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Abstract 
Air combat is a complex situation, training for it and analysis of possible tactics are time 

consuming and expensive. In order to circumvent those problems, mathematical models 

of air combat can be used. This thesis presents air combat as a one-on-one influence 

diagram game where the influence diagram allows the dynamics of the aircraft, the 

preferences of the pilots and the uncertainty of decision making in a structural and 

transparent way to be taken into account. To obtain the players’ game optimal control 

sequence with respect to their preferences, the influence diagram has to be solved. This is 

done by truncating the diagram with a moving horizon technique and determining and 

implementing the optimal controls for a dynamic game which only lasts a few time steps. 

The result is a working air combat model, where a player estimates the probability that it 

resides in any of four possible states. The pilot’s preferences are modeled by utility 

functions, one for each possible state. In each time step, the players are maximizing the 

cumulative sum of the utilities for each state which each possible action gives. These are 

weighted with the corresponding probabilities. The model is demonstrated and evaluated 

in a few interesting aspects. The presented model offers a way of analyzing air combat 

tactics and maneuvering as well as a way of making autonomous decisions in for example 

air combat simulators.  
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1. Introduction 
Close range air combat, where the combatants are too close to use any long-range 

missiles and need to rely on automated canons, can be seen as a one-on-one game. In the 

game, the two participants are trying to place themselves in a good firing position, in 

order for the fired rounds to hit, while at the same time denying their opponent to do the 

same. By assuming that the opponent acts rationally, i.e. is trying to optimize its own 

motion, a player can in turn calculate how to act in order to win the battle, or at least not 

lose it. However, uncertainties about the opponent’s acting and planning makes the 

calculation problematic. Even if full information about the opponent’s position and 

possible actions were acquired, there is no way of telling exactly how the opponent will 

act. Another problem is to create artificial pilots that act in a controlled, explainable and 

understandable manner. Air combat today is indeed a complicated situation where the 

decisions of pilots concern maneuvering, using weapons systems as well as utilizing the 

onboard devices. The outcome of air combat depends on the decisions of the pilots as 

well as the aircraft performance and available weapons. Since analyses of air combat 

tactics and techniques as well as training of pilots are both time consuming and 

expensive, mathematical models of the kind described above is an interesting method of 

circumventing those problems.  

The first purpose of this work is to create and implement a two player influence diagram 

game model of an air combat which works as briefly described above. Influence diagrams 

are directed acyclic graphs in which probabilistic inference and decision problems can be 

modeled and solved. The report introduces a multi-agent influence diagram game which 

describes the control decisions of pilots in a one-on-one combat where they both try to 

reach a good firing position as fast as possible. By using a multi-agent influence diagram 

game to model the air combat, the dynamics of the aircraft, the preferences of the pilots 

and the uncertainty of decision making are all taken into account in a structural and 

transparent way. In the game, a player is assumed to have won when it has reached a 

position where it is possible for the player to open fire on its opponent. Sometimes, if for 

example a player finds itself in a disadvantageous situation in the game, not loosing the 

game is considered a success. This since, in a real life situation, it would save both man 

and aircraft. 

The second purpose is to analyze the model. This is done by a simulation of the model for 

a set of scenarios and an analysis of the result. It is important that the model is consistent 

in its results and that it provides reasonable results. Therefore is a basic evaluation 

conducted where the model’s sensitivity to changes in the players’ initial state is tested. 

The moving horizon technique plays an important part in the model, so how the number 

of look-ahead steps of the players affect the outcome is of interest to evaluate. How well 

the model predicts its future states is another way to evaluate the technique and both are 

conducted in this work. There exist different strategies for modeling the opponent’s 

controls, acting as if it is equally probable that the opponent chooses any of its possible 

actions is the method used in this work, but the last part of the evaluation compares 

different techniques against each other to see what the result is. 

In order to obtain the players’ game optimal control sequence with respect to their 

preferences, the influence diagram has to be solved. There are several known solutions to 
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ordinary influence diagrams, see [15] for one example. But for a game representation of 

an influence diagram, as in this case, the situation is different. Koller and Milch present 

in [4] a divide-and-conquer strategy which breaks the diagram into smaller subparts and 

solves them iteratively. But the game at hand cannot be divided since every optimal game 

control for a player depends on its future decision. Furthermore, the decisions may affect 

all future probability distributions and other variables in the influence diagram. Since the 

controls will depend on future decisions, feedback solutions are preferred. Therefore is 

dynamic programming [16] the solution which is used in this work. Dynamic 

programming has the drawback of combinatorial expansion of the computation. In order 

to deal with this is the influence diagram truncated and the computations of the actions 

are limited to a short time horizon which includes only the next few time steps. This 

approach has been applied to dynamic games before, see [17] for an example.  

This work is heavily influenced by [1] where an air combat is modeled by a moving 

horizon influence diagram game. There are however a few modifications both in the 

model and the numerical examples; A different set of differential equations describing the 

players motion are used in this thesis, they are taken from a similar work ([6]) so they 

have been proven to work in this type of task before. The control variables are not 

identical either. This is in order to fit with the new set of differential equations describing 

the motion of the players. The physical constraints of the players are new in this work, 

this in order to get more realistic results from the model. Above all is there a ground 

constraint which does not allow the players to have an altitude below zero. Violating this 

constraint is considered to lose the game. But the main difference is how the evaluation 

of the model is conducted. Totally new aspects, which are described above, are 

investigated in this thesis. 

The structure of the thesis is as follows. First, the reader is introduced to the two major 

techniques used in this work; influence diagrams and the receding horizon control. Then 

chapter 3 formulates the air combat influence diagram game, explains the approach for 

obtaining moving horizon feedback solutions, gives a numerical example of the model 

and briefly describes a simple form of visualization which is done in Matlab. In chapter 

4, an evaluation of the model is done to see if the model is robust in terms of initial states, 

what parameters in terms of cognition and perception are most critical in the affect of the 

outcome and how much the uncertainties of future states affect the accuracy in prediction 

in the model. In the end, some concluding remarks and thoughts are presented in chapter 

5. 
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2. Presentation of techniques to be used 
 

In this chapter, the two major techniques that are used in this work are briefly described. 

The techniques and methods used to model the air-combat game in this thesis are the 

same as those being used in [1]. Influence diagrams and especially the extension multi-

agent influence diagrams are used in the decision making of the players. A receding 

horizon control is used to truncate the decision horizon in order to make the calculation 

of the modeling computationally easier. There has been no reason to exchange any 

methods or techniques as they have already been proven to work well in this type of 

modeling. 

 

2.1 Influence Diagrams 

Influence diagrams were introduced by Howard and Matheson [2] as a tool to simplify 

the modeling and analysis of decision trees. The diagram can be represented by a 

Bayesian network [9] extended with decision nodes, often represented by squares, and 

with utility nodes, often represented by diamonds shapes. 

Similar to Bayesian networks, the order of the decisions and the order of the set of 

observations between decisions are important. Edges that point into a decision node in an 

influence diagram are sometimes called information links, and they indicate that the state 

of the parent must be known prior to making the decision. In Figure 1, the state of C must 

be known before the decision in D can be made.  

The utility nodes have no children and no states, instead they indicate the utility or the 

usefulness of the given network configuration. This is done by mapping each permutation 

of the states of its parents to one utility value. In Figure 1, if B and D have 2 different 

states each, the utility node U will have 2*2=4 different utility configurations. The goal is 

to maximize the expected value of the utility node. So the decision, or the link of 

decisions (depending on whether there is one or several decision nodes in the influence 

diagram) chosen in the influence diagram should be the one(s) that give the highest 

expected value in the corresponding utility-node. For further explanation and more 

information on how to evaluate influence diagrams and how to find the optimal policies 

see [3]. 
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Figure 1: A simple example of an Influence Diagram where A is a deterministic node, B and C are 

uncertainty nodes, D is a decision node and U is a utility node. 

 

One of the extensions to Influence diagrams are multi-agent influence diagrams, 

presented by Koller and Milch [4]. As the name implies, this extension allows for more 

than one agent to be a part of the diagram and decision for multiple agents can be taken 

into consideration. For this to be possible, every decision- and utility node must be 

associated with a particular agent. The multi-agent influence diagram must make explicit 

the dependencies between decision variables. That is, if a decision variable x relies on 

another decision variable y the agent making decision x must take the decision rule of y 

into consideration in order to optimize its own decision rule. 

 

2.2 Receding horizon control 

When the actions for obtaining near-optimal feedback controls are required, a technique 

called Receding horizon control (RHC) is used in this work. The technique is also known 

as moving horizon control and model predictive control [6]. The controls are optimized 

online by using a limited planning horizon and approximating the utilities of the controls 

to go. Compared to other methods which compute optimal feedback controls ([10] for 

example) RHC saves much computational work when truncating the planning horizon. A 

drawback is that those computational savings are at the expense of non-optimal controls 

being used. 
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The principle idea behind RHC is visualized in Figure 2. Based on the data received at 

time step tk, the future evolvement of the system is predicted and all near-optimal 

feedback controls are obtained online for all time steps up to step tk+T. Due to the lack of 

accuracy in the utilized model against the true system, only the first near-optimal 

feedback control in time step tk+1 is implemented. This provides a feedback mechanism 

that takes uncertainty regarding the differences from the utilized model to the true system 

into account. Of course even if the model would correspond perfectly to the actual 

system, a global optimal solution is not guaranteed because of the limited planning 

horizon. Even though continuous control values could be obtained for each time step, 

constant and discrete control values are often applied for numerical reasons, an issue that 

is taken into consideration further into the rapport. 

 

 
Figure 2: Principle idea of receding horizon control. The system is at stage tk and calculates future 

controls u1…uN for every time step until tk+T where T is predetermined.  
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3. Modeling of the air combat game 

 

Figure 3 Influence diagram of the air combat game. 

 

In this work, air combat is modeled as a game between two players, black and white 

player. The influence diagram representation of the air combat game between the two 

players is shown in Figure 3. The diagram is in most part taken from Fig. 1 in [1], the 

representation for calculating the overall evaluation is modified to make more sense with 

the calculations which follows and red/blue player is exchanged to black/white player. 

The upper and lower parts of the diagram represent the two players and their variables at 

discrete time steps respectively. The variables are the decision, chance, deterministic and 

value nodes depicted by squares, ovals, rounded squares and diamonds respectively. 

These variables represent the decisions to be made, uncertain probabilistic variables, 

deterministic inputs and payoffs to be optimized. The arcs into a decision node indicates 

the information that is available before the decision is made, arcs into a chance node 

means that that node is conditionally dependent on the information from the arc. Arcs 

directed into a deterministic or value node says that the value of that node is partially 

determined by the input from the arc. 
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State node 

The first thing to know about the modeling of the air combat game is that the players 

move in their three dimensional space according to the following equations of motion, [6] 

 

  x’ = v cos γ cos χ,       (1) 

  y’ = v cos γ sin χ,       (2) 

  h’ = v sin γ,        (3) 

  γ’ =  
v

g
(n cos μ – cos γ),      (4) 

  χ’ =  
 
 


cos

sinn 

v

g
,       (5) 

  v’ = 
m

1
(η Tmax – D(M(v,h))) – g sin γ =  

m

1
 (η Tmax –

2

1
CDv

2
Sς (h)) – g sin γ,    (6) 

 

where x and y are the are the horizontal coordinates, h is the height, γ is the flight path 

angle, χ is the heading angle and v is the velocity. There are some constant values in the 

equations, such as the gravity constant g and the mass of the aircraft m. The remaining 

variables are the load factor n, the bank angle μ, the throttle setting η, the maximum 

thrust available Tmax, the mach number M and the drag force D. The variables defining 

the drag force D are the zero drag coefficient CD, the reference wing area S, the air 

density ς (h) and the velocity v. The values of the zero drag coefficient CD as well as the 

maximum thrust available Tmax are taken from Fig. 3 in [11]. The air density is taken 

from the International Standard Atmosphere [12] and the reference wing area from [7]. 

These equations are not identical to the ones used in [1], instead they are taken from a 

similar work [6]. This diversion is made because the equations in [1] required tabular 

data which was not provided which, in turn, made it difficult to implement them 

correctly.  

The state of a player in a certain time step can be described by the following state vector 

 

  xk = [ xk  yk  hk  γk  χk  vk ]
T
      (7) 

 

Maneuver node 

Each player has control variables which they can affect. The variables are the throttle 

setting η, the bank angle μ and the load factor n. These variables form a control vector 
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  uk = [ηk  μk  nk ]
T
       (8) 

 

The throttle setting represents the throttle of an aircraft. The bank angle is the angle 

between the aircraft’s normal (vertical) axis and the Earth’s vertical plane containing the 

aircraft’s longitudinal axis. The load factor is defined as the ratio of the lift of an aircraft 

to its weight. It is dimensionless but commonly expressed in g units.  

Given this control vector, the position of each player is updated at every stage of the 

game by integrating equations (1)-(6) as 

 

 xk+1 = xk +    



tt

t
kkkkk

k

k

t uxfxuxf ,, ,    (9) 

 

where the function f consist of [x’ y’ h’ γ’ χ’ v’] calculated by equations (1)-(6) 

respectively. The approximation from an integral to just a function is made by the Euler 

method (see [18] or [19]). So a new state of a player depends on its previous state and 

what maneuver it has made, as shown in Figure 3. 

The modeling must give reasonable results, therefore the state- and control vector of a 

player are constrained by a set of constraints. Example values of such constraints are 

given in section 3.2 where a numerical example of the game is presented. 

 

Combat state node 

In order to describe the relationship between the two players, each plane is assigned a 

combat state vector ck which resides in the combat state node in Figure 3. The combat 

state vector depends only on the current states of the player and its opponent, this is also 

shown in Figure 3. This combat state vector can be defined in many different ways and 

the definition depends on which variables that might be of interest to compare. See [1, 6, 

8] for examples. The choice of combat vector for this work is made identical to the one 

used in [1], this since much of the other parts of this work is taken from that paper but 

also because it was an easy and relevant choice of vector. In this case the combat state 

vector for black player is defined as 

 

 B

kc  = [ B

k  B

k  B

kd ]
T
,        (10) 

 

where B

k  is the bearing angle and B

k  is the angle-off, i.e. the angles between the line of 

sight vector of black player and the velocity vector of black player and white player 

respectively. i

k , i

k   [0, π]. i

kd  > 0, i=B,W, is the distance between the players. The 

variables are shown in Figure 4 and are calculated according to the following equations 
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     






 


B

k

B

k

B

k

W

k

B

k

B

k

B

k

W

k

B

k

B

k

B

k

W

kB

k
d

hhyyxx 


sinsincoscoscos
arccos  (11) 

     






 


B

k

W

k

B

k

W

k

W

k

W

k

B

k

W

k

W

k

W

k

B

k

W

kB

k
d

hhyyxx 


sinsincoscoscos
arccos   (12) 

 

 B

kd  = 222 )()()( B

k

W

k

B

k

W

k

B

k

W

k hhyyxx      (13) 

 

The combat state vector for white player is calculated by swapping the indices from B to 

W and vice versa in equations (11)-(13). 

 

Figure 4 Combat state variables. The picture is taken from [1]. 

 

During the initialization of the game each player is assigned a target set and the goal of 

the game is for the players to drive their combat state vector into their own target set. The 

target set of a player i is defined as 

 

 T
i
 = { i

kc  | g ( i

kc  ) ≤ 0 },       (14) 

 

 g( i

kc ) = [ i

k - i

T  i

k - i

T   i

kd - i

Td  ]
T
,      (15) 
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where the target variables i

T , i

T  and i

Td  are fixed and determined at the initialization 

of the game. The constraint in (14) holds per element. If either or both of the players 

succeeds in driving their combat state vector into its own target set the game terminates. 

The game also terminates if the number of stages in the game has reached the maximum 

number of stages in the game, Nmax. This means that neither of the players has been able 

to drive its combat state vector into its own target set during Nmax number of stages. 

There are some physical conditions that may result in a termination of the game, for 

instance if the distance between the players i

kd  is greater than 12 000m. This results in a 

draw. There are other conditions which, if violated, result in a loss of the game. These 

physical conditions are used to get a more realistic game and not strange results with for 

example negative velocity. The termination conditions give four possible outcomes of the 

game which are presented in Table 1. 

 
Table 1: Possible outcomes of the air combat game. 

Outcome Condition 

Black player wins B

kc   T
B
 and 

W

kc    T
W

 or 

W

kh  ≤ 0 or 
W

kh  > 40 000m or 
W

kv  < 50 m/s 

White player wins W

kc    T
W

 and 
B

kc    T
B
 or 

B

kh  ≤ 0 or 
B

kh  > 40 000m or 
B

kv  < 50 m/s 

Joint capture B

kc    T
B
 and 

W

kc    T
W

 

Draw B

kc    T
B
 and 

W

kc    T
W

 and (N=Nmax or 
i

kd  > 12 000m) or 

(
W

kh  ≤ 0 or 
W

kh  > 40 000m or 
W

kv  < 50 m/s) and 

(
B

kh  ≤ 0 or 
B

kh  > 40 000m or 
B

kv  < 50 m/s) 

 

Up to here has everything in the construction of the model been deterministic.  

 

Threat situation assessment node 

At each stage of the game both players assesses the threat of the situation they are in with 

help from their combat state vector and the assessment of the threat in the previous time 

stage as seen in Figure 3. The assessment gives probability values which represent the 

probability that the player is in one of four different states. These states describes in what 

type of situation a player is in relation to its opponent. The assessment is modeled by a 

discrete random variable i

k  given in the threat situation assessment node (Figure 3) and 

the different states for black player are listed and described in Table 2. The states of 

white player are obtained by switching the description of the second and third row. 
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Table 2: States given the threat situation assessment of black player. 

State B

k  Description 

Neutral 1 Either the players are a big distance apart or the players 

are headed away from each other. 

Advantage 2 Black player is pursuing white player at a short distance. 

Disadvantage 3 White player is pursuing black player at a short distance. 

Mutual disadvantage 4 Both players are headed towards each other at a short 

distance.  

 

The probability that a player is in a given state given the combat state vector in the 

current stage is computed by P( i

k  = j | C = i

kc ), j=1..4, where the elements of C are 

variables for the corresponding combat state variables. The probabilities sum up to a 

unity, i.e.  

4

1n
P( i

k  = n | C = i

kc ) = 1. As shown in Figure 3, these probabilities work 

as prior beliefs to the succeeding stage’s threat assessment probabilities, so the 

succeeding probability P( i

k 1  = j) are equal to the posterior probabilities  

P( i

k  = j | C = i

kc ).  

The elements of the vector C are assumed to be independent, so the probability density 

function of the combat state given the threat assessment situation can be written as 

 

 P( i

kc  | i

k  = j) = p
ω,i

( i

k  | i

k  = j)p
θ,i

( i

k  | i

k  = j)p
d,i

( i

kd  | i

k  = j)  (16) 

 

The likelihood functions p
ω,i

( i

k  | i

k  = j), p
θ,i

( i

k  | i

k  = j) and p
d,i

( i

kd  | i

k  = j) should 

represent the distribution of the combat state variables given the players threat assessment 

outcome j. An example of such functions is given in section 3.2. 

The probabilities of the next stage are calculated by using Bayes’ formula [14] as 

 

P( i

k 1  = j | C = ck+1
i
) = 

   
     






4

1 11

i

1k

11

i

1k

|PP

|PP

n

i

k

i

k

nn

jj

i

k

i

k

c

c
 =  

   
     






4

1 11

i

k

11

i

k

|P|P

|P|P

n

i

k

i

k

nCn

jCj

i

k

i

k

i

k

i

k

cc

cc
     (17) 

 

The probabilities at stage k can be written in vector form as  

 

i

kp ( i

kc ) = [P( i

k =1 | C= i

kc ) P( i

k =2 | C= i

kc ) P( i

k =3 | C= i

kc ) P( i

k =4 | C= i

kc )]
T
,  (18) 
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where the P’s are calculated according to equation (17). 

 

Situation evaluation node 

In each stage, an action is evaluated by a utility function. In the diagram shown in Figure 

3 this represents the situation evaluation node. The utility values are calculated according 

to which threat assessment situation the player is assumed to be in, so in vector form the 

situation evaluation node can be written as 

 

 i

kU ( i

kc ) = [U
i
(1, i

kc )  U
i
(2, i

kc )  U
i
(3, i

kc )  U
i
(4, i

kc )]
T
,   (19) 

 

where each element is calculated as 

 U
i
(j, i

kc ) = i

jw , i

ju , ( i

k ) + i

jw , i

ju , ( i

k ) + id

jw , id

ju , ( i

kd ), j=1..4  (20) 

Each of the single attribute functions i

ju , , i

ju ,  and id

ju ,  maps the value of a combat state 

variable to a utility scale where the best possible value corresponds to the utility value 1 

and the worst possible combat state value corresponds to utility value 0.  Each utility 

function is multiplied by a given positive weight value. The weights for a given threat 

assessment outcome j sum up to a unity. Examples of these single attribute utility 

functions and corresponding weights are also given in section 3.2. 

 

Overall evaluation node 

The solution to the game is the sequence of control vectors which provides the highest 

possible cumulative utilities, called payoff, for the players contained in their respective 

overall evaluation node in the diagram in Figure 3. They are calculated as follows, 
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3.1 Moving horizon control  

The length of the influence diagram in Figure 3 is, depending on the outcome, very large. 

In either case it is safe to say that it is too large to be computed all at once. For this 

reason, an approximate method must be considered. In this work it is the moving horizon 

control, where the horizon of the original influence diagram game in Figure 3 is truncated 

and optimal control sequences are computed for only a few stages ahead from the current 

stage, which is used. This is called a k-step look-ahead strategy. Thereafter only the first 

component of the optimal controls is implemented and the process is repeated until the 

game has finished. 
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To make the computation even easier the control variables are now discretized. At every 

stage a player can change its controls by a predefined rate of change. At stage k the 

possible control values are  

 

 ,1

ii

k

i

k uuS           (22) 

 

where Δu
i
 denotes the steps within the maximum rate of change for each control variable, 

see section 3.2 for example values of these. 

When solving a one-step look-ahead strategy the players are maximizing the payoff 
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The states of the players, i

kx , and the probabilities i

kp  are known at the current stage k. 

The states, combat state vectors and probabilities for the next stage k+1 are calculated by 

(9), (11-13) and (18). To make sure that the players stay away from states which violates 

the constraints a penalty value is added to the utility value(s) corresponding to the 

infeasible state(s).  

Now the players want to maximize their own controls in relation to the possible states in 

which the opponent could reside in. At stage k, black player’s optimal control is given by  
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When solving a two-step look-ahead strategy, the players maximizes the following 

payoffs 
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Once again from black player’s point of view, since a control vector from one step ahead 

is needed to compute the control vector two steps ahead, an assumption is made that the 

opponent acts in an optimized manner. So first the payoffs for the opponent’s possible 

actions in step k are calculated. Then the action of the opponent with the highest payoff 

value, uk
W*

, is used against all possible actions for black player in step k when its optimal 

control vector in step k+1 is computed, this is done as follows, 
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This way the optimal control vector for black player in step k+1 is found for every 

possible action in step k. The utility for black player’s computed optimal control in step 

k+1 is then added to the corresponding utility value of the control vector in step k. The 

optimal control is then given by 
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When computing the optimal controls for the white player, the indices are switched from 

B to W.  

The solutions for the two-step look-ahead strategy are then the control vectors ( *i

ku , *

1

i

ku  ), 

i = B,W. However, only the first control vector *i

ku  is implemented.  

 

When computing optimal controls for any arbitrary K-step look-ahead strategy, the 

optimal control vector for the opponent in the current step is always used against all 

possible control vectors of the player in the current step when approximating the next 

step. The optimal control vector and its payoff value are always sent back to the previous 

step in order to add that payoff value to the corresponding control vector in the previous 

step.  

 

For a numerical example and pseudo code of the algorithm, see the Appendix. 

 

If no applicable control vector can be found, i.e. if all possible control vectors leads to 

states which violates the constraints, then a hard-coded function kicks in. This function 

returns one control vector which values depends on what type of constraint the state 

violates. The players do no planning ahead if in such a state. A simple explanation to the 

function is that when a player needs higher altitude, lower velocity or needs to rise it 

increases the load factor. Similarly when a player needs to lower its altitude, to increase 

its velocity or to stop its ascent, it decreases the load factor. Depending on what value the 

load factor has the bank angle is used to maximize the effect of the control variables. 

 

The Moving horizon control technique for a K-step look-ahead strategy can be 

summarized in the following way: 

1. Set k=0 and set the initial states of the system i

0x , i
u 0  and i

p 0 , i = B,W. 
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2. Solve the optimal control sequence ( *i

ku , *

1

i

ku  ,…, *

1

i

Kku  ) for both players using 

the computations described above. 

3. Set B

ku = *B

ku  and W

ku = *W

ku  and update the state vector i

kx 1 , the combat state 

vector i

kc 1  and the probabilities i

kp 1  according to equations (9), (11-13) and (18) 

respectively using the control vectors. 

4. If either player has reached its target set (14) with its own combat state vector or 

if k=Nmax or any other termination condition seen in Table 1 has been fulfilled the 

game terminates. Otherwise set k=k+1 and go to step 2. 

 

3.2 Numerical example 

In this section, a concrete numerical example of the model is presented. Some attributes 

will change during the different scenarios in the evaluation but the overall numerical 

example is described here. The modeling was done using Matlab. All angle variables are 

in radians.  

The control vector for both players are initially set as i
u 0 = [0.5 0 1]. This is the control 

vector for flying straight ahead, i.e. if the players where to implement this control vector 

for every stage of the game there would be two aircrafts just flying straight ahead. The 

variables of the control vector move within the intervals [0, 1], [-
2


, 

2


] and [-4, 9] 

respectively. Since the work has been done in close contact with Saab, JAS Gripen is the 

most interesting aircraft to simulate in the modeling and the load factor values are 

therefore taken from [7]. The throttle setting η
i
 can move through its entire interval from 

one time step to another, varying between the values 0, 0.5 and 1. The bank angle μ
i
 has a 

maximum rate of change
2


, i.e. an aircraft is only allowed to bank with an angle of ±

2


 

at either direction between two time steps. The load factor n
i
 has a maximum rate of 

change of ±1 between two time steps.  

The initial threat probability vector i
p 0  is set the same way as in all examples in [1], 

namely 

 

 i
p 0  = [ 0.25 0.25 0.25 0.25 ]

T
       (28) 

 

The initial states, i

0x  i=B,W, of the players are given for each evaluation of the model in 

section 4.  

The target set variables in (15) are, for both players, set to i

T  = 
6


, i

T  = π and i

Td  = 

1000. The maximum number of stages in the game, Nmax is set to 300. 
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The constraints of the states variables within the state vector defined by (7) are as 

follows:  

 150 ≤ v
i
 ≤ 640,        (29) 

 1000 ≤ h
i
 ≤ 30000        (30) 

 - 
3


 ≤ γ

i
 ≤ 

3


         (31) 

 h
i
 < 1200 => γ

i
 > -

18


        (32) 

 h
i
 < 2000 => γ

i
 > -

6


        (33) 

 h
i
 > 25000 => γ

i
 < 

6


        (34) 

 

Constraints (29), (30) concerning the velocity and altitude of the aircraft speak for 

themselves. Constraint (31) exists because if the plane is allowed to fly upside-down, it 

might find itself in an infeasible state and unable to ever recover from it. This will 

eventually inflict a violation of the altitude constraint. Therefore is constraint (31) 

necessary. This is also the reason why the bank angle only is allowed within the interval 

[-
2


,

2


]. The constraints (32) and (33) make sure that the aircraft is not diving too much 

at a too low altitude and constraint (34) make sure that the aircraft does not rises with too 

high altitude. 

 

The likelihood functions in (16) are taken from Table 3 in [1] and are shown in Table 3. 

The variable a
i
 defines the steepness of the functions and is here set to 0.08 for both 

players. The value of a
i
 is lower from 0.1 as is used in [1], this is because in some cases 

0.1 did not give the players a real chance to change opinion about which state it resided 

in. This way the players are more flexible during a test run. The variable D defines the 

maximum allowed distance between the aircrafts and is set to 12 000 m. This is higher 

than the 10 000m which is used in [1]. The choice to have a higher value on D is made 

because in some cases, having a higher value gave more interesting result since the game 

might last longer. 

For the advantage outcome, where one player is chasing the other, it is highly probable 

that the bearing angle ω, the angle-off θ are and the distance d between the players all are 

small. Therefore monotonously decreasing functions, where lower values give high 

probability is a good choice for function. The reasoning behind the choices of functions 

for all other outcomes are done in a similar manner and are explained further in section 

5.A in [1].  
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Table 3: Likelihood functions for different threat situation outcomes 

j Likelihood function Range 

1,3 p
ω,i

(ω
i
 | Θ

i
 = j)=(a

i
ω/π+1-a

i
/2)/ π ω[0, π] 

2,4 p
ω,i

(ω
i
 | Θ

i
 = j)=(-a

i
ω/π+1+a

i
/2)/ π ω[0, π] 

3,4 p
θ,i

(θ
i
 | Θ

i
 = j)=(a

i
θ/π+1-a

i
/2)/ π θ[0, π] 

1,2 p
θ,i

(θ
i
 | Θ

i
 = j)=(-a

i
θ/π+1+a

i
/2)/ π θ[0, π] 

1 p
d,i

(d
i
 | Θ

i
 = j)=1/D d[0, D] 

2,3,4 p
d,i

(d
i
 | Θ

i
 = j)=(-a

i
d/D+1+a

i
/2)/D d[0, D] 

 

Monotonously decreasing or increasing likelihood functions might not always be the best 

way to go though. Arguments against it could be that if one variable should be more 

weighted in the sense of which state a player is in, i.e. the bearing angle should for 

example be more weighted if it tells a player more about which state it is in than what the 

angle-off or the distance does. 

 

The utility functions and their corresponding weights from equation (20) are taken from 

Table 4 in [1] and they are shown in Table 4. 

In a disadvantage situation, a player should try to turn away from the opponent’s velocity 

vector, i.e. decrease the angle-off. The player should also try to increase the distance to 

the opponent, therefore small values on the angle-off variable and a large distance should 

result in a big utility value. If a player is in the disadvantage situation, its only focus is to 

escape from its adversary with no regard to where that escape-path leads, hence the 

weight for the bearing angle is zero.  

The reasoning behind the choices of functions for all other outcomes are done in a similar 

manner and are explained further in section 5.B in [1]. 

 
Table 4: Utility functions and corresponding weights 

Outcome j i

jw ,  i

jw ,
 

id

jw ,
 

i

ju , (ω)  i

ju , (θ)  id

ju , (d)  

Neutral 1 0.2 0.1 0.7 (π-ω)/π (π-θ)/π (D-d)/D 

Advantage 2 0.3 0.0 0.7 (π-ω)/π (π-θ)/π (D-d)/D 

Disadvantage 3 0.0 0.7 0.3 ω/π θ/π d/D 

Mutual disadvantage
a 

4 0.2 0.1 0.7 (π-ω)/π (π-θ)/π (D-d)/D 

Mutual disadvantage
b 

4 0.2 0.1 0.7 ω/π θ/π d/D 
a
Offensive tactic, the player prefers joint capture to draw. bDefensive tactic, the player prefers draw to joint capture 
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3.3 Visualization 

 
Figure 5: Plane used for the visualization. 

  

In order to better understand the trajectories of the aircrafts obtained the model, a simple 

form of visualization was implemented using Matlab. For plane, cylinders were used for 

the body and the wings and cones were used for a nose and the “tail”. Such a plane is 

shown in Figure 5. The different parts of the plane were assembled using an hgtransform-

object [5] and are thereby able to move and rotate as one unit. The only demand on the 

graphical part was that the rotation and movement of the aircrafts were displayed and that 

the trajectories of the planes could be followed. The hgtransform-object was used since it 

fulfilled all the requirements on the graphical part and it also proved to be easy to 

manipulate and rotate the aircraft using this technique.  

An alternative solution to the visualization was to use Matlab’s own Simulink where 

there exists a demo that draws the trajectory of an aircraft. This solution would have been 

a better-looking one, graphically. But the work with setting the camera and making the 

aircraft rotate with different angles around different axes was estimated to take too much 

time and be too big of an excursion from the actual work since no weight was being laid 

on the graphical part. 
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4. Evaluation of the model 
In this chapter, the model is evaluated in a number of scenarios and the results is 

interpreted and analyzed. For each of the different evaluations, three different scenarios 

are used: Chase, parallel and head-to-head. These scenarios are made up by the author as 

interesting cases to use. 

In the chase scenario one player (black player in the following tests) starts directly behind 

its opponent (white player) giving it an advantage from the start, this means that the other 

player starts directly in front of its opponent and turned away from it. This is shown in 

Figure 6.  

 

Figure 6 Initial states of the players in the chase scenario. 

 

The parallel scenario states that the players start at a certain distance from each other on 

the x-axis but at the same coordinate on the y-axis. They start with equal altitude and 

with a velocity vector parallel to the y-axis. This means that, initially, none of the players 
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has an advantage over the other. An example is shown in Figure 7. 

 

Figure 7 Initial states of the players in the parallel scenario. 

 

In the head-to-head scenario the players start at a certain distance from each other on the 

x-axis but at the same coordinate on the y-axis, with equal altitude and both players are 

pointed straight to its opponent, as shown in Figure 8. In this scenario, as well as in the 

previous one, initially none of the players has an advantage over the other. 

 

Figure 8 Initial states of the players in the head-to-head scenario. 

 



 

 21 

In this chapter, a player that catches its opponent means that that player’s combat vector 

(10) has reached its target set (14).  

One thing to remember when examining the visualized trajectories of the players is that 

the lines are in 3D and might in some cases not seem realistic in 2D prints. 

 

4.1 Varying the initial states of the players 

The initial states of the players can be chosen freely. Therefore an evaluation of how 

sensitive the model is to changes in a players’ initial state is performed. One aspect is to 

see if the result is symmetric if the initial states of the players are symmetrically shifted. 

When an initialization is said to be symmetric in this chapter, it means that if for example 

the velocity is varied and black player has speed x and white player speed y in the first 

case, then black player have speed y and white player have speed x in the second case. 

As stated above the test runs take place in three different scenarios, chase, parallel and 

head-to-head. Within these scenarios the relative altitude, velocity and distance of the 

players are varied. The altitude of the players varies between the values 3000m, 6000m 

and 9000m, the velocity between 240, 300 and 360 m/s and the distance between 2000m, 

5000m and 8000m. The distance is represented by the x-coordinate. The values of the 

variables are selected by the author as interesting values to use, they are chosen so to give 

the players room to act, i.e. not too high and not too low in regard to the constraints. 

A 3-step look-ahead strategy is used for both players in all scenarios.  

 

4.1.1 Chase 

In Figure 6 the initial states of the players in a chase scenario is shown. From here, first 

the relative altitude is varied, followed by variation of relative speed and distance 

respectively. 

The default initial states of the players are shown in Table 5. The altitude variable h, the 

velocity variable v and the distance variable x all varies between the values given in the 

introduction of this chapter. This gives a total of 21 test runs for this scenario.  

 

Table 5: Initial states of the players in the chase scenario. 

 x0, m y0, m h0, m γ0, rad. χ0, rad. v0, m/s 

Black 3000 5000 5000
 

0 0 240 

White 5000 5000 5000
 

0 0 240 

 

Results 

When the two players initially had the same velocity and altitude the result of the game 

turned out to be very similar, namely that the chasing player caught its opponent within 
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23 time steps at the highest. An example of such a case is presented in Figure 9. The 

same result was achieved when the chasing black player started with higher velocity. 

 

Figure 9 Black player catches white player when both start with equal altitude and velocity. 

 

When the chased player initially was given higher altitude or higher velocity than its 

opponent it manages better than when starting on equal conditions. Now the chased 

player manages either to keep away from the opponent until the maximum number of 

steps is reached (Nmax=300) or in some cases it even manages to fly away from its 

opponent making the distance between them bigger than the maximum allowed distance 

(D=12 000m) between the players which terminates the game. An example of this type of 

result is presented in Figure 10. 
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Figure 10 White player starts with higher velocity and manages to escape from its chasing opponent. 

Another thing to observe in Figure 10 is that the trajectory of black player is behaving 

rather odd towards the end. It goes up and down like a roller coaster which cannot be 

considered to be the optimal way to fly. This behavior is a result of constraint (29) in 

section 3.2, during its ascent black player gets too low velocity than the constraint allows. 

So the player needs to gain more velocity, the best way to do this is to dive. After the 

player has gained enough velocity not to exceed the constraint, it takes up the pursuit of 

its opponent. In this case this happens multiple times since the player’s opponent has 

higher altitude. 

When the chasing player starts with higher altitude than its opponent the result is varying. 

Starting with altitude 6km and 3km respectively the white player crashes into the ground, 

i.e. its altitude drops below zero.  

Raising both players’ altitudes with 3km gives the result that white player manages to 

keep away from black player until Nmax is reached. The most interesting result however is 

when the players start with altitude 9km and 3km respectively. Then, after a few time 

steps, black player suddenly becomes the chased player but manages to keep away from 

white player. This last result is shown in Figure 11. 
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Figure 11 The chasing black player starts with 6km higher altitude but end up being chased. 

 

At first, varying the distance did not seem to help the chased white player since both the 

cases with a distance of 2km and 5km between the players ended up with results very 

similar to the one shown in Figure 9. When the distance was increased to 8km however, 

white player manages to keep away from black player until Nmax was reached. This type 

of result is shown in Figure 10. 

The combined outcome of the chase scenario is shown in Figure 12. 
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Figure 12 Combined outcome of the game in the chase scenario. B-adv. means that black player has the 

advantage in the corresponding test case. 

 

 

Discussion 

When starting on equal conditions one might argue that the player being chased should be 

able to at least fly straight ahead and thus avoiding its opponent. But one explanation to 

this behavior is that both players start with a uniform probability distribution as seen in 

(28) in section 3.2. This means that the player being chased believes that it has equal 

probability to be in any of the four states listed in Table 2 and therefore it might try to 

turn around towards its opponent. A trial run with a predetermined probability 

distribution as follows, 

 

p0
B
 = [ 0.1 0.7 0.1 0.1 ]

T
, 

p0
W

 = [ 0.1 0.1 0.7 0.1 ]
T
, 

 

was examined and indeed the result turned out different. In a case with equal starting 

conditions the player being chased now managed to keep clear of its opponent until Nmax 

was reached. 

To have higher altitude or higher velocity than an opponent is an advantage in air-combat 

since it grants higher energy level for the aircraft [13]. So it is a good rating for the model 

when the player who is being chased initially start with higher altitude or velocity 

manages to escape from the opponent.  
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It is not a good rating however that the chasing player does not manage to take advantage 

of its advantageous position when it starts with higher altitude. The reason behind this is 

probably that the chasing player dives towards its opponent but misses it. Then due to its 

high velocity from the diving, it ends up in front of its opponent and in a disadvantageous 

situation. It is shown in Figure 13 that the probability that a player is in an 

advantageous/disadvantageous state flips over time for both players.  

 

Figure 13 Probabilities of white (top) and black (bottom) player being in the possible states of the game 

seen in Table 2 during the first 100 time steps of a test run. The reason why only 100 time steps are shown 

is because after that it is one line (the one already peaking for both players) that goes towards one and the 

rest goes towards zero. 

 

Neither is it good that one of the players crashes when the initial altitudes are 6km and 

3km respectively even though totally avoiding crashes might be hard in such a simplified 

model. One problem could be that the players have so few control variable values to 

choose from. More possible values grants more flexibility for the players and might make 

it possible for a player to save itself from a crash. A test with more feasible values for the 

control vector (8) was therefore conducted. Now the bank angle variable is allowed to 

assume the value ±π/4 in addition to the previous feasible values, for both players. The 

maximum rate of change is still ±π/2 however. This time the result is different. White 

player does not only manage to stay in the air but ends up winning the game, even though 

the change to the control variables where identical for both players. The reason this 

particular solution is not used in this work is because of the high computational cost 

which additional possible values for the control variables brings. In a case where both 

players use a 3-step look-ahead strategy and where the game lasts for 150 time steps, the 

runtime of the model is increased with 600% when only adding ±π/4 to the feasible 

control values. Another solution could be to implement additional or harder constraints to 

the ones presented in section 3.2. 
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Symmetrical initial states of the players should not give symmetric results in this test 

scenario since one player is starting with a distinct advantage over its opponent in all 

runs, so it is good that it does not.  

 

4.1.2 Parallel 

In Figure 7 the initial states of the players in a parallel scenario is shown. The initial 

default states of the players in this scenario are shown in Table 6. The altitude h, velocity 

v and distance x are varied the same way as in the chase scenario.  

 

Table 6: Initial default states of the players in the parallel scenario.  

 x0, m y0, m h0, m γ0, rad. χ0, rad. v0, m/s 

Black 0 5000 5000
 

0 π/2 240 

White 8000 5000 5000
 

0 π/2 240 

 

Results 

When both players start on equal conditions regarding altitude and velocity, the results 

are again very similar. A game only last ~20 time steps and then ends in a joint capture. 

This result is presented in Figure 14.  

 

Figure 14 The players start on equal condition regarding height and speed and catch each other. 

 

When the initial distance is varied the result is similar to the one shown in Figure 14. 

Only the case when the initial distance is set to 2km the result appears a little different. 

The game still ends in a joint capture but in this case the aircrafts can not turn against 
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each other fast enough resulting in a little longer game. So instead of catching each other 

like in Figure 14 the players pass each other and then turn towards the opponent again 

and this time they catch each other.  

 

If the initial altitude difference between the players is 3km, the player with the highest 

starting altitude wins and the trajectories of the players look very similar in all cases. The 

result is shown in Figure 15. When the initial altitude is symmetric, also the result is 

symmetric.  

However if the altitude difference is 6km the result is not symmetric. When white player 

starts low the result is similar to the one in Figure 15 with the difference that it is the 

player with lowest initial altitude (white) that wins the game. But when black player 

starts low it is white player who ends up being hunted after a few time steps but still 

manages to keep clear of black player until Nmax is reached, an outcome similar to the one 

in Figure 10. 

 

Figure 15 The players start parallel with 3km altitude difference and the one with highest initial altitude 

wins. 

 

If a player has initially higher velocity than its opponent it ends up being hunted after a 

few time steps. It still manages to keep away from that same opponent, shown in Figure 

16.  

In one of the cases (and its symmetric case), when the velocity is initially at its highest 

difference, the player with initially the highest velocity gets in a disadvantage situation 

and dives to about 1km altitude. Then, when its chasing opponent tries to dive after, it 

does so too steep and fast making it crash into the ground (altitude below zero).  
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Figure 16 White player has initially the higher velocity, gets chased but manages to keep away from the 

opponent. 

 

The combined outcome of the parallel scenario is shown in Figure 17. 

 

Figure 17 Combined outcome of the game in the parallel scenario. W/B-adv. means that black player has 

the advantage in the corresponding test case and vice versa. 
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Discussion 

The first results presented seem reasonable. When none of the players have an initial 

advantage over the other they act identical. The same goes for when the distance is varied 

since this does not give any advantage to either of the players. 

In this scenario the player with the altitude advantage manages to take advantage of the 

situation which is a good rating for the model. The case with initial altitude difference of 

6km is not. With symmetrical initial values a result with symmetric outcome is wanted. 

From Figure 18 it becomes clear that in the beginning the two players starting with 

altitude 3km in the two cases uses (with one exception) the same actions with the same 

utilities. It is not exactly the same actions, since it is a parallel scenario the bank angles 

are negative for one player and it is the absolute value for the bank angle which is used in 

Figure 18. After 75 time steps something happens which makes the two players chose 

different actions. Since it is a 3-step look-ahead game it is hard to say exactly where the 

utility values come from since it depends on the probability distribution three steps ahead. 

The result might have something to do with the fact that the players have to turn in 

different directions (right, left) to approach the other player since this is the only thing 

that separates the conditions of the players. There is no difference in the result when the 

players initially switch places with each other.  

 

 

Figure 18 Difference between control- and utility values of black and white player when starting with 

symmetric initial states. 

 

An initially higher velocity does not seem to be an advantage in this scenario since, in a 

majority of the cases, the plane with higher initial velocity ends up being hunted. This 

might have to do with the fact that an aircraft with lower velocity can turn faster and 

therefore can end up in an advantage state faster than an opponent with higher velocity.  
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An additional test where one player had higher initial velocity was conducted, this time 

with more feasible values for the control vector (8). Now the bank angle variable is 

allowed to assume the value ±π/4 in addition to the previous feasible values, for both 

players. The maximum rate of change is still ±π/2 however. This test resulted in a victory 

for the player with the lowest initial speed, none with a crash of either player. So this 

again shows that initial higher velocity in the parallel scenario is not preferable.  

 

The result with a crashing player has much to do with the fact that one player does a 

controlled dive and the opponent wants to follow it but dives too steep and is not able to 

save itself in time due to the high speed obtained from the dive. A solution to this type of 

problem is shown in section 4.1.1. 

 

4.1.3 Head-to-head 

The initial states of the players in a head-to-head scenario are shown in Figure 8. From 

here, first the relative height is varied followed by variation of relative speed and distance 

respectively. 

The initial default states of the players in this scenario are shown in Table 7. The altitude 

h, velocity v and distance x are varied the same way as in the chase scenario.  

 

Table 7: Initial default states of the players in the head-to-head scenario. 

 x0, m y0, m h0, m γ0, rad. χ0, rad. v0, m/s 

Black 0 5000 5000
 

0 0 240 

White 8000 5000 5000
 

0 π 240 

 

Results 

In the cases when starting at the same altitude and with the same speed the players 

mirrors their movement completely as shown in Figure 19. There are two exceptions 

though, in the case when the altitude is initially at 6km for both players and the case 

when the velocity initially is 240m/s for both players one of them deviates from the 

symmetric path and begins to hunt the other as shown in Figure 20. 
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Figure 19 The players start with identical altitude and velocity which ends in symmetric trajectories. 

 
Figure 20 The players start with identical altitude and velocity but the trajectories are not symmetric. 

 

In the cases with a distance variance of 2km and 5km, the players had little time to react 

before they could catch each other so the game ended in a joint capture after three and 

nine time steps respectively. The case with a distance of 8km between the players gives 

identical initial states as in the case when the initial velocity of both aircrafts are 240m/s 

when the test of varying speed is carried out. The result is also identical and is mentioned 

above. 
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When the altitude differs between the players the results are scattered. If the aircrafts start 

at 3km and 6km respectively, the player with the lowest altitude crashes into the ground, 

similar to one of the results in section 4.1.1. 

If the aircrafts start with altitudes 3km and 9km respectively, the player with the highest 

altitude begins to hunt its opponent after a few time steps but the game ends in a draw, 

shown in Figure 21. Finally if the players start with an altitude of 6km and 9km 

respectively the player with the highest initial altitude ends up being chased but still 

manages to keep away from its opponent. The game ends with a draw similar to the result 

in Figure 16. 

 

Figure 21 Black player starts with higher altitude and end up hunting white player. 

 

The results are very scattered when the speed is varied as well. If a player with initial 

velocity 360m/s starts against an opponent with 300m/s it is able to begin hunting that 

opponent and eventually catches it. This result is presented in Figure 22.  

When the initial velocities of the players had the largest difference, i.e. 360m/s and 

240m/s respectively, the player with lowest velocity ended up hunting its opponent but 

was unable to catch it as shown in Figure 23. 
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Figure 22 Black player starts with higher velocity and manages to catch white player. 

 

Figure 23 Black player starts with lower velocity and ends up hunting white player. 

 

When the initial velocity of black and white player is 240m/s and 300m/s respectively 

white player ends up hunting black player who in turn manages to escape from white 

player making the distance between them exceed the maximum allowed distance between 

the players. This is shown in Figure 24. When the initial velocities where switched the 

result was different. Black player did end up chasing white player but in this case the 

chasing player manages to catch its opponent quite quickly as shown in Figure 25. So 
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when the initial velocities of the players where symmetric the results where not 

symmetric. 

 

Figure 24 Black player starts with lower velocity but manages to get away from white player. 

 

Figure 25 Black player starts with higher velocity and manages to catch white player. 

 

The combined outcome of the head-to-head scenario is shown in Figure 26. 
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Figure 26 Combined outcome of the game in the head-to-head scenario. W/B-adv. means that black player 

has the advantage in the corresponding test case and vice versa. 

 

Discussion 

When both players initially have the same altitude and velocity, as in Figure 19, the 

players move identically, i.e. the control vector (8) is identical for both players during all 

time stages of the game. This seems reasonable for the model since if the players fly 

straight towards each other on equal conditions the utility values should be symmetric 

around zero when choosing the bank angle for the control vector. This means that turning 

right or left gives the same utility value for both players. This is the reason why 

sometimes the result is as in Figure 20, where one player deviates from the symmetric 

trajectory. Another reason for the result in Figure 20 is that if the players find themselves 

in states which violate one or several of the constraints (29)-(34), they focuses only on 

getting out of their illegal state and not on optimizing their path in regard to the opponent. 

This can sometimes result in different control values for the two players and in turn 

different results in the outcome.  

It is hard to draw any conclusions from the results of varying the initial altitude of the 

players since they are so different from each other. The expected result would be if the 

player with the initial highest altitude could draw advantage of this. But this only happens 

in two of the cases and neither of those two end in a catch of the opponent.  

Higher velocity should give an advantage in an air-combat and in this scenario it does so 

in a majority of the cases, some even ending in a catch of the opponent. This is a good 

rating of the model. 

Just as in the parallel scenario there was a test case where symmetrical initial values did 

not result in symmetric trajectories of the players. A plot similar to the one done in Figure 
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18 shows that also in this case the difference between the control values as well as the 

utility values for each action are basically identical in the beginning for two players with 

symmetric initial states. 

 

4.2 Number of look-ahead steps 

The model is heavily dependent on the moving horizon technique where the next states 

and control vectors of a player are predicted for a certain number of look-ahead steps. 

This is described in more detail in section 3.1. In this section it is evaluated how the 

number of those steps in the look-ahead strategy affect the outcome of the game. Initially 

the scenarios from above are used: chase, parallel and head-to-head.  

 

4.2.1 Chase 

The basic idea behind the chase scenario is shown in Figure 6 and the initial states of 

both players are shown in Table 8. 

 

Table 8: Initial default states of the players in the chase scenario. 

 x0, m y0, m h0, m γ0  , rad. χ0, rad. v0, m/s 

Black 0
 

5000 5000
 

0 0 240 

White 2500
 

5000 5000
 

0 0 240 

 

Results 

Figure 27 show the outcomes for each test run done in this scenario. Two of the test cases 

end in a draw; when black player has 1 and 3 number of look-ahead steps and white 

player has 2 and 3 number of look-ahead steps respectively. The game terminates because 

white player has managed to make the distance between the players exceed the maximum 

allowed distance between the players. In the rest of the test cases, black player wins.  
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Figure 27 Outcomes of the game when different numbers of look-ahead steps are used in the chase 

scenario. B-adv. means that black player has the advantage in the corresponding test case. 

 

Discussion 

Figure 27 shows that when in a disadvantageous situation, as white player is in this 

scenario, the relation between the numbers of look-ahead steps of the players does not 

seem to make any difference. As mentioned in section 4.1, white player could be 

suffering from starting with the uniform distribution (28) set in section 3.2. 

The reason why white player succeeded in the cases where the game ended in a draw 

with the players too far apart is that it used significantly more throttle than its opponent 

and thus gained more speed. A good question is then why black player does not use a 

higher value for its throttle variable, seeing as this probably would be in its best interest. 

In the case where black player only has one look-ahead step the reason is that in a 

majority of the time steps the utility values are identical for all throttle values, i.e. it is the 

player’s belief that the throttle variable has no effect on the outcome. This is probably the 

result of using just a single look-ahead step, the result also points to this since black 

player manages better when that number is increased.  

But black player also manages better when white players increases its number of look-

ahead steps. Increasing the number of look-ahead steps should logically give the player 

additional information to make better decisions, which is not the case here. Perhaps the 

additional uncertainty that comes with increased number of look-ahead steps makes white 

player chose actions which are not as favorable as in the case when a 2-step look-ahead 

strategy was used. Additional analysis of the result is required to find out the exact reason 

why black player advantages from white player increasing its number of look-ahead 

steps. But taking all test cases in this scenario into account builds a strong suspicion that 

these two results are one-offs in the model. 
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Black players’ throttle variable takes higher values in the case when both players have 

three look-ahead steps, but still white player uses a higher value more frequently which 

allows white player to climb away from black player. This time, the increased number of 

look-ahead steps makes it too difficult to analyze the reason behind black player’s 

behavior. 

 

4.2.2 Parallel 

The basic idea behind the parallel scenario is shown in Figure 7 and the initial states of 

both players are shown in Table 9. 

 

Table 9: Initial default states of the players in the parallel scenario. 

 x0, m y0, m h0, m γ0, rad. χ0, rad. v0, m/s 

Blue 0
 

5000 5000
 

0 π/2 240 

Red 6000
 

5000 5000
 

0 π/2 240 

 

Results 

The outcomes for the test runs done for the parallel scenario are presented in Figure 28. A 

clear pattern with a few exceptions can be identified, one where all test runs with equal 

number of look-ahead steps for the players (with the exception where they both have one) 

results in a joint capture, similar to the result in Figure 14. A further pattern is that 

whenever a player has five look-ahead steps (except when they both have it) it wins. The 

trajectories are often similar to the one in Figure 14, only that it does not end in a joint 

capture since the player with less number of look-ahead steps tries to turn away from its 

opponent during the last time steps but is still captured very fast. 

All other test runs ended in a draw. One thing to say about the results in these cases is 

that the player with lower number of look-ahead steps is the one that ends up in an 

advantageous situation in the game. However it often ends with the distance between the 

players exceeding the maximum allowed distance between the players. 
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Figure 28 Outcomes of the game when different numbers of look-ahead steps are used in the parallel 

scenario. W/B-adv. means that black player has the advantage in the corresponding test case and vice versa. 

 

 

Discussion 

As shown in Figure 28, the outcomes for this scenario are symmetric, which is a good 

rating for the model since switching the number of look-ahead steps for the players 

should result in switched outcome as well. An interesting extension to this evaluation 

would be to continue increasing the number of look-ahead steps and see if the outcomes 

of the game keep the symmetric shape they have in Figure 28 or if they diverge from it.  

 

4.2.3 Head-to-head 

The basic idea behind the head-to-head scenario is shown in Figure 8 and the initial states 

of both players are shown in Table 10. 

 

Table 10: Initial default states of the players in the head-to-head scenario. 

 x0, m y0, m h0, m γ0, rad. χ0, rad. v0, m/s 

Blue 0
 

5000 5000
 

0 0 240 

Red 8000
 

5000 5000
 

0 π 240 
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Results 

The outcomes for the test runs for this scenario are shown in Figure 29. The trajectories 

of the players were symmetric, similar to the result presented in Figure 19, when the 

number of look-ahead steps where equal for the two players. One exception was when 

both players used a 3-step look-ahead strategy; the result was then similar to the one in 

Figure 20.  

When the outcome was a draw, as in section 4.2.2, the player with lowest number of 

look-ahead steps was the one to end up in an advantageous situation.  

 

Figure 29 Outcomes of the game when different numbers of look-ahead steps are used in the head-to-head 

scenario. W/B-adv. means that black player has the advantage in the corresponding test case and vice versa. 

 

Discussion 

The results in the diagonal in Figure 29, where the trajectories are symmetric for almost 

all cases, are expected from the results in section 4.1.3. Even that there would be an 

exception was expected when taking the results from that section into consideration 

where also an explanation to why this behavior is possible is given.   

In the other cases, there is clearly a form of symmetry in the results in this scenario as 

there were in section 4.2.2. If lines were drawn along the diagonal in Figure 29, the 

outcomes to the upper-left of the diagonal are advantageous for white player and the 

outcomes to the lower-right are advantageous for black player. Another resemblance to 

the results in section 4.2.2 is that when the numbers of look-ahead steps are high, there is 

a winner in the game. Though in this case, the winners are switched over the diagonal 

from results in the previous section.  
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Conclusions 

Giving any general guidelines about how many number of look-ahead steps are best to 

use is difficult to do since the results between in particular the parallel and the head-to-

head scenarios are so different. In the parallel case, five look-ahead steps seem to be a 

good choice while in the head-to-head scenario this almost guarantees a loss. If analyzing 

logically, an increased number of look-ahead steps should grant an advantage in the game 

if both players start on equal conditions as in the parallel and head-to-head scenarios. 

This would be results similar to the ones in the parallel scenario. But here it is more the 

situation that decides the number of look-ahead step which is best to use, something that 

is well illustrated in the chase scenario where the number of look-ahead steps not 

mattered at all.  

 

4.3 Correctness when predicting next action 

In this section the goal is to evaluate how accurate in its prediction the look-ahead 

strategy is. Let us say that a player, in time step k of a 3-step look-ahead game, is 

approximating the control vectors for the next three steps to [uk,uk+1,uk+2]. When the 

game later arrives at time step k+2, the evaluation is to check how far from the predicted 

control vector in time step k the control vector actually implemented in time step k+2 is. 

With a perfect system the predicted and the actually implemented control vectors are 

identical. However, as the number of steps k in the k-step look-ahead strategy is 

increased, the uncertainty of the system should increase and thus affecting how well the 

control vector can be predicted.  

The chase- parallel- and head-to-head scenario presented in Figure 6, 7 and 8 respectively 

are used in this evaluation with the same initial values as in section 4.2. A 5-step look-

ahead strategy is used for each scenario. 

For all scenarios, control vectors used when either player is in an infeasible state 

according to the constraints in section 3.2 are removed from the following results. This is 

because the players are not planning when in such a state, their only goal is to get out of 

it.  

 

4.3.1 Chase 

As in the previous evaluations, it is white player that has the initial disadvantageous 

position. The game ended after 50 time steps and the outcome was a black player victory 

with a trajectory result similar to the one presented in Figure 9.  

The mean value of the absolute difference for all three variables at the different predicted 

steps (for a certain prediction step, sum the absolute difference in all time steps together 

and divide by the total number of time steps in the game) are displayed in Figures 30-32. 

With this mean value it is easier to see the difference in prediction correctness between 

the different prediction steps. A mean value close to zero is of course preferable. The 

difference to the implemented control variables gradually increases in step two, three, 

four and is at it highest in the fifth approximation of the control vector.  
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Figure 30 Mean values for the absolute difference of the throttle setting variable for both players in the 

chase scenario. 

 

Figure 31 Mean values for the absolute difference of the bank angle variable for both players in the chase 

scenario. 
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Figure 32 Mean values for the absolute difference of the load factor variable for both players in the chase 

scenario. 

 

Discussion 

As shown in Figures 30-32, black player approximates its control vector in general and 

its load factor in particular better than white player, even though it is only marginally 

better. This might have to do with the fact that it is easier to approximate your control 

vector when in an advantageous situation in the game which black player is in this 

scenario. However, to make that conclusion would require more than just one test case 

pointing to that result.  

 

4.3.2 Parallel 

The game in this scenario ended after 15 time steps with a joint capture and the result of 

the game was similar to the one presented in Figure 14.  

The mean value of the difference for all three control variables at the different predicted 

steps are displayed in Figures 33-35. The difference to the implemented control variables 

does not gradually increase as in section 4.3.1, only in the case of the load factor variable 

is this true. Instead, the difference to the implemented bank angle gradually decreases and 

the difference to the implemented throttle setting both increase and decrease for each 

approximation step.  
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Figure 33 Mean values for the absolute difference of the throttle setting variable for both players in the 

parallel scenario. 

 

Figure 34 Mean values for the absolute difference of the bank angle variable for both players in the parallel 

scenario. 
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Figure 35 Mean values for the absolute difference of the load factor variable for both players in the parallel 

scenario. 

 

Discussion 

The mean values are identical for all control variables, this seems logical if the trajectory 

result is of the kind presented in Figure 14 where the players simply turn in the direction 

of the other. The bank angle should be negated for one player but it is the absolute mean 

value shown in Figure 34.  

Still, the result does not appear as expected. For the throttle setting, the approximation 

done in the third step is the best one according to the mean values in Figure 33 where the 

second one is expected to be the best. The mean values for the difference of the bank 

angle variable even decreases as the approximation step increases. This should be the 

other way around, more like the results in section 4.3.1 and as the load factor in this 

scenario. However, both the throttle setting as well as the bank angle varies within their 

full interval, [0 1] and [-π/2 π/2] respectively and among only three numerical values in 

every time step. This means that it is easier for the approximation to get the values for 

these two variables right, since there are so few of them. It is easier to ‘get lucky’, which 

might be the case here. There are also very few time steps compared to the other 

scenarios in this evaluation which is something that also suggests that this result is a one-

off or at least not something to draw conclusions out of. 

 

4.3.3 Head-to-head 

For this scenario, the test is done with different number of look-ahead steps between the 

players. White player uses a 4-step look-ahead strategy and black player uses a 5-step 

look-ahead strategy in the game. This is because, if both were to use a 5-step look-ahead 
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strategy, the trajectory of the players would be symmetric (similar to the result in Figure 

19 and also seen in section 4.2) which, in turn, would mean symmetric control vectors. 

Since it is the difference in control vectors that is examined in this section, it is more 

interesting to examine a result that is not as predictable as a result with symmetric 

trajectories would be. 

The trajectory result of the game is similar to the one in Figure 25, only the roles are 

switched and it is white player that is chasing and catching black player.  

The mean value of the absolute difference for all three variables at the different predicted 

steps are displayed in Figure 36-38. Here, as well as in section 4.3.1, the difference to the 

implemented control variables gradually increases for each approximation step. 

 

Figure 36 Mean values for the absolute difference of the throttle setting variable for both players in the 

head-to-head scenario. 
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Figure 37 Mean values for the absolute difference of the bank angle variable for both players in the head-

to-head scenario. 

 

Figure 38 Mean values for the absolute difference of the load factor variable for both players in the head-

to-head scenario. 

 

Discussion 

One odd thing about the results presented for the head-to-head scenario is that in the last 

prediction step the throttle setting is predicted very poorly compared to the previous done 

predictions for each player. In the other evaluations the mean value of the throttle setting 
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difference has barely been over 0.5, now it approaches 1. Observe that this also happens 

in different approximation steps for the two players, four and five respectively, but still in 

the last step predicted. What this depends on would require additional testing to draw any 

accurate conclusions about. 

However, the results in section 4.3.1 pointed towards that a player in an advantageous 

situation in the game was better at approximating the control vectors. This also seem to 

be true in this scenario as the chasing white player’s mean values are considerably lower 

for the bank angle and load factor variables. 

 

4.4 Different modeling of the opponent’s decision strategy 

When a player chooses its control vector, as described in section 3.1, it compares a 

possible control vector against all of the opponent’s possible control vectors. That is, the 

player assumes that the opponent chooses its control vector with a uniform probability. 

This section introduces other ways of assuming how the opponent makes its decisions 

and compares those against each other. 

 

Uniform probability 

This is the technique used in the previous evaluations and the one explained in section 

3.1. Basically, for a certain possible new state, a player uses the utility value from all 

possible states the opponent can reside in the next step and sums them together. This 

means that the players believe that it is equally possible for the opponent to take any of 

its possible actions, hence the name uniform probability strategy. 

 

Min-max solution 

In the game presented in chapter 3, the players always have full view of its opponent 

whereabouts, which means that they always know what the best action to take in concern 

to where the opponent is. So now when a player chooses its control vector, instead of 

taking every possible control vector of the opponent into account, the player assumes that 

the opponent optimizes its decision and chooses the action which maximizes the utility 

for itself and thus minimizing the utility for the player. The player then maximizes its 

own utility so to choose the action which is the least favorable for the opponent. 

 

Weighted probability 

This is a variant of the two methods above. The player still takes every possible control 

vector of the opponent into account, but those actions are weighted in the sense of which 

action a player beliefs its opponent is most likely to chose. In this case the actions which 

grant the opponent higher altitude and/or higher velocity are considered more likely for 

the opponent to chose and are therefore weighted more.  
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Both players use a 3-step look-ahead strategy in all cases during this evaluation. The 

scenarios and initial states for both players in all test cases are the same as in section 4.2. 

The results are presented also in a similar way as in section 4.2; the three different 

strategies for modeling the opponent’s decision are all compared against each other 

giving a total number of nine test runs for each scenario. 

 

Results 

Figure 39 show the outcomes of the game for the chase scenario. In the cases when white 

player uses the uniform probability strategy of modeling black player’s control decision 

the game always ends in a draw. In two of those cases the game terminates because the 

distance between the players exceeds the maximum allowed distance between players, 

this result is shown in Figure 10. In all the other cases black player wins in a similar 

manner to the one presented in Figure 9. 

 

Figure 39 Outcomes of the game when varying the strategy for modeling the opponent's decision in the 

chase scenario. B-adv. means that black player has the advantage in the corresponding test case. 

 

Figure 40 show the outcomes of the game for the parallel scenario. When either of the 

players uses the min-max strategy of modeling the opponent’s decision they end up in an 

advantageous situation and in one case black player even manages to catch white player. 

The exception is when both players use the min-max strategy, then the game ends in a 

joint capture. 

In all other cases the game ends in a joint capture similar to the result in Figure 14. 
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Figure 40 Outcomes of the game when varying the strategy for modeling the opponent's decision in the 

parallel scenario. W/B-adv. means that black player has the advantage in the corresponding test case and 

vice versa. 

 

Figure 41 show the outcomes of the game for the head-to-head scenario. When both 

players use the uniform probability strategy the result is similar to the one in Figure 20 

but with a white player victory. A reason why the result can be inconsistent with a white 

player victory instead of a black player victory as in Figure 20 in this case is discussed in 

section 4.1.3. In the other two cases when the players use the same strategy for modeling 

the opponent’s decision the game end in a draw with symmetric trajectories for the 

players similar to the result in Figure 19. 

When either of the players uses the min-max strategy against either of the other two 

strategies it ends up in a disadvantageous situation. The game still ends in a draw though. 

The last two cases end in a draw with the player using the uniform probability strategy 

ending up in an advantageous situation similar to the result in Figure 23. 

One notable result for the head-to-head scenario is that a player using the min-max 

strategy for modeling the opponent’s decision and who end up in an advantageous 

situation manages to follow its opponent very well even though it does not end in a catch 

of the opponent, like the result in Figure 21. 
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Figure 41 Outcomes of the game when varying the strategy for modeling the opponent's decision in the 

head-to-head scenario. W/B-adv. means that black player has the advantage in the corresponding test case 

and vice versa. 

 

Discussion 

From the chase scenario it is clear that a uniform probability modeling of the opponent’s 

decision is the best strategy to use when being chased as white player is in that scenario. 

The results in section 4.2 stated that using different number of look-ahead steps did not 

help the chased player in any way. But here are some results that point towards, that by 

using the uniform probability way of modeling of the opponent’s decision, the chased 

player can better manage to escape its opponent. However, tests done with varying the 

number of look-ahead steps for the two players while also varying black player’s way of 

modeling of the opponent’s decision gave results similar to the one shown in Figure 9 

where black player catches white player after a few time steps. With this information it 

seems that the uniform probability strategy is not the optimal strategy for a chased player 

after all. Instead it appears as if it is the case when both players use a 3-step look-ahead 

strategy which is advantageous for the chased player, as it was in section 4.2. 

 

The fact that the game ends in a joint capture when both players use the same way of 

modeling the opponent’s decision is expected from the results in section 4.2 where equal 

conditions for the players made them turn towards each other in the parallel scenario, 

making the game end in a joint capture.  

Using the min-max strategy for modeling the opponent’s decision gives an advantage in 

the parallel scenario. But it is an inconsistency when the strategies min-max and uniform 

probability are switched between the players but the result is not, as shown in Figure 40. 

Inconsistencies are not good for the modeling but there have been such results in the 
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previous evaluations. Examining the utility values for each action in a certain time step 

more thoroughly and comparing the two inconsistent test runs against each other showed 

a pattern. Namely that when the control vectors for two players using the uniform 

probability strategy differs, the players are in an infeasible state. It is the bank angle 

which differs, or rather it is identical in the comparison. But since it is a parallel scenario 

the bank angle should be negated when comparing it between the two players. This 

means that the function described in section 3.1 is used to find a suitable control vector so 

that the player can get out of its infeasible state. That function does not take any 

consideration to where the plane is or where its opponent is, only to get the player into a 

feasible state again. So the function gives identical bank angle to both players where, if 

the game should be symmetric, the function should give a negated bank angle to one of 

the players. This result has been seen in parallel scenarios in previous evaluations so 

perhaps using additional possible values for the bank angle or letting the function 

described in section 3.1 take more parameters into consideration could solve this 

problem.  

 

As in section 4.1 and 4.2 the trajectory result of the players are symmetric when they are 

starting on equal conditions. Also as seen previously there is an exception and in this case 

it is when both players start with the uniform probability strategy, so this result was 

expected. 

Once again there is an advantage/disadvantage pattern when the players use the min-max 

strategy. But this time, in the head-to-head scenario, it is reversed. This time it is the 

opponent which gets the advantageous situation when a player uses the min-max strategy. 

This is somewhat strange since logically the min-max strategy would be the best one, 

which it is in the parallel scenario. Examining the predicted control vector of the 

opponent and the actually implemented control vector gives a partial explanation. In a 

test with only one look-ahead step for both players, the min-max strategy manages 

perfectly when predicting the opponent’s control vector. But as the look-ahead steps 

increase, so does the uncertainty in predicting. In a test with a 2-step look-ahead strategy 

for both players are approximately 1/10 control vectors wrongly predicted. Increasing the 

number of look-ahead steps to three, the same number as in the test above, increases the 

error to approximately 2/10 control vectors. 

Another way of looking at it is that by using the uniform probability strategy a player end 

up in an advantageous situation since also in the case of a uniform vs. weighted 

probability strategy, the uniform gives an advantage over the weighted. The weighted 

strategy does not grant any obvious advantages. Perhaps if the players actively tried to 

gain additional altitude or velocity this strategy would be more useful. 
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5. Conclusions and future work 
This thesis introduces a model of the successive control decisions in one-on-one close 

range air combat using a multi-agent influence diagram. Due to the complexity of 

dynamic programming, the influence diagram is truncated by a moving horizon 

technique. The motion of the players is described by a set of differential equations and 

the relation between them by a combat state vector, consisting of the distance between 

the aircraft and the angles between the velocity vectors and the line of sight. A player 

estimates the probability that it resides in any of four possible states; neutral, 

advantageous, disadvantageous and mutual disadvantageous. The pilot’s preferences are 

modeled by utility functions, one for each possible state, and the probability distribution 

for residing in each state works as a weight for those utility functions. In each time step, 

the players are maximizing the cumulative payoff (calculated by the sum of the utilities 

for each state, weighted with the corresponding probabilities) each possible action gives. 

The evaluation was done in three different scenarios; chase, parallel and head-to-head 

which are shown in Figures 6, 7 and 8 respectively. 

Section 4.1 shows that there are some inconsistencies when the initial states of the 

players are varied. The few cases with players crashing are disturbing and not a very 

good rating for the model. However, additional feasible control values are proposed as a 

solution in the discussion of that chapter and are also proven to help. The reason why 

these additional feasible control values are not used in the evaluations of this thesis is 

because of the increase in computational complexity they bring. This is one aspect where 

the computational complexity of the model becomes a hinder in the usability of it. The 

computation time of a modeling depends on how many look-ahead steps being used and 

of course how many time steps it takes before the game terminates. A game where both 

players use a 3-step look-ahead strategy and where the game terminates after 100 time 

steps has a computing time of 1 minute and 31 seconds to complete. Whereas if the 

players use a 5-step look-ahead strategy in the same number of time steps, the game has a 

computing time of 12 hours, 37 minutes and 31 seconds. This clearly demonstrates the 

computational explosion of dynamic programming. 

Another example where a decrease in the computational complexity is wanted is in 

chapter 4.2 where additional number of look-ahead steps would be required to draw any 

real conclusions from the parallel and head-to-head scenarios. However, modeling the air 

combat with six look-ahead steps for both players takes over 24h to complete with the 

current implementation which is too much to be included in this work. Using five look-

ahead steps are still more than the three used in [1] which this work is inspired by, which 

indicates that improvements are possible. The results from the chase scenario do however 

very convincingly show that an advantageous position is far more important than the 

number of look-ahead steps used. In the discussion of [1] it is suggested that a longer 

planning horizon benefits a less agile player. One of the examples used in [1] also shows 

that if the agility is restrained for the chasing player, its opponent is able to not just to get 

away, but even to swing around behind the initially chasing player and win the game. 

The evaluation of the correctness when predicting the control variables in the future time 

steps gave reasonable results. Since the uncertainties about the game increase with every 

step, it is not possible to ask that the model predicts every control correct. Instead the 
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result in section 4.3 shows that it becomes harder for each new step ahead to predict the 

control variables. 

Section 4.4 introduced different strategies for modeling the opponent’s control variables. 

The uniform probability strategy which is used in all other evaluations, a min-max 

strategy where assuming that the opponent always chooses the optimal action for itself 

and a weighted probability where actions leading to higher speed and/or altitude assumed 

more likely to be chosen were all tested against each other. The uniform probability 

strategy of modeling the opponent’s decision seems to be a winning concept when being 

chased. But in the discussion in that same section it becomes clear that if the opponent 

chooses another number of look-ahead steps that advantage is gone. So, as in section 4.2, 

the conclusion is that an initial advantageous position is more important than any strategy 

(at least those tested in this work). For the parallel and head-to-head scenarios, using the 

min-max strategy is favorable in one scenario but unfavorable in the other. This makes it 

hard to draw any general conclusions. 

The results from sections 4.1 and 4.3 shows that this model is robust and behaves 

reasonable from a real world air combat point of view, or at least can be made to behave 

reasonable if given additional feasible control values. Sections 4.2 and 4.4 are more about 

testing the capabilities of the model. 

To summarize, influence diagrams grants an obvious way of taking decisions based on 

several different inputs in a world of uncertainty which is the case in air combat. The 

presented model and its results during the evaluation clearly shows that a working and 

reasonable model can be obtained from using influence diagrams to model close range 

air-combat. The model’s usability areas are many; everything from analyzing different 

aircraft models or tactics against each other to support in pilot training, in for example air 

combat simulators. 

 

For future work, here are some ideas on how the model could be improved. As mentioned 

above does the computational heaviness of the model perform as a hinder, both when 

having to truncate the influence diagram by the moving horizon technique but above all 

when having to limit the control variables for the players. But there are several ways of 

decreasing the runtime for the model. Parallelism has not been taking advantage of in the 

implementation done in this thesis and that would be the most obvious method of 

speeding up the modeling. Even moving some of the calculations to the GPU could be a 

valid solution which would grant even greater speedup. 

Making the players act more as pilots in a real life air combat is another thing which 

would make the model more interesting. This could be done by extending the information 

included in the combat state vectors. In this thesis, the combat state vector consists of the 

distance between the aircraft and the angles between the velocity vectors and the line of 

sight. One example of an extension is features describing the energy levels between the 

players, which is an vital component in an air combat [13]. 
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Appendix 
This is a numerical example of how to obtain the optimal control vector for a player at a 

certain stage k in the game. A 2-step look-ahead strategy is used. Consider two players, 

black player and white player, with state vectors: 

 

 B

kx = [ B

kx B

ky B

kh B

k
B

k
B

kv ] = [0 5000 5000 0 0 240],  

W

kx = [ W

kx W

ky W

kh W

k
W

k
W

kv ] = [2500 5000 5000 0 0 240], 

 

and control vectors: 

 

 B

ku = [ B

k  B

k  B

kn ]
T
 = [0.5 0 1]

T
, W

ku = [ W

k  W

k  W

kn ]
T
 = [0.5 0 1]

T 

 

The state vectors show that black player is pursuing white player. 

Now the control vector for black player in stage k+1 is wanted. First the possible control 

vectors in stage k+1 are listed for black player, for simplicity let’s say that the number of 

possible control vectors for black player in the next time step, #u
B
, is three in this case: 

 

 B

ku 1, possible = [ B

ku 1,1 

B

ku 1,2 

B

ku 1,3  ] = 

















012

000

5.05.05.0

 

 

So #u
B
 = 3. 

Since each player is fully aware of where its opponent is and which actions it might take 

the possible control vectors for the opponent can be listed. In this example, white player 

assumed to be the opponent, who is also assumed to only be able to use three new control 

vectors: 

 

 
W

ku 1, possible = [
W

ku 1,1 

W

ku 1,2 

W

ku 1,3  ] = 

















012

000

5.05.05.0

  

So #u
W

 = 3. 

This means there are three possible states, calculated by (A7), for each player in the next 

time stage. 
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x’ = v cos γ cos χ,       (A1) 

  y’ = v cos γ sin χ,       (A2) 

  h’ = v sin γ,        (A3) 

  γ’ =  
v

g
(n cos μ – cos γ),      (A4) 

  χ’ =  
v

g
(n sin μ / cos γ),      (A5) 

  v’ = 
m

1
(η Tmax – D(M(v,h))) – g sin γ =  

m

1
 (η Tmax –

2

1
CDv

2
Sς (h)) – g sin γ,    (A6) 

 

xk+1 = xk +Δt f(xk,uk)       (A7) 

The function f consist of [x’ y’ h’ γ’ χ’ v’] calculated by equations (A1)-(A6) 

respectively, Δt is equal to one.  

 

 B

kx 1, possible = [  B

k

B
ux 1,1  ,  B

k

B
ux 1,2  ,  B

k

B
ux 1,3  ] = 















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












1.2421.2421.242

000

0408.000408.0

500050005000

500050005000

240240240

 

  

W

kx 1, possible = [  W

k

W
ux 1,1  ,  W

k

W
ux 1,2  ,  W

k

W
ux 1,3  ] = 





























1.2421.2421.242

000

0408.000408.0

500050005000

500050005000

274027402740

 

 

For each combination of these possible states of black and white player, a combat state 

vector is calculated, giving a total of #u
B
*#u

W
 possible combinations. In this case

 
3*3=9 

combat state vectors for each player.  
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     






 


B

k

B

k

B

k

W

k

B

k

B

k

B
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W
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B

k

B

k

B

k

W

kB

k
d

hhyyxx 


sinsincoscoscos
arccos  (A8) 

     






 


B

k

W

k

B

k

W

k

W

k

W

k

B

k

W

k

W

k

W

k

B

k

W

kB

k
d

hhyyxx 


sinsincoscoscos
arccos   (A9) 

 

 B

kd  = 222 )()()( B

k

W

k

B

k

W

k

B

k

W

k hhyyxx      (A10) 

 

 



















BBB

BBB

BBB

B

k

ccc
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ccc

c

3,32,31,3

3,22,21,2

3,12,11,1

1 , 



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













WWW

WWW

WWW

W

k

ccc

ccc

ccc

c

3,32,31,3
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3,12,11,1

1  

 

Each combat vector i

mnc ,  (n stands for the player’s control vector and m for the 

opponent’s control vector, i.e. B
c 3,1  is the combat state vector obtained from B

u1  and W
u 3 ) 

consists of the bearing angle ω, the angle-off θ, and the distance d and they are calculated 

according to (A8)-(A10). 

Since this matrix of combat vectors is a tensor (dimensions #u
B
*#u

W
*3, 3 since it is the 

length of i

mnc , ) it would be too messy to give all numerical values here, but for an 

example are the values of B
c 1,1  and W

c 1,1  shown below and the rest are left for the interested 

reader: 

 

B
c 1,1  = [ B

1,1 , B

11 , Bd11 ] = [0.0408, 0.0408, 2500] 

W
c 1,1  = [ B

1,1 , B

11 , Bd11 ] = [3.1008, 3.1008, 2500] 

 

Given a combat state vector we can calculate probability and utility values to see how 

“good” it is. The probabilities consist of a four value vector which says with what 

probability the player is in any of the four possible states of the game (shown in Table 2). 

The vector is shown in (A11) and how to calculate each element is shown in (A12). 

 

i

kp ( i

kc )= [P( i

k =1 | C= i

kc ) P( i

k =2 | C= i

kc ) P( i

k =3 | C= i

kc ) P( i

k =4 | C= i

kc )]
T
 (A11) 
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P( i

k 1  = j | C = ck+1
i
) = 
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     (A12) 

 

where P( i

kc  | i

k  = j) = p
ω,i

( i

k  | i

k  = j)p
θ,i

( i

k  | i

k  = j)p
d,i

( i

kd  | i

k  = j). The utility for 

each combat state vector also consist of a four value vector where each value is a utility 

according to which threat assessment situation the player is assumed to be in. The vector 

is shown in (A13) and each element is calculated according to (A14). 

 

 i

kU ( i

kc ) = [U
i
(1, i

kc )  U
i
(2, i

kc )  U
i
(3, i

kc )  U
i
(4, i

kc )]
T
,   (A13) 

 

 U
i
(j, i

kc ) = i

jw , i

ju , ( i

k ) + i

jw , i

ju , ( i

k ) + id

jw , id

ju , ( i

kd ), j=1..4  (A14) 

 

After calculating probabilities and utilities for each combat state vector, two tensors are 

obtained (dimensions #u
B
*#u

W
*4, 4 since it is the length of both i

kp  and i

kU ) for each 

player: 

 

BProbabilities = 
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, WProbabilities = 
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BUtilites = 
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, WUtilites = 














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W

3,2

W

3,1
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Once again it gets too messy go give all numerical values here. But the values of 
B

1,1P  and 

B

1,1U  are shown below and the rest are left for the interested reader. 

 

 B

1,1P  = [0.2453, 0.2714, 0.2322, 0.2510]
T 

 
B

1,1U = [0.8503, 0.8503, 0.7534, 0.2471]
T 
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Now the payoffs for each of these combat vectors can be calculated by (A15) and all 

payoffs for each state (each control vector) of the player and opponent are summed 

together giving one total payoff value for each control vector. 

      i

k

i

k

i

k

i

k

W

k

B

k

i

kk cUcpuuJ 11111, ,  
T

     (A15) 

 

 BPayoff = 
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Now there is a total payoff value associated with each possible control vector for both 

players. One thing to observe is that two of the control vectors for both players give the 

same payoff value. 

Since a 2-step look-ahead strategy is used, there now is a recursive call with every 

possible control vector and corresponding new state for black player. The optimal control 

vector for white player, i.e. the control vector with index equal the index of 

max(WPayTot), is used in the recursive call together with its corresponding new state. 

Since there are two control vectors corresponding to max(WPayTot), the vector with 

lowest index is chosen, i.e. W
u1 .  

The process is then repeated from the beginning three times, one for every possible 

control vector of black player. Each recursive call returns the optimal control vector for 

black player in the next step (k+2) and its corresponding payoff value. These three payoff 

values are then added to the corresponding value in BPayTot. Then the control vector 

with highest payoff value is chosen for implementation.  

The algorithm is described in pseudo code below.  
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Pseudo code 

function[controlVectors, utility]=GetHighestUtilityVectors(NB,BS,WS,BC,WC,BP,WP) 

// NB = number of look-ahead steps 

// BS/WS = current state of black/white player 

// BC/WC = current control vector for black/white player 

// BP/WP = current probability distribution for black/white player 

if(NB = 0) 

 controlVectors = []; 

 utility = 0; 

else 

BCnext = ProducePossibleControlVectors(BC);    

WCnext = ProducePossibleControlVectors(WC);     

 

BSnext = ProducePossibleStates(BCnext,BS);    (A7) 

WSnext = ProducePossibleStates(WCnext,WS);    (A7) 

 

BCo = ProduceCombatVectors(BSnext, WSnext);  (A8)-(A10) 

WCo = ProduceCombatVectors (WSnext,BSnext);  (A8)-(A10) 

 

BPayOff = sum(Probabilities(BCo,BP)*Utilities(BCo));  (A14)  

WPayOff = sum(Probabilities(WCo,WP)*Utilities(WCo));  (A14) 

 

WMax = max(WPayOff); 

 

for i=1 to length(BCnext) do 

 if(ViolatesContraints(BSnext(i)) 

  BPayOff(i) -= 1000; 

 else 

[C,U]=GetHighestUtilityVectors(NB-1,BSnext(i), 

WSnext(WMax), BCnext(i), WCnext(WMax), 

Probabilities(BCo,BP)(i), Probabilities(WCo,WP)(WMax)) 

BPayOff(i) += U; 

  controlVectors = BCnext(BPayOff == max(BPayOff)); 
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inte upphäva detta tillstånd. All annan användning av dokumentet kräver 

upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten 
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