

Institutionen för datavetenskap
Department of Computer and Information Science

Final thesis

Modeling Air Combat with Influence Diagrams

av

Christopher Bergdahl

LIU-IDA/LITH-EX-A--13/031--SE

 2013-06-07

Linköpings universitet

SE-581 83 Linköping, Sweden

Linköpings universitet

581 83 Linköping

Examensarbete

Modeling Air Combat with Influence Diagrams

av

Christopher Bergdahl

LIU-IDA/LITH-EX-A--13/031--SE

2013-06-07

Handledare: Fredrik Heintz

Examinator: Andrzej Szalas

Abstract
Air combat is a complex situation, training for it and analysis of possible tactics are time

consuming and expensive. In order to circumvent those problems, mathematical models

of air combat can be used. This thesis presents air combat as a one-on-one influence

diagram game where the influence diagram allows the dynamics of the aircraft, the

preferences of the pilots and the uncertainty of decision making in a structural and

transparent way to be taken into account. To obtain the players’ game optimal control

sequence with respect to their preferences, the influence diagram has to be solved. This is

done by truncating the diagram with a moving horizon technique and determining and

implementing the optimal controls for a dynamic game which only lasts a few time steps.

The result is a working air combat model, where a player estimates the probability that it

resides in any of four possible states. The pilot’s preferences are modeled by utility

functions, one for each possible state. In each time step, the players are maximizing the

cumulative sum of the utilities for each state which each possible action gives. These are

weighted with the corresponding probabilities. The model is demonstrated and evaluated

in a few interesting aspects. The presented model offers a way of analyzing air combat

tactics and maneuvering as well as a way of making autonomous decisions in for example

air combat simulators.

Acknowledgements
My first acknowledgement goes to Saab Aeronautics for providing me with the essential

equipment and information for writing this thesis. I owe a lot to my supervisors Tina

Erlandsson and Fredrik Heintz for their rapid and sharp feedback and guidance

throughout the thesis process. The thoughts and feedback from my examiner Andrzej

Szalas and my opponent Mikael Niemi are equally appreciated. I am also grateful for

anyone else at Saab who has in some way aided me in my work, none mentioned none

forgotten.

Of course my friends and family deserves big thanks for occupying my mind with other

activities apart from writing this thesis, a help which not should be underestimated.

Linköping, June 2013

Christopher Bergdahl

Table of content
1. Introduction ... 1

2. Presentation of techniques to be used ... 3

2.1 Influence Diagrams ... 3

2.2 Receding horizon control .. 4

3. Modeling of the air combat game ... 6

3.1 Moving horizon control .. 12

3.2 Numerical example ... 15

3.3 Visualization ... 18

4. Evaluation of the model .. 19

4.1 Varying the initial states of the players ... 21

4.2 Number of look-ahead steps ... 37

4.3 Correctness when predicting next action .. 42

4.4 Different modeling of the opponent’s decision strategy 49

5. Conclusions and future work .. 54

References ... 56

Appendix ... 58

 1

1. Introduction
Close range air combat, where the combatants are too close to use any long-range

missiles and need to rely on automated canons, can be seen as a one-on-one game. In the

game, the two participants are trying to place themselves in a good firing position, in

order for the fired rounds to hit, while at the same time denying their opponent to do the

same. By assuming that the opponent acts rationally, i.e. is trying to optimize its own

motion, a player can in turn calculate how to act in order to win the battle, or at least not

lose it. However, uncertainties about the opponent’s acting and planning makes the

calculation problematic. Even if full information about the opponent’s position and

possible actions were acquired, there is no way of telling exactly how the opponent will

act. Another problem is to create artificial pilots that act in a controlled, explainable and

understandable manner. Air combat today is indeed a complicated situation where the

decisions of pilots concern maneuvering, using weapons systems as well as utilizing the

onboard devices. The outcome of air combat depends on the decisions of the pilots as

well as the aircraft performance and available weapons. Since analyses of air combat

tactics and techniques as well as training of pilots are both time consuming and

expensive, mathematical models of the kind described above is an interesting method of

circumventing those problems.

The first purpose of this work is to create and implement a two player influence diagram

game model of an air combat which works as briefly described above. Influence diagrams

are directed acyclic graphs in which probabilistic inference and decision problems can be

modeled and solved. The report introduces a multi-agent influence diagram game which

describes the control decisions of pilots in a one-on-one combat where they both try to

reach a good firing position as fast as possible. By using a multi-agent influence diagram

game to model the air combat, the dynamics of the aircraft, the preferences of the pilots

and the uncertainty of decision making are all taken into account in a structural and

transparent way. In the game, a player is assumed to have won when it has reached a

position where it is possible for the player to open fire on its opponent. Sometimes, if for

example a player finds itself in a disadvantageous situation in the game, not loosing the

game is considered a success. This since, in a real life situation, it would save both man

and aircraft.

The second purpose is to analyze the model. This is done by a simulation of the model for

a set of scenarios and an analysis of the result. It is important that the model is consistent

in its results and that it provides reasonable results. Therefore is a basic evaluation

conducted where the model’s sensitivity to changes in the players’ initial state is tested.

The moving horizon technique plays an important part in the model, so how the number

of look-ahead steps of the players affect the outcome is of interest to evaluate. How well

the model predicts its future states is another way to evaluate the technique and both are

conducted in this work. There exist different strategies for modeling the opponent’s

controls, acting as if it is equally probable that the opponent chooses any of its possible

actions is the method used in this work, but the last part of the evaluation compares

different techniques against each other to see what the result is.

In order to obtain the players’ game optimal control sequence with respect to their

preferences, the influence diagram has to be solved. There are several known solutions to

 2

ordinary influence diagrams, see [15] for one example. But for a game representation of

an influence diagram, as in this case, the situation is different. Koller and Milch present

in [4] a divide-and-conquer strategy which breaks the diagram into smaller subparts and

solves them iteratively. But the game at hand cannot be divided since every optimal game

control for a player depends on its future decision. Furthermore, the decisions may affect

all future probability distributions and other variables in the influence diagram. Since the

controls will depend on future decisions, feedback solutions are preferred. Therefore is

dynamic programming [16] the solution which is used in this work. Dynamic

programming has the drawback of combinatorial expansion of the computation. In order

to deal with this is the influence diagram truncated and the computations of the actions

are limited to a short time horizon which includes only the next few time steps. This

approach has been applied to dynamic games before, see [17] for an example.

This work is heavily influenced by [1] where an air combat is modeled by a moving

horizon influence diagram game. There are however a few modifications both in the

model and the numerical examples; A different set of differential equations describing the

players motion are used in this thesis, they are taken from a similar work ([6]) so they

have been proven to work in this type of task before. The control variables are not

identical either. This is in order to fit with the new set of differential equations describing

the motion of the players. The physical constraints of the players are new in this work,

this in order to get more realistic results from the model. Above all is there a ground

constraint which does not allow the players to have an altitude below zero. Violating this

constraint is considered to lose the game. But the main difference is how the evaluation

of the model is conducted. Totally new aspects, which are described above, are

investigated in this thesis.

The structure of the thesis is as follows. First, the reader is introduced to the two major

techniques used in this work; influence diagrams and the receding horizon control. Then

chapter 3 formulates the air combat influence diagram game, explains the approach for

obtaining moving horizon feedback solutions, gives a numerical example of the model

and briefly describes a simple form of visualization which is done in Matlab. In chapter

4, an evaluation of the model is done to see if the model is robust in terms of initial states,

what parameters in terms of cognition and perception are most critical in the affect of the

outcome and how much the uncertainties of future states affect the accuracy in prediction

in the model. In the end, some concluding remarks and thoughts are presented in chapter

5.

 3

2. Presentation of techniques to be used

In this chapter, the two major techniques that are used in this work are briefly described.

The techniques and methods used to model the air-combat game in this thesis are the

same as those being used in [1]. Influence diagrams and especially the extension multi-

agent influence diagrams are used in the decision making of the players. A receding

horizon control is used to truncate the decision horizon in order to make the calculation

of the modeling computationally easier. There has been no reason to exchange any

methods or techniques as they have already been proven to work well in this type of

modeling.

2.1 Influence Diagrams

Influence diagrams were introduced by Howard and Matheson [2] as a tool to simplify

the modeling and analysis of decision trees. The diagram can be represented by a

Bayesian network [9] extended with decision nodes, often represented by squares, and

with utility nodes, often represented by diamonds shapes.

Similar to Bayesian networks, the order of the decisions and the order of the set of

observations between decisions are important. Edges that point into a decision node in an

influence diagram are sometimes called information links, and they indicate that the state

of the parent must be known prior to making the decision. In Figure 1, the state of C must

be known before the decision in D can be made.

The utility nodes have no children and no states, instead they indicate the utility or the

usefulness of the given network configuration. This is done by mapping each permutation

of the states of its parents to one utility value. In Figure 1, if B and D have 2 different

states each, the utility node U will have 2*2=4 different utility configurations. The goal is

to maximize the expected value of the utility node. So the decision, or the link of

decisions (depending on whether there is one or several decision nodes in the influence

diagram) chosen in the influence diagram should be the one(s) that give the highest

expected value in the corresponding utility-node. For further explanation and more

information on how to evaluate influence diagrams and how to find the optimal policies

see [3].

 4

Figure 1: A simple example of an Influence Diagram where A is a deterministic node, B and C are

uncertainty nodes, D is a decision node and U is a utility node.

One of the extensions to Influence diagrams are multi-agent influence diagrams,

presented by Koller and Milch [4]. As the name implies, this extension allows for more

than one agent to be a part of the diagram and decision for multiple agents can be taken

into consideration. For this to be possible, every decision- and utility node must be

associated with a particular agent. The multi-agent influence diagram must make explicit

the dependencies between decision variables. That is, if a decision variable x relies on

another decision variable y the agent making decision x must take the decision rule of y

into consideration in order to optimize its own decision rule.

2.2 Receding horizon control

When the actions for obtaining near-optimal feedback controls are required, a technique

called Receding horizon control (RHC) is used in this work. The technique is also known

as moving horizon control and model predictive control [6]. The controls are optimized

online by using a limited planning horizon and approximating the utilities of the controls

to go. Compared to other methods which compute optimal feedback controls ([10] for

example) RHC saves much computational work when truncating the planning horizon. A

drawback is that those computational savings are at the expense of non-optimal controls

being used.

 5

The principle idea behind RHC is visualized in Figure 2. Based on the data received at

time step tk, the future evolvement of the system is predicted and all near-optimal

feedback controls are obtained online for all time steps up to step tk+T. Due to the lack of

accuracy in the utilized model against the true system, only the first near-optimal

feedback control in time step tk+1 is implemented. This provides a feedback mechanism

that takes uncertainty regarding the differences from the utilized model to the true system

into account. Of course even if the model would correspond perfectly to the actual

system, a global optimal solution is not guaranteed because of the limited planning

horizon. Even though continuous control values could be obtained for each time step,

constant and discrete control values are often applied for numerical reasons, an issue that

is taken into consideration further into the rapport.

Figure 2: Principle idea of receding horizon control. The system is at stage tk and calculates future

controls u1…uN for every time step until tk+T where T is predetermined.

 6

3. Modeling of the air combat game

Figure 3 Influence diagram of the air combat game.

In this work, air combat is modeled as a game between two players, black and white

player. The influence diagram representation of the air combat game between the two

players is shown in Figure 3. The diagram is in most part taken from Fig. 1 in [1], the

representation for calculating the overall evaluation is modified to make more sense with

the calculations which follows and red/blue player is exchanged to black/white player.

The upper and lower parts of the diagram represent the two players and their variables at

discrete time steps respectively. The variables are the decision, chance, deterministic and

value nodes depicted by squares, ovals, rounded squares and diamonds respectively.

These variables represent the decisions to be made, uncertain probabilistic variables,

deterministic inputs and payoffs to be optimized. The arcs into a decision node indicates

the information that is available before the decision is made, arcs into a chance node

means that that node is conditionally dependent on the information from the arc. Arcs

directed into a deterministic or value node says that the value of that node is partially

determined by the input from the arc.

 7

State node

The first thing to know about the modeling of the air combat game is that the players

move in their three dimensional space according to the following equations of motion, [6]

 x’ = v cos γ cos χ, (1)

 y’ = v cos γ sin χ, (2)

 h’ = v sin γ, (3)

 γ’ =
v

g
(n cos μ – cos γ), (4)

 χ’ =
 
 


cos

sinn 

v

g
, (5)

 v’ =
m

1
(η Tmax – D(M(v,h))) – g sin γ =

m

1
 (η Tmax –

2

1
CDv

2
Sς (h)) – g sin γ, (6)

where x and y are the are the horizontal coordinates, h is the height, γ is the flight path

angle, χ is the heading angle and v is the velocity. There are some constant values in the

equations, such as the gravity constant g and the mass of the aircraft m. The remaining

variables are the load factor n, the bank angle μ, the throttle setting η, the maximum

thrust available Tmax, the mach number M and the drag force D. The variables defining

the drag force D are the zero drag coefficient CD, the reference wing area S, the air

density ς (h) and the velocity v. The values of the zero drag coefficient CD as well as the

maximum thrust available Tmax are taken from Fig. 3 in [11]. The air density is taken

from the International Standard Atmosphere [12] and the reference wing area from [7].

These equations are not identical to the ones used in [1], instead they are taken from a

similar work [6]. This diversion is made because the equations in [1] required tabular

data which was not provided which, in turn, made it difficult to implement them

correctly.

The state of a player in a certain time step can be described by the following state vector

 xk = [xk yk hk γk χk vk]
T
 (7)

Maneuver node

Each player has control variables which they can affect. The variables are the throttle

setting η, the bank angle μ and the load factor n. These variables form a control vector

 8

 uk = [ηk μk nk]
T
 (8)

The throttle setting represents the throttle of an aircraft. The bank angle is the angle

between the aircraft’s normal (vertical) axis and the Earth’s vertical plane containing the

aircraft’s longitudinal axis. The load factor is defined as the ratio of the lift of an aircraft

to its weight. It is dimensionless but commonly expressed in g units.

Given this control vector, the position of each player is updated at every stage of the

game by integrating equations (1)-(6) as

 xk+1 = xk +    



tt

t
kkkkk

k

k

t uxfxuxf ,, , (9)

where the function f consist of [x’ y’ h’ γ’ χ’ v’] calculated by equations (1)-(6)

respectively. The approximation from an integral to just a function is made by the Euler

method (see [18] or [19]). So a new state of a player depends on its previous state and

what maneuver it has made, as shown in Figure 3.

The modeling must give reasonable results, therefore the state- and control vector of a

player are constrained by a set of constraints. Example values of such constraints are

given in section 3.2 where a numerical example of the game is presented.

Combat state node

In order to describe the relationship between the two players, each plane is assigned a

combat state vector ck which resides in the combat state node in Figure 3. The combat

state vector depends only on the current states of the player and its opponent, this is also

shown in Figure 3. This combat state vector can be defined in many different ways and

the definition depends on which variables that might be of interest to compare. See [1, 6,

8] for examples. The choice of combat vector for this work is made identical to the one

used in [1], this since much of the other parts of this work is taken from that paper but

also because it was an easy and relevant choice of vector. In this case the combat state

vector for black player is defined as

 B

kc = [B

k B

k B

kd]
T
, (10)

where B

k is the bearing angle and B

k is the angle-off, i.e. the angles between the line of

sight vector of black player and the velocity vector of black player and white player

respectively. i

k , i

k  [0, π]. i

kd > 0, i=B,W, is the distance between the players. The

variables are shown in Figure 4 and are calculated according to the following equations

 9

     






 


B

k

B

k

B

k

W

k

B

k

B

k

B

k

W

k

B

k

B

k

B

k

W

kB

k
d

hhyyxx 


sinsincoscoscos
arccos (11)

     






 


B

k

W

k

B

k

W

k

W

k

W

k

B

k

W

k

W

k

W

k

B

k

W

kB

k
d

hhyyxx 


sinsincoscoscos
arccos (12)

 B

kd = 222)()()(B

k

W

k

B

k

W

k

B

k

W

k hhyyxx  (13)

The combat state vector for white player is calculated by swapping the indices from B to

W and vice versa in equations (11)-(13).

Figure 4 Combat state variables. The picture is taken from [1].

During the initialization of the game each player is assigned a target set and the goal of

the game is for the players to drive their combat state vector into their own target set. The

target set of a player i is defined as

 T
i
 = { i

kc | g (i

kc) ≤ 0 }, (14)

 g(i

kc) = [i

k - i

T i

k - i

T i

kd - i

Td]
T
, (15)

 10

where the target variables i

T , i

T and i

Td are fixed and determined at the initialization

of the game. The constraint in (14) holds per element. If either or both of the players

succeeds in driving their combat state vector into its own target set the game terminates.

The game also terminates if the number of stages in the game has reached the maximum

number of stages in the game, Nmax. This means that neither of the players has been able

to drive its combat state vector into its own target set during Nmax number of stages.

There are some physical conditions that may result in a termination of the game, for

instance if the distance between the players i

kd is greater than 12 000m. This results in a

draw. There are other conditions which, if violated, result in a loss of the game. These

physical conditions are used to get a more realistic game and not strange results with for

example negative velocity. The termination conditions give four possible outcomes of the

game which are presented in Table 1.

Table 1: Possible outcomes of the air combat game.

Outcome Condition

Black player wins B

kc  T
B
 and

W

kc  T
W

 or

W

kh ≤ 0 or
W

kh > 40 000m or
W

kv < 50 m/s

White player wins W

kc  T
W

 and
B

kc  T
B
 or

B

kh ≤ 0 or
B

kh > 40 000m or
B

kv < 50 m/s

Joint capture B

kc  T
B
 and

W

kc  T
W

Draw B

kc  T
B
 and

W

kc  T
W

 and (N=Nmax or
i

kd > 12 000m) or

(
W

kh ≤ 0 or
W

kh > 40 000m or
W

kv < 50 m/s) and

(
B

kh ≤ 0 or
B

kh > 40 000m or
B

kv < 50 m/s)

Up to here has everything in the construction of the model been deterministic.

Threat situation assessment node

At each stage of the game both players assesses the threat of the situation they are in with

help from their combat state vector and the assessment of the threat in the previous time

stage as seen in Figure 3. The assessment gives probability values which represent the

probability that the player is in one of four different states. These states describes in what

type of situation a player is in relation to its opponent. The assessment is modeled by a

discrete random variable i

k given in the threat situation assessment node (Figure 3) and

the different states for black player are listed and described in Table 2. The states of

white player are obtained by switching the description of the second and third row.

 11

Table 2: States given the threat situation assessment of black player.

State B

k Description

Neutral 1 Either the players are a big distance apart or the players

are headed away from each other.

Advantage 2 Black player is pursuing white player at a short distance.

Disadvantage 3 White player is pursuing black player at a short distance.

Mutual disadvantage 4 Both players are headed towards each other at a short

distance.

The probability that a player is in a given state given the combat state vector in the

current stage is computed by P(i

k = j | C = i

kc), j=1..4, where the elements of C are

variables for the corresponding combat state variables. The probabilities sum up to a

unity, i.e.  

4

1n
P(i

k = n | C = i

kc) = 1. As shown in Figure 3, these probabilities work

as prior beliefs to the succeeding stage’s threat assessment probabilities, so the

succeeding probability P(i

k 1 = j) are equal to the posterior probabilities

P(i

k = j | C = i

kc).

The elements of the vector C are assumed to be independent, so the probability density

function of the combat state given the threat assessment situation can be written as

 P(i

kc | i

k = j) = p
ω,i

(i

k | i

k = j)p
θ,i

(i

k | i

k = j)p
d,i

(i

kd | i

k = j) (16)

The likelihood functions p
ω,i

(i

k | i

k = j), p
θ,i

(i

k | i

k = j) and p
d,i

(i

kd | i

k = j) should

represent the distribution of the combat state variables given the players threat assessment

outcome j. An example of such functions is given in section 3.2.

The probabilities of the next stage are calculated by using Bayes’ formula [14] as

P(i

k 1 = j | C = ck+1
i
) =

   
     






4

1 11

i

1k

11

i

1k

|PP

|PP

n

i

k

i

k

nn

jj

i

k

i

k

c

c
 =

   
     






4

1 11

i

k

11

i

k

|P|P

|P|P

n

i

k

i

k

nCn

jCj

i

k

i

k

i

k

i

k

cc

cc
 (17)

The probabilities at stage k can be written in vector form as

i

kp (i

kc) = [P(i

k =1 | C= i

kc) P(i

k =2 | C= i

kc) P(i

k =3 | C= i

kc) P(i

k =4 | C= i

kc)]
T
, (18)

 12

where the P’s are calculated according to equation (17).

Situation evaluation node

In each stage, an action is evaluated by a utility function. In the diagram shown in Figure

3 this represents the situation evaluation node. The utility values are calculated according

to which threat assessment situation the player is assumed to be in, so in vector form the

situation evaluation node can be written as

 i

kU (i

kc) = [U
i
(1, i

kc) U
i
(2, i

kc) U
i
(3, i

kc) U
i
(4, i

kc)]
T
, (19)

where each element is calculated as

 U
i
(j, i

kc) = i

jw , i

ju , (i

k) + i

jw , i

ju , (i

k) + id

jw , id

ju , (i

kd), j=1..4 (20)

Each of the single attribute functions i

ju , , i

ju , and id

ju , maps the value of a combat state

variable to a utility scale where the best possible value corresponds to the utility value 1

and the worst possible combat state value corresponds to utility value 0. Each utility

function is multiplied by a given positive weight value. The weights for a given threat

assessment outcome j sum up to a unity. Examples of these single attribute utility

functions and corresponding weights are also given in section 3.2.

Overall evaluation node

The solution to the game is the sequence of control vectors which provides the highest

possible cumulative utilities, called payoff, for the players contained in their respective

overall evaluation node in the diagram in Figure 3. They are calculated as follows,

 J
i
(B

0u ,…, B

N 1u , W

0u ,…, W

N 1u) =      

N

K

T

1
,i

k

i

k

i

k

i

k cUcp i=B,W (21)

3.1 Moving horizon control

The length of the influence diagram in Figure 3 is, depending on the outcome, very large.

In either case it is safe to say that it is too large to be computed all at once. For this

reason, an approximate method must be considered. In this work it is the moving horizon

control, where the horizon of the original influence diagram game in Figure 3 is truncated

and optimal control sequences are computed for only a few stages ahead from the current

stage, which is used. This is called a k-step look-ahead strategy. Thereafter only the first

component of the optimal controls is implemented and the process is repeated until the

game has finished.

 13

To make the computation even easier the control variables are now discretized. At every

stage a player can change its controls by a predefined rate of change. At stage k the

possible control values are

 ,1

ii

k

i

k uuS   (22)

where Δu
i
 denotes the steps within the maximum rate of change for each control variable,

see section 3.2 for example values of these.

When solving a one-step look-ahead strategy the players are maximizing the payoff

       ,, 11111,

i

k

i

k

i

k

i

k

W

k

B

k

i

kk cUcpuuJ  
T

 i = B, W (23)

The states of the players, i

kx , and the probabilities i

kp are known at the current stage k.

The states, combat state vectors and probabilities for the next stage k+1 are calculated by

(9), (11-13) and (18). To make sure that the players stay away from states which violates

the constraints a penalty value is added to the utility value(s) corresponding to the

infeasible state(s).

Now the players want to maximize their own controls in relation to the possible states in

which the opponent could reside in. At stage k, black player’s optimal control is given by

   B

k

B

k

Su

W

k

B

k

B

kk SuuuJ
W
k

W
k


















 ,,max 1, (24)

When solving a two-step look-ahead strategy, the players maximizes the following

payoffs

      


 
2

1112, ,,,,
k

kn

T i

n

i

n

i

n

W

k

W

k

B

k

B

k

i

kk cUpuuuuJ i = B,W (25)

Once again from black player’s point of view, since a control vector from one step ahead

is needed to compute the control vector two steps ahead, an assumption is made that the

opponent acts in an optimized manner. So first the payoffs for the opponent’s possible

actions in step k are calculated. Then the action of the opponent with the highest payoff

value, uk
W*

, is used against all possible actions for black player in step k when its optimal

control vector in step k+1 is computed, this is done as follows,

 14

  B

k

B

k

Su

W

k

W

k

B

k

B

k

B

kk SuuuuuJ
W
k

W
k

11112, ,,,,max

11





 

















 (26)

This way the optimal control vector for black player in step k+1 is found for every

possible action in step k. The utility for black player’s computed optimal control in step

k+1 is then added to the corresponding utility value of the control vector in step k. The

optimal control is then given by

  B

k

B

k

Su

W

k

W

k

B

k

B

k

B

kk SuuuuuJ
W
k

W
k


















 ,,,,max *

1

*

12, (27)

When computing the optimal controls for the white player, the indices are switched from

B to W.

The solutions for the two-step look-ahead strategy are then the control vectors (*i

ku , *

1

i

ku ),

i = B,W. However, only the first control vector *i

ku is implemented.

When computing optimal controls for any arbitrary K-step look-ahead strategy, the

optimal control vector for the opponent in the current step is always used against all

possible control vectors of the player in the current step when approximating the next

step. The optimal control vector and its payoff value are always sent back to the previous

step in order to add that payoff value to the corresponding control vector in the previous

step.

For a numerical example and pseudo code of the algorithm, see the Appendix.

If no applicable control vector can be found, i.e. if all possible control vectors leads to

states which violates the constraints, then a hard-coded function kicks in. This function

returns one control vector which values depends on what type of constraint the state

violates. The players do no planning ahead if in such a state. A simple explanation to the

function is that when a player needs higher altitude, lower velocity or needs to rise it

increases the load factor. Similarly when a player needs to lower its altitude, to increase

its velocity or to stop its ascent, it decreases the load factor. Depending on what value the

load factor has the bank angle is used to maximize the effect of the control variables.

The Moving horizon control technique for a K-step look-ahead strategy can be

summarized in the following way:

1. Set k=0 and set the initial states of the system i

0x , i
u 0 and i

p 0 , i = B,W.

 15

2. Solve the optimal control sequence (*i

ku , *

1

i

ku  ,…, *

1

i

Kku ) for both players using

the computations described above.

3. Set B

ku = *B

ku and W

ku = *W

ku and update the state vector i

kx 1 , the combat state

vector i

kc 1 and the probabilities i

kp 1 according to equations (9), (11-13) and (18)

respectively using the control vectors.

4. If either player has reached its target set (14) with its own combat state vector or

if k=Nmax or any other termination condition seen in Table 1 has been fulfilled the

game terminates. Otherwise set k=k+1 and go to step 2.

3.2 Numerical example

In this section, a concrete numerical example of the model is presented. Some attributes

will change during the different scenarios in the evaluation but the overall numerical

example is described here. The modeling was done using Matlab. All angle variables are

in radians.

The control vector for both players are initially set as i
u 0 = [0.5 0 1]. This is the control

vector for flying straight ahead, i.e. if the players where to implement this control vector

for every stage of the game there would be two aircrafts just flying straight ahead. The

variables of the control vector move within the intervals [0, 1], [-
2


,

2


] and [-4, 9]

respectively. Since the work has been done in close contact with Saab, JAS Gripen is the

most interesting aircraft to simulate in the modeling and the load factor values are

therefore taken from [7]. The throttle setting η
i
 can move through its entire interval from

one time step to another, varying between the values 0, 0.5 and 1. The bank angle μ
i
 has a

maximum rate of change
2


, i.e. an aircraft is only allowed to bank with an angle of ±

2



at either direction between two time steps. The load factor n
i
 has a maximum rate of

change of ±1 between two time steps.

The initial threat probability vector i
p 0 is set the same way as in all examples in [1],

namely

 i
p 0 = [0.25 0.25 0.25 0.25]

T
 (28)

The initial states, i

0x i=B,W, of the players are given for each evaluation of the model in

section 4.

The target set variables in (15) are, for both players, set to i

T =
6


, i

T = π and i

Td =

1000. The maximum number of stages in the game, Nmax is set to 300.

 16

The constraints of the states variables within the state vector defined by (7) are as

follows:

 150 ≤ v
i
 ≤ 640, (29)

 1000 ≤ h
i
 ≤ 30000 (30)

 -
3


 ≤ γ

i
 ≤

3


 (31)

 h
i
 < 1200 => γ

i
 > -

18


 (32)

 h
i
 < 2000 => γ

i
 > -

6


 (33)

 h
i
 > 25000 => γ

i
 <

6


 (34)

Constraints (29), (30) concerning the velocity and altitude of the aircraft speak for

themselves. Constraint (31) exists because if the plane is allowed to fly upside-down, it

might find itself in an infeasible state and unable to ever recover from it. This will

eventually inflict a violation of the altitude constraint. Therefore is constraint (31)

necessary. This is also the reason why the bank angle only is allowed within the interval

[-
2


,

2


]. The constraints (32) and (33) make sure that the aircraft is not diving too much

at a too low altitude and constraint (34) make sure that the aircraft does not rises with too

high altitude.

The likelihood functions in (16) are taken from Table 3 in [1] and are shown in Table 3.

The variable a
i
 defines the steepness of the functions and is here set to 0.08 for both

players. The value of a
i
 is lower from 0.1 as is used in [1], this is because in some cases

0.1 did not give the players a real chance to change opinion about which state it resided

in. This way the players are more flexible during a test run. The variable D defines the

maximum allowed distance between the aircrafts and is set to 12 000 m. This is higher

than the 10 000m which is used in [1]. The choice to have a higher value on D is made

because in some cases, having a higher value gave more interesting result since the game

might last longer.

For the advantage outcome, where one player is chasing the other, it is highly probable

that the bearing angle ω, the angle-off θ are and the distance d between the players all are

small. Therefore monotonously decreasing functions, where lower values give high

probability is a good choice for function. The reasoning behind the choices of functions

for all other outcomes are done in a similar manner and are explained further in section

5.A in [1].

 17

Table 3: Likelihood functions for different threat situation outcomes

j Likelihood function Range

1,3 p
ω,i

(ω
i
 | Θ

i
 = j)=(a

i
ω/π+1-a

i
/2)/ π ω[0, π]

2,4 p
ω,i

(ω
i
 | Θ

i
 = j)=(-a

i
ω/π+1+a

i
/2)/ π ω[0, π]

3,4 p
θ,i

(θ
i
 | Θ

i
 = j)=(a

i
θ/π+1-a

i
/2)/ π θ[0, π]

1,2 p
θ,i

(θ
i
 | Θ

i
 = j)=(-a

i
θ/π+1+a

i
/2)/ π θ[0, π]

1 p
d,i

(d
i
 | Θ

i
 = j)=1/D d[0, D]

2,3,4 p
d,i

(d
i
 | Θ

i
 = j)=(-a

i
d/D+1+a

i
/2)/D d[0, D]

Monotonously decreasing or increasing likelihood functions might not always be the best

way to go though. Arguments against it could be that if one variable should be more

weighted in the sense of which state a player is in, i.e. the bearing angle should for

example be more weighted if it tells a player more about which state it is in than what the

angle-off or the distance does.

The utility functions and their corresponding weights from equation (20) are taken from

Table 4 in [1] and they are shown in Table 4.

In a disadvantage situation, a player should try to turn away from the opponent’s velocity

vector, i.e. decrease the angle-off. The player should also try to increase the distance to

the opponent, therefore small values on the angle-off variable and a large distance should

result in a big utility value. If a player is in the disadvantage situation, its only focus is to

escape from its adversary with no regard to where that escape-path leads, hence the

weight for the bearing angle is zero.

The reasoning behind the choices of functions for all other outcomes are done in a similar

manner and are explained further in section 5.B in [1].

Table 4: Utility functions and corresponding weights

Outcome j i

jw , i

jw ,

id

jw ,

i

ju , (ω) i

ju , (θ) id

ju , (d)

Neutral 1 0.2 0.1 0.7 (π-ω)/π (π-θ)/π (D-d)/D

Advantage 2 0.3 0.0 0.7 (π-ω)/π (π-θ)/π (D-d)/D

Disadvantage 3 0.0 0.7 0.3 ω/π θ/π d/D

Mutual disadvantage
a

4 0.2 0.1 0.7 (π-ω)/π (π-θ)/π (D-d)/D

Mutual disadvantage
b

4 0.2 0.1 0.7 ω/π θ/π d/D
a
Offensive tactic, the player prefers joint capture to draw. bDefensive tactic, the player prefers draw to joint capture

 18

3.3 Visualization

Figure 5: Plane used for the visualization.

In order to better understand the trajectories of the aircrafts obtained the model, a simple

form of visualization was implemented using Matlab. For plane, cylinders were used for

the body and the wings and cones were used for a nose and the “tail”. Such a plane is

shown in Figure 5. The different parts of the plane were assembled using an hgtransform-

object [5] and are thereby able to move and rotate as one unit. The only demand on the

graphical part was that the rotation and movement of the aircrafts were displayed and that

the trajectories of the planes could be followed. The hgtransform-object was used since it

fulfilled all the requirements on the graphical part and it also proved to be easy to

manipulate and rotate the aircraft using this technique.

An alternative solution to the visualization was to use Matlab’s own Simulink where

there exists a demo that draws the trajectory of an aircraft. This solution would have been

a better-looking one, graphically. But the work with setting the camera and making the

aircraft rotate with different angles around different axes was estimated to take too much

time and be too big of an excursion from the actual work since no weight was being laid

on the graphical part.

 19

4. Evaluation of the model
In this chapter, the model is evaluated in a number of scenarios and the results is

interpreted and analyzed. For each of the different evaluations, three different scenarios

are used: Chase, parallel and head-to-head. These scenarios are made up by the author as

interesting cases to use.

In the chase scenario one player (black player in the following tests) starts directly behind

its opponent (white player) giving it an advantage from the start, this means that the other

player starts directly in front of its opponent and turned away from it. This is shown in

Figure 6.

Figure 6 Initial states of the players in the chase scenario.

The parallel scenario states that the players start at a certain distance from each other on

the x-axis but at the same coordinate on the y-axis. They start with equal altitude and

with a velocity vector parallel to the y-axis. This means that, initially, none of the players

 20

has an advantage over the other. An example is shown in Figure 7.

Figure 7 Initial states of the players in the parallel scenario.

In the head-to-head scenario the players start at a certain distance from each other on the

x-axis but at the same coordinate on the y-axis, with equal altitude and both players are

pointed straight to its opponent, as shown in Figure 8. In this scenario, as well as in the

previous one, initially none of the players has an advantage over the other.

Figure 8 Initial states of the players in the head-to-head scenario.

 21

In this chapter, a player that catches its opponent means that that player’s combat vector

(10) has reached its target set (14).

One thing to remember when examining the visualized trajectories of the players is that

the lines are in 3D and might in some cases not seem realistic in 2D prints.

4.1 Varying the initial states of the players

The initial states of the players can be chosen freely. Therefore an evaluation of how

sensitive the model is to changes in a players’ initial state is performed. One aspect is to

see if the result is symmetric if the initial states of the players are symmetrically shifted.

When an initialization is said to be symmetric in this chapter, it means that if for example

the velocity is varied and black player has speed x and white player speed y in the first

case, then black player have speed y and white player have speed x in the second case.

As stated above the test runs take place in three different scenarios, chase, parallel and

head-to-head. Within these scenarios the relative altitude, velocity and distance of the

players are varied. The altitude of the players varies between the values 3000m, 6000m

and 9000m, the velocity between 240, 300 and 360 m/s and the distance between 2000m,

5000m and 8000m. The distance is represented by the x-coordinate. The values of the

variables are selected by the author as interesting values to use, they are chosen so to give

the players room to act, i.e. not too high and not too low in regard to the constraints.

A 3-step look-ahead strategy is used for both players in all scenarios.

4.1.1 Chase

In Figure 6 the initial states of the players in a chase scenario is shown. From here, first

the relative altitude is varied, followed by variation of relative speed and distance

respectively.

The default initial states of the players are shown in Table 5. The altitude variable h, the

velocity variable v and the distance variable x all varies between the values given in the

introduction of this chapter. This gives a total of 21 test runs for this scenario.

Table 5: Initial states of the players in the chase scenario.

 x0, m y0, m h0, m γ0, rad. χ0, rad. v0, m/s

Black 3000 5000 5000

0 0 240

White 5000 5000 5000

0 0 240

Results

When the two players initially had the same velocity and altitude the result of the game

turned out to be very similar, namely that the chasing player caught its opponent within

 22

23 time steps at the highest. An example of such a case is presented in Figure 9. The

same result was achieved when the chasing black player started with higher velocity.

Figure 9 Black player catches white player when both start with equal altitude and velocity.

When the chased player initially was given higher altitude or higher velocity than its

opponent it manages better than when starting on equal conditions. Now the chased

player manages either to keep away from the opponent until the maximum number of

steps is reached (Nmax=300) or in some cases it even manages to fly away from its

opponent making the distance between them bigger than the maximum allowed distance

(D=12 000m) between the players which terminates the game. An example of this type of

result is presented in Figure 10.

 23

Figure 10 White player starts with higher velocity and manages to escape from its chasing opponent.

Another thing to observe in Figure 10 is that the trajectory of black player is behaving

rather odd towards the end. It goes up and down like a roller coaster which cannot be

considered to be the optimal way to fly. This behavior is a result of constraint (29) in

section 3.2, during its ascent black player gets too low velocity than the constraint allows.

So the player needs to gain more velocity, the best way to do this is to dive. After the

player has gained enough velocity not to exceed the constraint, it takes up the pursuit of

its opponent. In this case this happens multiple times since the player’s opponent has

higher altitude.

When the chasing player starts with higher altitude than its opponent the result is varying.

Starting with altitude 6km and 3km respectively the white player crashes into the ground,

i.e. its altitude drops below zero.

Raising both players’ altitudes with 3km gives the result that white player manages to

keep away from black player until Nmax is reached. The most interesting result however is

when the players start with altitude 9km and 3km respectively. Then, after a few time

steps, black player suddenly becomes the chased player but manages to keep away from

white player. This last result is shown in Figure 11.

 24

Figure 11 The chasing black player starts with 6km higher altitude but end up being chased.

At first, varying the distance did not seem to help the chased white player since both the

cases with a distance of 2km and 5km between the players ended up with results very

similar to the one shown in Figure 9. When the distance was increased to 8km however,

white player manages to keep away from black player until Nmax was reached. This type

of result is shown in Figure 10.

The combined outcome of the chase scenario is shown in Figure 12.

 25

Figure 12 Combined outcome of the game in the chase scenario. B-adv. means that black player has the

advantage in the corresponding test case.

Discussion

When starting on equal conditions one might argue that the player being chased should be

able to at least fly straight ahead and thus avoiding its opponent. But one explanation to

this behavior is that both players start with a uniform probability distribution as seen in

(28) in section 3.2. This means that the player being chased believes that it has equal

probability to be in any of the four states listed in Table 2 and therefore it might try to

turn around towards its opponent. A trial run with a predetermined probability

distribution as follows,

p0
B
 = [0.1 0.7 0.1 0.1]

T
,

p0
W

 = [0.1 0.1 0.7 0.1]
T
,

was examined and indeed the result turned out different. In a case with equal starting

conditions the player being chased now managed to keep clear of its opponent until Nmax

was reached.

To have higher altitude or higher velocity than an opponent is an advantage in air-combat

since it grants higher energy level for the aircraft [13]. So it is a good rating for the model

when the player who is being chased initially start with higher altitude or velocity

manages to escape from the opponent.

 26

It is not a good rating however that the chasing player does not manage to take advantage

of its advantageous position when it starts with higher altitude. The reason behind this is

probably that the chasing player dives towards its opponent but misses it. Then due to its

high velocity from the diving, it ends up in front of its opponent and in a disadvantageous

situation. It is shown in Figure 13 that the probability that a player is in an

advantageous/disadvantageous state flips over time for both players.

Figure 13 Probabilities of white (top) and black (bottom) player being in the possible states of the game

seen in Table 2 during the first 100 time steps of a test run. The reason why only 100 time steps are shown

is because after that it is one line (the one already peaking for both players) that goes towards one and the

rest goes towards zero.

Neither is it good that one of the players crashes when the initial altitudes are 6km and

3km respectively even though totally avoiding crashes might be hard in such a simplified

model. One problem could be that the players have so few control variable values to

choose from. More possible values grants more flexibility for the players and might make

it possible for a player to save itself from a crash. A test with more feasible values for the

control vector (8) was therefore conducted. Now the bank angle variable is allowed to

assume the value ±π/4 in addition to the previous feasible values, for both players. The

maximum rate of change is still ±π/2 however. This time the result is different. White

player does not only manage to stay in the air but ends up winning the game, even though

the change to the control variables where identical for both players. The reason this

particular solution is not used in this work is because of the high computational cost

which additional possible values for the control variables brings. In a case where both

players use a 3-step look-ahead strategy and where the game lasts for 150 time steps, the

runtime of the model is increased with 600% when only adding ±π/4 to the feasible

control values. Another solution could be to implement additional or harder constraints to

the ones presented in section 3.2.

 27

Symmetrical initial states of the players should not give symmetric results in this test

scenario since one player is starting with a distinct advantage over its opponent in all

runs, so it is good that it does not.

4.1.2 Parallel

In Figure 7 the initial states of the players in a parallel scenario is shown. The initial

default states of the players in this scenario are shown in Table 6. The altitude h, velocity

v and distance x are varied the same way as in the chase scenario.

Table 6: Initial default states of the players in the parallel scenario.

 x0, m y0, m h0, m γ0, rad. χ0, rad. v0, m/s

Black 0 5000 5000

0 π/2 240

White 8000 5000 5000

0 π/2 240

Results

When both players start on equal conditions regarding altitude and velocity, the results

are again very similar. A game only last ~20 time steps and then ends in a joint capture.

This result is presented in Figure 14.

Figure 14 The players start on equal condition regarding height and speed and catch each other.

When the initial distance is varied the result is similar to the one shown in Figure 14.

Only the case when the initial distance is set to 2km the result appears a little different.

The game still ends in a joint capture but in this case the aircrafts can not turn against

 28

each other fast enough resulting in a little longer game. So instead of catching each other

like in Figure 14 the players pass each other and then turn towards the opponent again

and this time they catch each other.

If the initial altitude difference between the players is 3km, the player with the highest

starting altitude wins and the trajectories of the players look very similar in all cases. The

result is shown in Figure 15. When the initial altitude is symmetric, also the result is

symmetric.

However if the altitude difference is 6km the result is not symmetric. When white player

starts low the result is similar to the one in Figure 15 with the difference that it is the

player with lowest initial altitude (white) that wins the game. But when black player

starts low it is white player who ends up being hunted after a few time steps but still

manages to keep clear of black player until Nmax is reached, an outcome similar to the one

in Figure 10.

Figure 15 The players start parallel with 3km altitude difference and the one with highest initial altitude

wins.

If a player has initially higher velocity than its opponent it ends up being hunted after a

few time steps. It still manages to keep away from that same opponent, shown in Figure

16.

In one of the cases (and its symmetric case), when the velocity is initially at its highest

difference, the player with initially the highest velocity gets in a disadvantage situation

and dives to about 1km altitude. Then, when its chasing opponent tries to dive after, it

does so too steep and fast making it crash into the ground (altitude below zero).

 29

Figure 16 White player has initially the higher velocity, gets chased but manages to keep away from the

opponent.

The combined outcome of the parallel scenario is shown in Figure 17.

Figure 17 Combined outcome of the game in the parallel scenario. W/B-adv. means that black player has

the advantage in the corresponding test case and vice versa.

 30

Discussion

The first results presented seem reasonable. When none of the players have an initial

advantage over the other they act identical. The same goes for when the distance is varied

since this does not give any advantage to either of the players.

In this scenario the player with the altitude advantage manages to take advantage of the

situation which is a good rating for the model. The case with initial altitude difference of

6km is not. With symmetrical initial values a result with symmetric outcome is wanted.

From Figure 18 it becomes clear that in the beginning the two players starting with

altitude 3km in the two cases uses (with one exception) the same actions with the same

utilities. It is not exactly the same actions, since it is a parallel scenario the bank angles

are negative for one player and it is the absolute value for the bank angle which is used in

Figure 18. After 75 time steps something happens which makes the two players chose

different actions. Since it is a 3-step look-ahead game it is hard to say exactly where the

utility values come from since it depends on the probability distribution three steps ahead.

The result might have something to do with the fact that the players have to turn in

different directions (right, left) to approach the other player since this is the only thing

that separates the conditions of the players. There is no difference in the result when the

players initially switch places with each other.

Figure 18 Difference between control- and utility values of black and white player when starting with

symmetric initial states.

An initially higher velocity does not seem to be an advantage in this scenario since, in a

majority of the cases, the plane with higher initial velocity ends up being hunted. This

might have to do with the fact that an aircraft with lower velocity can turn faster and

therefore can end up in an advantage state faster than an opponent with higher velocity.

 31

An additional test where one player had higher initial velocity was conducted, this time

with more feasible values for the control vector (8). Now the bank angle variable is

allowed to assume the value ±π/4 in addition to the previous feasible values, for both

players. The maximum rate of change is still ±π/2 however. This test resulted in a victory

for the player with the lowest initial speed, none with a crash of either player. So this

again shows that initial higher velocity in the parallel scenario is not preferable.

The result with a crashing player has much to do with the fact that one player does a

controlled dive and the opponent wants to follow it but dives too steep and is not able to

save itself in time due to the high speed obtained from the dive. A solution to this type of

problem is shown in section 4.1.1.

4.1.3 Head-to-head

The initial states of the players in a head-to-head scenario are shown in Figure 8. From

here, first the relative height is varied followed by variation of relative speed and distance

respectively.

The initial default states of the players in this scenario are shown in Table 7. The altitude

h, velocity v and distance x are varied the same way as in the chase scenario.

Table 7: Initial default states of the players in the head-to-head scenario.

 x0, m y0, m h0, m γ0, rad. χ0, rad. v0, m/s

Black 0 5000 5000

0 0 240

White 8000 5000 5000

0 π 240

Results

In the cases when starting at the same altitude and with the same speed the players

mirrors their movement completely as shown in Figure 19. There are two exceptions

though, in the case when the altitude is initially at 6km for both players and the case

when the velocity initially is 240m/s for both players one of them deviates from the

symmetric path and begins to hunt the other as shown in Figure 20.

 32

Figure 19 The players start with identical altitude and velocity which ends in symmetric trajectories.

Figure 20 The players start with identical altitude and velocity but the trajectories are not symmetric.

In the cases with a distance variance of 2km and 5km, the players had little time to react

before they could catch each other so the game ended in a joint capture after three and

nine time steps respectively. The case with a distance of 8km between the players gives

identical initial states as in the case when the initial velocity of both aircrafts are 240m/s

when the test of varying speed is carried out. The result is also identical and is mentioned

above.

 33

When the altitude differs between the players the results are scattered. If the aircrafts start

at 3km and 6km respectively, the player with the lowest altitude crashes into the ground,

similar to one of the results in section 4.1.1.

If the aircrafts start with altitudes 3km and 9km respectively, the player with the highest

altitude begins to hunt its opponent after a few time steps but the game ends in a draw,

shown in Figure 21. Finally if the players start with an altitude of 6km and 9km

respectively the player with the highest initial altitude ends up being chased but still

manages to keep away from its opponent. The game ends with a draw similar to the result

in Figure 16.

Figure 21 Black player starts with higher altitude and end up hunting white player.

The results are very scattered when the speed is varied as well. If a player with initial

velocity 360m/s starts against an opponent with 300m/s it is able to begin hunting that

opponent and eventually catches it. This result is presented in Figure 22.

When the initial velocities of the players had the largest difference, i.e. 360m/s and

240m/s respectively, the player with lowest velocity ended up hunting its opponent but

was unable to catch it as shown in Figure 23.

 34

Figure 22 Black player starts with higher velocity and manages to catch white player.

Figure 23 Black player starts with lower velocity and ends up hunting white player.

When the initial velocity of black and white player is 240m/s and 300m/s respectively

white player ends up hunting black player who in turn manages to escape from white

player making the distance between them exceed the maximum allowed distance between

the players. This is shown in Figure 24. When the initial velocities where switched the

result was different. Black player did end up chasing white player but in this case the

chasing player manages to catch its opponent quite quickly as shown in Figure 25. So

 35

when the initial velocities of the players where symmetric the results where not

symmetric.

Figure 24 Black player starts with lower velocity but manages to get away from white player.

Figure 25 Black player starts with higher velocity and manages to catch white player.

The combined outcome of the head-to-head scenario is shown in Figure 26.

 36

Figure 26 Combined outcome of the game in the head-to-head scenario. W/B-adv. means that black player

has the advantage in the corresponding test case and vice versa.

Discussion

When both players initially have the same altitude and velocity, as in Figure 19, the

players move identically, i.e. the control vector (8) is identical for both players during all

time stages of the game. This seems reasonable for the model since if the players fly

straight towards each other on equal conditions the utility values should be symmetric

around zero when choosing the bank angle for the control vector. This means that turning

right or left gives the same utility value for both players. This is the reason why

sometimes the result is as in Figure 20, where one player deviates from the symmetric

trajectory. Another reason for the result in Figure 20 is that if the players find themselves

in states which violate one or several of the constraints (29)-(34), they focuses only on

getting out of their illegal state and not on optimizing their path in regard to the opponent.

This can sometimes result in different control values for the two players and in turn

different results in the outcome.

It is hard to draw any conclusions from the results of varying the initial altitude of the

players since they are so different from each other. The expected result would be if the

player with the initial highest altitude could draw advantage of this. But this only happens

in two of the cases and neither of those two end in a catch of the opponent.

Higher velocity should give an advantage in an air-combat and in this scenario it does so

in a majority of the cases, some even ending in a catch of the opponent. This is a good

rating of the model.

Just as in the parallel scenario there was a test case where symmetrical initial values did

not result in symmetric trajectories of the players. A plot similar to the one done in Figure

 37

18 shows that also in this case the difference between the control values as well as the

utility values for each action are basically identical in the beginning for two players with

symmetric initial states.

4.2 Number of look-ahead steps

The model is heavily dependent on the moving horizon technique where the next states

and control vectors of a player are predicted for a certain number of look-ahead steps.

This is described in more detail in section 3.1. In this section it is evaluated how the

number of those steps in the look-ahead strategy affect the outcome of the game. Initially

the scenarios from above are used: chase, parallel and head-to-head.

4.2.1 Chase

The basic idea behind the chase scenario is shown in Figure 6 and the initial states of

both players are shown in Table 8.

Table 8: Initial default states of the players in the chase scenario.

 x0, m y0, m h0, m γ0 , rad. χ0, rad. v0, m/s

Black 0

5000 5000

0 0 240

White 2500

5000 5000

0 0 240

Results

Figure 27 show the outcomes for each test run done in this scenario. Two of the test cases

end in a draw; when black player has 1 and 3 number of look-ahead steps and white

player has 2 and 3 number of look-ahead steps respectively. The game terminates because

white player has managed to make the distance between the players exceed the maximum

allowed distance between the players. In the rest of the test cases, black player wins.

 38

Figure 27 Outcomes of the game when different numbers of look-ahead steps are used in the chase

scenario. B-adv. means that black player has the advantage in the corresponding test case.

Discussion

Figure 27 shows that when in a disadvantageous situation, as white player is in this

scenario, the relation between the numbers of look-ahead steps of the players does not

seem to make any difference. As mentioned in section 4.1, white player could be

suffering from starting with the uniform distribution (28) set in section 3.2.

The reason why white player succeeded in the cases where the game ended in a draw

with the players too far apart is that it used significantly more throttle than its opponent

and thus gained more speed. A good question is then why black player does not use a

higher value for its throttle variable, seeing as this probably would be in its best interest.

In the case where black player only has one look-ahead step the reason is that in a

majority of the time steps the utility values are identical for all throttle values, i.e. it is the

player’s belief that the throttle variable has no effect on the outcome. This is probably the

result of using just a single look-ahead step, the result also points to this since black

player manages better when that number is increased.

But black player also manages better when white players increases its number of look-

ahead steps. Increasing the number of look-ahead steps should logically give the player

additional information to make better decisions, which is not the case here. Perhaps the

additional uncertainty that comes with increased number of look-ahead steps makes white

player chose actions which are not as favorable as in the case when a 2-step look-ahead

strategy was used. Additional analysis of the result is required to find out the exact reason

why black player advantages from white player increasing its number of look-ahead

steps. But taking all test cases in this scenario into account builds a strong suspicion that

these two results are one-offs in the model.

 39

Black players’ throttle variable takes higher values in the case when both players have

three look-ahead steps, but still white player uses a higher value more frequently which

allows white player to climb away from black player. This time, the increased number of

look-ahead steps makes it too difficult to analyze the reason behind black player’s

behavior.

4.2.2 Parallel

The basic idea behind the parallel scenario is shown in Figure 7 and the initial states of

both players are shown in Table 9.

Table 9: Initial default states of the players in the parallel scenario.

 x0, m y0, m h0, m γ0, rad. χ0, rad. v0, m/s

Blue 0

5000 5000

0 π/2 240

Red 6000

5000 5000

0 π/2 240

Results

The outcomes for the test runs done for the parallel scenario are presented in Figure 28. A

clear pattern with a few exceptions can be identified, one where all test runs with equal

number of look-ahead steps for the players (with the exception where they both have one)

results in a joint capture, similar to the result in Figure 14. A further pattern is that

whenever a player has five look-ahead steps (except when they both have it) it wins. The

trajectories are often similar to the one in Figure 14, only that it does not end in a joint

capture since the player with less number of look-ahead steps tries to turn away from its

opponent during the last time steps but is still captured very fast.

All other test runs ended in a draw. One thing to say about the results in these cases is

that the player with lower number of look-ahead steps is the one that ends up in an

advantageous situation in the game. However it often ends with the distance between the

players exceeding the maximum allowed distance between the players.

 40

Figure 28 Outcomes of the game when different numbers of look-ahead steps are used in the parallel

scenario. W/B-adv. means that black player has the advantage in the corresponding test case and vice versa.

Discussion

As shown in Figure 28, the outcomes for this scenario are symmetric, which is a good

rating for the model since switching the number of look-ahead steps for the players

should result in switched outcome as well. An interesting extension to this evaluation

would be to continue increasing the number of look-ahead steps and see if the outcomes

of the game keep the symmetric shape they have in Figure 28 or if they diverge from it.

4.2.3 Head-to-head

The basic idea behind the head-to-head scenario is shown in Figure 8 and the initial states

of both players are shown in Table 10.

Table 10: Initial default states of the players in the head-to-head scenario.

 x0, m y0, m h0, m γ0, rad. χ0, rad. v0, m/s

Blue 0

5000 5000

0 0 240

Red 8000

5000 5000

0 π 240

 41

Results

The outcomes for the test runs for this scenario are shown in Figure 29. The trajectories

of the players were symmetric, similar to the result presented in Figure 19, when the

number of look-ahead steps where equal for the two players. One exception was when

both players used a 3-step look-ahead strategy; the result was then similar to the one in

Figure 20.

When the outcome was a draw, as in section 4.2.2, the player with lowest number of

look-ahead steps was the one to end up in an advantageous situation.

Figure 29 Outcomes of the game when different numbers of look-ahead steps are used in the head-to-head

scenario. W/B-adv. means that black player has the advantage in the corresponding test case and vice versa.

Discussion

The results in the diagonal in Figure 29, where the trajectories are symmetric for almost

all cases, are expected from the results in section 4.1.3. Even that there would be an

exception was expected when taking the results from that section into consideration

where also an explanation to why this behavior is possible is given.

In the other cases, there is clearly a form of symmetry in the results in this scenario as

there were in section 4.2.2. If lines were drawn along the diagonal in Figure 29, the

outcomes to the upper-left of the diagonal are advantageous for white player and the

outcomes to the lower-right are advantageous for black player. Another resemblance to

the results in section 4.2.2 is that when the numbers of look-ahead steps are high, there is

a winner in the game. Though in this case, the winners are switched over the diagonal

from results in the previous section.

 42

Conclusions

Giving any general guidelines about how many number of look-ahead steps are best to

use is difficult to do since the results between in particular the parallel and the head-to-

head scenarios are so different. In the parallel case, five look-ahead steps seem to be a

good choice while in the head-to-head scenario this almost guarantees a loss. If analyzing

logically, an increased number of look-ahead steps should grant an advantage in the game

if both players start on equal conditions as in the parallel and head-to-head scenarios.

This would be results similar to the ones in the parallel scenario. But here it is more the

situation that decides the number of look-ahead step which is best to use, something that

is well illustrated in the chase scenario where the number of look-ahead steps not

mattered at all.

4.3 Correctness when predicting next action

In this section the goal is to evaluate how accurate in its prediction the look-ahead

strategy is. Let us say that a player, in time step k of a 3-step look-ahead game, is

approximating the control vectors for the next three steps to [uk,uk+1,uk+2]. When the

game later arrives at time step k+2, the evaluation is to check how far from the predicted

control vector in time step k the control vector actually implemented in time step k+2 is.

With a perfect system the predicted and the actually implemented control vectors are

identical. However, as the number of steps k in the k-step look-ahead strategy is

increased, the uncertainty of the system should increase and thus affecting how well the

control vector can be predicted.

The chase- parallel- and head-to-head scenario presented in Figure 6, 7 and 8 respectively

are used in this evaluation with the same initial values as in section 4.2. A 5-step look-

ahead strategy is used for each scenario.

For all scenarios, control vectors used when either player is in an infeasible state

according to the constraints in section 3.2 are removed from the following results. This is

because the players are not planning when in such a state, their only goal is to get out of

it.

4.3.1 Chase

As in the previous evaluations, it is white player that has the initial disadvantageous

position. The game ended after 50 time steps and the outcome was a black player victory

with a trajectory result similar to the one presented in Figure 9.

The mean value of the absolute difference for all three variables at the different predicted

steps (for a certain prediction step, sum the absolute difference in all time steps together

and divide by the total number of time steps in the game) are displayed in Figures 30-32.

With this mean value it is easier to see the difference in prediction correctness between

the different prediction steps. A mean value close to zero is of course preferable. The

difference to the implemented control variables gradually increases in step two, three,

four and is at it highest in the fifth approximation of the control vector.

 43

Figure 30 Mean values for the absolute difference of the throttle setting variable for both players in the

chase scenario.

Figure 31 Mean values for the absolute difference of the bank angle variable for both players in the chase

scenario.

 44

Figure 32 Mean values for the absolute difference of the load factor variable for both players in the chase

scenario.

Discussion

As shown in Figures 30-32, black player approximates its control vector in general and

its load factor in particular better than white player, even though it is only marginally

better. This might have to do with the fact that it is easier to approximate your control

vector when in an advantageous situation in the game which black player is in this

scenario. However, to make that conclusion would require more than just one test case

pointing to that result.

4.3.2 Parallel

The game in this scenario ended after 15 time steps with a joint capture and the result of

the game was similar to the one presented in Figure 14.

The mean value of the difference for all three control variables at the different predicted

steps are displayed in Figures 33-35. The difference to the implemented control variables

does not gradually increase as in section 4.3.1, only in the case of the load factor variable

is this true. Instead, the difference to the implemented bank angle gradually decreases and

the difference to the implemented throttle setting both increase and decrease for each

approximation step.

 45

Figure 33 Mean values for the absolute difference of the throttle setting variable for both players in the

parallel scenario.

Figure 34 Mean values for the absolute difference of the bank angle variable for both players in the parallel

scenario.

 46

Figure 35 Mean values for the absolute difference of the load factor variable for both players in the parallel

scenario.

Discussion

The mean values are identical for all control variables, this seems logical if the trajectory

result is of the kind presented in Figure 14 where the players simply turn in the direction

of the other. The bank angle should be negated for one player but it is the absolute mean

value shown in Figure 34.

Still, the result does not appear as expected. For the throttle setting, the approximation

done in the third step is the best one according to the mean values in Figure 33 where the

second one is expected to be the best. The mean values for the difference of the bank

angle variable even decreases as the approximation step increases. This should be the

other way around, more like the results in section 4.3.1 and as the load factor in this

scenario. However, both the throttle setting as well as the bank angle varies within their

full interval, [0 1] and [-π/2 π/2] respectively and among only three numerical values in

every time step. This means that it is easier for the approximation to get the values for

these two variables right, since there are so few of them. It is easier to ‘get lucky’, which

might be the case here. There are also very few time steps compared to the other

scenarios in this evaluation which is something that also suggests that this result is a one-

off or at least not something to draw conclusions out of.

4.3.3 Head-to-head

For this scenario, the test is done with different number of look-ahead steps between the

players. White player uses a 4-step look-ahead strategy and black player uses a 5-step

look-ahead strategy in the game. This is because, if both were to use a 5-step look-ahead

 47

strategy, the trajectory of the players would be symmetric (similar to the result in Figure

19 and also seen in section 4.2) which, in turn, would mean symmetric control vectors.

Since it is the difference in control vectors that is examined in this section, it is more

interesting to examine a result that is not as predictable as a result with symmetric

trajectories would be.

The trajectory result of the game is similar to the one in Figure 25, only the roles are

switched and it is white player that is chasing and catching black player.

The mean value of the absolute difference for all three variables at the different predicted

steps are displayed in Figure 36-38. Here, as well as in section 4.3.1, the difference to the

implemented control variables gradually increases for each approximation step.

Figure 36 Mean values for the absolute difference of the throttle setting variable for both players in the

head-to-head scenario.

 48

Figure 37 Mean values for the absolute difference of the bank angle variable for both players in the head-

to-head scenario.

Figure 38 Mean values for the absolute difference of the load factor variable for both players in the head-

to-head scenario.

Discussion

One odd thing about the results presented for the head-to-head scenario is that in the last

prediction step the throttle setting is predicted very poorly compared to the previous done

predictions for each player. In the other evaluations the mean value of the throttle setting

 49

difference has barely been over 0.5, now it approaches 1. Observe that this also happens

in different approximation steps for the two players, four and five respectively, but still in

the last step predicted. What this depends on would require additional testing to draw any

accurate conclusions about.

However, the results in section 4.3.1 pointed towards that a player in an advantageous

situation in the game was better at approximating the control vectors. This also seem to

be true in this scenario as the chasing white player’s mean values are considerably lower

for the bank angle and load factor variables.

4.4 Different modeling of the opponent’s decision strategy

When a player chooses its control vector, as described in section 3.1, it compares a

possible control vector against all of the opponent’s possible control vectors. That is, the

player assumes that the opponent chooses its control vector with a uniform probability.

This section introduces other ways of assuming how the opponent makes its decisions

and compares those against each other.

Uniform probability

This is the technique used in the previous evaluations and the one explained in section

3.1. Basically, for a certain possible new state, a player uses the utility value from all

possible states the opponent can reside in the next step and sums them together. This

means that the players believe that it is equally possible for the opponent to take any of

its possible actions, hence the name uniform probability strategy.

Min-max solution

In the game presented in chapter 3, the players always have full view of its opponent

whereabouts, which means that they always know what the best action to take in concern

to where the opponent is. So now when a player chooses its control vector, instead of

taking every possible control vector of the opponent into account, the player assumes that

the opponent optimizes its decision and chooses the action which maximizes the utility

for itself and thus minimizing the utility for the player. The player then maximizes its

own utility so to choose the action which is the least favorable for the opponent.

Weighted probability

This is a variant of the two methods above. The player still takes every possible control

vector of the opponent into account, but those actions are weighted in the sense of which

action a player beliefs its opponent is most likely to chose. In this case the actions which

grant the opponent higher altitude and/or higher velocity are considered more likely for

the opponent to chose and are therefore weighted more.

 50

Both players use a 3-step look-ahead strategy in all cases during this evaluation. The

scenarios and initial states for both players in all test cases are the same as in section 4.2.

The results are presented also in a similar way as in section 4.2; the three different

strategies for modeling the opponent’s decision are all compared against each other

giving a total number of nine test runs for each scenario.

Results

Figure 39 show the outcomes of the game for the chase scenario. In the cases when white

player uses the uniform probability strategy of modeling black player’s control decision

the game always ends in a draw. In two of those cases the game terminates because the

distance between the players exceeds the maximum allowed distance between players,

this result is shown in Figure 10. In all the other cases black player wins in a similar

manner to the one presented in Figure 9.

Figure 39 Outcomes of the game when varying the strategy for modeling the opponent's decision in the

chase scenario. B-adv. means that black player has the advantage in the corresponding test case.

Figure 40 show the outcomes of the game for the parallel scenario. When either of the

players uses the min-max strategy of modeling the opponent’s decision they end up in an

advantageous situation and in one case black player even manages to catch white player.

The exception is when both players use the min-max strategy, then the game ends in a

joint capture.

In all other cases the game ends in a joint capture similar to the result in Figure 14.

 51

Figure 40 Outcomes of the game when varying the strategy for modeling the opponent's decision in the

parallel scenario. W/B-adv. means that black player has the advantage in the corresponding test case and

vice versa.

Figure 41 show the outcomes of the game for the head-to-head scenario. When both

players use the uniform probability strategy the result is similar to the one in Figure 20

but with a white player victory. A reason why the result can be inconsistent with a white

player victory instead of a black player victory as in Figure 20 in this case is discussed in

section 4.1.3. In the other two cases when the players use the same strategy for modeling

the opponent’s decision the game end in a draw with symmetric trajectories for the

players similar to the result in Figure 19.

When either of the players uses the min-max strategy against either of the other two

strategies it ends up in a disadvantageous situation. The game still ends in a draw though.

The last two cases end in a draw with the player using the uniform probability strategy

ending up in an advantageous situation similar to the result in Figure 23.

One notable result for the head-to-head scenario is that a player using the min-max

strategy for modeling the opponent’s decision and who end up in an advantageous

situation manages to follow its opponent very well even though it does not end in a catch

of the opponent, like the result in Figure 21.

 52

Figure 41 Outcomes of the game when varying the strategy for modeling the opponent's decision in the

head-to-head scenario. W/B-adv. means that black player has the advantage in the corresponding test case

and vice versa.

Discussion

From the chase scenario it is clear that a uniform probability modeling of the opponent’s

decision is the best strategy to use when being chased as white player is in that scenario.

The results in section 4.2 stated that using different number of look-ahead steps did not

help the chased player in any way. But here are some results that point towards, that by

using the uniform probability way of modeling of the opponent’s decision, the chased

player can better manage to escape its opponent. However, tests done with varying the

number of look-ahead steps for the two players while also varying black player’s way of

modeling of the opponent’s decision gave results similar to the one shown in Figure 9

where black player catches white player after a few time steps. With this information it

seems that the uniform probability strategy is not the optimal strategy for a chased player

after all. Instead it appears as if it is the case when both players use a 3-step look-ahead

strategy which is advantageous for the chased player, as it was in section 4.2.

The fact that the game ends in a joint capture when both players use the same way of

modeling the opponent’s decision is expected from the results in section 4.2 where equal

conditions for the players made them turn towards each other in the parallel scenario,

making the game end in a joint capture.

Using the min-max strategy for modeling the opponent’s decision gives an advantage in

the parallel scenario. But it is an inconsistency when the strategies min-max and uniform

probability are switched between the players but the result is not, as shown in Figure 40.

Inconsistencies are not good for the modeling but there have been such results in the

 53

previous evaluations. Examining the utility values for each action in a certain time step

more thoroughly and comparing the two inconsistent test runs against each other showed

a pattern. Namely that when the control vectors for two players using the uniform

probability strategy differs, the players are in an infeasible state. It is the bank angle

which differs, or rather it is identical in the comparison. But since it is a parallel scenario

the bank angle should be negated when comparing it between the two players. This

means that the function described in section 3.1 is used to find a suitable control vector so

that the player can get out of its infeasible state. That function does not take any

consideration to where the plane is or where its opponent is, only to get the player into a

feasible state again. So the function gives identical bank angle to both players where, if

the game should be symmetric, the function should give a negated bank angle to one of

the players. This result has been seen in parallel scenarios in previous evaluations so

perhaps using additional possible values for the bank angle or letting the function

described in section 3.1 take more parameters into consideration could solve this

problem.

As in section 4.1 and 4.2 the trajectory result of the players are symmetric when they are

starting on equal conditions. Also as seen previously there is an exception and in this case

it is when both players start with the uniform probability strategy, so this result was

expected.

Once again there is an advantage/disadvantage pattern when the players use the min-max

strategy. But this time, in the head-to-head scenario, it is reversed. This time it is the

opponent which gets the advantageous situation when a player uses the min-max strategy.

This is somewhat strange since logically the min-max strategy would be the best one,

which it is in the parallel scenario. Examining the predicted control vector of the

opponent and the actually implemented control vector gives a partial explanation. In a

test with only one look-ahead step for both players, the min-max strategy manages

perfectly when predicting the opponent’s control vector. But as the look-ahead steps

increase, so does the uncertainty in predicting. In a test with a 2-step look-ahead strategy

for both players are approximately 1/10 control vectors wrongly predicted. Increasing the

number of look-ahead steps to three, the same number as in the test above, increases the

error to approximately 2/10 control vectors.

Another way of looking at it is that by using the uniform probability strategy a player end

up in an advantageous situation since also in the case of a uniform vs. weighted

probability strategy, the uniform gives an advantage over the weighted. The weighted

strategy does not grant any obvious advantages. Perhaps if the players actively tried to

gain additional altitude or velocity this strategy would be more useful.

 54

5. Conclusions and future work
This thesis introduces a model of the successive control decisions in one-on-one close

range air combat using a multi-agent influence diagram. Due to the complexity of

dynamic programming, the influence diagram is truncated by a moving horizon

technique. The motion of the players is described by a set of differential equations and

the relation between them by a combat state vector, consisting of the distance between

the aircraft and the angles between the velocity vectors and the line of sight. A player

estimates the probability that it resides in any of four possible states; neutral,

advantageous, disadvantageous and mutual disadvantageous. The pilot’s preferences are

modeled by utility functions, one for each possible state, and the probability distribution

for residing in each state works as a weight for those utility functions. In each time step,

the players are maximizing the cumulative payoff (calculated by the sum of the utilities

for each state, weighted with the corresponding probabilities) each possible action gives.

The evaluation was done in three different scenarios; chase, parallel and head-to-head

which are shown in Figures 6, 7 and 8 respectively.

Section 4.1 shows that there are some inconsistencies when the initial states of the

players are varied. The few cases with players crashing are disturbing and not a very

good rating for the model. However, additional feasible control values are proposed as a

solution in the discussion of that chapter and are also proven to help. The reason why

these additional feasible control values are not used in the evaluations of this thesis is

because of the increase in computational complexity they bring. This is one aspect where

the computational complexity of the model becomes a hinder in the usability of it. The

computation time of a modeling depends on how many look-ahead steps being used and

of course how many time steps it takes before the game terminates. A game where both

players use a 3-step look-ahead strategy and where the game terminates after 100 time

steps has a computing time of 1 minute and 31 seconds to complete. Whereas if the

players use a 5-step look-ahead strategy in the same number of time steps, the game has a

computing time of 12 hours, 37 minutes and 31 seconds. This clearly demonstrates the

computational explosion of dynamic programming.

Another example where a decrease in the computational complexity is wanted is in

chapter 4.2 where additional number of look-ahead steps would be required to draw any

real conclusions from the parallel and head-to-head scenarios. However, modeling the air

combat with six look-ahead steps for both players takes over 24h to complete with the

current implementation which is too much to be included in this work. Using five look-

ahead steps are still more than the three used in [1] which this work is inspired by, which

indicates that improvements are possible. The results from the chase scenario do however

very convincingly show that an advantageous position is far more important than the

number of look-ahead steps used. In the discussion of [1] it is suggested that a longer

planning horizon benefits a less agile player. One of the examples used in [1] also shows

that if the agility is restrained for the chasing player, its opponent is able to not just to get

away, but even to swing around behind the initially chasing player and win the game.

The evaluation of the correctness when predicting the control variables in the future time

steps gave reasonable results. Since the uncertainties about the game increase with every

step, it is not possible to ask that the model predicts every control correct. Instead the

 55

result in section 4.3 shows that it becomes harder for each new step ahead to predict the

control variables.

Section 4.4 introduced different strategies for modeling the opponent’s control variables.

The uniform probability strategy which is used in all other evaluations, a min-max

strategy where assuming that the opponent always chooses the optimal action for itself

and a weighted probability where actions leading to higher speed and/or altitude assumed

more likely to be chosen were all tested against each other. The uniform probability

strategy of modeling the opponent’s decision seems to be a winning concept when being

chased. But in the discussion in that same section it becomes clear that if the opponent

chooses another number of look-ahead steps that advantage is gone. So, as in section 4.2,

the conclusion is that an initial advantageous position is more important than any strategy

(at least those tested in this work). For the parallel and head-to-head scenarios, using the

min-max strategy is favorable in one scenario but unfavorable in the other. This makes it

hard to draw any general conclusions.

The results from sections 4.1 and 4.3 shows that this model is robust and behaves

reasonable from a real world air combat point of view, or at least can be made to behave

reasonable if given additional feasible control values. Sections 4.2 and 4.4 are more about

testing the capabilities of the model.

To summarize, influence diagrams grants an obvious way of taking decisions based on

several different inputs in a world of uncertainty which is the case in air combat. The

presented model and its results during the evaluation clearly shows that a working and

reasonable model can be obtained from using influence diagrams to model close range

air-combat. The model’s usability areas are many; everything from analyzing different

aircraft models or tactics against each other to support in pilot training, in for example air

combat simulators.

For future work, here are some ideas on how the model could be improved. As mentioned

above does the computational heaviness of the model perform as a hinder, both when

having to truncate the influence diagram by the moving horizon technique but above all

when having to limit the control variables for the players. But there are several ways of

decreasing the runtime for the model. Parallelism has not been taking advantage of in the

implementation done in this thesis and that would be the most obvious method of

speeding up the modeling. Even moving some of the calculations to the GPU could be a

valid solution which would grant even greater speedup.

Making the players act more as pilots in a real life air combat is another thing which

would make the model more interesting. This could be done by extending the information

included in the combat state vectors. In this thesis, the combat state vector consists of the

distance between the aircraft and the angles between the velocity vectors and the line of

sight. One example of an extension is features describing the energy levels between the

players, which is an vital component in an air combat [13].

 56

References
[1] - K. Virtanen, J. Karelahti, and T. Raivio, “Modeling Air Combat by a Moving

Horizon Influence Diagram Game”, Journal of Guidance Control and Dynamics, vol. 29,

no. 5, pp. 1080-1090, 2006.

[2] - Howard, R. A., and Matheson, J. E., “Influence Diagrams,” The Principles and

Applications of Decision Analysis, edited by R. A. Howard and J. E. Matheson, Vol. 2,

Strategic Decision Group, Palo Alto, CA, 1984, pp. 719–762.

[3] - Shachter, R. D., “Evaluating Influence Diagrams,” Operations Research, Vol. 34,

No. 6, Stanford University, Stanford, California, 1986, pp. 871–882.

[4] - Koller, D., and Milch, B., “Multi-Agent Influence Diagrams for Representing and

Solving Games,” Proceedings of the 17
th

 International Joint Conference of Artificial

Intelligence, Morgan Kaufmann Publishers, Seattle, WA, Aug. 2001.

[5] – MathWorks documentation center about the hgtransform object.

http://www.mathworks.se/help/matlab/ref/hgtransform.html (Accessed: 6 June 2013)

[6] - Virtanen, K., Raivio, T., and Hämäläinen, R. P. “Modeling pilot's sequential

maneuvering decisions by a multistage influence diagram.” Journal of Guidance, Control,

and Dynamics 27, number 4, pages 665-677. © 2004 American Institute of Aeronautics

and Astronautics (AIAA). 2004.

[7] – Technical specification for JAS-39 Gripen provided by the Ministry of defence and

armed forces of the Czech Republic.

http://www.army.cz/scripts/detail.php?id=38154 (Accessed: 6 June 2013)

[8] - Virtanen, K., Hämäläinen, R. P., and Mattila, V., Team optimal signaling strategies

in air combat. IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems

and Humans, accepted for publication. © 2005 by authors and © 2005 IEEE.

[9] - Ben-Gal I., Bayesian Networks, in Ruggeri F., Faltin F. & Kenett R., Encyclopedia

of Statistics in Quality & Reliability, Wiley & Sons (2007).

[10] – H. J. Pesch. Real time computation of feedback controls for constrained optimal

control problems – Part 2: A correction method based on multiple shooting. Department

http://www.mathworks.se/help/matlab/ref/hgtransform.html
http://lib.tkk.fi/Diss/2005/isbn9512275732/article5.pdf
http://lib.tkk.fi/Diss/2005/isbn9512275732/article5.pdf
http://www.army.cz/scripts/detail.php?id=38154

 57

of Mathematics, University of Technology, P.O.Box 202420, D-8000 Munich 2, Federal

Republic of Germany.

[11] - Virtanen, K., Ehtamo, H., Raivio, T., and Hämäläinen, R. P., 1999. VIATO—

Visual Interactive Aircraft Trajectory Optimization.IEEE Transactions on Systems, Man,

and Cybernetics – Part C: Applications and Reviews 29, number 3, pages 409-421. ©

1999 IEEE.

[12] – The International Standard Atmosphere:

http://home.anadolu.edu.tr/~mcavcar/common/ISAweb.pdf (Accessed: 6 June 2013)

[13] – Shaw, R. L., Fighter Combat, Tactics and maneuvering, Naval Institute Press,

Annapolis, MD 1985.

[14] - Ross, S., A First Course in Probability, 7th ed., Pearson Prentice–Hall,Upper

Saddle River, NJ, 2006. Proposition 3.1 pp. 74.

[15] - Jensen, F., F. V. Jensen, S. L. Dittmer. From influence diagrams to junction trees.

Department of Mathematics and Computer Science, Aalborg University. 1994.

[16] – Bertsekas, D. P., Dynamic Programming and Optimal Control, Athena Scientific,

Belmont, MA, 2001.

[17] - Cruz, Jr., J. B., M. A. Simaan, A. Gacic, Y. Liu. Moving horizon Nash strategies

for a military air operation. IEEE Transactions on Aerospace and Electronic Systems.

Vol. 38, No. 3, 2002, pp. 978–999.

[18] - Lakoba, Taras I. Simple Euler method and its modifications. Technical report,

University of Vermont. 2012.

http://www.cems.uvm.edu/~tlakoba/math337/notes_1.pdf (Accessed: 7 June 2013)

[19] - Ascher, Uri M.; Petzold, Linda R. Computer Methods for Ordinary Differential

Equations and Differential-Algebraic Equations, Society for Industrial and Applied

Mathematics, Philadelphia. 1998.

http://home.anadolu.edu.tr/~mcavcar/common/ISAweb.pdf
http://www.cems.uvm.edu/~tlakoba/math337/notes_1.pdf

 58

Appendix
This is a numerical example of how to obtain the optimal control vector for a player at a

certain stage k in the game. A 2-step look-ahead strategy is used. Consider two players,

black player and white player, with state vectors:

 B

kx = [B

kx B

ky B

kh B

k
B

k
B

kv] = [0 5000 5000 0 0 240],

W

kx = [W

kx W

ky W

kh W

k
W

k
W

kv] = [2500 5000 5000 0 0 240],

and control vectors:

 B

ku = [B

k B

k B

kn]
T
 = [0.5 0 1]

T
, W

ku = [W

k W

k W

kn]
T
 = [0.5 0 1]

T

The state vectors show that black player is pursuing white player.

Now the control vector for black player in stage k+1 is wanted. First the possible control

vectors in stage k+1 are listed for black player, for simplicity let’s say that the number of

possible control vectors for black player in the next time step, #u
B
, is three in this case:

 B

ku 1, possible = [B

ku 1,1 

B

ku 1,2 

B

ku 1,3 ] =

















012

000

5.05.05.0

So #u
B
 = 3.

Since each player is fully aware of where its opponent is and which actions it might take

the possible control vectors for the opponent can be listed. In this example, white player

assumed to be the opponent, who is also assumed to only be able to use three new control

vectors:

W

ku 1, possible = [
W

ku 1,1 

W

ku 1,2 

W

ku 1,3 ] =

















012

000

5.05.05.0

So #u
W

 = 3.

This means there are three possible states, calculated by (A7), for each player in the next

time stage.

 59

x’ = v cos γ cos χ, (A1)

 y’ = v cos γ sin χ, (A2)

 h’ = v sin γ, (A3)

 γ’ =
v

g
(n cos μ – cos γ), (A4)

 χ’ =
v

g
(n sin μ / cos γ), (A5)

 v’ =
m

1
(η Tmax – D(M(v,h))) – g sin γ =

m

1
 (η Tmax –

2

1
CDv

2
Sς (h)) – g sin γ, (A6)

xk+1 = xk +Δt f(xk,uk) (A7)

The function f consist of [x’ y’ h’ γ’ χ’ v’] calculated by equations (A1)-(A6)

respectively, Δt is equal to one.

 B

kx 1, possible = [ B

k

B
ux 1,1  ,  B

k

B
ux 1,2  ,  B

k

B
ux 1,3 ] =





























1.2421.2421.242

000

0408.000408.0

500050005000

500050005000

240240240

W

kx 1, possible = [ W

k

W
ux 1,1  ,  W

k

W
ux 1,2  ,  W

k

W
ux 1,3 ] =





























1.2421.2421.242

000

0408.000408.0

500050005000

500050005000

274027402740

For each combination of these possible states of black and white player, a combat state

vector is calculated, giving a total of #u
B
*#u

W
 possible combinations. In this case

3*3=9

combat state vectors for each player.

 60

     






 


B

k

B

k

B

k

W

k

B

k

B

k

B

k

W

k

B

k

B

k

B

k

W

kB

k
d

hhyyxx 


sinsincoscoscos
arccos (A8)

     






 


B

k

W

k

B

k

W

k

W

k

W

k

B

k

W

k

W

k

W

k

B

k

W

kB

k
d

hhyyxx 


sinsincoscoscos
arccos (A9)

 B

kd = 222)()()(B

k

W

k

B

k

W

k

B

k

W

k hhyyxx  (A10)



















BBB

BBB

BBB

B

k

ccc

ccc

ccc

c

3,32,31,3

3,22,21,2

3,12,11,1

1 ,



















WWW

WWW

WWW

W

k

ccc

ccc

ccc

c

3,32,31,3

3,22,21,2

3,12,11,1

1

Each combat vector i

mnc , (n stands for the player’s control vector and m for the

opponent’s control vector, i.e. B
c 3,1 is the combat state vector obtained from B

u1 and W
u 3)

consists of the bearing angle ω, the angle-off θ, and the distance d and they are calculated

according to (A8)-(A10).

Since this matrix of combat vectors is a tensor (dimensions #u
B
*#u

W
*3, 3 since it is the

length of i

mnc ,) it would be too messy to give all numerical values here, but for an

example are the values of B
c 1,1 and W

c 1,1 shown below and the rest are left for the interested

reader:

B
c 1,1 = [B

1,1 , B

11 , Bd11] = [0.0408, 0.0408, 2500]

W
c 1,1 = [B

1,1 , B

11 , Bd11] = [3.1008, 3.1008, 2500]

Given a combat state vector we can calculate probability and utility values to see how

“good” it is. The probabilities consist of a four value vector which says with what

probability the player is in any of the four possible states of the game (shown in Table 2).

The vector is shown in (A11) and how to calculate each element is shown in (A12).

i

kp (i

kc)= [P(i

k =1 | C= i

kc) P(i

k =2 | C= i

kc) P(i

k =3 | C= i

kc) P(i

k =4 | C= i

kc)]
T
 (A11)

 61

P(i

k 1 = j | C = ck+1
i
) =

   
     






4

1 11

i

1k

11

i

1k

|PP

|PP

n

i

k

i

k

nn

jj

i

k

i

k

c

c
 =

   
     






4

1 11

i

k

11

i

k

|P|P

|P|P

n

i

k

i

k

nCn

jCj

i

k

i

k

i

k

i

k

cc

cc
 (A12)

where P(i

kc | i

k = j) = p
ω,i

(i

k | i

k = j)p
θ,i

(i

k | i

k = j)p
d,i

(i

kd | i

k = j). The utility for

each combat state vector also consist of a four value vector where each value is a utility

according to which threat assessment situation the player is assumed to be in. The vector

is shown in (A13) and each element is calculated according to (A14).

 i

kU (i

kc) = [U
i
(1, i

kc) U
i
(2, i

kc) U
i
(3, i

kc) U
i
(4, i

kc)]
T
, (A13)

 U
i
(j, i

kc) = i

jw , i

ju , (i

k) + i

jw , i

ju , (i

k) + id

jw , id

ju , (i

kd), j=1..4 (A14)

After calculating probabilities and utilities for each combat state vector, two tensors are

obtained (dimensions #u
B
*#u

W
*4, 4 since it is the length of both i

kp and i

kU) for each

player:

BProbabilities =

















B

3,3

B

3,2

B

3,1

B

2,3

B

2,2

B

2,1

B

1,3

B

1,2

B

1,1

PPP

PPP

PPP

, WProbabilities =

















W

3,3

W

3,2

W

3,1

W

2,3

W

2,2

W

2,1

W

1,3

W

1,2

W

1,1

PPP

PPP

PPP

BUtilites =

















B

3,3

B

3,2

B

3,1

B

2,3

B

2,2

B

2,1

B

1,3

B

1,2

B

1,1

UUU

UUU

UUU

, WUtilites =

















W

3,3

W

3,2

W

3,1

W

2,3

W

2,2

W

2,1

W

1,3

W

1,2

W

1,1

UUU

UUU

UUU

Once again it gets too messy go give all numerical values here. But the values of
B

1,1P and

B

1,1U are shown below and the rest are left for the interested reader.

 B

1,1P = [0.2453, 0.2714, 0.2322, 0.2510]
T

B

1,1U = [0.8503, 0.8503, 0.7534, 0.2471]
T

 62

Now the payoffs for each of these combat vectors can be calculated by (A15) and all

payoffs for each state (each control vector) of the player and opponent are summed

together giving one total payoff value for each control vector.

      i

k

i

k

i

k

i

k

W

k

B

k

i

kk cUcpuuJ 11111, ,  
T

 (A15)

 BPayoff =



































6764.06793.06764.0

6773.06802.06773.0

6764.06793.06764.0

JJJ

JJJ

JJJ

B

3,3

B

3,2

B

3,1

B

2,3

B

2,2

B

2,1

B

1,3

B

1,2

B

1,1

 WPayoff =



































3824.03691.03724.0

3715.03682.03715.0

3724.03691.03724.0

JJJ

JJJ

JJJ

W

3,3

W

3,2

W

3,1

W

2,3

W

2,2

W

2,1

W

1,3

W

1,2

W

1,1

 BTotalPayoff =









































0320.2

0348.2

0320.2

JJJ

JJJ

JJJ

B

3,3

B

3,2

B

3,1

B

2,3

B

2,2

B

2,1

B

1,3

B

1,2

B

1,1

WTotalPayoff =









































1140.1

1111.1

1140.1

JJJ

JJJ

JJJ

W

3,3

W

3,2

W

3,1

W

2,3

W

2,2

W

2,1

W

1,3

W

1,2

W

1,1

Now there is a total payoff value associated with each possible control vector for both

players. One thing to observe is that two of the control vectors for both players give the

same payoff value.

Since a 2-step look-ahead strategy is used, there now is a recursive call with every

possible control vector and corresponding new state for black player. The optimal control

vector for white player, i.e. the control vector with index equal the index of

max(WPayTot), is used in the recursive call together with its corresponding new state.

Since there are two control vectors corresponding to max(WPayTot), the vector with

lowest index is chosen, i.e. W
u1 .

The process is then repeated from the beginning three times, one for every possible

control vector of black player. Each recursive call returns the optimal control vector for

black player in the next step (k+2) and its corresponding payoff value. These three payoff

values are then added to the corresponding value in BPayTot. Then the control vector

with highest payoff value is chosen for implementation.

The algorithm is described in pseudo code below.

 63

Pseudo code

function[controlVectors, utility]=GetHighestUtilityVectors(NB,BS,WS,BC,WC,BP,WP)

// NB = number of look-ahead steps

// BS/WS = current state of black/white player

// BC/WC = current control vector for black/white player

// BP/WP = current probability distribution for black/white player

if(NB = 0)

 controlVectors = [];

 utility = 0;

else

BCnext = ProducePossibleControlVectors(BC);

WCnext = ProducePossibleControlVectors(WC);

BSnext = ProducePossibleStates(BCnext,BS); (A7)

WSnext = ProducePossibleStates(WCnext,WS); (A7)

BCo = ProduceCombatVectors(BSnext, WSnext); (A8)-(A10)

WCo = ProduceCombatVectors (WSnext,BSnext); (A8)-(A10)

BPayOff = sum(Probabilities(BCo,BP)*Utilities(BCo)); (A14)

WPayOff = sum(Probabilities(WCo,WP)*Utilities(WCo)); (A14)

WMax = max(WPayOff);

for i=1 to length(BCnext) do

 if(ViolatesContraints(BSnext(i))

 BPayOff(i) -= 1000;

 else

[C,U]=GetHighestUtilityVectors(NB-1,BSnext(i),

WSnext(WMax), BCnext(i), WCnext(WMax),

Probabilities(BCo,BP)(i), Probabilities(WCo,WP)(WMax))

BPayOff(i) += U;

 controlVectors = BCnext(BPayOff == max(BPayOff));

 64

The publishers will keep this document online on the Internet - or its possible

replacement - for a considerable time from the date of publication barring exceptional

circumstances.

The online availability of the document implies a permanent permission for anyone to

read, to download, to print out single copies for your own use and to use it unchanged for

any non-commercial research and educational purpose. Subsequent transfers of copyright

cannot revoke this permission. All other uses of the document are conditional on the

consent of the copyright owner. The publisher has taken technical and administrative

measures to assure authenticity, security and accessibility.

According to intellectual property law the author has the right to be mentioned when

his/her work is accessed as described above and to be protected against infringement.

For additional information about the Linköping University Electronic Press and its

procedures for publication and for assurance of document integrity, please refer to its

WWW home page: http://www.ep.liu.se/

På svenska/In Swedish:

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under en

längre tid från publiceringsdatum under förutsättning att inga extra-ordinära

omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut

enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell

forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan

inte upphäva detta tillstånd. All annan användning av dokumentet kräver

upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten

finns det lösningar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den

omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt

samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant

sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga anseende

eller egenart.

För ytterligare information om Linköping University Electronic Press se förlagets

hemsida http://www.ep.liu.se/

© [Christopher Bergdahl]

http://www.ep.liu.se/

