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veloped and evaluated. In particular, state estimation based on monocular vision
SLAM techniques is fused with data from onboard sensors. This is then used as
the basis for nonlinear adaptive control as well trajectory generation for a sim-
ple landing procedure. These components are connected using a new proposed
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Abstract

Use of Unmanned Aerial Vehicles have seen enormous growth in recent years due
to the advances in related scientific and technological fields. This fact combined
with decreasing costs of using UAVs enables their use in new application areas.
Many of these areas are suitable for miniature scale UAVs - Micro Air Vehicles
(MAV) - which have the added advantage of portability and ease of deployment.

One of the main functionalities necessary for successful MAV deployment in
real-world applications is autonomous landing. Landing puts particularly high
requirements on positioning accuracy, especially in indoor confined environments
where the common global positioning technology is unavailable. For that reason
using an additional sensor, such as a camera, is beneficial.

In this thesis, a set of technologies for achieving autonomous landing is devel-
oped and evaluated. In particular, state estimation based on monocular vision
SLAM techniques is fused with data from onboard sensors. This is then used as
the basis for nonlinear adaptive control as well trajectory generation for a sim-
ple landing procedure. These components are connected using a new proposed
framework for robotic development.

The proposed system has been fully implemented and tested in a simulated
environment and validated using recorded data. Basic autonomous landing was
performed in simulation and the result suggests that the proposed system is a
viable solution for achieving a fully autonomous landing of a quadrotor.

Sammanfattning

Under senare år har intresset och användningsområdena för obemannade flygfar-
koster ökat kraftigt. Utvecklingen har sporrats av tillgängligheten och utveckling-
en av datorer och annan relaterad teknologi som gjort att kostnader minskat och
möjliggjort nya tillämpningar.

En central funktionalitet för en självständig obemannad farkost är dess förmåga
att landa autonomt. Då landning ställer höga krav på nogrann positionering är
det förmånligt att använda andra sensorer, såsom en videokamera.

I denna rapport studeras en uppsättning teknologier som är intressanta för att
uppnå fullt autonom landning. Särskilt studeras kamerabaserad positionering med
SLAM, som fusioneras med inbyggda sensorer för att tillhandahålla positionering
till en olinjär reglering och referensgenerering till en enkel landningsmetod.

Systemet har implementerats och testats i en simulerad miljö och resultaten
indikerar att systemet, fullt implementerat, autonomt kan landa en quadrotor.
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Chapter 1

Introduction

In this thesis, a proposed high-level control system is presented for a quadrotor
developed by the AIICS1 team at Linköping University, the LinkQuad. The system
was to demonstrate autonomous landing, and while this goal could not be reached
within the time-frame of this Master’s thesis, the control system developed in this
thesis show promising initial results on the path to achieving autonomous landing
and aerial control.

Although the LinkQuad quadrotor was used as the development platform for
this thesis, the results are general and applicable to other quadrotors and, by
extension, other UAV configurations.

The LinkQuad is considered a MAV, a Micro Air Vehicle. The size of the
system poses limitations on the payload and processing power available in-flight.
This means that the implementations have to be done in an efficient manner on
the small computers that are available on the LinkQuad.

These limitations, however, do not necessarily limit the use of advanced sensor
fusion and control techniques, and the LinkQuad design is in fact quite suitable
for the proposed camera-based pose estimation due to its dual onboard computers
which allow distribution of the workload. The video-based estimation can thus
effectively be detached from the core control and state estimation and modularized
as an independent virtual sensor, which is exploited in this thesis.

1.1 Unmanned Aerial Vehicles

Unmanned Aerial Vehicles (UAVs) have been imagined and constructed for mil-
lennia, starting in ancient Greece and China [42]. The modern concept of UAVs
was introduced in the first world war, which illuminates the dominant role that
the military has played in the field over the last century. A commonly quoted
alliteration is that UAVs are intended to replace human presence in missions that
are ”Dull, Dirty and Dangerous”.

1The Artificial Intelligence and Integrated Computer Systems Division at IDA, Linköping
University.
http://www.ida.liu.se/divisions/aiics/
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2 Introduction

While the military continues to lead the development in the field [34], recent
years have seen a great increase in domestic and civilian applications [45]. These
applications range from pesticide dispersing and crop monitoring to traffic control,
border watch and rescue scenarios [10].

The type of UAV that is used in the implementation of this thesis falls under the
category of Micro Air Vehicles (MAVs)2. MAVs are designed to be man-portable
in weight and size and is thus limited in payload and available processing power.
This limitation, in combination with the unavailability of indoor positioning (e.g.
indoor GPS), has led to extensive use of off-board positioning and control in recent
research. Systems developed for instance by Vicon3 and Qualisys4 yield position-
ing with remarkable precision, but they also limit the application to a confined
environment with an expensive setup.

This thesis seeks a different approach, with an efficient self-contained on-board
implementation. GPS and external cameras are replaced by inertial sensors and
an on-board camera which uses Visual SLAM to determine the position of the
LinkQuad platform relative to its surroundings.

1.2 The LinkQuad Platform

The LinkQuad is a modular quadrotor developed at Linköping University. It fea-
tures four single-directional motors with propellers with fixed pitch and twist. The
core configuration is equipped with a standard set of sensors (accelerometer, gy-
roscope, pressure sensors, GPS receiver and magnetometer), but for the purpose
of this thesis, a monocular camera was also mounted. The camera feeds data into
a Gumstix microcomputer specifically devoted to video processing. This devoted
microcomputer is what allows the primary on-board Gumstix microcomputer to
focus on state estimation and control, without being overloaded by video process-
ing.

The primary microcomputer is running a framework named C++ Robot Au-
tomation Platform (CRAP), which was developed by the thesis’ author for this
purpose. CRAP is a light-weight automation platform with a purpose similar to
that of ROS5, a modular robotics framework developed by Willow Garage6. It
is, in contrast to ROS, primarily designed to run on the relatively low-end Linux
systems that fits the payload and power demands of a MAV. The framework is
further described in Appendix A.

The platform is also equipped with two microcontrollers, responsible for sensor
sampling, motor control, flight logging etc., as depicted in Figure 1.1. The micro-
controllers contain an implementation of a complementary filter to provide angle
and height estimates from the available sensors.

2Definitions differ for the classification of UAVs, although a weight less than 5 kg has been
proposed [1]. Other terms, such as Small UAVs (SUAVs), are used by e.g. [42].

3http://www.vicon.com/
4http://www.qualisys.com/
5http://www.ros.org/
6http://www.willowgarage.com/
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Using the CRAP framework, the functionality of the thesis implementation is
distributed in separated modules:

• Observer: Sensor fusing state estimation. Chapter 3.

• Control: Affine Quadratic Control. Chapter 4.

• Logic: State-machine for scheduling controller parameters and reference trajec-
tory. Chapter 5.

Primary computer
State-estimation and control

C++ Robot Automation Platform

Secondary computer
Video processing

PTAM7

Sensor MCU Control MCUAccelerometer

Gyroscope

Magnetometer

Pressure sensor

Camera

Speed controller

SD-card

Figure 1.1. LinkQuad schematic.

Figure 1.2. The LinkQuad development platform.

1.3 Related Work

Positioning an unmanned quadrotor using visual feedback is a problem which
has received extensive attention during recent years, and only recently been im-
plemented with convincing results [3, 44]. Few have attempted to use on-board
sensors only, but have relied on external setups to track the motions of a quadrotor
- reportedly with high precision. Fewer still have succeeded using strictly real-time
algorithms running on the limited processing power that standard MAVs generally
are equipped with, although successful implementations do exist, e.g. [38].

7Parallel Tracking And Mapping, described further in Chapter 2.



4 Introduction

1.3.1 Autonomous Landing and Control

The problem of landing a quadrotor can to a large extent be boiled down to
achieving good pose estimates using available models and sensor measurements.
The problem is studied in e.g. [28, 6], but perhaps the most interesting results
are obtained in [3, 44], where the ideas from [22] of using Monocular SLAM are
implemented on a UAV platform and autonomous flight is obtained, using the
feedback from the camera’s pose estimate for control. Some problems remain,
however, regarding the long-term stability of the controller.

A landing control scheme, inspirational to the approach in this thesis, is sug-
gested by [6], which is summarized in Section 5.4.

Both Linear Quadratic (LQ) control and PID controllers have been used for
control in aforementioned projects, and ambiguous results have been attained as
to which is better [4]. Continued effort of quadrotor modeling have however shown
great potential of the LQ design [5].

1.3.2 Visual SLAM

Applying the idea of Simultaneous Localization And Mapping (SLAM) to the data
available in a video feed is known as Visual SLAM (vSLAM). A directional paper
is presented in [21], resting on the foundation of a Rao-Blackwellized particle filter
with Kalman filter banks to track landmarks recognized from previous videoframes.
Similar approaches, using Kalman filtering solutions, have been implemented by
e.g. [9, 11], and are available as open-source software8.

Another approach to vSLAM is suggested in [22] and implemented as the
PTAM - Parallel Tracking And Mapping - library. In this library, the tracking
problem of SLAM is separated from the mapping problem. That is, the camera’s
position is tracked with regards to registered features independently from the pro-
cess where the positions of the features are globally optimized with regards to each
other. Without the need for real-time mapping, this optimization can run more
advanced algorithms at a slower pace than the tracking requires.

By for instance not considering the full uncertainties in either camera pose
or feature location, the complexity of the algorithm is reduced and the number
of studied points can be increased to achieve better robustness and performance
than when a classic filtering solution is used [40].

A modified, commercial, version of the PTAM library has been implemented
on an iPhone [23]. This is of special interest to this thesis, since it demonstrates
a successful implementation in a resource-constrained environment similar to that
available on a MAV. The library has been previously applied to the UAV state
estimation field, as presented in [44], although its primary field of application is
Augmented Reality (AR).

8http://www.doc.ic.ac.uk/~ajd/Scene/
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1.4 Objectives and Limitations

The main objective for this thesis was to create a control system for the LinkQuad
capable of autonomous landing, using state estimation aided by visual feedback.
To achieve this, methods and algorithms for control and positioning were to be
implemented as nescessary to incorporate the complex measurements from the
camera positioning into the state estimate. With the pose estimate and control
available, landing is a matter of generating a suitable trajectory and detecting the
completion of the landing.

Although time restricted a final demonstration of landing, tools, albeit yet
lacking the speed and tuning necessary for real flight, were implemented to fuse
the available sensor data and incorporate the estimated state into algorithms for
automatic control and landing.

This thesis does not cover the detection of suitable landing sites, nor any ad-
vanced flight control in limited space or with collision detection. The quadrotor
modeling is extensive, but is mostly limited to a study of literature on the subject.

1.5 Contributions

During the thesis work, several tools for future development have been designed
and developed. The CRAP framework collects tools that are usable in future
projects and theses, both on the LinkQuad and otherwise. The modules imple-
mented in the CRAP framework include:

• General nonlinear filtering, using EKF or UKF,

• General nonlinear control, implemented as affine quadratic control,

• Extendable scheduling and reasoning through state-machines,

• Communication API for internal and external communication.

Furthermore, a general physical model of a quadrotor has been assembled. The
model extends and clarifies the many sources of physical modeling available, and
is presented in a scalable, general manner.

The state estimation proposed in this thesis uses a detailed physical model
derived in Chapter 3. While the model still needs tuning, it does show promising
results, and a physically modeled quadrotor could potentially improve in-flight
performance [5].

In Chapter 3, a general method for attaining the world-to-PTAM transforma-
tion is proposed. This method is useful for extending the utility of the PTAM
camera positioning library to more than its intended use in Augmented Reality
applications. The utility for this has already been proven in e.g. [44], and pro-
viding the theory and implementation for this, as well as a proposed initialization
routine, may be relevantly applied to future work. The PTAM library has also
been extended with full autonomous operation by proposing an automated initial-
ization procedure, as well as providing full detachment from the graphical user
interface.



6 Introduction

All tools developed during the thesis are released under the GPL license and
are available online at https://github.com/jonatanolofsson/.

1.6 Thesis Outline

Following the introductory chapter, four chapters are devoted to presenting the
theory used in the implementation. The primary sensor used in this thesis, the
camera, is introduced in Chapter 2 on the topic of monocular camera-based SLAM
- Simultaneous Localization And Mapping - which is a positioning technique that
require no prior knowledge of the platform’s surroundings. The camera provide
pose measurements that are incorporated into a positioning framework in Chap-
ter 3. The obtained pose estimate is then used in Chapter 4, which introduces an
approach to nonlinear control of the quadrotor. Chapter 5 presents the trajectory
generation algorithms used to perform landing and flight, as implemented in terms
of state-machines.

The following two chapters of the thesis, Chapters 6 and 7, present the numer-
ical evaluation of the result and the following discussion respectively. Concluding
remarks and suggestions for further work are finally presented in Chapter 8.

A technical description of the CRAP framework, developed for the implemen-
tation of this thesis, is appended.



Chapter 2

Monocular SLAM

In the interest of extracting positioning information from a video stream of a gen-
eral, unknown, environment, a common approach is to use SLAM, Simultaneous

Localization And Mapping, techniques. In the mathematical SLAM framework,
features in the images are identified and tracked throughout time in the video
stream, and a filtering solution is then traditionally applied to estimate the prob-
ability densities of the tracked landmarks’ positions, as well as that of the camera
position.

To determine the depth distance to a feature, stereo vision can be applied with
which the correlation between two synchronized images is used, together with the
known distance between the cameras, to calculate the image depth. As the distance
to the tracked objects increases however, the stereo effect is lost and the algorithms’
performance drops. There are several other issues to the stereo vision approach -
increased cost, synchronization issues, computational load to name a few - which
has led to the development of techniques to utilize the information which can be
extracted from tracking movement in only a single camera to reconstruct a three-
dimensional scene. The application of SLAM to this approach is referred to as
Monocular SLAM, and two approaches are presented in this chapter.

Both approaches rely on feature detection in video frames. An extensive survey
of available feature-detecting algorithms is given in [16].

2.1 Filtering Based Solutions

One novel approach for camera tracking, used by for instance [9] and [11], is
to utilize a filtering framework, such as the EKF-SLAM or FastSLAM 2.0, and
couple the feature and camera tracking in a time- and measurement update for
each consecutive frame. The Scenelib library described in [9] uses a combination
of the particle filter and the EKF for feature initialization and feature tracking
respectively.

Common to the filter approaches is that as new features are detected, they are
initialized and appended as states to the filter. As frames arrive, the change of
position of each feature is measured and the filter is updated accordingly. Thus,

7
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care must be taken to avoid misassociation of the features, as this leads to false
measurements that will mislead the filter.

One advantage of the solutions with direct filtering is that it is quite trivial
to extend the motion models or include other sensors to improve the precision,
since the general algorithm utilizes classical state-based time- and measurement
updates.

2.2 Keyframe-based SLAM

A fundamentally different approach, presented and used in e.g. [22], is to focus
on collecting video frames of greater importance - keyframes - in which a large
amount of features are detected. The camera’s position is recorded at the time the
keyframe is grabbed - see Figure 2.1 with caption - and the newly detected features
are added to the active set. As new video frames arrive, features are reprojected
and sought for in the new frame, giving a position offset from previously recorded
keyframes which, by extension, gives the updated position of the camera.

Figure 2.1. Keyframes containing features - here represented by dots - are recorded,
and the camera’s position at the time of the frame’s capture is stored and visualized as
coordinate axes. The offset from these positions is estimated from the features detected
in the video stream. The thick coordinate system displays the camera’s current position
estimate. The colors of the features represent library-internal information on how the
feature was detected.
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2.3 The PTAM Library

PTAM - Parallel Tracking And Mapping is a software library for camera tracking
developed for Augmented Reality (AR) applications in small workspaces [22]. It
has only recently been applied for quadrotor state estimation [44], although as the
library is intended for AR applications, the connection with the world’s coordinate
system is loose, as discussed in Chapter 3. Several libraries exist extending the
functionality of the PTAM library [31].

Recently published algorithms - presented in [30] - surpass the library’s perfor-
mance using GPGPU1 algorithms, although the performance of the PTAM library
is nonetheless proven2, and improves the usability over preceding libraries, such
as Scenelib, by including a camera calibration tool, which is used to estimate the
parameters describing the lens properties.

Figure 2.2. A checker-board pattern is used for calibrating the lens-specific parameters
of the camera.

2.3.1 Operation

The PTAM library partitions the SLAM problem into a real-time tracking loop
and a less time-critical optimization procedure for the collected keyframes.

In the tracking procedure, the PTAM library uses the keyframe technique
described in Section 2.2, and randomly projects previously recorded features into
the captured video frame, visualized in Figure 2.3. The selection of features to

1General-Purpose computing on Graphics Processing Units
2Examples of projects using PTAM are listed at http://ewokrampage.wordpress.com/

projects-using-ptam/
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Figure 2.3. Features - visualized as dots - are projected into the image and sought for.
The offset from the positions where the features were first detected then yield a position
estimate.

re-project could potentially be improved, as discussed in Section 7.1, although this
remains as future work.

As for mapping; Instead of continuously updating the keyframe’s position es-
timates - as in the filtering solution - the PTAM library uses a less time-critical
algorithm in a parallel processing thread3. The applied algorithm is known as
Bundle Adjustment, and performs a nonlinear least-squares optimization over the
available keyframes to calibrate their in-world positions relative to each other,
based on shared features [26]. The implementation utilizes the sparse structure
of the optimization problem that is solved to make the solution computationally
tractable [27].

2.3.2 Modifications to the Library

The PTAM library is originally interfaced with an included graphical user inter-
face. Using the source-code, which is provided free for non-commercial use, the
library was modified to be interfaced over a serial port and also extended with
automatic initialization and full non-graphical use.

In the standard PTAM initialization procedure, an image is captured at a
starting position. The camera is then translated sideways until the user deems
the stereo initialization can be performed with good results. A second frame is
then captured, and shared features are used to perform a stereo initialization, and

3Hence its name; Parallel Tracking And Mapping
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Figure 2.4. To create the initial map, PTAM is initialized with a set of two offset
images. Features are tracked during the initialization to find the ground plane. The
movement of the tracked features are visualized as lines in the image.

extract the ground plane and a placement for the origin of the PTAM coordinate
system. The tracked scene should be planar to retrieve a good estimate of the true
ground plane, although the tracking will work regardless.

In the graphical user interface, the tracked features are visualized during the
initialization process with lines in the camera image, shown in Figure 2.4. After
the initial frame has been captured, the proposed automated initialization uses the
length of these lines as a measure of when to finalize the initialization procedure.
When the length of the line associated with the first4 feature exceeds a given
threshold, the second frame is captured and the stereo initialization algorithm
is started. Should the initialization procedure fail - e.g. if too many features
are lost - the procedure will be restarted until a successful initialization has been
performed. The procedure is initially triggered by a command from the serial port.
The initialization is further described in Chapter 5.

2.3.3 Practical Use

The PTAM library is designed to be used a wide-angle lens. It is documented that
performance drops should such not be available [22]. Even though the LinkQuad-
mounted camera features a changeable lens, all currently available wide-angle
lenses are fish-eye lenses, which the PTAM library does not currently support.

4First in the list of features from the first image that are still found in the latest frame.
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It is possible to use the PTAM library with a standard lens, although tracking is
less stable, and harder to extend to unexplored areas.

The tracking and initialization quality is also - as all video tracking - dependent
on the amount of trackable features in the scene. While the library can recover
from lost positioning, an insufficient amount of features can cause the initialization
process to fail, or the tracking to be irreparably lost. The number of tracked
features is also dependent on the processing power available, and the library may,
depending on available resources, have difficulties extending the map to unexplored
areas.



Chapter 3

State Estimation

A central part of automatic control is to know the state of the controlled device.
The system studied in this thesis - the LinkQuad - is in constant motion, so deter-
mining the up-to-date position is of vital importance. The filter implementation
currently available on the LinkQuad is based on the complementary filter. While
performance is adequate for current purposes, the current implementation is diffi-
cult to extend, not least to accomodate the quite complex measurements received
from the camera positioning, discussed in Chapter 2. This chapter deals with the
estimation of the states relevant for positioning and controlling the LinkQuad.
Filter theory and notation is established in Section 3.1.

In this thesis, an Unscented Kalman Filter (UKF) and an Extended Kalman
Filter (EKF) are studied. These filters both extend the linear Kalman filter theory
to the nonlinear case. The UKF circumvents the linearization used in the EKF
in an appealing black-box way, albeit it is more sensitive to obscure cases in the
physical model, as detailed in the discussion in Chapter 7. The theory of the EKF
and UKF is treated in Sections 3.1 and 3.2, respectively.

The application of a motion model to the filtering process is known to be
highly beneficial, and is a central component in the Kalman filter framework. The
motion model is used to predict the behavior of the system and may do so in
more or less detail by varying the complexity and structure of the model. A more
complex model may provide superior filtering performance although at increased
computational cost. The motion model used in this thesis, derived in Section 3.3,
models the quadrotor in detail to obtain simulational validity and precise control.

As well as being modeled, the motions of the system are measured by the on-
board sensors. A measurement y is related to the motion model by the sensor
model h;

y(t) = h(x(t), u(t), t) (3.1)

The models for the sensors used in this work are discussed in Section 3.4.
An implementation of a state estimating filter is commonly referred to as an

observer.

13
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3.1 The Filtering Problem

In the general filtering problem, the estimation of the systems states - in this case
its position, orientation, velocity etc. - is expressed as the problem of finding the
state estimate, x̂, that in a well defined best way (e.g. with Minimum Mean Square
Error, MMSE) describes the behavior of the system.

The evolution of a system plant is traditionally described by a set of differential
equations that link the change in the variables to the current state and known
inputs, u. This propagation through time is described by Eq. (3.2) (fc denoting
the continuous case). The system is also assumed to be subject to noise, v(t), often
assumed to be Gaussian and additive, with known covariance Q. This introduces
an uncertainty associated with the system’s state, which accounts for imperfections
in the model compared to the physical system.

ẋ(t) = fc(x(t), u(t), t) + vc(t) (3.2)

With numerical integration or analytical solutions, the discrete form of (3.2) is
obtained, where only the sampling times are considered. The control signal, u(t),
is often assumed to be constant in the time interval, thereby allowing the next
predicted state to be obtained straightforwardly, as in Eq. (3.3). This yields the
estimate of x̂ at the time t given the information at time t − 11. This motivates
the notation used in this thesis: x̂t|t−1.

xt|t−1 = f(xt−1|t−1, ut, t) + v(t) (3.3)

In the ideal case, a simulation of a prediction x̂ would with the prediction
model in (3.3) fully describe the evolution of the system. To be able to provide a
good estimate in the realistic case, however, the measurements given from sensors
measuring properties of the system must be fed into the estimation.

These measurements, yt, are fused with the prediction using the innovation, ν.

νt = yt − ŷt (3.4)

That is, the difference between the measured value and what would be expected
in the ideal (predicted) case. To account for disturbances affecting the sensors,
the measurements are also associated with an additive white Gaussian noise w(t),
with known covariance, R.

ŷt = h(x̂t, ut, t) + w(t) (3.5)

The innovation is then fused with the prediction to yield a new estimation of
x given the information available at the time t [14].

x̂t|t = x̂t|t−1 +Ktνt (3.6)

The choice of Kt is a balancing between of trusting the model, or trusting the
measurements. In the Kalman filter framework, this balancing is made by tracking
and weighing the uncertainties introduced by the prediction and the measurement
noise.

1Note that no measurements have yet been made that provide information about the state at
time t.
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Algorithm 1 (Kalman Filter) For a linear system, given predictions and mea-
surements with known respective covariances Q and R, the optimal solution to the
filtering problem is given by the forward recursion in Eqs. (3.7)-(3.8)2.

Prediction update

x̂t|t−1 = Ax̂t−t|t−1 +But (3.7a)

Pt|t−1 = APt−1|t−1A
T + Q (3.7b)

Measurement update

K = Pt|t−1H
T

(
HPt|t−1H

T +R
)−1

(3.8a)

x̂t|t = x̂t|t−1 +K
(
y −Hx̂t|t−1

)
(3.8b)

Pt|t = Pt|t−1 +KHPt|t−1 (3.8c)

Because of the previously mentioned assumptions on the noise and the linear
property of the innovation feedback, the Gaussian property of the noise is preserved
in the filtering process. The system states can thus ideally be considered drawn
from a normal distribution, as in Eq. (3.9).

x ∼ N (x̂, Pxx) (3.9)

Conditioned on the state estimate x̂ and measurements before time k (Yk), the
covariance of the sample distribution is defined as in Eq. (3.10).

Pxx(t|k) = E
[{
x(t) − x̂t|k

} {
x(t) − x̂t|k

}T
|Yk

]

(3.10)

As new measurements are taken, the covariance of the state evolves with the state
estimate as in Eq. (3.11) [19].

Pxx(t|t) = Pxx(t|t− 1) −KtPνν(t|t− 1)KT
t (3.11)

Pνν(t|t− 1) = Pyy(t|t− 1) +R(t) (3.12)

With known covariances, K can be chosen optimally for the linear case as derived
in e.g. [14] and given in Eq. (3.13).

Kt = Pxy(t|t− 1)P−1
νν (t|t− 1) (3.13)

Note that (3.13) is another, albeit equivalent, way of calculating (3.8a). This is ex-
ploited in the derivation of the Unscented Kalman Filter, presented in Section 3.2.

Although the Kalman filter is optimal in the linear case, no guarantees are
given for the case where the motion- or measurement model is nonlinear. Several
methods exist to give a sub-optimal estimate for the nonlinear cases, two of which
will be studied here.

A major problem with the nonlinear case is how to propagate the uncertainty,
as described by the covariance, through the prediction and measurement models.

2As first suggested by Rudolf E. Kálmán in [20].
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With the assumed Gaussian prior, it is desirable to retain the Gaussian property
in the posterior estimate, even though this clearly is in violation with the nonlinear
propagation, which generally does not preserve this property.

Pxx(t|t− 1) = AP (t|t)AT +Qt (3.14)

As the linear propagation is simple however - shown in Eq. (3.14) - the novel
approach is to linearize the system to yield the linear model A in every timestep.
This method is called the Extended Kalman Filter, and is considered the de facto
standard nonlinear filter [18].

Algorithm 2 (Extended Kalman Filter) The Kalman filter in Algorithm 1 is
in the Extended Kalman filter extended to the nonlinear case by straightforward
linearization where necessary.

Prediction update

x̂t|t−1 = f
(
x̂t−t|t−1, ut

)
(3.15a)

Pt|t−1 = APt−1|t−1A
T +Q (3.15b)

Measurement update

K = Pt|t−1H
T

(
HPt|t−1H

T +R
)−1

(3.16a)

x̂t|t = x̂t|t−1 +K
(
y − h(x̂t|t−1)

)
(3.16b)

Pt|t = Pt|t−1 +KHPt|t−1, (3.16c)

where

A = ∂f(x,u)
∂x

∣
∣
∣
x=x̂t|t

, H = dh(x)
dx

∣
∣
∣
x=x̂t|t−1

(3.17)

This linearization, some argue [19], fails to capture the finer details of highly
nonlinear systems and may furthermore be tedious to calculate, analytically or
otherwise. An alternative approach, known as the Unscented Kalman Filter, is
therefore discussed in Section 3.2.

3.2 The Unscented Kalman Filter

The basic version of the Unscented Kalman Filter was proposed in [19] based on
the following intuition [19]:

With a fixed number of parameters it should be easier to approximate a

Gaussian distribution than it is to approximate an arbitrary nonlinear

function.

The approach is thus to propagate the uncertainty of the system through the
nonlinear system and fit the results as a Gaussian distribution. The propagation
is made by simulating the system in the prediction model for carefully chosen
offsets from the current state called sigma points, each associated with a weight
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Variable Example
value

Description

α 0 ≤ α ≤ 1
(e.g. 0.01)

Scales the size of the sigma point distribu-
tion. A small α can be used to avoid large
non-local nonlinearities.

β 2 As discussed in [17], β affects the weighting
of the center point, which will directly in-
fluence the magnitude of errors introduced
by the fourth and higher order moments.
In the strictly Gaussian case, β = 2 can be
shown to be optimal.

κ 0 κ is the number of times that the center
point is included in the set of sigma points,
which will add weight to the center point
and scale the distribution of sigma points.

Table 3.1. Description of the parameters used in the SUT.

of importance. The selection scheme for these points can vary (and yield other
types of filters), but a common choice is the Scaled Unscented Transform (SUT)
[43]. The SUT uses a minimal set of sigma points needed to describe the first two
moments of the propagated distribution - two for each of the n dimensions of the
state vector and one for the mean. The sigma points and their associated weights
are chosen according to Eqs. (3.19)-(3.20).

X0 = x̂

Xi = x̂+
(√

(n+ λ)Pxx
)

i
i = 1, · · · , n

Xi = x̂−
(√

(n+ λ)Pxx
)

i
i = n+ 1, · · · , 2n (3.18)

Wm
0 = λ

n+λ W c
0 = λ

n+λ + (1 − α2 + β)

Wm
i = W c

i = 1
2(n+λ) i = 1, · · · , 2n (3.19)

λ = α2(n+ κ) − n (3.20)

The three introduced parameters, α, β and κ are summarized and described in

Table 3.2. The term
(√

(n+ λ)Pxx
)

i
is used to denote the i’th column of the

matrix square root
√

(n+ λ)Pxx.
When the sigma points Xi have been calculated, they are propagated through

the nonlinear prediction function and the resulting mean and covariance can be
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calculated.

X +
i = f(Xi, u, t) i = 0, · · · , 2n (3.21)

x̂ =
2n∑

i=0

Wm
i X +

i (3.22)

Pxx =
2n∑

i=0

W c
i

{
X +

i − ŷ
} {

X +
i − ŷ

}T
(3.23)

For the measurement update, similar results are obtained, and Eqs. (3.26)-
(3.27) can be connected to Eqs. (3.12)-(3.13) in the general filter formulation.

Yi = h(Xi, u, t) i = 0, · · · , 2n (3.24)

ŷ =
2n∑

i=0

Wm
i Yi (3.25)

Pyy =
2n∑

i=0

W c
i {Yi − ŷ} {Yi − ŷ}T (3.26)

Pxy =
2n∑

i=0

W c
i {Xi − x̂} {Yi − ŷ}T (3.27)

As can be seen in the equations of this section, the UKF handles the propaga-
tion of the probability densities through the model without the need for explicit
calculation of the Jacobians or Hessians for the system. The filtering is based
solely on function evaluations of small offsets from the expected mean state3, be
it for the measurement functions, discussed in Section 3.4, or the time update
prediction function - the motion model.

3.3 Motion Model

As the system studied in the filtering problem progresses through time, the state
estimate can be significantly improved if a prediction is made on what measure-
ments can be expected. The plausibility of each measurement can then be eval-
uated after how well they correspond to the prediction. With assumed Gaussian
white noise distributions, this evaluation can be done in the probabilistic Kalman
framework as presented in Sections 3.1-3.2, where the probability estimate of the
sensors’ measurements are based on the motion model’s prediction.

3It is not, however, merely a central difference linearization of the functions, as stressed in
[19].
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3.3.1 Coordinate Frames

In the model of the quadrotor, there are several frames of reference.

North-East-Down (NED): The NED-frame is fixed at the center of gravity of
the quadrotor. The NED system’s ẑ-axis is aligned with the gravitational
axis and the x̂-axis along the northern axis. The ŷ-axis is selected to point
east to form a right-hand system.

North-East-Down Earth Fixed (NEDEF): This frame is fixed at a given ori-
gin in the earth (such as the take-off point) and is considered an inertial
frame, but is in all other aspects equivalent to the NED frame. All states
are expressed in this frame of reference unless stated otherwise. This frame
is often referred to as the “world” coordinate system, or “w” for short in
equations as disambiguation from the NED system.

Body-fixed (BF): The body-fixed coordinate system is fixed in the quadrotor
with x̂-axis in the forward direction and the ẑ-axis in the downward direction,
as depicted in Figure 3.2.

Propeller fixed: Each of the propellers are associated with their own frame of
reference, Pri, which tracks the virtual tilting of the thrust vector due to
flapping, discussed in Section 3.3.3. Starting with Pr1 being the forward
propeller, the propellers are numbered counter-clockwise.

Camera frame: This is the frame which describes the location of the camera.

PTAM frame: This is the frame of reference used by the PTAM video SLAM
library. This frame is initially unknown, and its recovery is discussed in
Section 3.4.5.

IMU frame: This is the body-fixed frame in which the IMU measurements are
said to be done. The origin is thus fixed close to the inertial sensors.

The coordinate frames are visualized in Figures 3.1-3.2.
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Figure 3.2. Locally, on the quadrotor, there are several coordinate frames used in the
thesis. Here, the IMU frame coincides with the body-fixed frame.

Conversions between reference frames are characterized by a transformation
including translation and a three-dimensional rotation. Both the origin of the
body-centered reference frames - the quadrotor’s position - and the rotation of the
body-fixed system are estimated as system states.

The centers of each of the propeller fixed coordinate systems are parametrized
on the (negative) height h and distance d from the center of gravity as follows

D0 = (d, 0, h)BF (3.28)

D1 = (0,−d, h)BF (3.29)

D2 = (−d, 0, h)BF (3.30)

D3 = (0, d, h)BF (3.31)

In the following sections, vectors and points in e.g. the NED coordinate systems
are denoted xNED. Rotation described by unit quaternions are denoted R(q) for
a quaternion q, corresponding to the matrix rotation [24]4 given by Eq. (3.32).





q2
1 + q2

i − q2
j − q2

k 2qiqj − 2q1qk 2qiqk + 2q1qj
2qiqj + 2q1qk q2

1 − q2
i + q2

j − q2
k 2qjqk − 2q1qi

2qiqk − 2q1qj 2qjqk + 2q1qi q2
1 − q2

i − q2
j + q2

k



 (3.32)

4[24] uses a negated convention of signs compared to what is used here.
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Rotation quaternions describing the rotation to frame a from frame b are com-
monly denoted qab. The characters a and b are, where unambiguous, replaced by
the first character of the name of the reference frame of interest. Full transfor-
mations between coordinate systems - including rotation, translation and scaling
- are similarly denoted J ab.

The equations in this chapter are given in their time-continuous form to sim-
plify the description of the forces. The equations are discretized in the implemen-
tation using numerical Euler integration (Eq. (3.33)) or Runge-Kutta integration
(Eq. (3.34)), using an integration step of T .

Xt+1 = Xt + T · f(X, t) (3.33)

Xt+1 = Xt + 1
6 (k1 + 2k2 + 2k3 + k4) (3.34a)

k1 = Tf(Xt, t) (3.34b)

k2 = Tf(Xt + 1
2k1, t+ 1

2T ) (3.34c)

k3 = Tf(Xt + 1
2k2, t+ 1

2T ) (3.34d)

k4 = Tf(Xt + k3, t+ T ) (3.34e)

3.3.2 Kinematics

The motions of the quadrotor are described in terms of the change in position, ξ,
and orientation, qwb, by the relations in Eq. (3.35) [35].

ξ̇ = V (3.35a)






q̇wb0

q̇wbi
q̇wbj
q̇wbk







= −
1
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0 −ωx −ωy −ωz
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qwbi
qwbj
qwbk







(3.35b)

As a rotation described by quaternions require unit quaternion length, a nor-
malization step also has to be applied in practice after the orientation has been
updated.

3.3.3 Dynamics

The motions of the quadrotor can be fully explained by the forces and moments act-
ing on the vehicle. Using the rigid-body assumption, Euler’s extension of Newton’s
laws of motion, applied to the quadrotor’s center of gravity (G), yield Eqs. (3.36).
These equations describe the acceleration and angular acceleration of the vehicle
as related to the forces and moments acting on the vehicle.

V̇ = awG = R(qwb)
1

m

∑

F (3.36a)

ω̇ = R(qwb)I−1
G

∑

MG (3.36b)
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The vector V contains the NEDEF velocities of the vehicle, while ω contains the
body-fixed roll (φ), pitch (θ) and yaw (ψ) rates.

The main forces acting upon the quadrotor are the effects of three different
components

•
∑4

i=1 Fri - Rotor thrust,

• Fg - Gravity,

• Fwind - Wind.

Of these, the gravity is trivially described with the gravitational acceleration
and the total mass of the quadrotor as

Fg = mg · ẑNED (3.37)

The following sections will describe the rotor thrust and wind forces respec-
tively. Additionally, other minor forces and moments are discussed in Section 3.3.3.

Rotor thrust

Each of the four propellers on the quadrotor induce a torque and a thrust vector
on the system, proportional to the square of the propeller velocity - with sign
depending on the direction of rotation and the propeller angle of attack. The
rotational velocity of the propeller is directly influenced by the controller. It may
as such be modeled as a first order system using the time constant τrotor with
the reference velocity as input, as in Eq. (3.38). For testing purposes, or where
the control signal, ri is not available, Eq. (3.39) may be used instead, assuming
constant propeller velocity.

ω̇ri =
1

τrotor
(ωri − ri) (3.38)

ω̇ri = 0 (3.39)

Due to the differences in relative airspeed around the rotor blade tip as the
blades move either along or against the wind-relative velocity, the lifting force on
the blade will vary around a rotation lap. This unbalance in lifting force will cause
the blades to lean and the direction of the thrust vector to vary with regards to
the motions of the quadrotor.

This phenomenon is called flapping, and is discussed in e.g. [35]. The flapping
of the rotors and the centrifugal force acting upon the rotating blades will result in
that the tilted blade trajectories will form a cone with the plane to which the rotor
axis is normal. These motions of the propellers add dynamics to the description
of the quadrotor’s motion which must be considered in a deeper analysis.

It is desirable, for the purpose of this thesis and considering computational load,
to find a closed-form solution to the flapping equations. The resulting flapping
angles and their impact on the thrust vectors can be described as in Eqs. (3.40a)-
(3.41) [35, 36, 25].
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The momenta induced by the propeller rotation and thrust are described in
equations (3.40b)-(3.40c). It should be noted that the differing momenta from
the varying speed of the propellers is the most important factor for the actuation
of yaw rate control. This entails that the control - with such weak source of
actuation - is expected to be slow. In the equations below, rotor velocities are
given with positive orientation around the downwards pointing ẑ-axis. With the
current LinkQuad setup, this results in positive rotational velocities for rotor 2
and 4. With all motors being single-directional, all thrust vectors are pointing
upwards.

All equations in this section are given in the body-fixed coordinate system, for
each rotor i, ri.

Fri = CTρArR
2ω2

ri





−sin (a1si)
−cos (a1si) sin (b1si)
−cos (a1si) cos (b1si)



 (3.40a)

MQi = −CQρAR
3ωri|ωri|ẑ

NED (3.40b)

Mri = Fri ×Di (3.40c)

The equations for the flapping angles (a1si, b1si) are derived in [35, 36, 25], but
are in (3.41) extended to include the velocity relative to the wind. Vri(n) denotes
the nth element of the vector Vri.

Vrel = V − Vwind (3.41a)

Vri = Vrel + ω ×Di (3.41b)

µri =
||Vri(1,2)||

ωriR
(3.41c)

ψri = arctan

(
Vri(2)

Vri(1)

)

(3.41d)

αsi =
π

2
− arccos

(

−
Vri · ẑ

||Vri||

)

(3.41e)

v1i =

√
√
√
√

−
V 2
rel

2
+

√
(
V 2
rel

2

)2

+

(
mg

2ρAr

)2

(3.41f)

λri = µriαsi +
v1i

ωriR
(3.41g)

(
a1si

b1si

)

=

(
cos (ψri) −sin (ψri)
sin (ψri) cos (ψri)

)




1

1−
µ2
ri
2

µri (4θtwist − 2λri)

1

1+
µ2
ri
2

4
3

(
CT
σ

2
3
µriγ
a + µri

)





+







− 16
γ

(
ωθ
ωri

)
+

( ωψ
ωri

)

1−
µ2
ri
2

− 16
γ

( ωψ
ωri

)
+

(
ωθ
ωri

)

1+
µ2
ri
2







(3.41h)
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CT =
σa

4

{(
2

3
+ µ2

ri

)

θ0 −

(
1

2
+
µ2
ri

2

)

θtwist + λri

}

(3.41i)

CQ = σa

[
1

8a

(
1 + µ2

ri

)
CD,r + λri

(
1

6
θ0 −

1

8
θtwist +

1

4
λri

)]

(3.41j)

Wind

To describe the wind’s impact on the quadrotor motion, a simple wind model
is applied where the wind is modeled that imposes forces and moments on the
quadrotor. The wind velocities in the filter are given in the NEDEF reference
frame.

The wind drag force is calculated using equation (3.42), whereas the moments
are given by equations (3.43). In this thesis, the moments acting on the quadrotor
body (as opposed to the rotors) are neglected or described by moments imposed
by the wind acting on the rotors.

Fwind = Fwind,body +
3∑

i=0

Fwind,ri (3.42a)

Fwind,body = −
1

2
CDρAVrel||Vrel|| (3.42b)

FBFwind,ri = −
1

2
ρCD,rσAr(Vri · eBFPri3)||Vri · eBFPri3||eBFPri3 (3.42c)

Mwind = Mwind,body +
3∑

i=0

Mwind,ri (3.43a)

Mwind,body ≈ 0 (3.43b)

Mwind,ri = DBF
i × FBFwind,ri (3.43c)

The wind model applied in this thesis is a decaying model that tends toward
zero if no measurements tell otherwise. The decaying model is given in Eq. (3.44)
(ǫ being a small number).

V̇wind = −ǫ · Vwind (3.44)

Additional Forces and Moments

Several additional forces act on the quadrotor to give its dynamics in flight. Some
of these are summarized briefly in this section, and are discussed further in [5].
Unless where explicitly noted, annotation is similar to Section 3.3.3.
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Symbol Expression Description Unit

a dCL
dα ≈ 2π Slope of the lift curve. 1

rad
αsi - Propeller disk angle of attack. rad
Ar - Rotor disk area. m2

c - Blade chord - the (mean) length
between the trailing and leading
edge of the propeller.

m

CD,r - Propeller coefficient of drag. 1
CL - Coefficient of lift. 1
CT Eq. (3.41i) Coefficient of thrust. This is pri-

marily the scaling factor for how
the thrust is related to the square
of ωri, as in Eq. (3.40a).

1

CQ Eq. (3.41j) Torque coefficient. This constant
primarily is the scaling factor re-
lating the square of ωri to the
torque from each rotor.

1

γ ρacR4

Ib
γ is the Lock Number [25], de-
scribed as the ratio between the
aerodynamic forces and the iner-
tial forces of the blade.

1

Ib - Rotational inertia of the blade. kgm2

λri Eq. (3.41g) λri denotes the air inflow to the
propeller.

1

R - Rotor radius. m
ρ - Air density. kg

m3

σ blade area
disk area Disk solidity. 1

θ0 - The angle of the propeller at its
base, relative to the horizontal
disk plane.

rad

θtwist - The angle with which the propeller
is twisted.

rad

v1i Eq. (3.41f) Induced velocity of propeller i. m
s

ωφ, ωθ, ωψ - The rotational, body-fixed, veloc-
ity of the quadrotor.

rad
s

ωri - The rotational velocity of pro-
peller i.

rad
s

µri - The normalized, air-relative, blade
tip velocity.

1

Table 3.2. Table of symbols used in the flapping equations
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Symbol Expression Description
A - 3x3 matrix describing the area of the

quadrotor, excluding the rotors.
CD - 3x3 matrix describing the drag coefficients

of the quadrotor.
CD,r - Propeller’s coefficient of drag.

Table 3.3. Table of symbols used in the wind equations

Hub Force

CH = σa

[
1

4a
µriCD,r +

1

4
λriµri

(

θ0 +
θtwist

2

)]

(3.45)

Fhub,i = −CHρAR
2ω2

rix̂ (3.46)

Mhub,i = Di × Fhub,i (3.47)

Rolling Moment

CRM = −σaµri

[
1

6
θ0 +

1

8
θtwist −

1

8
λri

]

(3.48)

MRM,i = CRMρAR
3ω2

ri (3.49)

Ground Effect
As the vehicle gets close to ground, the wind foils of the propellers provide a

cushion of air under the vehicle, giving extra lift.

Fri,IGE =
1

1 − R2

16z2

Fri (3.50)

Gyro Effects and Counter-Torque
Irotor is the propeller inertia.





ω̇θω̇ψ(Iyy − Izz) + Irotorω̇θ
∑4

i=0 ωri

ω̇θω̇ψ(Izz − Ixx) + Irotorω̇θ
∑4

i=0 ωri

ω̇θω̇φ(Ixx − Iyy) + Irotor
∑4

i=0 ω̇ri



 (3.51)

3.4 Sensor Models

This section relates the estimated state of the quadrotor to the expected sensor
measurements, ŷ.

In UAV state estimation, it is common to include a GPS sensor, providing
world-fixed measurements, to prevent drift in the filtering process. In this thesis,
the GPS is replaced with a camera, which is discussed in detail in Section 3.4.5,
following a description of the accelerometers, gyroscopes, magnetometers and the
pressure sensor.
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In the measurement equations in this section, a zero-mean Gaussian term e

with known covariance is added to account for measurement noise. The Gaussian
assumption may in some cases be severely inappropriate, but the Kalman filter
framework requires its use.

3.4.1 Accelerometer

The accelerometer, as the name suggests, provides measurements of the accelera-
tions of the sensor. In general, this does not directly correspond to the accelera-
tions of the mathematical center of gravity used as center of the measured vehicle.
This motivates a correction for angular acceleration and velocity with regards to
the sensor’s relative position from the center of gravity, racc/G .

ŷacc = aG + ω̇ × racc/G + ω ×
(
ω × racc/G

)
+ eacc (3.52)

3.4.2 Gyroscope

Gyroscopes, or rate gyroscopes specifically, measure the angular velocity of the sen-
sor. Unlike acceleration, the angular rate is theoretically invariant of the relative
position of the sensor and the center of gravity. However, gyroscope measurements
are associated with a bias which may change over time. This bias term may be
introduced as a state variable in the observer, modeled constant as in Eq. (3.54),
leaving its adjustment to the observer’s measurement update.

ygyro = ω + b + egyro (3.53)

ḃ = 0 + ebias (3.54)

3.4.3 Magnetometer

Capable of sensing magnetic fields, the magnetometer can be used to sense the
direction of the Earth’s magnetic field and, from knowing the field at the current
location, estimate the orientation of a vehicle.

y = R(q)me + em (3.55)

The Earth’s magnetic field can initialized at startup, or approximated using the
World Magnetic Model[8], which for Linköping, Sweden, is given in Eq. (3.56).

me =
[(

15.7 1.11 48.4
)T

]NEDEF

µT (3.56)

Magnetometer measurements are, however, very sensitive to disturbances, and
in indoor flight, measurements are often useless due to electrical wiring, lighting
etc. Thus, the magnetometer was not used for the state estimation in this thesis.
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Parameter Description Value Unit

L Temperature lapse rate. 0.0065 K
m

M Molar mass of dry air. 0.0289644 kg
mol

p0 Atmospheric pressure at sea level. 101325 Pa
R Universal gas constant. 8.31447 J

mol·K
T0 Standard temperature at sea level. 288.15 K

Table 3.4. Table of Symbols used in the pressure equation, Eq. (3.57)

.

3.4.4 Pressure Sensor

The barometric pressure, p, can be related to altitude using Eq. (3.57) [32]. The
pressure sensor, as shown in the validation, is inherently noisy and especially
so in an indoor environment where air conditioning causes disturbances in the
relatively small - and thus pressure sensitive - environments that are available
indoors. The pressure sensor is also affected by propeller turbulence, but is placed
inside the plastic hull of the LinkQuad to reduce disturbance. The constants used
in Eq. (3.57) are summarized in Table 3.4.4.

p = p0

(

1 −
L · h

T0

) g·M
R·L

+ ep (3.57)

3.4.5 Camera

To estimate the position of the camera using the captured images, the PTAM
camera positioning library presented in Chapter 2 is used. The main application
of the PTAM library is reprojection of augmented reality into a video stream.
Consistency between a metric world-fixed coordinate frame (such as the NEDEF-
system used on the LinkQuad), and the, quite arbitrarily placed [22], internally
used coordinate system is not vital for its intended operation, although to position
the camera in the real world, it is. The transformation between the NEDEF
coordinate system and the PTAM coordinate system thus has to be determined
to attain useful measurements.

The measurements from the camera consist of the transform from PTAM’s
coordinates to the camera lens, in terms of

• Translation5, XPTAM,

• Orientation, qPTAM,c.

A rough estimate of the quality of the tracking is also provided as an enumerated
representation of either Good, Poor or Bad. Since the coordinate system of PTAM

5Notably, the translation is of arbitrary, initially unknown, scale.
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is neither of the same scale nor aligned with the quadrotor’s coordinate system,
the affine transformation between the two must be estimated.

Since both the NEDEF and the PTAM coordinate frame is world-fixed, the
transformation is ideally static and characterized by

• a translation T to the origin, ∅PTAM,

• a rotation R by the quaternion qPw,

• a scaling S by a factor s.

These are collected to a single transformation in Eq. (3.58), forming the full trans-
formation from the global NEDEF system to the PTAM coordinate frame.

xPTAM = S(s)R(qPw)T (−∅PTAM)
︸ ︷︷ ︸

,J Pw, transformation from camera to PTAM

xNEDEF (3.58)

The offline case of this problem is partially studied in [15], whereas the method
used in this thesis can be extended to the on-line case where no ground truth is
available by introducing continuously improved states to the observer filter, using
the first measurement to construct an initial guess.

Initialization

When the first camera measurement arrives, there is a need to construct the world-
to-PTAM transformation. Since the PTAM initialization places the origin at what
it considers the ground level, the most informed guess, without any further infor-
mation about the environment, is to assume that this is a horizontal plane at zero
height.

The orientation of the PTAM coordinate system is calculated, using quaternion
multiplication, as in Eq. (3.59) from the estimated quadrotor orientation and the
measurement in the PTAM coordinate frame, qPTAM,c.

qPw = qPTAM,cqcbqbw (3.59)

The quaternion qbc, the inverse of qcb of Eq. (3.59), describes the rotation from
camera coordinates to body-fixed coordinates. With known camera pitch and yaw,
Θc and Ψc respectively, this corresponds to four consecutive rotations, given in
Eq. (3.60) as rotations around given axes, the last two rotations accounting for
the differing definitions between the PTAM library camera coordinate system (ẑ
upwards) and that used in this thesis (ẑ downwards).

qbc = R(Θc, ŷ) · R(Ψc, ẑ) · R(π2 , ẑ) · R(π2 , x̂) (3.60)

To determine the distance to this plane according to the current estimation,
Eq. (3.61) is solved for λ in accordance with Eq. (3.62).

{

∅PTAM = ξ +R(qwb)rcamera/G + λR(qwP ) XPTAM

|XPTAM |

∅PTAM · ẑ = 0
(3.61)



3.4 Sensor Models 31

−1.5−1−0.500.51 −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

Camera
λ

NEDEF

PTAM

Figure 3.3. The PTAM coordinate system is assumed to be positioned at zero height.
λ is calculated as the estimated real-world distance to the PTAM coordinate system.

λ = −

(
ξ +R(qwb)rcamera/G

)
· ẑ

(

R(qwP ) XPTAM

|XPTAM |

)

· ẑ
(3.62)

With this definition, λ corresponds to the approximated distance from the
camera to the PTAM origin, in the metric world-fixed coordinate system. By
comparing this approximation with the distance measured in the PTAM coordinate
system, an estimate for the scaling factor, s, is obtained through Eq. (3.63).

s =
|XPTAM |

|λ|
(3.63)

Together, the parameters derived in this section describe the transformation
connecting the PTAM reference frame to the metric world. For further refinement,
these parameters could be inserted into the global observer filter - introducing
eight new states containing qPw, s and ∅cam. Because the PTAM coordinate
system is defined fixed in the global NEDEF coordinate system, the transformation
parameters would be static through the observer’s time update.

Camera Measurements

The camera measurement update is made separate from the update of the other
sensors, using the measurement equations in (3.64), expanding the equation de-
rived in Eqs. (3.58) and (3.59).
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X̂PTAM = J Pw(ξ +R(qwb)rcamera/G) + ePTAM,X (3.64a)

q̂PTAM,c = qPwqwbqbc + ePTAM,q (3.64b)

Teleportation

The PTAM tracking may sometimes exhibit a “teleporting” behavior. That is,
although tracking is overall stable, the origin may sometimes be misassociated
and placed at a new position as the tracking gets lost. To detect this, the mea-
surements may be monitored for sudden changes in position. If a teleportation
is detected, a reinitialization would be needed, either performing a new initial es-
timation, or utilizing the previous state to recognize the new pose of the origin.
The teleporting behavior is currently detected in the thesis implementation using
simple thresholding, as in Eq. (3.65), although no action is currently implemented
to recover.

∣
∣XPTAM

t −XPTAM
t−1

∣
∣ · s > ǫ (3.65)

The thresholded condition in Eq. (3.65) is scaled by the factor s from the transfor-
mation, to achieve a metric comparison with the configurable threshold parameter,
ǫ.



Chapter 4

Nonlinear Control

The state estimate from the algorithms discussed in Chapter 3 can be used to
control the quadrotor’s movements according to a desired reference.

In this thesis, a nonlinear controller is proposed to be applied to control the
movements of the physical system, using a model of the system to calculate the
signals of control to each of the motors driving the propellers.

The controller approach proposed in this thesis is extended from the Linear
Quadratic (LQ) controller, the theory of which is presented in Section 4.1. The
extension, related to the technique of gain scheduling, is discussed in Section 4.2.

The motion model of the system was derived in Section 3.3. In Section 4.3, this
is further developed and adapted for compatibility as a model for the controller.
The controller is interfaced by providing references for the NED-frame velocities
and the, body-fixed, yaw rate. The controller outputs reference angular rates for
each propeller.

4.1 The Linear Quadratic Controller

In this section, the theory of Linear Quadratic control is presented, considering
the continuous linear plant in (4.1), with control signal u and reference r.

ẋ = Ax+Bu (4.1a)

z = Mx (4.1b)

e = z − r (4.1c)

The basic LQ controller, described in e.g. [13], uses a linear state-space system
model and costs on the states (Q) and control signals (R) respectively to calculate
the control signals that would - given a starting state, a motion model and a
constant reference - minimize the integral in Eq. (4.2). In the minimization, the
cost for deviating from the reference scales quadratically with the error, which
gives the controller its name.

33
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J =

∞∫

0

eT (t)Qe(t) + uT (t)Ru(t)dt (4.2)

By varying the elements of the cost matrices Q and R respectively, the solution
to the optimization will yield control signals that will control the system such that
the amplitude of the control signals and the errors are balanced. By e.g. increasing
the costs of the control signals, the LQ controller will issue smaller control signals,
protecting the engines but slowing the system down.

In the linear case, the minimization of Eq. (4.2) can be solved analytically,
resulting in a linear feedback gain, given in Eqs. (4.3)-(4.4).

ut = −Let (4.3)

L = R−1BTS (4.4)

S is the Positively Semi-Definite (PSD) solution to the Continuous Algebraic Ric-
cati Equation (CARE) [13], stated in Eq. (4.5).

ATS + SA+MTQM − SBR−1BTS = 0 (4.5)

To improve the reference following abilities of the controller, the reference may
be brought into the control signal by a scaling matrix Lr, describing the inverse
system kinematics. Lr is chosen so that the static gain of the system equals the
identity matrix [13]. In the case of equal number of control signals as controlled
states, Eqs. (4.6)-(4.7) are obtained.

ut = −Lzt + Lrrt (4.6)

Lr =
[
M(BL−A)−1B

]−1
(4.7)

4.2 The State-Dependent Riccati Equation

Even though any system could be described at any point by its linearization, the
linear nature of the LQ control poses a limitation in that a general system such as
the one studied in this thesis - a quadrotor - will sooner or later leave the vicinity
of the linearization point and no longer adhere to the physical circumstances valid
there.

This will lead to sub-optimal control and possibly even to system failure. A
common approach in nonlinear control is gain scheduling - to switch between pre-
calculated control gains which has been calculated for selected linearization points.

The approach used in this thesis is closely related to gain scheduling, but
instead of using pre-calculated gains, the linearization is done in-flight.

The problem of solving of the Riccati equation online is treated under the sub-
ject of State-Dependent Riccati Equations, SDRE’s. While being computationally
more expensive than the standard LQ formulation due to repeated solving of the
Riccati equation, the need for finding valid linearization points is removed and
more general problems can be treated. The basic formulation of the problem is
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covered in e.g. [37], and an extensive survey is presented in [7]. Implementation
details are detailed and evaluated in [12, 2, 39].

The LQ theory can be extended to the nonlinear case by using the Taylor ex-
pansion of a general motion model, as shown in Eq. (4.8). This approximation is
exploited to form the general result of Eq. (4.9). Similar to several other mod-
ifications to the LQ methodology - such as Model Predictive Control (MPC) -
the cost associated with the control signal may be applied relative to its current
level, to avoid forcing all control signals to zero in the optimization problem that is
solved. In each time-step, the local linearization of the motion model, as presented
in Eq. (4.8), is used to solve the LQ-equations for ∆u, the change in the control
signal.

ẋ = f(x, u) ≈ f(x0, u0) +
∂f

∂x

∣
∣
∣
∣ x = x0

u = u0
︸ ︷︷ ︸

A

(x− x0)
︸ ︷︷ ︸

∆x

+
∂f

∂u

∣
∣
∣
∣ x = x0

u = u0
︸ ︷︷ ︸

B

(u− u0)
︸ ︷︷ ︸

∆u

(4.8)

In the standard formulation of LQ control, the linearization has to be made at
a stationary point (x0, u0), where f(x0, u0) = 0, to attain the nescessary property
of linearity. In a more general formulation, it is possible to lift this constraint by
using a homogeneous state, as in Eq. (4.9) to attain this property in the general
case [37].

Ẋ =

[
ẋ

0

]

=

[
A f(x0, u0) −Ax0

0 0

] [
x

1

]

︸ ︷︷ ︸

X

+

[
B

0

]

∆u (4.9)

Eq. (4.9) is a linear system for which the ordinary LQ problem can be solved,
using Eqs. (4.10)-(4.7). The linearized output signal, ∆u, is then added to u0 to
form the controller output, as in Eq. (4.10).

u = u0 + ∆u = u0 − LX̄ + Lrr (4.10)

A problem with the linearizing extension of the affine controller in Eq. (4.9), is
that it introduces a non-controllable constant state, with an associated eigenvalue
inherently located in the origin. This poses a problem to the traditional solvers of
the Riccati equation, which expects strictly negative eigenvalues to the A-matrix
to solve the problem numerically, even though the cost-matrices of (4.2) could
theoretically be chosen such as to obtain a well-defined, bounded, integral.

The problem is circumvented by adding slow dynamics to the theoretically
constant state, effectively nudging the eigenvalue to the left of the imaginary axis
to regain full stability of the system. This guarantees that Eq. (4.2) tends to zero.

Eq. (4.9) is thus implemented as in Eq. (4.11).

Ẋ =

[
ẋ

0

]

=

[
A f(x0, u0) −Ax0

0 −10−9

] [
x

1

]

︸ ︷︷ ︸

X

+

[
B

0

]

∆u (4.11)
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4.3 Control Model

In Chapter 3, a physical model of the system was derived. To incorporate the
information from the physical model into the governing control law, the model
needs to be fitted into Eq. (4.9) by providing the Jacobi matrices with regards to
x and u, while also removing states which will not be used in the controller.

The Jacobians of the system are acquired numerically by using central differ-
ence, as in Eq. (4.12).

f ′(x) ≈
f(x+ h) − f(x− h)

2h
(4.12)

While all states are of importance to the dynamics of the quadrotor, only a
subset of the states in x is used for control. New matrices thus need to be formed,
containing the relevant states.

Notation

x̄ denotes the rows in x that are used for control.

x̄† is used to denote the rows in x that are not used for control.

Ā = [Ā�Ā†] defines the separation of the square part (�) of Ā with columns
associated with the controller states, from the other columns (†).

The new matrices should contain only the rows that are to be used for control.
Extracting those rows from Eq. (4.8) yields Eq. (4.13).

˙̄x = f̄(x, u) ≈ f̄(x0, u0) + Ā(x− x0) + B̄∆u
= f̄(x0, u0) − Ā�x̄0 − Ā†x̄

†
0 + Ā�x̄+ Ā†x̄† + B̄∆u

= f̄(x0, u0) − Ā�x̄0 + Ā�x̄+ B̄∆u
(4.13)

In the last equality of Eq. (4.13), it is assumed that the states not described in
the controller are invariant of control and time, giving x̄

†
0 = x̄†. The results of

Eq. (4.13) can be directly fitted into Eq. (4.9) to form the new matrices for the
controller. The derivation of (4.13) is completely analogous in the discrete-time
case.

The following states, from Chapter 3, are used in the control model:

• Velocities,

• Angular rates,

• Propeller velocities,

• Roll angle,

• Pitch angle.



Chapter 5

Finite State-Machines

State-machines are a modeling tool to describe the behavior of a system in terms
of states and the transitions between them. Several paradigms of state-machines
exist - Mealy and Moore being the notable forefathers in the field.

In projects related to the LinkQuad quadrotor, generic state-machine frame-
works have been developed and researched in previous projects [29, 46]. On the
LinkQuad, for the purpose of this thesis, a simple state-machine engine was im-
plemented.

This state-machine is responsible for transitioning between the states prede-
fined in an action sequence (a mode), ultimately providing reference signals for
the controller. Each state represents an action, which is performed repeatedly
until a transition condition is met. Figure 5.1 exemplifies the notation used in this
chapter.

Entry
State 1

Do something
Condition

State 2
Do something else

· · ·

Figure 5.1. State-machine example mode. An active state is repeatedly invoked until
a transition condition is met. The next state is then activated instead of the first.

In this chapter, four basic modes are presented which were implemented in the
time-frame of this thesis.

37
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5.1 Hovering Mode

In the hover mode, the position of the quadrotor is recorded at the time of the acti-
vation. To keep the quadrotor at this position, three independent PID-controllers
are initialized to generate reference velocities to the main controller in each or-
thogonal direction, (x̂, ŷ, ẑ)NED. Furthermore, the yaw angular velocity reference
is fixed to zero.

Entry
Initialize

Record current position
Hover control

Figure 5.2. Hovering scheme. The position of the quadrotor is recorded when the mode
is activated. The hover control state is then immediately activated to keep the quadrotor
in this position.

5.2 PTAM Initialization Mode

By entering this mode, an automated initialization process is started to initialize
the PTAM library and set up the transformation discussed in Chapter 3. Com-
mands are sent to the PTAM module to initialize tracking, after which the quadro-
tor should be moved sideways for the stereo initialization to be performed by the
PTAM library.

As part of the proposed modifications to the PTAM library, the initialization
process is started remotely on command, and the video-captured motion is then
monitored to determine either when the initialization has failed - in which case
it is simply restarted - or when the camera has moved enough for a stable stereo
initialization to be performed.
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Tracking not started

Start tracking

Start initial tracking

Initial tracking started

Moved enough

Lost

Initialize map

Tracking

Reset

Reset

Figure 5.3. After the commands have been sent to start the PTAM initialization routine,
the quality of the tracking is monitored until a stable map initialization is deemed to be
possible.
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5.3 Free Flight Mode

In the free flight mode, control reference signals for velocities and yaw rate are
forwarded from the joystick reference provided over the serial interface from the
user interface.

Entry Control

Reference velocities

Figure 5.4. Free flight scheme. The free flight mode merely forwards controller reference
signals received from the user interface.

5.4 Landing Mode

There have been several studies of autonomous quadrotor landing, e.g. [28, 6]. In
[6] a landing scheme is proposed which is closely related to that which is proposed
in this thesis. The algorithm used can be summarized in the following steps:

• Detection of landing site,

• Refinement of landing site position estimate,

• Descent on landing site,

• Landing detection.

In the landing site detection phase, the environment is searched for a suitable
landing place. In [6], landing is then performed on an elevated surface which is
detected using video processing. After the landing area has been located, the
position of the landing site - relative to the quadrotor - is filtered to increase the
confidence of the position estimate.
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Entry
Halt to hover

Set Vref = 0
|V | < ǫ

Descend
Set Vref,z > 0

Landed

Spin down

Figure 5.5. Landing scheme. The landing mode consist of three stages to perform and
detect landing.

While the landing site position estimate converges, the quadrotor is moved to
a position above the landing site as preparation for the Descend phase, where the
quadrotor lowers until landing has been detected, using the camera feedback and
other sensors to stabilize the descent.

The landing site detection of the algorithm is not covered by this thesis, but
the other steps of the described landing scheme is implemented as described by
Figure 5.5.

5.4.1 Landing Detection

Detection of landing may be performed in a variety of ways. The easiest detection
may be to mount sensors on the landing gear to sense ground contact. Lacking
such sensors however, the motion estimate of the vehicle may be observed and
interpreted.

In the landing detection, it must be recognized that the estimated position
- initialized at the starting point - is not necessarily consistent with the true
Height Over Ground (HOG) at the landing site. It is thus necessary to implement
a more robust method to detect the completion of the landing procedure than
simply halting at an estimated zero height. The proposed approach is to use
the observer’s estimate to determine when the quadrotor has reached the ground.
Detection theory, as discussed in e.g. [41, 33], provides several tools for detecting
the nonlinear event that the quadrotor can descend no further.

In the physical model presented in Chapter 3, two terms are of specific interest
for the detection. The first - and the obvious - is the vertical velocity. When
sensor measurements pull this term towards zero, this is a first indication that
the quadrotor has stopped. When the sensor measurements indicate a halt, the
observer - whose motion model is oblivious to the forces imposed by the ground
contact - will explain the lack of movement by a drastic increase in the estimated
vertical wind velocity. This estimated state - the second of interest - is easily
monitored and could be further filtered to increase detection confidence, or simply
thresholded to detect landing.





Chapter 6

Experimental Results

This chapter contain results evaluating the algorithms presented in the previous
chapters. The model is verified against data collected on the LinkQuad, as well
as from the Vicon motion tracking system available, which is considered ground
truth. Ground truth was used for initialization and verification of the model, and
all tests were run off-line with recorded synchronized sensor data and video feeds.

6.1 Experimental Setup

The data used for the evaluation of the model and the filter in this chapter was
recorded on the LinkQuad quadrotor in the UASTech Vicon Lab at Linköping
University, Sweden. Ground truth data was recorded using the Vicon tracking
system at a rate of 10 Hz, while sensors were sampled at 500 Hz and logged on-
board the LinkQuad. For the dataset used in this Chapter, camera data was
collected at a rate of 30 Hz during 20-second bursts after which the data had to be
written to memory. The camera was tilted approximately 30 degrees downwards
from the horizontal body-fixed plane of the quadrotor, giving an overview of the
cluttered floor as seen in Figure 6.1. The camera settings were tuned to minimize
the disturbance from light-sources and the infrared light used by the Vicon system.

The LinkQuad was then manually moved by hand to resemble flight conditions
while recording sensor data, synchronized with video frames and reference Vicon
data. In the experiment, the orientation of the camera was fixed relative to the
quadrotor although as long as the transformation is known, it could change during
flight.

43
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Figure 6.1. To provide visual features for the PTAM library to detect, the testscene
was cluttered with objects.

After its validation, the model was used for simulated control and landing, as
presented in Section 6.4, to validate the proposed control scheme with simulated
wind and random Gaussian system- and measurement noise.

6.2 Model Verification

The verification of a complex model is best done in small parts. It is however,
with the model given in Chapter 3, difficult to evaluate each equation individually
due to the couplings of the model. Instead, the verification is performed by evalu-
ating a full test-flight with recorded data, using one dataset for calibrating sensor
covariance and a second for validating the motion model.

For each sensor the predicted and the measured values are compared, and the
residuals - the difference between the two - are studied and fitted to a normal
Probability Density Function, PDF.

6.2.1 Accelerometer

As most of the modeling in Chapter 3 concerns the forces acting upon the quadro-
tor, the accelerometer provide an interesting measure of the quality of the model.
It should be noted that parameters were set to reasonable values, but no parameter
tuning was performed on the motion model in the scope of this thesis. As depicted
in Figure 6.2, the model leaves clearly trended residuals, not least in the horizon-
tal directions where the model does very little. From the Figures 6.3 and 6.4, it
can be seen that the model does have beneficial effects for the estimation, yielding
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predictions with lesser residuals than for instance a constant velocity model would.
The residuals of Figure 6.3 are centered around zero due to the compensation for
sensor bias, which is relevant to reduce drift in the system, and exhibit a fairly
good match to the normal PDF in Figure 6.4.
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Figure 6.2. Measured and predicted accelerations in the NEDEF system. The motion
model does not describe the horizontal motion although it does - even in its roughly
tuned state - explain some of the vertical acceleration.
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Figure 6.3. Residuals between measured and predicted accelerations. A zero mean is
relevant to reduce drift in the system.
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Figure 6.4. Accelerometer residuals fitted to a normal PDF. Both theoretical and
numerical values have been normalized to a maximum height of one.
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6.2.2 Gyroscope

It is clear, from Figure 6.5, that the model and the measured data provide matching
results. The residuals, presented by Figures 6.6 and 6.7 display a behavior which
is adequately described by a random, normally distributed, variable, which is
expected by the standard Kalman filter framework.
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Figure 6.5. Measured and predicted angular rates, in the body-fixed coordinate frame.
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Figure 6.6. Residuals between measured and predicted angular rates.



6.2 Model Verification 49

−10 −8 −6 −4 −2 0 2 4 6 8
0

0.5

1

Mean: −0.026292
Variance: 
5.6842

Roll rate

 

 
Theoretical fit
Numerical density

−10 −5 0 5 10 15
0

0.5

1

Mean: −0.028162
Variance: 
4.7131

Pitch rate

−15 −10 −5 0 5 10
0

0.5

1

Mean: −0.054715
Variance: 
8.2689

Yaw rate

deg/s

Figure 6.7. Gyroscope residuals fitted to a normal PDF. Both theoretical and numerical
values have been normalized to a maximum height of one.

6.2.3 Pressure Sensor

Pressure sensors are associated with a great amount of noise, as seen in Figure 6.8.
While the residuals, Figures 6.9 and 6.10, does not exhibit any obvious trends,
noise does spill into the positioning with the current tuning, currently adding
little contribution to the state estimation. This may be improved by further filter
tuning, although pressure sensors are, similar to magnetometers, known to be
problematic for indoor use due to air conditioning and other sources of pressure
changes. To remove the noise induced into the filter by the pressure sensor, it was
removed from the final filter evaluation.
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Figure 6.9. Residuals between measured and predicted pressure.
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Figure 6.10. Pressure residuals fitted to a normal PDF. Both theoretical and numerical
values have been normalized to a maximum height of one.

6.2.4 Camera Positioning

The camera tracking, shown in Figures 6.11-6.13, exhibit very good stability and
performance, and significantly add to the filter performance. The absolute posi-
tioning provided by the camera counters the drift in derived observer states, and
provides accurate measurements of orientation angles and position, as exhibited
in Figure 6.11. Because of potential errors in the world-to-PTAM transformation,
the orientation - which is independent of the scale - is often the most reliable of
the two measured quantities.

When the PTAM library is initialized, it tries to determine the ground plane.
It is thus possible to verify, in Figure 6.14, the initialization process and world-
to-PTAM transformation by confirming that the ẑ-axes (ẑNEDEF and ẑPTAM )
are approximately parallel. The slight tilting observed in Figure 6.14 is caused
by a misplacement of the ground plane in the initialization process, which is also
visible in Figure 2.3. Since the pose at the time of initialization is known, this
tilting is compensated for in the calculated transformation, making the positioning
less sensitive for PTAM initialization errors. Exact positioning on the moment of
initialization is still of importance, however.

In Figure 6.11, a slight bias can be noted in the vertical positioning. This is
due to the discrepancies between the PTAM library’s ground plane position and
the true ground plane.
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Figure 6.11. Measured and predicted angles and positions, in the PTAM coordinate
frame.
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Figure 6.12. Residuals between measured and predicted angles and positions, in the
PTAM coordinate frame.
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Figure 6.13. Residuals fitted to a Gaussian PDF. Both theoretical and numerical values
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Figure 6.14. The PTAM coordinate system is somewhat askew from its theoretical
orientation, with the ẑ-axis orthogonal to the ground. This can also be seen in Figure 2.3,
which is captured from the same dataset.

6.3 Filtering

The filter implementation was evaluated with recorded data as described in Sec-
tion 6.1. Due to model stability issues, as discussed in Chapter 7, the EKF-filter
was selected for evaluation.

6.3.1 Positioning

The position estimate generally exhibit very good performance relative to the
ground truth. This reflects the fact that the position states are observed in the
state estimation more or less directly by the camera, which exhibit stable posi-
tioning in the validation.

In the plot of the vertical positioning in Figure 6.15, the estimates from the
pre-existing complementary filter - moved to share the initial conditions of the
Kalman filter - was added for comparison. The complementary filter exhibits
problems associated with the pressure sensor, while the camera-based positioning
is stable throughout the validation.
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Figure 6.15. Positioning in the horizontal directions well corresponds to the ground
truth, thanks to the camera positioning. For the altitude, the estimation of the pre-
existing complementary filter is added for comparison, its starting point adjusted to
produce comparable plots.
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6.3.2 Velocities

The velocities, being closely coupled with the camera observed position, also ex-
hibit good performance (Figure 6.16). There are shortcomings to the estimation’s
horizontal precision, although this could probably be significantly improved with
further filter tuning and the availability of control signals to the motion model.
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Figure 6.16. Velocity estimates are generally adequate, but with more tuning, the
results are likely to improve.
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6.3.3 Orientation, Rotational Velocity and Gyroscope Bias

Along with the position, the orientation is estimated from the camera, yielding
notable precision, as seen in Figure 6.17.

The bias of the gyroscopes is removed during the initialization process. Since
the time-frame of the tests were far less than the time expected to detect a change
in the bias, these should thus be estimated to zero, as verified in Figure 6.19.

As noted in Section 6.2.2, the filtering of the rotational velocities of the quadro-
tor body, exhibited with their associated covariance in Figure 6.18, correlates very
well to the measurements. In Figure 6.20, the Kalman filter performance is com-
pared to the previously existing complementary filter. It can be seen that the
prediction update of the Kalman filter improves the phase of the filter, although
towards the end of the dataset, they are of comparable performance.
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Figure 6.17. Due to the camera positioning, the orientation of the quadrotor was
estimated with good accuracy.
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Figure 6.18. The predicted angular velocities corresponds very well to the gyro mea-
surements.



60 Experimental Results

2 4 6 8 10 12 14 16
−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

de
g/

s

Gyro bias, roll

RMS: 0.024259
 

 
Observer
Covariance
Ground truth

0 2 4 6 8 10 12 14 16 18
0.005

0.01

0.015

(d
eg

/s
)2

Time

Covariance

2 4 6 8 10 12 14 16
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

de
g/

s

Gyro bias, pitch

RMS: 0.013265
 

 
Observer
Covariance
Ground truth

0 2 4 6 8 10 12 14 16 18
0.005

0.01

0.015

(d
eg

/s
)2

Time

Covariance

2 4 6 8 10 12 14 16
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

de
g/

s

Gyro bias, yaw

RMS: 0.18239
 

 
Observer
Covariance
Ground truth

0 2 4 6 8 10 12 14 16 18
0.005

0.01

0.015

(d
eg

/s
)2

Time

Covariance

Figure 6.19. The gyroscopes’ drift was removed prior to entering the filter, and does
not change during the short recording of data.
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Figure 6.20. A comparison with the tuned complementary filter show that both filters
accurately describe the heading, and although the phase of the Kalman filter is better in
the beginning, they are of comparable performance towards the end of the dataset.

6.3.4 Wind Force

As the tests were performed inside, the filter was tuned to keep the wind at a zero
velocity estimate. Figure 6.21 shows them to be correctly estimated to zero in the
collected dataset, although in the case with simulated data with wind, shown in
Figure 6.22, results are quite poor, most likely due to lack of filter tuning.

In simulations to verify the wind estimate’s behaviour at landing, it is evident
that the wind estimate is affected by ground contact. However, as the simulation
model does not yet fully cover the the non-continuous event of touching the ground,
the simulated wind estimates are not quite as expected, as shown in Figure 6.23
and discussed in Chapter 7.
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Figure 6.21. Wind estimates from recorded test-data.
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Figure 6.22. Wind from simulated test-flight.
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Figure 6.23. Even in simulation, the landing was detectable in the vertical wind esti-
mate, although more work is required to properly model and detect the event.

6.3.5 Propeller Velocity

As the filter evaluation was performed without the use of the controller, the con-
trol signal is unavailable. Thus, Eq. (3.39) was used as prediction model for the
propeller velocity in the filter validation, effectively leaving the estimation of the
propeller velocities to the measurement update. It is evident, in Figure 6.24 that
the estimation is active, however it is impossible to validate properly with the avail-
able data. Ideally, the velocities of the propellers should be measured in flight,
although such data is currently unavailable on the LinkQuad.
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Figure 6.24. Propeller angular rate estimates could not be properly verified with the
available data, although do exhibit a reasonable value range given the model parameter
settings.

6.4 Control

The control algorithm was tested in simulation on the model presented of Chapter 3
and verified in Section 6.2. The control, although roughly tuned, did in simulation
exhibit stable and responsive properties. The reference track included velocity
control in all directions, control of yaw rate and finally landing. This corresponds
to a wide range of the operations to which a quadrotor may be used, including the
landing procedure, which is central to this thesis.

In Figure 6.25, the reference flight is plotted, and as can be seen it starts with
a sinusoid velocity. After 150 seconds - simulation time - the landing procedure is
initialized and the velocity is reduced until after about 180 seconds, when the ve-
locity is below the threshold to begin descent. Landing is detected by the shortfall
of velocity after just over 400 seconds.
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Figure 6.25. Control of the simulated flight was stable, although - being untuned -
somewhat slow. The actuation of the yaw rate is very weak, which is evident in slow
reaction of the yaw rate control.



Chapter 7

Discussion

In this chapter, the results of the thesis are discussed, analyzing the contents of
Chapter 6 and providing a basis for a later discussion on future work.

7.1 Camera Localization

Two libraries were evaluated for the camera localization part of this thesis, namely
Scenelib and PTAM. Scenelib is the older library of the two, and is also the li-
brary to which PTAM was compared in its original paper [22]. The Scenelib
library, using the filter approach described in Section 2.1, has the advantage to
use metric measures. This was believed to potentially simplify the integration with
the observer’s measurement update, although in the end, difficulties with camera
calibration rendered the Scenelib library subpar.

The PTAM library is designed to be used with a wide-angle camera lens, which
unfortunately was impossible with the available resources. While good perfor-
mance could be achieved in the restricted testing environment, a wide-angle lens
is likely to improve the tracking performance when larger scenes are explored.

One can note that tracking was quite stable in recorded test cases with the low
capture rate of 15 Hz. A faster rate is nonetheless advisable.

7.2 Filtering

The results for the state estimation algorithms of this thesis were presented in Sec-
tions 6.2-6.3 of Chapter 6. In the evaluation, the parameters of the motion model
were set to reasonable values but otherwise untuned. Similarly, filter covariances
were only roughly tuned. Video was recorded for 20 seconds (30 Hz mode) or 40
seconds (15 Hz mode). The Vicon ground truth was used for initialization and
plot reference.
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7.2.1 EKF vs. UKF

Two nonlinear filter algorithms were studied in this thesis. After an initial evalu-
ation period of the Unscented Kalman Filter, one weakness of the algorithm was
exposed that rendered the algorithm very difficult to use further.

Since the distribution of sigma points in the UKF is scaled with the covariance,
they move farther away as the positioning gets less confident. With a fragile
model such as that of a quadrotor, evaluating the model in too large offsets from
reasonable ranges will cause effects large enough to destabilize the filter. Excessive
covariance in angle estimates may for instance cause the filter to evaluate and
compare two cases of the quadrotor being upside down, both irrelevant to the
mean case of stable, vertical, flight. Hence, the implementation was changed to
use the more stable EKF algorithm.

With further tuning, the UKF may be usable in a later stage of development,
but with the inherent instability of the model, the UKF is still problematic in
the development stage, as measurements are not always available to reduce the
covariance.

7.2.2 Performance

The quality of the tracking, despite lack of tuning and previously mentioned prob-
lems, is in some cases remarkable given the preconditions - the angle estimates
in particular. The most important factor for this is the high precision achieved
by the camera positioning. By experimenting with filter tuning, it is apparent
that noise from the pressure sensor in Figure 6.8 affects the altitude positioning
negatively. The trends in measured and predicted pressure of Figure 6.8 seem
to correlate with the ground truth altitude in Figure 6.15, so further tuning and
modeling may increase the utility of the pressure sensor. Due to its problematic
behavior, the pressure sensor was disabled in the filter verification.

With the proposed filter structure in place, the single most rewarding factor to
increase the quality of the filtering would be simply to further tune it. Since this
can be quite time-consuming, it could not be included in the thesis, but tools for
simulation and evaluation are provided in the implementation.

Currently, the integration of the continuous model from Chapter 3 is performed
using numerical Euler integration. This is a simple and fast integration method,
but lacks in accuracy. Applying a more advanced solution, e.g. a standard Runge-
Kutta solver, could be expensive for a complex model, but a study to determine
a reasonable trade-off using different integration techniques could be performed.
The cost of integration may very well outweigh the performance gained by applying
the advanced motion model, and the precision loss caused by the Euler integration
might exceed the gain from the finer details of the said model. A simpler model
could remove the need for numerical integration entirely and provide a significant
speed-up. The complex model would however still be highly relevant for validation
and development purposes, and the complexity of the modeling could be varied
for the different applications of the model.
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7.3 Modeling

It is arguable whether the detail of the physical modeling presented in Chapter 3
is tenable, as performance similar or better than presented in Section 6.3 is very
likely to have been achieved using a well tuned, far simpler, motion model. These
results are not surprising for the untuned state of the model, however. Aside from
requiring accurate parameter settings, the full potential of the proposed model is
dependent on the availability of control reference signals and more accurate control
over the true rotational velocity of the propellers. Feedback of the measured motor
RPM is likely to appear in a later stage of the development of the LinkQuad, and
may thus be available in the future.

The model, as presented in this thesis, needs further in-detail verification and
tuning. The flapping equations presented in Section 3.3.3 were in fact even disabled
during the verification in Chapter 6 due to the difficulty of verification. In its
current state, the model adequately describes the accelerations of the system -
and with tuning it might become great - but the performance of the model must
also be weighed against the computational complexity.

The structure and extensiveness of the model does however open for new ap-
plications, including future outdoor applications, due to its handling of wind and
other disturbances. The state-space type of model also allows for simple addition
of further modeling and added - or removed - states.

The proposed model also bear the advantage that the linearization performed
in the Extended Kalman Filter may be cleverly re-used in the control algorithm,
removing duplication of computations. In fact, by clever use of the model, only a
single model needed to be developed in the thesis, then re-used for state estimation,
control, simulation of reality and sensor measurements. The model can, as future
work, be simplified, yet still benefit from the added detail where suitable.

One can note that the number of physical constants can be reduced using
model identification for some of the equations of Chapter 3. The importance of
each force discussed should be investigated, and forces of lesser importance could
be removed to reduce the complexity of the model.

7.4 Controller

The advantages and disadvantages of different control techniques and their appli-
cations to quadrotor control have been previously discussed and evaluated in [4].
The conclusions are ambiguous, but the state-space approach is believed to excel
with continued modeling.

One disadvantage with the state-space approach is its - in comparison to PID
control - lack of easily implemented error integration. This adds demands on a
physically correct model, which may not always be available in all flight-conditions.

The SDRE approach used in this thesis is notably rare - if at all existing - in
the application of quadrotor control and with its ease of use it is an interesting
topic for further research and applications. The control implementation is very
versatile although the computational burden could potentially be somewhat lifted
by comparing and applying other techniques for solving the Riccati equation of
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Eq. (4.5) and its discrete equivalent. Several numerical approaches exist to solving
the Riccati equation, although an iterative approach could prove beneficial since
the equation is solved repeatedly and the previous solution would make a good
starting guess.

While the control would need to be further verified and tuned before beeing
applied in real flight, the tools and structure have been verified in simulation
with good results. It should be noted that the control model is fundamentally
the same as the observer model and, more importantly, the underlying simulation
model. Even though noise was added to both the system and the measurements,
the control evaluation suffers from the fact that the control is “perfect” for the
simulated model, and not necessarily for real flight.

One clear advantage with the LQ control methodology is its simple tuning, and
even though very little of the work was focused on tuning the control, the per-
formance of the simulated control was acceptable. The control handled moderate
simulated winds and disturbances without trouble, and followed velocity references
adequately. Since the actuation of the yaw rate control is very weak in configura-
tions such as the LinkQuad, slow control is to be expected here, especially without
more tuning of the control parameters.

An entirely different approach for control would be to replace the proposed
control interface for a more subsidiarized control approach, using existing structure
for controlling rotational velocities of the quadrotor. This would, however, remove
the benefits of using the theory of optimal control to control the physical model
directly.

7.5 State-machine Logic

The implementation of the state-machine engine uses a simple, programmatically
elegant, solution, detailed in Appedix A. The implemented modes are quite trivial,
yet the structure is in place to implement far more advanced modes. In the future,
the implementation could be extended to support concurrent state-machines as
has been extensively studied in projects closely related to the LinkQuad.

When detecting landing from study of the observer’s state estimate, a text-
book solution would be to introduce an estimated state of the ground force, which
could be thresholded in the detection of landing. One finds, however, that such
a force would be indistinguishable from the force acting on the quadrotor by a
strong upward wind. In simulation, the landing detection failed to detect landing
as proposed in Section 5.4.1, although when a landing is simulated, Figure 6.23
exhibits an interesting property where a notable bump occurs at the time of the
landing. While this is not the expected behavior - the estimate should be negative
and constant - it does show that the wind may be useful as a detector for landing.
This discrepancy of results is believed to be due to the simulation’s lack of a model
for sensor measurements at the event of ground contact, and the observer’s lack
of control signals in its state estimation.

The results achieved in simulation implies that landing detection using wind
estimation might be feasible, although more work is required to achieve the quality
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of estimation needed to securely detect landing.

7.6 Real-time Performance

Although real-time performance is easily achieved on a modern laptop, it could not
be achieved on the LinkQuad’s Gumstix microcomputers without modifications.

The performance of the proposed algorithms when evaluated on the Gumstix

is penalized by the lack of a floating point processor (FPU) to carry out the calcu-
lations. However, the Gumstix has a Digital Signal Processing unit (DSP) which
might be possible to use as a FPU to increase execution speed. Attempts were
also made to convert libraries and algorithms from double precision calculations
to single precision, although these attempts were deferred. This is still, however,
believed to be of significance to achieve real-time performance.

Furthermore, the system was evaluated using the reference implementation
of BLAS1, which could possibly be replaced by a tuned implementation such as
ATLAS2. Model simplifications may also be necessary to achieve real-time per-
formance on the existing hardware, although the nonlinearities introduced by the
vehicle’s rotations and thrust equations are believed to be relevant. Landing in
the trivial case can no doubt be performed using a simpler, even linear, model,
although generalisations extending the utility of the controller, for instance when
using the controller for other flight cases, would likely require the use of a more
advanced model, such as proposed in this thesis.

1Basic Linear Algebra Subprograms, a standard set of mathematical routines.
2Automatically Tuned Linear Algebra Software





Chapter 8

Concluding Remarks

This thesis covers the theory and implementation of the most important high-level
aspects of autonomous landing and flight. The implementation is still in need of
tuning, both for state estimation accuracy and control, but the foundations for
high-level control and estimation using modern and effective algorithms have been
laid.

While the implementation has yet to see real flight, it is believed that relatively
little work remains before test-flights can be performed, the most important work
being tuning of state estimation and control.

8.1 Conclusions

The system proposed in this thesis has been implemented and verified using the
framework presented in Appendix A. The verification suggests that with further
work, the proposed approach is a feasible solution for landing a quadrotor au-
tonomously. The algorithms used in the thesis allow for simple scaling of the
solution, which also makes the method applicable for other types of platforms, or
platforms with other sensor configurations.

Positioning using Monocular SLAM has been shown to improve the estimation
of the states of the quadrotor significantly. By extending the PTAM library, it has
been possible to automate the initialization and utilization while also providing
the coupling to a real-world metric system needed for positioning applications.

Even in an untuned state, the positioning provides a state estimate that is
adequate for the nonlinear control methodology presented in Chapter 4 to per-
form well in simulation. The controller extends the well-studied Linear Quadratic
controller to a far more general case, while retaining its appreciated simplicity of
tuning. The controller successfully lands a quadrotor in a simulated environment,
and performs well in symbiosis with the suggested filtering algorithms.
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8.2 Further work

While the implementation still needs tuning, it shows promise and one can see
many fields which would prove interesting for future in-detail study - filter, model
and control tuning included.

8.2.1 Filtering and Control

As a future study, it would be of interest to make a comparison between a fully
tuned advanced model, compared to simpler motion models that can be applied in
the filtering framework. Also, after the proposed model has been properly verified
and tuned, further modeling may be of interest.

As more processing power becomes available one can, in the filtering pro-
cess, consider using even more state-of-the-art filtering techniques, such as GPU-
implemented particle filtering. Similarly, other control models could be compared
with the advanced SDRE-solution proposed in this thesis. Future work could
also investigate the applications of other types of optimal control, such as Model
Predictive Control, MPC.

The landing detection proposed in this thesis needs verification from recorded
data. While the proposed solution is believed to be viable, further verification and
modeling is needed to apply the detection in real flight, as false detections could
be fatal.

8.2.2 Monocular SLAM

One of the main results of this thesis is the relating of the PTAM coordinate system
to the world coordinate system. This result could be relevant for any future work
including real-world positioning using video feedback.

There is also a potential to improve the PTAM library. The PTAM library was
specifically developed for hand-held cameras without any additional sensors, yet
the algorithm would benefit from such. The state estimate and motion model of
the observer could be utilized to improve the quality and stability of the camera
tracking.

The PTAM library also exhibit performance issues when the internal map of
features grows. This could be improved by using informed search, for instance
using R-trees, to index features according to their spatial position and limit the
search for relevant features to re-project into the image.
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Appendix A

CRAP

For the implementation of the theory presented in this report, a framework was
developed for connecting the different separable modules and provide a core library
of useful functions. The result is called C++ Robot Automation Platform, or CRAP

for short. To emphasize the central idea of modularity, one can note that the actual
compiled core - headers not included - are less that two-hundred lines of code.

The main ideas of CRAP are borrowed from the Robot Operating System,
ROS1, while implementing these in a more efficient and uniform manner. By
constraining the intermodular messaging to C++2 and compartmentalizing the
modules in separate threads as opposed to processes, CRAP significantly reduces
the overhead associated with the flexibility of such modular software.

This document contains a brief technical description of the inner workings of
the framework, focused on the implementation for quadrotor control described in
this thesis. Further documentation is available in the code, which can be found at
https://github.com/jonatanolofsson/crap.

The relevant directory structure is as follows, exemplified for the observer mod-
ule:

1http://ros.org/
2ROS allows messaging between Python and C++ modules
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/

CMakeLists.txt

modules

CMakeLists.txt............Modules to be compiled are listed in here.
observer

CMakeLists.txt

observer.cpp

· · ·
configuration

observer.yaml

· · ·
include

src ............................................... The few lines of core
interface.................................................3D interface
cmake........................................ Files to find dependencies

A.1 Structure

Modules, as shown in Figure A.1, connect to each other using messages sent in
message topics. Topics are identified by a string name, and can be listened to or
published to.

Each module is initialized in its own processing thread, but may chose to end
this initial thread and react only to incoming messages, which are received in
separate messaging threads, which is instantiated when a module starts to listen

to a topic. Further details of this procedure is given in Section A.2
CRAP makes use of the yaml-cpp C++ library, which allows configuration to

be simply parsed run-time. The core configuration file is given as the first input
argument to the CRAP executable and contains a list of the modules that should
be loaded, each with a unique name, executable shared object and an optional
configuration file, as exemplified in Listing A.1.

Each module is compiled individually to a shared object, which can be dynam-
ically linked to the CRAP platform at run-time, in accordance with the selected
core configuration. The modules are all located in the modules directory, and all
compilation details needed for run-time linking are defined in the CMake configu-
ration of that directory.
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1 −−−
2 module_root : modules /
3 c on f i g_root : /home/ shared / p r o j e c t s / crap / c o n f i g u r a t i o n/
4 modules :
5 − name : se n d e r
6 f i l e : comm_sender. so
7

8 − name : b a s e l i n k
9 f i l e : b a s e l i n k . so

10 c o n f i g u r a t i o n :
11 rece ive_f light_commands : f a l s e
12 send_fl ight_data : t ru e
13 port : /dev/ p ts /5
14 re f e re n c e _t i m e ou t : 10 . 0
15

16 − name : ob se rve r
17 f i l e : ob se rve r . so
18 c o n f i g u r a t i o n : ob se rve r . yaml
19

20 − name : r e a l i t y
21 f i l e : r e a l i t y . so
22 c o n f i g u r a t i o n : r e a l i t y _ r e a d e r . yaml
23

24 − name : se n sor_re ad e r
25 f i l e : se n sor_re ad e r . so
26 c o n f i g u r a t i o n : se n sor_re ad e r . yaml
27

28 − name : camera_reader
29 f i l e : camera_reader . so
30 c o n f i g u r a t i o n : camera_reader . yaml

Listing A.1. Core configuration example, listing what modules should be loaded on
execution.
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Figure A.1. CRAP schematic. The Figure describes the relationship of modules (green)
and their internal communication through messages (red). External modules, connected
through a serial interface, are shown in blue. Dashed lines are optionally enabled or
disabled in different run-configurations of the thesis implementation.

A.2 Communication

As presented in Section A.1, the modules interact using messages in topics. When
a message is sent, it is pushed to a messenger thread which will invoke the callback
specified by each listening module.

Using the existing message definitions for serial communication on the LinkQuad,
the framework also provides an implementation for serial communication which re-
uses this interface, allowing callbacks to be used interchangeably for both serial
and internal communication.

The following subsections provide code samples for both use cases.

A.2.1 Internal Communication

The example in Listing A.2 displays the simple interface for internal communi-
cation. As long as both sender and receiver agree on the type, any data can be
transferred, as the data is passed directly through function pointers without need
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for serialization. Each topic can have multiple listeners and multiple senders, but
only one data type can be sent on each topic. This restriction is not programmat-
ically enforced, but must be asserted in the development process.

1 void switch_mode ( c on st std : : s t r i n g& mode) { . . . }
2 . . .
3 comm : : l i s t e n ( " / l o g i c /mode " , switch_mode ) ;
4 . . .
5 comm : : send ( " / l o g i c /mode " , s td : : s t r i n g ( " hover " ) ) ;

Listing A.2. Excerpts from the mode-switching code in the state-machine,
demonstrating the use of internal messaging.

A.2.2 Serial Communication

The serial communication is slightly more restricted than the internal communica-
tion, to comply with the existing definition of the LinkQuad serial communication.
As exemplified in Listings A.3-A.5, the interface is however as far as possible the
same as for the internal communication. It should be noted that the listen

method used in Listing A.5 automatically requests the data accepted by the call-
back by sending a data request of the specified serial port. This request is disabled
using the alternative, but analog, method passive_listen.

The serial communication has been branched into a separate library to allow
use outside of the CRAP framework.

1 u s i n g namespace LinkQuad : : comm : : s e r i a l ;
2 u s i n g namespace LinkQuad : : comm : : s e r i a l : : data ;
3 u s i n g namespace LinkQuad : : comm : : s e r i a l : : data : : SUser ;
4 typ e d e f LinkQuad : : comm : : s e r i a l : : data : : se r i a l _d ata <
5 params_32f_0 ,
6 params_32f_1 , . . . > s e r i a l _ d a t a ;

Listing A.3. Message definition for the serial communication. Both communicating
parts must agree on what data is sent.

1 u s i n g namespace LinkQuad : : comm : : s e r i a l : : data ;
2 u s i n g namespace LinkQuad : : comm : : s e r i a l : : data : : SSMCU;
3 void camera_rece ive ( c on st s e r i a l _ d a t a& d ) {
4 measurement . z <<
5 ( s c a l a r ) d . params_32f_0 ,
6 ( s c a l a r ) d . params_32f_1 ,
7 . . .
8 }
9 . . .

10 LinkQuad : : comm : : s e r i a l : : l i s t e n <SSMCU: : Part >("/dev/ p ts /1" , camera_rece ive ) ;

Listing A.4. Excerpts from code receiving data over serial communication. The listen

automatically requests the correct data using LinkQuad data-request messages.
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1 msg . params_32f_0 = q . x ( ) ;
2 msg . params_32f_1 = q . y ( ) ;
3 . . .
4 LinkQuad : : comm : : s e r i a l : : send ( s e r i a l _ p o r t , msg ) ;

Listing A.5. Excerpts from code for sending data over the serial interface. The data is
then sent in a separate thread, leaving the caller to continue.

A.3 Modules

This section describes the most important modules, and their implementations,
individually.

A.3.1 Observer

The observer is implemented according to the theory presented in Chapter 3. As
implemented, the observer responds to three different events:

• The filter’s time update is performed at a fixed rate.

• The IMU measurement update is run as soon as IMU data is received.

• The camera measurement update is run as soon as camera data is received.

The two latter events are triggered by incoming messages, and are run in separate
threads, as depicted in the schematic in Figure A.2.

Timer

Prediction update

Publish

Initialization

IMU data

IMU update

Camera data

Camera update

Figure A.2. The observer reacts to three events; A timer executes the prediction update,
and incoming messages invoke the measurement updates. The state is published to other
modules at a fixed rate immediately after the prediction update.

A.3.2 Controller

The controller implements the nonlinear control described in Chapter 4. The
control output is updated as soon as a new pose estimate is received from the
observer. The reference signal is updated asynchronously as such a message arrives,
but does not cause an update of the output signal. The controller is thus reactive
only, and the original thread will terminate as soon as the message topic callbacks
have been registered.
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SDRE3

Calculate control

Publish
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New reference

Figure A.3. The controller output is changed only when the a new pose estimate arrives
from the observer.

A.3.3 Logic

The logic module uses a single-threaded state-machine to implement the state-
machine modes proposed in Chapter 5. Just as the modules, each mode is compiled
independently to a shared object which is then loaded and linked when the mode
is requested. The relevant directory stucture is as follows:

/

configuration

modes

hover.yaml

modules

logic

modes

CMakeLists.txt....... Modes to be compiled are listed in here.
hover

CMakeLists.txt

hover.cpp

The file hover.cpp is what contains the chain that is executed in the state-
machine mode. Each mode must contain a C-method with the same name as the
mode. This is the entry point to the mode. The return-value of this method, and
all other parts of the chain, is a void pointer to the next function to be executed.
The active function is invoked at a fixed rate until a NULL value is returned.
Listing A.6 contains excerpts from the hover mode, which exemplifies the func-
tion chaining as well as demonstrating practical use of the CRAP framework.
The configure method in said listing will - when the mode is first requested and
thus loaded - receive the contents of the configuration file in the modes directory.

3Solve the Damn Riccati Equation
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1 e xte rn "C" {
2 YAML: : Node c o n f i g ;
3 void c o n f i g u r e (YAML: : Node& c ) { c o n f i g = c ; }
4

5 typ e d e f state _ve c tor (∗ state _f n ) ( ) ;
6 state _f n ge t_state = comm : : bind<state_fn >(" ob se rve r " , " ge t_state " ) ;
7

8 void ∗ hover_control ( ) {
9 . . .

10 comm : : send ( " / r e f e r e n c e " , r e f ) ;
11 re tu rn ( void ∗) hover_control ;
12 }
13

14 void ∗ hover ( ) {
15 x = ge t_state ( ) ;
16 p o s i t i o n = x . segment<3>( s t a t e : : p o s i t i o n ) ;
17 re tu rn ( void ∗) hover_control ;
18 }
19 }

Listing A.6. Code sample demonstrating the central functionality of each state-machine
mode.

A.3.4 Camera Reader, Sensor Reader and Baselink

The camera reader provides the interface to the serially transferred measurements
from the PTAM library, running on the secondary computer. Likewise, the sen-
sor reader module interfaces the sensor MCU on the LinkQuad to retrieve IMU
measurements, which are forwarded to the observer.

The baselink module interfaces the graphical front-end, presented in Section A.4,
through a serial interface, allowing the front-end to e.g. run on a connected laptop
when CRAP is run on a host without support for graphics.

A.4 Interface

The baselink module that connects to the graphical interface provides relevant
parts of the observer’s current state estimate. This is used to visualize the simu-
lation or flight in real-time, as depicted in Figure A.4.

The baselink module also accepts commands over the serial interface, which
can be sent to CRAP and forwarded by the freeflight state-machine mode to
the controller as control reference. The interface implements 3D control through
the open-source spacenav4 drivers for 3DConnexion’s5 3D-mice.

4http://spacenav.sourceforge.net/
5http://www.3dconnexion.com/
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Figure A.4. The CRAP framework features a simple graphical viewer to visualize the
observer’s pose estimates.
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