the recursion continues every branch is stopped
at a leaf.

Input: currentNode

Data: errorlargestBranch = 0

Data: errorNodeAsLeaf = 0

Data: errorSubTree = 0

if currentNode.type |= LEAF then
prune(currentNode.leftBranchNode);
prune(currentNode.rightBranchNode);
if usingSubtreeRaising then

| errorlargestBranch = errorLargestBranch(curretNode);
end
errorNodeAsLeaf = errorForNode(currentNode);
errorSubTree = errorForTree(currentNode);
if errorNodeAsLeaf less than or equal to errorSubTree AND (not
usingSubTreeRaising OR errorNodeAsLeaf less than or equal to

errorlargestBranch) then
| currentNode.type = LEAF;

end
else if subTreeRaising AND errorlargestBranch less than or equal

to errorSubTree then
Data: minorBranchTrainingData

minorBranchTrainingData =
currentNode.getMinorBranchData();
redistributeTrainingDataToSubtree(currentNode.get Largest Branch,
minorBranchTrainingData);
currentNode = currentNode.getMajorBranchNode();

end

return;

end

Algorithm 7: Decision Tree pruning algorithm

When the tree has been created the optional pruning process is run.
The pruning process has two major things to do. The first is to find out the
theoretical errors for the current node, the subtree and the largest branch.
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The second is to make a decision if pruning should be done at this node or
not.

The pruning is done as a recursive function going from top to bottom
of the tree and from left to right. At leafs there is obviously no pruning
possible and as such at that step it will back the recursion.

The first thing seen in algorithm 7 is that if the current node is a leaf
the method will instantly return. Otherwise the method prune is recursively
called on for the branches of the node, to climb as high up into the tree as
possible. Then the pruning begin by calculating the three necessary errors
for deciding if the pruning should be stopped, if there should be a subtree
replacement or lastly if subtree raising should be done.

Subtree raising is only done in pruning if specifically enabled. The sub-
tree pruning chooses the branch with the least amount of training data
leading to it, and redistributes the data to the larger branch. Thus there
will then be new probabilities in the leafs because of the new data reaching
there. This subtree is otherwise not modified. The larger subtree root then
replaces the current node and the pruning for this step is completed.

When this process has been finalized, the result is a built pruned decision
tree ready for classification.

5.4.2 Classification

The classification step shown in algorithm 8 is fairly simple. It is of course
assumed that a classifier is available. It is also assumed that the message
which is being classified has a proper representation. That would be a
feature vector which was built by the same feature vector template as the
training data was when the classifier was constructed.

It is not much to say except that the classification algorithm 8 is imple-
mented as a non-recursive function unlike the algorithms for constructing
and pruning the decision tree. This choice is just made out of convenience.
The implementation process is easy enough for any of the choices but this
way was the first that came to mind. It might be that a recursive function
would have been slightly slower because of the function call overheads that
might incur. Either way the difference would hardly be noticeable.

A loop is run as long as currentNode is not a leaf. The current decision
node analyze the message’s feature vector on the relevant feature the node
branches out on. If the feature’s value from that feature vector is less than
or equal to the decision nodes threshold value, the currentNode will become
the left child node, otherwise it will become the right one. The loop is then
repeated until currentNode is a leaf.

The leaf returns the probability value that the message belongs to the
first message class of the two possible classes. This value is compared to
an agree threshold, and if the value is below the threshold, the message is
classified as belonging to the second class. Otherwise the message is clas-
sified to belong to the first class. When this step is finished the filter has
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done its job and the process is repeated again for any new incoming message.

classify(currentNode) Data: currentNode = rootNode
while currentNode.type is not LEAF do
Data: feature = currentNode.splitFeature

Data: threshold = currentNode.split Threshold

if message.feature(feature) is less than or equal to threshold then
| cwrrentNode = currentNode.LeftBranchNode();

end

else
| cwrrentNode = currentNode.RightBranchNode();

end

end
return currentNode.probability();
Algorithm 8: Classification algorithm

5.5 Results

The best setup for the decision tree classifier in this environment was found
by tests to be 1500 features, unigram and no stemming. It showed a fast
processing speed coupled with an acceptable accuracy. Generally when in-
creasing the number of features the accuracy and precision is expected to
increase up to a certain level, so it was expected that the setups having one
of the largest amount of features would perform best. At the same time an
increased number of features will also make the filter process each message
slower.

However, stemming did not give much better accuracy for the decision
tree classifier and showed some varying results. It was assumed the possi-
bility that erroneous assumptions of dependability between words that have
now been stemmed, being given a dependence which would not have ex-
isted would the word have kept its original form and not only its root form.
Though SVM showed similar results without having this possible erroneous
dependability so the assumption could be incorrect. Stemming considerably
lowered the number of messages that could be classified for a given time.
Though the implementation of stemming might be possible to optimize it
will still be one of the most time-consuming processes in these configura-
tions.

Using bigrams together with unigrams showed to worsen the results of
the C4.5 classifier, one reason for this could be that the amount of training
data was too low or the number of features were too low to properly represent
all possible messages in this increased word space.
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5.5.1 Accuracy

Tests were done on the implementation to figure out what the performance
is. A setup of 1500 features using unigram and without stemming had
proven to give the best result and as such it would be interesting to test on
the implementation.

As can be seen in figure 5.8, the precision and accuracy was as I had
wished for. Having such a low false positive- while retaining a high true
positive rates means that it is getting close to a filter which could be accepted
in practical use for this domain. The desire was that the false positive rate
would be much less than 1%, as 1 percentage of all sent SMS messages is
far from acceptable.
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Figure 5.8: ROC curve for the implemented classifier.

The filter at a certain threshold showed a 0.1% false positive rate and
catch rate of spam at around 52% with a confidence interval at about 20%.
It is doubtful though that the catch rate is high enough to justify its use in
spam filtering in comparison to the already existing filter. The confidence
interval also shows that the average catch rate is not very exact. At a false
positive rate of 0.4% about 85% of all spam was caught with a confidence
interval of 9%. Lastly at 1% for the false positive rate 97% of all spam is
caught with only a confidence interval of 0.7%. To reach up to a catch rate of
over 90% the rate of legitimate messages lost becomes unacceptable. What
has been wished for is a false positive rate of around 0.1% while stopping
around 90% of all spam.

The decision tree classifier with the mentioned settings comes very close
to achieving an accuracy and precision which would be fully acceptable, but
there is a wish for achieving a bit lower false positive rate while keeping the
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high recall for being completely acceptable for this use.

5.5.2 Speed

The speed of building the classifier was a bit faster than the WEKA imple-
mentation. It took about 15 minutes to build and prune the decision tree
with this implementation using the same training data and selecting 1500
attributes. The build time of course varies slightly on this for different data
but it should be somewhat similar with the same a number of messages used
to train with.

The speed of classifying messages lies at about 100.000 messages per
second, excluding the time tokenization and feature vector build-up which
by itself processed about 10.000 messages per second. This is quite a bit
faster compared to the speed given by the test data when using the WEKA
implementation. This implementation is quicker but most importantly it is
fast enough to be used as a real time filter with this configuration.

7



Chapter 6

Conclusions

The goal of this work is to evaluate a number of machine learning algorithms
which could function as SMS-filters. The filters should be evaluated on their
memory usage, time for training, classifying messages as well as accuracy.
The filter judged to show the best results is to be implemented and tested
on real data to compare its performance.

Based on the initial evaluation the decision tree filter was considered the
most promising of the four filters evaluated. However, the full evaluation of
it showed that it may not have been as high as initially hoped. Depending
on where you set the limit on the accuracy for an acceptable loss of messages
contra the gain of ridding the network of unsolicited advertising.

The memory usage for the decision tree filter was never an issue since
it was well below the agreed on maximum. The decision tree filter just
as the other ones need to be trained on real and current message data to
function properly. The training time did differ largely between different
filters however the filters in this environment are not expected to be trained
very often so even a filter with a rather long training time like the decision
tree filter is acceptable.

The evaluation could possibly have been improved however by examining
which specific messages that were caught on the wrong side of the filter. This
could be investigated by running a session and saving incorrectly classified
messages at some given thresholds. The messages could then have been
given more weight in the current training data and then once again train a
new filter. This would hopefully teach the filter to classify these cases more
correctly while classifying the other messages the same as before. It is not
clear at this moment if it would have increased the accuracy significantly.

But while the aspect of using the C4.5 decision tree filter against SMS-
spam do show results to an extent, it has to be compared to the precision
and accuracy of other types of filters already in use by Fortytwo Telecom.
Even if the filter is not used for spam filtering it could be used for other tasks
instead. Examples could be to prioritize certain traffic when the network is
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over-loaded.

However there is another aspect with these kinds of filters. If a filter
like this is used commercially in the telecom network, there is the question
of how often, and how you would go about updating it. Spam change in
their presentation over time to try and avoid filters like this so that is why
these filters needs to be updated from time to time. This filter will need to
be maintained and possibly tested on new traffic once in a while, as well as
continuously saving a portion of the data flowing through the network to
use it in future training.

This could possibly be a big task, since the data will need to be classified
before using it to train the filter. The workload on this task would likely
completely depend on how often spam messages transmute to effectively
avoid filters. Of course tools could help to speed up the process of classifying
the new training data. A tool could take help from an already existing
trained classifier to partly assist in classifying new training messages. Since
many spam messages have nearly identical content, the most similar ones
could be grouped and classified manually by only a few clicks of the user.

Of course machine learning algorithms such as this one have the advan-
tage that it can be very adaptable by simply using different training data.
This means that it could potentially give a quick transition from this current
domain for spam to another one such as prioritizing certain data traffic if
wished for.

6.1 Future Improvements

Since the precision of the filter turned out to be a bit less than what could be
asked for, it would be interesting to see if there could be any improvements
done to change this. Two methods that I have read about that claims to
do just this, to substantially improve predictive accuracy, are bagging and
boosting [17]. Both of these methods work by training several models for a
classifier and combining them together to create a stronger one. It would
be interesting to see how the results would differ after using any of these
methods.

Only tests on linear SVM classifier was made and it would be interesting
to see if there would be any improvement with a different kernel than the
linear one. Since the results from the SVM classifier were so similar to the
C4.5 decision tree results in respect to both accuracy and speed, it is still
definitely something to consider.

It would also be interesting to find out how the setups using bigrams
would improve with a further increased number of features, and thus also
an considerably increased amount of training data.
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