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Abstract

Streams of information rather than static databases are becoming increasingly im-
portant with the rapid changes involved in a number of fields such as finance, social
media and robotics. DyKnow is a stream-based knowledge processing middleware
which has been used in autonomous Unmanned Aerial Vehicle (UAV) research.
ROS (Robot Operating System) is an open-source robotics framework providing
hardware abstraction, device drivers, communication infrastructure, tools, libraries
as well as other functionalities.
This thesis describes a design and a realization of stream processing in ROS based
on the stream-based knowledge processing middleware DyKnow. It describes how
relevant information in ROS can be selected, labeled, merged and synchronized
to provide streams of states. There are a lot of applications for such stream pro-
cessing such as execution monitoring or evaluating metric temporal logic formulas
through progression over state sequences containing the features of the formulas.
Overviews are given of DyKnow and ROS before comparing the two and describing
the design. The stream processing capabilities implemented in ROS are demon-
strated through performance evaluations which show that such stream processing
is fast and efficient. The resulting realization in ROS is also readily extensible to
provide further stream processing functionality.
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Chapter 1

Introduction

The world changes all the time and the flow of information encompasses many areas
of life and research. A continuous flow of information can referred to as a stream.
These streams of information can describe many different things such as trending
topics on the Internet, social media updates, financial instruments or data from
sensors on a robot[7][10][14]. The focus of this thesis is stream processing within
the specific domain of robotics although much of it is applicable in aforementioned
domains too.

Figure 1.1: The most recent research platform from the AIICS group at Linköping
University; the LinkQuad Autonomous Micro Aerial Vehicle from UAS Technolo-
gies.
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2 Introduction

DyKnow is a stream-based knowledge processing middleware used in autonomous
Unmanned Aerial Vehicle (UAV) research[15]. One of the current research plat-
forms involved is the LinkQuad quadrotor platform[14] shown in figure 1.1. UAVs
have a lot of different applications spanning a number of different fields such as
public service, military and aid during disasters. Among the scenarios explored by
the AIICS research group at Linköping University are search and rescue missions
where autonomous UAVs can be deployed to methodically search the nearby ter-
ritory to locate humans in need of rescue during floods, fires, earthquakes or other
dire scenarios. They are well suited for such assignments since they can operate
in environments which might be hostile or unsuitable for humans, their senors
enable them to perceive things humans might miss and their speed and mobility
are also factors to consider. Locating humans affected by such disasters or even
providing them physical objects such as aid packages or means of communication
autonomously allows the humans involved in the rescue operation to spend their
time more efficiently in a situation where each second counts.

Autonomous UAVs are not only fearless; they also lack the capacity to experience
boredom which makes them suited for mundane assignments such as surveillance
missions and traffic monitoring to detect traffic violations or accidents.

The goal is not to replace humans but to use autonomous UAVs as tools to help
with certain tasks and thereby alleviate human workload. Just as with any tool it
comes down to how you use it. Robotics can aid humans by doing tasks entirely
autonomously but they can also help by notifying humans when their attention is
needed such as when another human is in need of assistance.

In such scenarios UAVs can be useful tools on their own and they can also sift
through massive amounts of information and help to notify human operators where
their attention is needed. This thesis is about processing the streams which contain
such data to for instance use the resulting streams for execution monitoring or
formula evaluation. This is done using methods from DyKnow in ROS (Robot
Operating System).

DyKnow is a comprehensive framework which includes ways to deal with massive
flows of information and derive structured knowledge from it which can span sev-
eral abstraction layers, all the way from the sensory input to high level reasoning
capabilities[15].

The ROS framework provides a large variety and quantity of practical tools for
robotics research. The project is supported by many universities worldwide and
there is ROS support for a number of robotics platforms[19].
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(a) Yamaha RMAX (b) PingWing (c) LinkMAV

Figure 1.2: Other autonomous UAV platforms used by the AIICS group.

1.1 Motivation

Like ourselves robotics platforms have to handle massive amounts of streaming
information. The challenge lies in sifting through these streams, isolating what is
truly important and labeling the incoming data with familiar concepts to make
sense of it as well as organizing it in a form that enables us to use the infor-
mation to reason in a logical way about the world around us. The motivation
behind this thesis is to provide useful DyKnow functionality in ROS to this end.
DyKnow-concepts can aid with processing of data which can span several lay-
ers of abstraction, selecting relevant streams, merging streams and synchronizing
streams. The last-mentioned is also essential for forming a state stream to model
continuous time used to reason about the environment with metric temporal logic
(MTL)[15] or qualitative spatio-temporal reasoning (QSTR)[18]; see sections 2.4.2
and 2.4.3 respectively. The stream processing also provides a foundation to further
integrate functionality supported by DyKnow. The large amounts of information
in ROS could benefit from a stream centric framework like DyKnow in a number
of different ways such as making the framework more dynamic by providing op-
erations on streams which can be configured and performed at runtime without
changing the source code.

Stream processing is an integral part of DyKnow and the design and implementa-
tion of such is paramount to providing the functionality DyKnow has to offer in
ROS. The stream processing functionality described in this thesis offers dynamic
services at runtime to for example select relevant information in streams defined by
constraints, merge streams containing contextually related data and synchronize
streams into states. The selection and merge functions can be used for execution
monitoring on robotic platforms and one of the motivations for synchronizing the
streams is to provide state streams which can be used to evaluate MTL or perform
QSTR.
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1.2 Goal

The goal is to design and implement DyKnow-inspired stream processing in ROS.
The solution should support runtime usage so that processes as well as users
can specify and create streams they require to for instance perform execution
monitoring or formula evaluation.

For service usage and certain autonomous operations a formal description of the
streams content called a Stream Specification is required. The goal also includes
a way to create these Stream Specifications using a language which has a syntax
similar to common query languages.

The goal is to process data streams in ROS by performing operations such as select,
merge and synchronize to form state streams. Select refers to being able to select
specific data which is relevant based on a policy defining constraints which can be
for instance temporal or based on matching a certain criteria. Merge refers to being
able to unify data which relate to contextually similar concepts. The goal with
regard to synchronizing is to swiftly form a steady stream of synchronized state
samples based on the incoming data where each sample is synchronized around a
certain point in time. The synchronization is to be done by matching the contents
of time stamped data while taking into account if more data relevant to the current
state can arrive in order to publish the states in a more expedient manner.

1.3 Outline

There are six chapters which compose this thesis; Introduction, Background, Anal-
ysis and Design, Implementation, Empirical Evaluation and lastly Conclusions
and Future Work.

Background introduces the reader to ROS, DyKnow and related work.

Analysis and Design explores the differences and similarities of the two frameworks
to lay the foundation for an architecture. A design for a DyKnow stream reasoning
architecture and the stream processing module in aforementioned is presented.
The stream processing operations are explained as well as the stream processing
language SPL.

Implementation describes the realization in ROS based on the design. The mes-
sages and services used are explained in detail and examples of SPL are given.

Empirical Evaluation is the chapter where the implementation is tested and graphs
are provided to explore the performance. The chapter mostly presents and dis-
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cusses the overhead introduced by the stream processing operations.

The last chapter, Conclusions and Future Work, sums up the results and the
process as well as deals with proposed research directions.





Chapter 2

Background

The Robot Operating System (ROS) is a modular open-source framework which
is used and supported by a multitude of companies and universities worldwide.
Architecturally ROS uses nodes which communicate using a publish/subscribe
mechanism between them where nodes publishes messages of a specified type on
corresponding topics which other nodes can subscribe to and thereby receiving the
messages (2.1). A node in ROS can also provide services with predefined structures
specifying the service’s requests and responses.

The theoretical basis of the stream processing design in this thesis is based on
DyKnow which is a comprehensive middleware framework based on streams and
knowledge processing. It has mainly been used in the domain of robotics. Some
of the concepts in DyKnow are streams which are continuous sequences of data
elements, polices which specify the contents of such a stream, different kinds of
knowledge processes which operate on streams as well as fluent streams which con-
tain a sequence of discrete samples in order to approximate streams of data which
might be continuous. A fluent stream policy is accordingly a set of constraints to
specify the content of a fluent stream. DyKnow has been proven useful in sev-
eral different contexts such as stream reasoning[12] and dynamic reconfiguration
scenarios.

Stream processing has applications in robotics such as execution monitoring and
providing state streams which can be used in stream reasoning to evaluate MTL
or perform QSTR. Such stream reasoning is especially important since although
Data Stream Management Systems (DSMS) can handle queries over streams, when
it comes to complex reasoning they are somewhat lacking whereas most reason-
ers struggle with the rapidly changing data which is often involved in stream
reasoning[10].

7
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Figure 2.1: Tutorial example illustrating nodes and topics in ROS with the rxgraph
tool

2.1 The Robot Operating System (ROS)

The Robot Operating System (ROS) is an open source framework for robotics
software development with its roots at Willow Garage and Stanford University [19].
It consists of modular tools divided into libraries and supports different languages
such as C++, Python and LISP. The ROS specification is at the messaging layer
and consists of processes that can be on different hosts. Several universities from all
over the world such as Stanford, MIT, Berkeley, TUM, Tokyo university and many
others have put up ROS repositories contributing to this collaborative enterprise.
Since it is a global collaborative open-source project in active development the
code-base as a whole is in constant flux and lots of improvements are done for
each new major release. Just during this project a couple of relevant changes
have been made and in order to get the most up to date information about the
things discussed here the reader is referred to the online documentation for ROS
at www.ros.org where code, tutorials and examples can be found. The most recent
version of ROS at the time of writing this thesis is Electric Emys.

2.1.1 Nodes

Computational processes in ROS are called nodes. A node can represent a wide
variety of different concepts like for instance a sensor or an algorithm driven pro-
cess.
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2.1.2 Nodelets

Nodelets enables us to run multiple algorithms in a single process with zero copy
transport between algorithms. There are however already some C++ optimiza-
tions in ROS which keep unneeded copy transport to a minimum within nodes.

2.1.3 Topics

Nodes communicate with a publish/subscribe pattern by passing messages to each
other on topics. Each topic is referred to by a simple globally unique string such as
for example uav1_altitude or uav1_front_laser_sensor. A topic can be considered
to be a data stream and is strongly typed in the sense that you can only pass pre-
defined message structures over a topic. For instance uav1_altitude might just pass
a message containing a number whereas the uav1_front_laser_sensor topic might
communicate a more complex message structure containing laser data. There may
be several different publishers and subscribers to each topic.

2.1.4 Messages

The topics are strongly typed. An individual topic and its publishers and sub-
scribers can only deal with a predefined message structure. These predefined
messages are defined in .msg files which generate code for several programming
languages upon compiling. There are a few primitive message types and ROS
allows for the creation of more complex messages which can include several fields
including arrays of messages. There is no explicit support for recursive messages
(although workarounds such as publishing addresses might be possible for embed-
ded systems).

Here is a simple example to illustrate what a message can look like:

contents of UAV.msg:
Header header

uint32 seq
time stamp
string frame_id

uint32 id
string uav_type
uint32 alt
uint32 spd
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In the example above there are 5 fields called header, id, uav_type, alt and spd.
Their respective type is listed to the left of the field name. The type Header is
not a primitive field: it is a message as indicated by the capital H and illustrating
the fact that it is possible to have messages composed of other messages and so
on with even deeper nesting.

Another feature is that a field can be an array of messages such as:
UAV[] uavs
where uavs would be an array of the message type UAV.

2.1.5 Services

Services in ROS work according to the familiar request/response pattern common
in computer science and are defined by .srv files. Each .srv file has the following
format where request and response can be zero or more message classes:

Example.srv:
request
—
response

2.1.6 Synchronization in ROS

There are several different ways to go about synchronization and some methods
are already available in ROS. The package message_filters has a time synchronizer
based on templates which is available for C++ and Python. A motivating example
for the synchronization done by this package is to synchronize messages from two
different cameras to provide stereo vision so the robot can get depth in its vision
like humans can see in 3D. The existing synchronization functionality and how it
fits the needs of stream processing is discussed further in section 3.5.3.

2.1.7 Development, Tools and Extensions

There are quite a few tools included in the ROS platform so only a few will be
mentioned here. One of these is rxgraph which visualizes the currently running
collection of nodes and topics. Yet another one is roslaunch which makes it possible
to first specify complex setups of nodes and topics along with parameters and
attributes in XML and then run them. Due to the efforts from the team at
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Willow Garage and because of how active the ROS community is the scope and
functionality of ROS keeps increasing. Functionality such as message serialization
was not part of ROS in the early stages of this project. Some relevant packages
are currently only at the experimental stage such as rosrt (ROS real-time) which
has publishers and subscribers which are better suited for real-time processing, yet
another package very much still in development worth mentioning is rostopic which
allows for some dynamic behaviors, filtering of messages at real-time and easy
accessible information about topics and their messages using Python. So as the
work on the ROS framework progresses it will probably gain further functionalities
which make it an even better platform for the kind of dynamic stream processing
discussed here. Furthermore it is important to note that since ROS is an open-
source project there are also lots of additional stacks created by robotics companies,
passionate individuals and prestigious universities all over the world.

2.2 Stream-Based Knowledge Processing

Heintz et. al. describes both a general stream-based knowledge processing
middleware framework and a concrete instantiation of such a framework called
DyKnow[15][13][14].

The general stream-based knowledge processing middleware framework contains
the concepts streams, policies, knowledge processes and stream generators. These
concepts are mirrored in a concrete instantiation, DyKnow, wherein streams are
specialized as fluent streams and the knowledge processes as sources and compu-
tational units.

2.3 DyKnow

DyKnow is a stream-based knowledge processing middleware framework and a
concrete instantiation[15] of a generic stream-based middleware framework dis-
cussed above in 2.2. Knowledge processing middleware is defined by Heintz as a
systematic and principled software framework for bridging the gap between the in-
formation about the world available through sensing and the knowledge needed to
reason about the world[12]. Much as our own eyes can deceive us, a robot’s sensors
does not entail everything about the surrounding environment. This gap between
the real world and the sensory-based internal model used to make decisions will
be referred to as the sense-reasoning gap.

It is not only the limited and noisy data obtained from sensors which has to be ab-
stracted into knowledge. A stream in DyKnow can be formed from a multitude of
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inputs spanning different layers of abstraction. For instance in robotics we might
have dozens of sensors with somewhat fallible information yet also be connected to
the Internet or databases with more specific knowledge. DyKnow supports integra-
tion and processing of sources with varying degrees of abstraction and bottom-up
as well as top-down model-based processing of them. In a system where sensor
data is abstracted into knowledge there is of course a large degree of uncertainty
since previous hypotheses might get disproved by new data. For instance if an
autonomous robot gets very limited sensory data about an object it might at first
label it as a as a small building whereas this hypothesis needs revising when new
sensory input associates the object with features disproving the old model, such as
speed or altitude, then the autonomous robot should use a different abstraction to
reason about the object since it isn’t a building. The uncertainty which is inherent
in dynamic environments such as the real world and the sensory-based models used
to reason about the world makes it important to support flexible configuration as
well as reconfiguration to accommodate for changes. These changes can derive
from many different sources, not only new sensory data from the robot itself as
previously mentioned. The robotics platform could have remote links to other
robots, off-site information on a server or in the cloud. Flexibility and the ability
to reconfigure can be used to reduce the computational burden or to make the
system as a whole more robust since during search and rescue missions robotics
platforms could be exposed to harsh conditions where such reconfiguration could
be used to maintain operational status.

DyKnow represents the state of the system over time and its environment with
streams and therefore they are an integral part of the framework. Each stream’s
properties are specified by a declarative policy.

The current implementation of DyKnow is built upon the Common Object Request
Broker Architecture (CORBA) standard and has support for chronicle recognition
and MTL with formal semantics. As an example a UAV in a traffic monitoring
scenario is then able to recognize events such as whether a car halts at a stop-sign
or overtakes another car.

2.3.1 Streams

A stream consists of continuous data from one or more sources. Such a data source
for a stream can be a number of different things, for instance a hardware sensor,
information retrieved from a database or generated by a computer program[1].

Stream: A stream consists of a continuous sequence of elements and the formal
definition also includes that each element contains information about its relevant
time.
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2.3.2 Policies

A policy specifies the requirements on the contents of a stream. For instance we
may want to make sure that the messages have a certain frequency, maximum
delay or relative change compared to the prior value.

2.3.3 Knowledge Process

A knowledge process is a quite broad concept and refers to basically any process
that operates on streams. There are different process types: primitive processes
such as sensors and databases, refinement processes such as filters, configuration
processes that can start and end other processes or finally mediation processes that
can aggregate or select information from streams.

2.3.4 Stream Generators

A stream generator is able to provide an arbitrary number of output streams that
adheres to given policies. For instance we might have a knowledge process in the
form of a sensor (a primitive process) and we have other refinement processes that
need the sensor data. But one refinement process might need data every 10 ms
while another one only needs it when the value has changed by a certain amount.

There are two classes of knowledge processes in DyKnow: sources and computa-
tional units. Sources correspond to primitive processes (i.e. sensors and accessible
databases) and computational units correspond to refinement processes (i.e. pro-
cessing fluent streams).

The current implementation of DyKnow is as a service on top of CORBA which
is an object-oriented middleware framework often used in robotics. The DyKnow
service in CORBA uses the notification service to provide publish/subscribe com-
munication.

2.3.5 Features, Objects and Fluents

DyKnow uses the concepts of Objects and Features to model the world. Objects
describe a flexible type of entity can be abstract or concrete and their existence
does not have to be confirmed; hypothetical objects are also important when deal-
ing with the uncertainty of the UAV domain. Features describe properties in the
domain with well defined values for each point in time. An example in the UAV
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domain would be objects such as UAVs and cars which all have features like speed,
location relative position.

2.3.6 Value

Features have values for each point in time which describe their current state. A
value can be one of three things; 1) a simple value in the form of a object constant,
time point or primitive value 2) the constant no_value, 3) a tuple of values. Some
examples of such values are the color of the UAV, the missions start time, the
current altitude, observed dronts (no_value) and observed cars (which can be a
tuple of values).

2.3.7 Fluent Stream

Both sources and computational units can be asked to provide us with a fluent
stream which is an approximation of the previously mentioned streams (2.3.1).
In these fluent streams the elements are called samples since that’s what they
are: samples to provide us with an approximation of the more abstract concept
of a stream. There are two different time concepts that are central in DyKnow:
available time and valid time. Available time is simply when the sample/element
is available as elucidated in 2.3.1. Valid time on the other hand is when it was
valid, for instance if we have a sensor the valid time of this sensor is when the
sample was taken and the available time is when it arrives to a computational unit
to calculate some formula which is dependent upon it.

2.3.8 Sources and Computational Units

Sources tell us the output of a primitive process at any time point; we might for
instance want to know the output from a laser sensor or a GPS.

Computational units on the other hand refer to processes that compute an out-
put given one or more fluent streams as input. Obviously this covers a broad
range of functions; anything from simple arithmetic to calculating complex algo-
rithms. Examples include filters, transformations and more general mathematical
operations.
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2.3.9 Fluent Stream Policies

A policy is a set of constraints on a fluent stream. For instance we might have a
maximum delay on the samples we want to use or perhaps we want to make sure
that the samples arrive in the correct temporal order.

2.4 Related work

Stream processing is useful in the area of stream reasoning and there is some over-
lap there when it comes to related areas. Stream reasoning query languages can
express formulas which are to be evaluated over streams. There are several differ-
ent sorts of stream reasoning which can be useful within the domain of robotics
such as Metric Temporal Logic progression and Qualitative Spatio-Temporal Rea-
soning.

2.4.1 Stream Reasoning

A stream can be defined as a collection of data values presented by a source that
generates values continuously such as either a computer program or a hardware
sensor[1].

Continuous and time-varying data streams can be rapid, transient and unpre-
dictable. These characteristics make them unfeasible for use with a traditional
database management system (DBMS). A traditional DBMS is unable to han-
dle continuous queries over the streams and lacks the adaptivity and handling of
approximations[3]. One could take a snapshot of the state of the data and use
a reasoner on that static model but without further constraints it is uncertain
how useful the result will be since we might have gotten new data right after the
snapshot was taken. Moreover that snapshot would not tell us anything about the
system’s history over time.

Data streammanagement systems (DSMS) are able to evaluate queries over streams
of data but they are not able to handle complex reasoning tasks. Reasoners how-
ever are capable of complex reasoning but do not support the rapid changes that
occur with vast amounts of streaming data[9]. The integration of data streams
and reasoners in the form of stream reasoning provides the capabilities to answer
questions about changing data.

The applications for stream reasoning are quite wide in scope. These include
monitoring and reasoning about epidemics, stock markets, power plants, patients,
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current events or robotic systems.

Querying Streams

There are several query languages which deal with performing queries over streams
which can involve very rapidly changing data. There are several languages related
to this such as StreamSQL, CQL, CSQL and C-SPARQL. Continuous Query
Language [2] (CQL) is a language used for queries over streams in for instance
DSMS applications and it has been backed by Oracle. StreamBase StreamSQL
is a competing standard in that domain[16]. There is also Continuous SPARQL
(C-SPARQL) which is a language for continuous queries over streams of Resource
Description Framework (RDF) triples and it has been used in stream reasoning
research [4][5].

2.4.2 Metric Temporal Logic Progression (MTL)

As an extension of propositional linear temporal logic with discrete time-bound
temporal operators MTL allows us to set specific temporal boundaries in which
formulas must hold[20]. Since execution logs can become very large if we have
large amounts of streaming data these temporal constraints make MTL a good fit
for real-time monitoring. One real world example could be that the reactor tem-
perature may not exceed a certain number of degrees for more than five seconds.
An example more relevant to the domain of robotics is when we are executing a
task plan on a UAV. Since it is unfeasible to simply assume that no failures can
occur during the execution of this task it is prudent to monitor it with conditions
and notify when something doesn’t go according to the task plan. Execution mon-
itoring with MTL informs us when the UAV runs into issues thereby giving us
more time to adjust the task plan accordingly.

2.4.3 Qualitative Spatio-Temporal Reasoning (QSTR)

Extensions to the reasoning done in DyKnow to include spatial reasoning has
been done by Lazarovski[18]. It uses Region Connection Calculus 8 (RCC8) to
provide qualitative spatio-temporal reasoning by progressing over synchronized
state streams such as the streams created by the processing functionality outlined
in this thesis. RCC8 describes 8 basic relations between areas such as for in-
stance disconnected, equal or partially overlapping. More about how this kind of
reasoning works in ROS in the next chapter.
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2.4.4 Cognitive Robot Abstract Machine (CRAM)

Beetz et. al. at the Technische Universität München (TUM) has developed a
software toolbox called CRAM (Cognitive Robot Abstract Machine) which enables
robots with flexibile lightweight reasoning[6]. CRAM is implemented as a stack
with a ROS interface. Two essential components of CRAM are the CRAM Plan
Language (CPL) and the knowledge processing system KnowRob. The expressive
behavior specification language CPL makes it possible for autonomous robots to
execute and also manipulate and reason about its control programs.

A difference between the work done at TUM and what is discussed in this thesis
is that the reasoning in CRAM is done in batch-mode and not continuously which
is basically the difference between reasoning and stream reasoning.





Chapter 3

Analysis and Design

The common ground between DyKnow and ROS outlined in the previous chapter
is part of the reason behind a few of the design decisions in this chapter. For in-
stance the similarities between nodes in ROS and knowledge processes in DyKnow
indicates that efforts might better be spent elsewhere than to contrive things by
including a similar design concept in ROS. Instead the design philosophy in this
thesis has been to focus on the capabilities of DyKnow which could add value to
ROS and then investigate how to design it in practice. From this point of view the
differences between them are very important since the differences describe not only
the potential value of DyKnow but also differences which have to be reconciled
to run it in practice. Due the scope of DyKnow and its general nature the parts
which should provide valuable additions to ROS supersedes the scope of this thesis
although the design and implementation of a few will of course be described. This
chapter describes some of the design considerations taken when integrating the
two. An overview of a system for evaluating metric temporal logic is also provided
in the chapter as an example of stream reasoning in ROS.

There are similarities between them; most notably between streams and topics as
well as between knowledge processes and nodes. Of course there are also differences
such as the central role of policies in DyKnow and the strongly typed topics in
ROS.

Adhering to the design paradigms in ROS means a modular design divided into
nodes with the code separated into packages. A stream reasoning architecture
that contains several modules has been designed with this in mind. The stream
processing is contained in one of these modules and has its own package. The
stream processor can be ordered to create streams which are described by stream
specifications. The stream specifications contain the policies, constraints and op-
erations which are to be performed. The main stream processing operations are
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select, merge and sync.

Since stream specifications have a programmatic syntax with a structure designed
for machines rather than humans there is a need for something more user friendly
which can make the stream descriptions more legible. The Stream Processing
Language (SPL) is designed with this in mind and bears some resemblance to
languages such as SQL whose operators users are more likely to be familiar with.
SPL allows for a concise description of an entire stream and its policies and the
SPL expression can be translated into a stream specification the stream processor
can use directly.

3.1 DyKnow and ROS

In this section we will take a look at how some concepts in DyKnow correspond to
the framework provided by ROS in order to assess similarities as well as differences.
Many of the factors mentioned here have been taken into consideration with regard
to the overall high-level design of the stream reasoning architecture outlined later
in the chapter.

3.1.1 Streams (DyKnow) and Topics (ROS)

The streams in DyKnow bears many similarities with the topics in ROS. Both
concepts refer to continuous data values from a source as discussed in the previous
chapter so topics are also streams of data. Fluents however are more strictly de-
fined by policies and consequently a topic can not automatically be seen as a fluent
without the messages published upon that topic conforming to some constraints.

3.1.2 Knowledge Processes (DyKnow) and Nodes (ROS)

There are similarities between the two concepts since Knowledge Processes (KP)
in DyKnow and nodes/nodelets in ROS are very versatile and can span many
different layers of abstraction. A KP/node can represent for instance a sensor,
a process acting upon sensor data or a process acting upon inputs from several
different other KPs/nodes.
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3.1.3 Setting up processes

Both DyKnow and ROS have tools to set up networks of processes; KPL and
roslaunch. KPL focuses on the declarative specification of the network created
by using formal semantics with explicit constraints while roslaunch creates the
network by using information about nodes, parameters and attributes as specified
in an XML file.

3.1.4 Modularity

The division into nodes done in ROS and the focus on flexibility in DyKnow are
a couple of the reasons why a modular design would make sense when combining
the two. Having separate ROS nodes for the DyKnow capabilities keeps concepts
separate and makes it possible for the parts to provide functionalities to the ROS
community on their own. The polar opposite of this would be to have a closed
system for all the DyKnow capabilities and only providing one interface to ROS.
Such a closed system might offer better performance if everything runs on the same
embedded platform due to lesser use of bandwidth in ROS. The lack of flexibility
of such a black box is its downfall though. Having a more modular design could
also make it easier to run it on a platform with access to distributed computing
power which is one of the strengths in ROS.

3.1.5 Services/Parameters

There are several ways to provide functionality in ROS during runtime. Here are a
couple of the ways to do it: passing parameters to a node when you start it is one
way and having a service node running which uses a request/response mechanism
is another. Using one of these doesn’t necessarily exclude the other yet comparing
the two to figure out the primary way to communicating between the modules
seems prudent.

Key components related to stream reasoning in DyKnow are designed as services;
both in order to maintain the modularity of the DyKnow design and also since it
goes well with the design philosophy in ROS.

An elaborate design to set up parameters to start nodes doesn’t seem to provide
enough advantages compared to having nodes which provide services. Services
seem to be the favored design for such an endeavor in ROS and the separate spec-
ifications of services provided in .srv files makes the services readable, formal and
usable whereas a design with parameters would require separate documentation
for parameter-code which would be less integrated.
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Figure 3.1: Overview of the current DyKnow stream reasoning architecture im-
plementation in ROS

3.2 A Stream Reasoning Architecture for ROS

Stream processing is a necessity for the formula progression to work yet it can also
be useful on its own where for instance a stream must adhere to specific constraints
or synchronization of sensor data is needed. One scenario would be when data from
different sensors on an autonomous robot has to be synchronized to form a stream
of states used to reason about it on a higher abstraction level. While ROS already
supports some constraints and synchronization in their message_filters it is by
design more focused on discrete updates rather than the creation of streams. For
instance the current ApproximateTime synchronization policy in ROS uses each
message only once whereas in stream based reasoning it could very well be more
appropriate to use a message again as a component of a state rather than wait too
long for the next message to arrive.

As can be seen in Figure 3.1 the current architecture consists of several parts;
the stream reasoning coordinator with semantic matcher and ontology, the stream
reasoner and the stream processor. Together they can be used to for instance
evaluate spatio-temporal formulas with semantic matching. The focus of this
thesis is on the stream processing. The Stream Processor is an integral part
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for the reasoner to evaluate formulas dealing with temporal logic since it needs
continuous streams providing information about the relevant features to progress
over.

As much of research today the Stream Reasoning Architecture is a part of a col-
laborative effort. The overall design of this architecture and the stream processing
are parts of the work done for this thesis and it has been in close collaboration with
Fredrik Heintz whose expertise and vision for DyKnow have been essential. The Se-
mantic Matcher and ontology parts have been researched in detail by Dragisic[11]
and the Stream Reasoner is based on work by Heintz and Lazarovski[12][18]. Their
contributions are essential for the Stream Reasoning Architecture as a whole.

In Figure 3.1 the client can order the stream reasoning coordinator to evaluate
a spatio-temporal formula. Concepts related to the terms in the formula are
subsequently extracted. Semantic matching using the ontology is then used to
find out on which topics information relevant to these concepts can be found in
our system. The stream reasoner is then told about the formula it is about to
evaluate and sets up a subscription on the topic where it wants the state stream
with the necessary data. The stream processor is then given the task of creating
policy-based subscriptions of the incoming topics, selecting relevant data and as
needed properly label, merge and synchronize the data to finally publish it on the
state stream topic. The stream reasoner can then progress over the state stream it
has subscribed to in order to evaluate the formula. Finally the answer is given to
the client. A stream processor node can also create streams on demand by being
called directly by the client since it provides a service as defined by ROS.

An example where we evaluate a metric temporal logic formula can be to ask
whether or not all of our unmanned aerial vehicles always have an altitude of
over 2 meters. In order to answer this we first have to find out where the required
information about the altitudes can be found and isolate these features. Then each
altitude gets a corresponding fluent and these are then synchronized into a state
stream. The grounding context contains necessary information such as the fluent
policies and synchronization method. The state stream is used by the reasoner to
keep the symbol table updated and evaluate the formula.

3.2.1 Stream Reasoning Coordinator

As the name suggests it coordinates the modules to perform the given tasks
through communication between them and also between it and the client. It
relays information mostly through services defined in ROS as described in section
2.1.5.



24 Analysis and Design

3.2.2 Semantic Matcher and Ontology

The semantic matcher service uses one or more ontologies to perform semantic
matching on symbols in formulas to the content of streams. By doing this the
system can be aware where relevant information is to be found when a query
is posed in the form of a formula to evaluate[11]. This information can then be
relayed to the stream processor which sets up the relevant streams and synchronizes
the data so the reasoner can evaluate it.

3.2.3 Stream Processor

The stream processor’s purpose is to select, properly name, merge and synchronize
relevant data to create state streams. A modern robotics platform is a complex
system with lots of streams on different layers of abstraction and the stream pro-
cessor is able to select relevant data from these layers and process it accordingly by
merging streams while also offering high-performance synchronization of multiple
streams.

Being able to process streams in this manner has several different applications such
as MTL evaluation. When evaluating formulas the reasoner is fed the relevant data
on a dedicated topic with a uniform type so it does not have to handle irrelevant
information nor subscribing to multitudes of topics with different types since all
of this is handled by the stream processor. Furthermore because of the very high
data rates on some streams it is very important to select only what is relevant
since the reasoner would in many cases be overwhelmed by data otherwise.

The stream processor will be dealt with in more detail since it is one of the focal
points of this thesis.

3.2.4 Stream Reasoner

The DyKnow stream reasoner does the final evaluation of the formula by pro-
gressing over the provided state stream and checking whether or not the formula
is true. The reasoner is capable of both temporal reasoning [15][12] as well as
spatial reasoning and Lazarovski[18] has implemented it so the stream reasoner
can be accessed as a service in ROS.

State synchronization is important for several reasons for instance when the stream
reasoner evaluates formulas the continuous temporal dimension is modeled as a
periodic stream of discrete synchronized states where each sample in the stream
is considered valid until the next sample and therefore it wants a steady stream of
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these.

A fitting sample period is important to decrease the likelihood of missing vital
information between the samples. For instance if one where to evaluate if the
altitude of an autonomous UAV was below 5 m/s under a time period we might
very well miss a slight dip below five if the sample rate was very low whereas the
likelihood of that happening with a stream with a high sample rate is very low.

This thesis will deal with a few different ways of synchronizing streams below and
in the next chapter.

Valid Time, Available Time and Sync Time

In larger and more distributed systems the latency between when the information
is produced and when it arrives to the stream processor can be significant. Unless
otherwise stated a value will be considered valid until a new one is produced.

Valid time is when the value in a message is considered valid, for instance the
time point when a sensor measures something. Available time refers to when the
value is available to the stream processor. In other words when it arrives to be
processed. Sync time or synchronization time refers to a point in time the stream
processor will create a synchronized state from two or more values. The next sync
time will be the previous sync time plus the sample period.

A simple example is when the intent is to evaluate if UAV 1 is faster than UAV 2
under the upcoming ten seconds, in that case each sample in the resulting synchro-
nized state stream will contain both the speed value for UAV 1 and UAV 2 for a
specified sync time and the stream will consist of such samples with incrementally
higher sync times for the entire ten second period.

Expected Arrivals

In order to publish a state as soon as possible without doing so prematurely it
is very important to have a sense for if any more relevant information is due
for this state. Delays should be kept minimal yet a slight wait to get the latest
values is often good, the tricky part is to know when to wait and when to publish.
Publication should be done when no more information regarding that sync time
is due to arrive in time. We can be sure this is the case when sync time plus the
duration of the maximum delay, as defined by the policy, has passed. There are
situations where it can be deduced sooner though.

For instance if the current sync time is 2230 ms and we just got messages with
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valid times of 2190 from both of the topics which affect the states at about 2000
ms. If no more messages are due to arrive in time there is no use waiting. If the
incoming topics only publish every 100 ms we can be sure no more information
relevant to 2230 will arrive, hence we can publish the final state for 2230 ms sooner
at about 2000 ms, since the next incoming messages are not going to be relevant
for that sync time.

When using the merge operation in stream processing several topics can affect the
same field in a state and the topics can have different rates.

Sample Period Deviation

Allowing a sample period deviation can be beneficial in some cases since it allows
taking when messages arrive into account when deciding sync times. This would
mean that the period between each message would not have to be fixed but instead
be in a certain interval. Since the states in the stream can be affected by several
topics with different rates it could sometimes be beneficial to choose each specific
sync time from an allowed interval to better match the incoming messages relevant
to the interval. One suggested way to do this would be by choosing a sync time
which minimizes the sum of temporal differences between it and the valid times
of the samples which are expected to be available. Essentially this would mean
calculating the geometric median (Fermat-Weber point) which minimizes the de-
lays since this problem can be viewed geometrically as lines modeling the temporal
domain and the distance between the points in time are the delays. A way to solve
this is with for instance Weiszfeld’s algorithm[8]. A downside to allowing a sample
period deviation is that this approach would introduce significant computational
overhead. This might be adequate if the incoming topics all have a fairly low rate
although for very rapid streams of data it could be problematic. The method is
however worthy of consideration as an optimization if the computational resources
are available.

3.2.5 Notes About Programming Languages

Since ROS supports several programming languages such as C++, Python, LISP
and Java the choice of language warrants some discussion beforehand. Another
thing to note is that communication between nodes is the same no matter which
language they are implemented in since they use topics and messages. The choice
of language is therefore something best done for each node independently based on
the requirements and possible dependencies. The semantic matcher for instance
uses Java extensively due to external libraries. At the point of writing C++ and
Python are arguably the languages ROS has the most support for and both war-
ranted some consideration. A few of the reasons to go with Python are: a dynamic
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language would allow for more dynamic type handling at runtime, although some-
what subjective some might argue it offers superior readability and allows for fast
prototyping. The most apparent downside to using Python is that C++ is very
likely to result in faster running code although this obviously depends somewhat
on how the code is written and choice of compiler. The previous CORBA im-
plementation was done in C++ and while code from it has been reused in the
reasoner module, the stream processing code has been rewritten from the ground
up to make it closer to the ROS framework. Some prototyping has been done
in Python yet most of the final code base is C++ centric due to performance
priorities.

3.3 Stream Processing

There are of course a multitude of different ways one could implement anything
in ROS due to the modularity and flexibility of it as well as how it supports
several programming languages. This section will discuss a couple approaches and
their advantages and disadvantages in comparison with the current implementation
explained in the previous chapter.

The ease of doing stream processing at runtime instead of having to change the
source code to perform the related is also something which has been taken into
consideration when designing the stream reasoning architecture and the stream
processor component.

3.3.1 Type Handling

ROS is strongly typed in the sense that a topic can only publish messages of one
type. The previous implementation of DyKnow in CORBA made frequent use of
the ’any type’. In order to reconcile this difference the messages subscribed to in
the stream processor are converted into a universal type during processing.

The states in the resulting streams can be composed of fields from several different
message structures which has vast implications on the possible combinations of the
type on the state stream topic. The steams are created at runtime yet messages in
ROS have to be defined in advance. Compiling all the possible combinations is not
an option nor is splitting the state into separate messages on separate topics since
it not only introduces a lot of overhead; it also negates the purpose of forming the
states in the first place.
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Serialization

ROS 1.1 introduced ros::serialization for roscpp which uses C++ templates to se-
rialize/deserialize roscpp messages as well as other C++ types. Once serialized
selecting relevant fields with message introspection is not as easy as in Python
though. One could however select fields based on the original message, then seri-
alize the selected parts and keep them in a container in the buffer. The container
in this approach could then contain related information such as timings relevant
for synchronization. Publishing a state composed of selected fields from messages
poses somewhat more of a challenge however since the serialized message is not
an ordinary ROS message type. Receiving the address to the serialized messages
in the subscriber would work if one assumes that the publishers and subscribers
share memory however if one wants a more distributed system spanning several
platforms with separate memory it poses more of a problem.

The current design converts incoming messages into organized structures where
the data is represented as string fields in a class based hierarchy. The solution is
similar to ros::serialization and created before it was released out of necessity. It
is possible that ros::serialization could be a viable alternative with some modifi-
cations although this design is very good when introspecting converted messages
to select relevant content. The current design handles nested structures and com-
posed structures by naming the path to each subfield and the final converted class
is composed out of them.

3.3.2 Nodes and Nodelets

When it comes to the usage of nodes and nodelets there are a few factors to
consider such as performance, how clear the design will be and issues such as
thread-safety. Because of the C++ optimizations which already keep costs related
to copy transport low within the stream processor and because of the thread safety
aspects it was decided to have the stream processor as a node.

3.4 Stream Specifications

What a stream generator and resulting stream will consist of has to be decided
somewhere along the way and the message structure in which most of this is done
is aptly named the stream specification. A stream specification contains all the
information needed to set up a stream generator such as applicable constraints,
the sample period of the resulting stream, information about the topics which are
relevant for the stream, which fields are relevant, optional renaming data, which
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fields to merge and which to synchronize and more. How all of this is implemented
is discussed further in the next chapter.

3.4.1 Stream Constraints

The stream constraints specify the relevant times for the stream, the desired sample
period, the maximum delay between valid time and arrival time, if the stream is
to be ordered on valid time as well as if the valid times for the fields can have the
same valid time.

Constraints such as the maximum delay are imposed by imposing them on the
incoming messages to ensure that they are enforced. If messages are not ordered
on valid time it can pose a problem since it would then be impossible in some cases
to know that we have received all the relevant information for a point in time.

There is also an optional sample period deviation. The purpose behind this is that
it could sometimes be beneficial to allow the stream generator itself to have some
leeway when it comes to deciding the actual sync times in the stream rather than
just always having the same static periodicity.

3.5 Stream Processing Operational Overview

Figure 3.2 shows the design of a stream generator. Incoming messages on one
or more topics are put through a select process outlined in 3.3, then merged and
synchronized. How an individual stream generator is set up does however depend
on how the stream is specified; some might contain just one select process where
others can consist of several select processes merged or several synchronized fea-
tures from several merges all of in turn consist of a multitude of select processes.

3.5.1 The Select Process

Selecting messages on a topic which fulfills certain criteria or passes given con-
straints is useful in number of different applications such as runtime monitoring.
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Figure 3.2: An overview of a stream generator performing its operations.

Select Example

For instance we might want to select the altitude of the UAV with id 1 from the
field named alt in certain messages on a topic named info_about_uavs to get a
resulting stream with a sample period of 200 ms. The topic info_about_uavs could
publish messages of a type which contains a lot of fields irrelevant to our purposes,
it could have a very high sample period and furthermore it could contain entire
messages which are irrelevant since they are about other UAVs. Therefore it is
useful to be able to select what is important in this stream of information.

Programming Languages

The ease of implementation as well as performance when it comes to this feature
is heavily dependent on which language is chosen. Python offers great flexibil-
ity and ease of use since getting representations of messages in the stream and
subsequently manipulating them is easily achieved. The command prompt tool
rostopic demonstrates this functionality when called with the filter parameter and
a Python expression explaining which messages to select. As the documentation
says performance poses an issue under more stressful conditions though which is
inherent in the use of a dynamic scripted language compared to C++ which is
compiled and much closer to the hardware than Python.
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Figure 3.3: The select process describes what happens to an incoming message
on a relevant topic. First the subscriber receives the message. Since the topics
are strongly typed in ROS the message is of a certain message type and to solve
the issues previously discussed in section 3.3 the messages are converted into a
universal type before further processing. Then the relevant fields are selected and
optionally renamed to something more suitable. If the incoming data passes the
relevant constraints it is then sent further in the stream generator. One single in-
coming message from a topic can of course contain several fields which are relevant
to the states in the resulting stream, one way of dealing with this is to send the
same original message to several select processes each in which a different field is
selected and another way is to select several fields in the same select process.

3.5.2 Merging Streams

Merging streams is useful when the streams contain information which in this
specific situation describes similar features. Fields found in different messages on
different topics might hold the same relevance in a situation and in such scenarios
it makes sense to be able to merge these fields into one in the resulting stream.

Merge Example

For instance if an autonomous UAV has two non-overlapping sensors; one in the
front and one in the back and they both publish seen objects on separate topics. To
monitor for objects seen by the UAV in total it is then useful to merge the content
from both streams into one at runtime. The alternative would be to change in the
source code so that the sensors also publish to a common topic although this could
result in increased data traffic and merging with stream processing at runtime is
a more dynamic and flexible solution since the merged stream can be created and
destroyed dynamically at runtime.

3.5.3 State Synchronization

The synchronizer provided by the message_filters package in ROS is currently
limited to nine incoming connections in C++. The rospy Python version supports
more incoming connections but this comes at the prize of impaired performance
due to the fundamental differences between Python and C++ which have been
mentioned previously. Furthermore some of the synchronization policies would
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be harder to implement due to the need to access the caches/buffers in which
messages would be kept when using such a synchronizer. The existing synchro-
nizer focuses on only sending synchronized states when new messages arrive rather
than providing a synchronized stream of data which would be preferred for some
DyKnow applications of this such as providing a steadily updated synchronized
stream of states to the stream reasoner so it can evaluate temporal logic formulas.

For instance we might want to evaluate whether or not a car is faster than a
UAV at any point in time during the next 30 seconds. In order to evaluate this a
stream of states has to be provided to the reasoner so it can compare the speed
of the UAV to the car. If the UAV has a higher speed value in any one of these
states. The stream of synchronized states provides an abstraction of the continuous
temporal domain by modeling it as a sequence of discrete states. In other words
time is modeled as a series of points in time, all of which have a state containing
the relevant information. The obvious downside is the inherent uncertainty. For
instance in this example we might chose to have a sample rate of 900 ms and even
if the UAV is faster in all of the sampled states we can’t be entirely sure that
the UAV was not faster for a very short period of time in between our samples.
Even if the car was slower at 0 ms and 900 ms it might have been slightly faster
at 500 ms when a state was not provided. Even with more states the sensors
measuring the speeds have rates of their own as well as a margin of error for their
measurements. A higher rate and better sensors would decrease the likelihood yet
a certain degree of uncertainty is always unavoidable. Even if we use a very high
sensor rate as well as sample rate it will still be a model of reality rather than a
perfect description of reality itself yet what can be done is to chose the sample
rates wisely to get accuracy which is sufficient to the task at hand and manageable
for the reasoner. The differences between the values in the states could also be
considered to estimate the relevant probabilities in these evaluations since it might
be highly unlikely that the car could accelerate to the point it was faster given the
difference in speed in all of the states.

Sync Example

A simple example of synchronization is when the reasoner needs a stream of states
to evaluate if one autonomous UAV is faster or has a higher altitude than another
at some point in time. The states need to be synchronized so the reasoner knows
that the values in each state are comparable since they are regarding the same
point in time. In this case we might have fields from four separate topics we need
to synchronize: speed for uav1, speed for uav2, altitude for uav1 and altitude for
uav2.
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Synchronization and existing functionality in ROS

As mentioned in section 2.1.6 there is some support for synchronization in ROS.
A few relevant downsides are that the current synchronization policy is not very
well suited for some DyKnow related use cases, the Python version does not offer
performance on par with compiled options and the use of templates limits the
C++ version to 8 incoming streams where the different topic types have to be
specified before runtime. The last limitation is important since in order to be
able to synchronize streams at runtime in a dynamic way in line with the design
requirements of the DyKnow framework there must then be readily compiled code
for that specific combination of incoming message types and the combinatorics
here dictate that the amount of compiled code will be huge in order to satisfy the
number of combinations even for a low number of message types. This is much less
of a problem if the incoming messages all share a common type though although
there are still the other issues to take care of then.

Variadic templates might be a viable solution to increase the number of supported
input streams although versions older than C++11 does not support this feature
and as mentioned the amount of compiled code to cover even a fraction of the
combinations available would be staggering which would make such a solution vi-
able only when the type combinations which can occur at runtime are manageable.
Since the focus here is on the system being dynamic and flexible at runtime the
compromises needed to make such a template based solution work are not really
acceptable. C++11 is not yet officially supported by ROS which makes this even
more of a non-issue at the moment.

3.5.4 Basic Synchronization

A very basic version of state synchronization would be to wait until the maximum
allow delays for each sample in the state has passed and then choose the samples
closest to the synchronization time to be in that synchronized state.

3.5.5 Faster Synchronization

An improved synchronization algorithm which requires knowledge of when all rele-
vant information has arrived has been designed by Heintz [15]. In general it works
by determining when no more information relevant to the current synchronization
time is due to arrive. When this is determined the synchronized state can be
published. This requires knowledge of when all incoming messages relevant to the
state are due to arrive. The benefit is that the states can be published faster at
the expense of calculating when the next messages are due to arrive so whereas
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the computational complexity is higher the delays can be lower.

3.6 The Stream Processing Language (SPL)

The purpose of the Stream Processing Language is to provide a readable and
declarative way to create and use stream specifications since having to explic-
itly create all the messages is cumbersome and time-consuming. SPL, like many
stream-based query languages, tries to make sure that the syntax looks relatively
familiar to the user. In the case of SPL some of the syntax is inspired by SQL
which hopefully aids readability.

The SPL language has been designed specifically for the purpose of creating Stream
Specifications. Heintz has been invaluable in the design of the language and it is
inspired in part by his previous work for DyKnow. The lack of native support
for recursive structures in ROS is worth noting since that has influenced how the
stream specifications look and therefore also influenced the syntax of SPL. The
stream specifications were designed first and SPL was designed to build proper
stream specifications rather than other way around.

3.6.1 Services

Having the SPL functionality in a separate service allows it to be an interface to
the stream processor which can be used by both users and other nodes alike. The
services provided by this service include returning the corresponding stream spec-
ification or creating the described stream by calling the stream processor directly.

Select SPL Example

The example explained in section 3.5.1 would correspond to the following line of
SPL:

SELECT alt AS uav_1_altitude FROM dyknow_msgs/UAV:/info_about_uavs
WHERE id = 1 WITH sample_period = 0.2

In this example alt is the name of the field containing the value of the altitude.
The topic has the name info_about_uavs and contains messages of the type UAV
from the package dyknow_msgs. Which UAV the message is about depends on
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the field called id and the WHERE clause entails that only those messages where
the id field value is equal to 1 are relevant, in other words we do not care about
the altitudes of the other UAVs. The resulting stream will have a sample period of
0.2 seconds. The AS uav_1_altitude part is a renaming of the field alt to better
describe the selected data when it is published on the stream.

Merge SPL Example

The example in section 3.5.2 would look like this using SPL syntax:

MERGE ( SELECT * FROM dyknow_msgs/ObservedObjects:/front_sensor WHERE
type = car, SELECT * FROM dyknow_msgs/ObservedObjects:/rear_sensor WHERE
type = car) AS observed_car

Synchronization SPL Example

The SPL line which corresponds to the synchronization example in section 3.5.3
could look like this:

my_sync_stream_topic = SYNC ( SELECT altitude FROM dyknow_msgs/Altitude:/altitude_1
, SELECT speed FROM dyknow_msgs/Speed:/speed_1, SELECT altitude FROM
dyknow_msgs/Altitude:/altitude_2 , SELECT speed FROM dyknow_msgs/Speed:/speed_2
) WITH sample_period = 0.1

Backus Naur Form (BNF)

The design and formal syntax of SPL is defined below, the implementation follows
it quite closely as discussed in the upcoming chapter.

NAMED_STREAM ::= NAMING_EXPR STREAM
STREAM ::= OPT-NAMING sync LP STREAMS RP with STREAM_CONSTRAINTS
| merge LP STREAMS RP with STREAM_CONSTRAINTS
| select SELECT_EXPRS from TOPIC where WHERE_EXPRS) with STREAM_CONSTRAINTS

STREAMS ::= STREAM | STREAM COMMA STREAMS
SELECT_EXPR ::= FIELD_ID (as PSTRING)?
SELECT_EXPRS ::= SELECT_EXPR | SELECT_EXPR COMMA SELECT_EXPRS
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WHERE_EXPR ::= FIELD_ID EQ VALUE
WHERE_EXPRS ::= WHERE_EXPR | WHERE_EXPR and WHERE_EXPRS
FIELD_ID ::= STRING | STRING DOT FIELD_ID
TOPIC ::= TYPE COLON SLASH TOPIC_ID OPT-TOPIC_RATE
TOPIC_ID ::= STRING | STRING SLASH TOPIC_ID
PSTRING ::= STRING | STRING? PERCENT FIELD_ID PERCENT PSTRING?
STREAM_CONSTRAINTS ::= STREAM_CONSTRAINT |

STREAM_CONSTRAINT COMMA STREAM_CONSTRAINTS
STREAM_CONSTRAINT ::= MAX_DELAY_C | MAX_DEVIATION_C | START_TIME_C |

END_TIME_C | SAMPLE_PERIOD_C



Chapter 4

Implementation

In order to evaluate stream reasoning in ROS a node providing services related to
stream processing was implemented. This module with its services is referred to as
the stream processor. The stream processor is a ROS service node and therefore
it responds to .srv requests. The services provided are related to the creation,
destruction and management of streams. The streams to be created are described
by stream specifications which are composed by several other smaller messages
such as stream constraints, merge specifications and select specifications. Another
node has been implemented to handle incoming SPL requests to parse them and
create stream specifications based on their contents.

The requests to the stream processor service can for instance be sent by the stream
reasoning coordinator and be based on the ontology for the UAVs in the system.
Given the service requests the stream processor will then respond by subscribing
to given topics in ROS and process incoming messages to for example provide the
reasoner with a synchronized stream which the reasoner can use to evaluate its
temporal and spatial logic formulas.

4.1 Stream Processing Operations

The operations the stream processor performs on incoming topics can be sum-
marized by the following abstractions: select, rename, merge and synchronize.
In summary: selecting relevant data, renaming it as needed, merging data when
applicable and synchronizing all of the aforementioned into a state.

37
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4.1.1 Select

A regular subscription in ROS gives you all of the information on that topic. Select
is a way to specify exactly what feature to extract. For instance each message on
the topic uav_9 might contain the features altitude and speed in the fields called
alt and spd. Irrelevant messages can also be discarded by specifying one or more
identifying fields and their contents, as an example we might only want messages
where the field called “id“ is equal to 1 and thereby discarding messages published
on that topic about other robots. Being able to select fields such as speed or
altitude or both as wanted features is essential when creating the stream. Most of
the select functionality is implemented as chains of filters which only allow relevant
data to pass and report violations if the policies are broken.

4.1.2 Rename

If an AS clause has been used in the SPL or if renaming mappings have been
specified in the stream specification through for instance semantic labels provided
by the stream reasoning coordinator 3.2.2 the stream processor will use these
associations in the fields rather than the old names.

4.1.3 Merge

Merge is implemented by having merged fields share the same buffer, i.e. merging
them into the same buffer.

4.1.4 Synchronize

Each message in the resulting stream will be composed of the specified feature
identifiers and their corresponding values synchronized. The synchronize proce-
dures used are the faster synchronization procedures by Heintz [15] mentioned in
the design chapter.

4.2 Stream Processor Services

Below is a list of the services provided by a stream processor node running in ROS,
the messages which compose these services is described in detail in section 4.4:
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Stream Processor Services:
Create Stream From Spec
Get Stream
List Streams
Destroy Stream

4.2.1 Create Stream From Spec

Create Stream From Spec is a service message where the request consists of a
stream specification message which describes the entirety of the stream which the
stream processor is requested to create. The stream processor will create this
stream accordingly and the response will contain information indicating if it was
successful, the topic of the resulting stream as well as a topic where possible vi-
olations to policies are reported. The content of the stream specification and the
messages which it is composed of will be dealt with in more detail when the mes-
sages are explained.

contents of CreateStreamFromSpec.srv:
dyknow_msgs/StreamSpecification stream_spec

string topic_name_of_published_stream
dyknow_msgs/MergeSpecification[] merge_level_streams

string merge_level_stream_name
dyknow_msgs/SelectSpecification[] select_level_streams

string select_level_stream_name
string topic_name
string topic_msg_type
string topic_field
duration topic_sample_period
dyknow_msgs/FilterSpecification[] select_filters

bool constant
string object_identifier
string object_identifier_prefix
string field
string required_field_value
dyknow_msgs/StringPair[] renaming_map

string first
string second

duration delay_before_approximation
bool add_performance_timings_to_fields
dyknow_msgs/StreamConstraints stream_constraints

time start_time
time end_time
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duration sample_period
duration sample_period_deviation
duration max_delay
bool ordered_on_valid_time
bool unique_valid_time

–-
bool success
string error_message
string stream_topic
string stream_constraint_violation_topic

4.2.2 Get Stream

Get Stream provides a way to get the name of the stream_topic and stream_constraint_violation_topic
even after the response when it was created.

contents of GetStream.srv:
string stream_name
–-
bool success
string error_message
string stream_topic
string stream_constraint_violation_topic

4.2.3 List Streams

List Streams is a convenient way to obtain information about all the streams gen-
erated by the Stream Processor node receiving this service call. When it is called
at the terminal level through rosservice it prints such information.

contents of ListStreams.srv:
–-
string[] stream_names
string[] stream_topics
string[] stream_constraint_violation_topics
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4.2.4 Destroy Stream

As the name indicates Destroy Stream is used to destroy a stream, for instance
because it is no longer needed.

contents of DestroyStream.srv:
string stream_name
–-
bool success
string error_message

4.3 Stream Processing Language Related Services

SPL was implemented in a Python node which uses pyparsing to parse calls to the
node. This keeps the design modular and leverages the parsing functionality which
already exists in Python, thus there is no need for any dependencies on external
libraries. The implementation of the language follows the design quite closely with
the notable exception that the recursive definitions are flattened since ROS does
not allow recursive structures in messages and SPL creates a Stream Specification
which is in fact a rosmsg. The SPL services can create a stream specification from
string or also use the stream specification to call the main stream processor node
to start the stream immediately.

Create Stream From String

Create Stream From String can be used to create a stream from a SPL expression
by parsing a string which is written in SPL to form a Stream Specification which
is used to call CreateStreamFromSpec.

contents of CreateStreamFromString.srv:
string string_in_stream_processor_language_format
–-
bool success
string error_message
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string stream_topic
string stream_constraint_violation_topic

Create Stream Spec From String

Create Stream Spec From String can be used to create a Stream Specification from
a SPL expression by parsing the incoming string.
contents of CreateStreamSpecFromString.srv:
string string_in_stream_processor_language_format
–-
dyknow_msgs/StreamSpecification stream_spec

string topic_name_of_published_stream
dyknow_msgs/MergeSpecification[] merge_level_streams

string merge_level_stream_name
dyknow_msgs/SelectSpecification[] select_level_streams

string select_level_stream_name
string topic_name
string topic_msg_type
string topic_field
duration topic_sample_period
dyknow_msgs/FilterSpecification[] select_filters

bool constant
string object_identifier
string object_identifier_prefix
string field
string required_field_value
dyknow_msgs/StringPair[] renaming_map

string first
string second

duration delay_before_approximation
bool add_performance_timings_to_fields
dyknow_msgs/StreamConstraints stream_constraints

time start_time
time end_time
duration sample_period
duration sample_period_deviation
duration max_delay
bool ordered_on_valid_time
bool unique_valid_time
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4.4 Messages

The stream specification is the message composing the request in a CreateStream-
FromSpec service call. The stream specification is itself composed of other mes-
sages on different levels which all describe the stream which is to be created.

4.4.1 Stream Specification

The stream specification describes the entirety of the stream in its composing mes-
sages. It contains the name of the resulting stream as well as the name of the topic
where violations to the polices will be published.

contents of StreamSpecification.msg:
string topic_name_of_published_stream
dyknow_msgs/MergeSpecification[] merge_level_streams

string merge_level_stream_name
dyknow_msgs/SelectSpecification[] select_level_streams

string select_level_stream_name
string topic_name
string topic_msg_type
string topic_field
duration topic_sample_period
dyknow_msgs/FilterSpecification[] select_filters

bool constant
string object_identifier
string object_identifier_prefix
string field
string required_field_value
dyknow_msgs/StringPair[] renaming_map

string first
string second

duration delay_before_approximation
bool add_performance_timings_to_fields
dyknow_msgs/StreamConstraints stream_constraints

time start_time
time end_time
duration sample_period
duration sample_period_deviation
duration max_delay
bool ordered_on_valid_time
bool unique_valid_time
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4.4.2 Merge Specification

The Merge Specification is a part of the Stream Specification. This part contains
a set of Select Specifications, all of which are to be merged into one field in each
resulting sample in the stream. The merge level stream name can be used in the
naming of the merged field in the sample.
contents of MergeSpecification.msg:
string merge_level_stream_name
dyknow_msgs/SelectSpecification[] select_level_streams

string select_level_stream_name
string topic_name
string topic_msg_type
string topic_field
duration topic_sample_period
dyknow_msgs/FilterSpecification[] select_filters

bool constant
string object_identifier
string object_identifier_prefix
string field
string required_field_value
dyknow_msgs/StringPair[] renaming_map

string first
string second

4.4.3 Select Specification

The Select Specification contains the information needed to select specific data
from a specific topic. It contains information about the topic such as its name and
message type to make it easy to create a subscriber as well as the sample period to
make it easier to predict when no more information relevant to our current sample
will arrive. The Select Specification also contains a set of select filters to enforce
policy based constraints on the subscriber side and report any violation to the
constraints.
contents of SelectSpecification.msg:
string select_level_stream_name
string topic_name
string topic_msg_type
string topic_field
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duration topic_sample_period
dyknow_msgs/FilterSpecification[] select_filters

bool constant
string object_identifier
string object_identifier_prefix
string field
string required_field_value
dyknow_msgs/StringPair[] renaming_map

string first
string second

4.4.4 Stream Constraints

The Stream Constraints specify a few more constraints. They are collected in
a common substructure of the Stream Specification. The stream constraints in-
clude when the stream starts and ends although such functions are perhaps better
handled by calling the stream processor service at the appropriate times. More
importantly the structure contains the sample period of the stream which specifies
how often a sample will be published. Max delay is the maximum allowed delay
of the incoming messages. Sample period deviation is the deviation on each side
of each regular sync time which is allowed. Support for a variable sync time is
limited to stream start up at the moment although it is very possible to extend
the support to better follow the design. The booleans ordered on valid time and
unique valid time are on by default, mostly because if ordered on valid time is false
there is the possibility that a more fitting value will arrive even though we got a
message with a valid time which is more recent than the sync time, although the
max delay would also be a factor in that case.
contents of StreamConstraints.msg:
time start_time
time end_time
duration sample_period
duration sample_period_deviation
duration max_delay
bool ordered_on_valid_time
bool unique_valid_time
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4.4.5 Stream Constraint Violation

The Stream Constraint Violation message is used to report a violation to the con-
straints outlined in the messages above. It is published on a separate topic to offer
the option to keep other nodes informed about these potential violations.
contents of StreamConstraintViolation.msg:
string stream_name
dyknow_msgs/StreamConstraints stream_constraints

time start_time
time end_time
duration sample_period
duration sample_period_deviation
duration max_delay
bool ordered_on_valid_time
bool unique_valid_time

string constraint_violation_message

4.4.6 Sample

The stream processor has stream generators. Each stream generator creates a
stream in the form of a topic which publishes Samples. Each sample in this stream
can contain several fields which can be synchronized around a specific time.

The Sample structure is used for two things: 1) It is the elements composing the
stream. In other words a stream is a topic which publishes messages of the mes-
sage type dyknow_msgs::Sample.
2) Incoming messages from other topics which are to be processed are converted
into Samples, these converted messages are processed by selecting relevant fields
from them and taking fields which are to be synchronized to make up the samples
mentioned above. contents of Sample.msg:
Header header

uint32 seq
time stamp
string frame_id

time valid_time
dyknow_msgs/Field[] fields

string type
string name
string value
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4.4.7 Field

The composing unit of a Sample. There are very few primitive structures such
as int, float and string which compose the more complex message types in ROS.
Since there is no native support for recursive message structures the hierarchy of
nested messages can be expressed by explicit paths through the submessages right
down to the primitive ones. This conversion from message to a sample with fields
is currently done through C++ conversion functions which are automatically gen-
erated by Python scripts. contents of Field.msg:
string type
string name
string value

4.5 Stream Specification Examples from SPL

SPL expressions can be used to generate a stream specification describing the
stream. This stream specification can then be used to create the stream. Here
follow a few examples illustrating the conversion of SPL expressions to stream spec-
ifications. The examples are continuations of the examples previously described
in sections 3.5 and 3.6.

4.5.1 Select Example

SPL: SELECT alt AS uav_1_altitude FROM dyknow_msgs/UAV:/info_about_uavs
WHERE id = 1 WITH sample_period = 0.2

Generated StreamSpec:
stream_spec:

topic_name_of_published_stream: dyknow_stream
merge_level_streams:

-
merge_level_stream_name: uav_1_altitude
select_level_streams:

-
select_level_stream_name: ”
topic_name: info_about_uavs
topic_msg_type: dyknow_msgs/UAV
topic_field: alt
topic_sample_period:
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secs: 0
nsecs: 0

select_filters:
-

constant: False
object_identifier: ”
object_identifier_prefix: ”
field: id
required_field_value: 1
renaming_map: []

delay_before_approximation:
secs: 0
nsecs: 100000000

add_performance_timings_to_fields: False
stream_constraints:

start_time:
secs: 0
nsecs: 0

end_time:
secs: 0
nsecs: 0

sample_period:
secs: 0
nsecs: 200000000

sample_period_deviation:
secs: 0
nsecs: 0

max_delay:
secs: 0
nsecs: 100000000

ordered_on_valid_time: True
unique_valid_time: True

4.5.2 Merge Example

SPL: MERGE ( SELECT * FROM dyknow_msgs/ObservedObjects:/front_sensor
WHERE type = car, SELECT * FROM dyknow_msgs/ObservedObjects:/rear_sensor
WHERE type = car) AS observed_car

Generated StreamSpec:
stream_spec:

topic_name_of_published_stream: dyknow_stream
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merge_level_streams:
-

merge_level_stream_name: observed_car
select_level_streams:

-
select_level_stream_name: ”
topic_name: front_sensor
topic_msg_type: dyknow_msgs/ObservedObjects
topic_field: ”
topic_sample_period:

secs: 0
nsecs: 0

select_filters:
-

constant: False
object_identifier: ”
object_identifier_prefix: ”
field: type
required_field_value: car
renaming_map: []

-
select_level_stream_name: ”
topic_name: rear_sensor
topic_msg_type: dyknow_msgs/ObservedObjects
topic_field: ”
topic_sample_period:

secs: 0
nsecs: 0

select_filters:
-

constant: False
object_identifier: ”
object_identifier_prefix: ”
field: type
required_field_value: car
renaming_map: []

delay_before_approximation:
secs: 0
nsecs: 100000000

add_performance_timings_to_fields: False
stream_constraints:

start_time:
secs: 0
nsecs: 0

end_time:
secs: 0
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nsecs: 0
sample_period:

secs: 0
nsecs: 100000000

sample_period_deviation:
secs: 0
nsecs: 0

max_delay:
secs: 0
nsecs: 100000000

ordered_on_valid_time: True
unique_valid_time: True

4.5.3 Synchronization Example

SPL: my_sync_stream_topic = SYNC ( SELECT altitude FROM dyknow_msgs/Altitude:/altitude_1
, SELECT speed FROM dyknow_msgs/Speed:/speed_1, SELECT altitude FROM
dyknow_msgs/Altitude:/altitude_2 , SELECT speed FROM dyknow_msgs/Speed:/speed_2
) WITH sample_period = 0.1

Generated StreamSpec:
stream_spec:

topic_name_of_published_stream: my_sync_stream_topic
merge_level_streams:

-
merge_level_stream_name: altitude
select_level_streams:

-
select_level_stream_name: ”
topic_name: altitude_1
topic_msg_type: dyknow_msgs/Altitude
topic_field: altitude
topic_sample_period:

secs: 0
nsecs: 0

select_filters: []
-

merge_level_stream_name: speed
select_level_streams:

-
select_level_stream_name: ”
topic_name: speed_1
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topic_msg_type: dyknow_msgs/Speed
topic_field: speed
topic_sample_period:

secs: 0
nsecs: 0

select_filters: []
-

merge_level_stream_name: altitude
select_level_streams:

-
select_level_stream_name: ”
topic_name: altitude_2
topic_msg_type: dyknow_msgs/Altitude
topic_field: altitude
topic_sample_period:

secs: 0
nsecs: 0

select_filters: []
-

merge_level_stream_name: speed
select_level_streams:

-
select_level_stream_name: ”
topic_name: speed_2
topic_msg_type: dyknow_msgs/Speed
topic_field: speed
topic_sample_period:

secs: 0
nsecs: 0

select_filters: []
delay_before_approximation:

secs: 0
nsecs: 100000000

add_performance_timings_to_fields: False
stream_constraints:

start_time:
secs: 0
nsecs: 0

end_time:
secs: 0
nsecs: 0

sample_period:
secs: 0
nsecs: 100000000

sample_period_deviation:
secs: 0
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nsecs: 0
max_delay:

secs: 0
nsecs: 100000000

ordered_on_valid_time: True
unique_valid_time: True

4.6 Stream Processor Components

The stream processor has a stream generator for each stream it manages. Each
stream generator in turn has one or more buffers for temporary storage of selected
data from incoming messages which has passed a filter chain. The procedures in
the stream generator puts together a stream of samples based on the contents of
the buffers.

4.6.1 Stream Generators

A stream generator publishes a stream based on the stream specification. It is
composed of several elements, among those are subscribers to the topics which
can contain relevant data, filter chains to enforce policies, of one or more buffers
which keep relevant data from the incoming topics. The stream generator imple-
ments the operations select, merge and sync to form a stream of states published
on a specified new topic. It also implements most of the procedures for the afore-
mentioned operations. Figure 4.1 shows the implementation of a stream generator.
The buffers are updated when new data arrive. When it is likely that the newly
arrived data has contributed something the synchronize procedure in the stream
generator is called to see if a state for the current synchronization time can be
published. The stream generator reacts to the incoming data to handle tasks re-
lated to forming streams such as the synchronization. The buffers contain the
fields which the states published to the stream will contain. Merge is implemented
by storing data which describe concepts similar enough to be deemed merged is
sent to the same buffer.

4.6.2 Filter Chains

A stream generator has a filter chain for each subscriber to enforce policies. A
filter can for instance deal with requirements such as having a maximum delay
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Figure 4.1: Implementation of a stream generator.

or disallowing out of order arrivals on topics. This is integral to providing the
equivalent of policy-based subscribers in ROS.

4.6.3 Buffers

The buffers contain samples relevant to a field in the resulting state. For instance
if two fields on two topics are to be synchronized in each state in the state stream,
the stream generator will have two subscribers to these topics along with two
buffers.

The buffers are all marked with a category which indicates the current condition
with regard to synchronization, for instance the category can indicate if the buffer
contains a sample which can be used as an approximation in the state for the
current synchronization time and if a more recent approximation is due to arrive
in time. Incoming messages from the topics are processed and if the content is
deemed relevant a sample is put into the buffer. Since a single buffer in some cases
can be affected by several different topics (in the instance of the merge operation)
it also contains data with regard to when the next message for each of the topics
relevant to the buffer is due to arrive.

4.7 Synchronization into States

The current implementation uses the synchronization algorithm in section 3.5.5
since it has been tried and offers advantages to simpler methods discussed in the
analysis while still having a reasonable computational complexity in comparison to
more complex alternatives. The procedures can be found in Heintz 2009 doctoral
thesis in section 7.8.2[15].
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If a start time is not explicitly mentioned the stream generator waits until it can
first publish a complete sample and sets the first sync time according do that. The
periodicity of the incoming messages often makes the following sync times quite
suitable as well in terms of minimizing delays.

Expected Arrivals

When the new relevant data is expected to arrive is important since it is the
deciding factor whether or not a state regarding the current sync time can be
published now since no more relevant data will arrive or if we should wait for more
data.

A map in the buffer keeps track of the topics affecting the contents and when
the next message on each topic is due to arrive. Each pair in the map tells us
the unique name of the topic as well as when the next message is due to arrive if
we have some data about the topic’s sample period. Defining the rate / sample
period in advance makes sense since it is common in ROS and the framework also
provides tools such as rostopic to figure the rate out at runtime. Furthermore
the synchronization algorithm needs the sample periods to offer improvements in
terms of earlier states even if it works fast and reliably otherwise as well.

Timeouts

The implementation mostly reacts to incoming service calls and messages although
there is one notable exception: the timeouts. These are reached when publishing
a state related to a specific sync time is overdue because of the max delay or delay
before approximation. Timers to keep track of these timeouts is the obvious choice
for the task but the documentation in ROS explicitly mentions that the Timers in
ROS are not a real-time thread/kernel replacement and points out that they are
useful mostly when there are not any real-time requirements. Timers were also
tried in an earlier implementation with limited success yet they deserve a mention
since they might become a more viable choice later on. Because of the issues with
Timers the current implementation handles timeouts in two ways. One: letting
the stream processor service node call the stream generators to check if a timeout
has been reached and running the synchronization procedure if that is the case.
Two: when new messages arrive to the stream generator and the synchronization
procedure is run as a reaction to the incoming message callback the procedure
checks for possible timeouts and deals with them accordingly. The system has to
be fast enough to be able to process the messages and deal with timeouts so the
publication time of the states in the stream do not deviate too much from the
allowed delay before approximation. This is especially important in cases such as
when feeding the reasoner with states to evaluate logic.
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Empirical Evaluation

The implementation of the design was evaluated through performance measure-
ments investigating the performance impact on the system when, respectively;
varying the number of stream generators, varying the number of merged fields and
varying the number of fields from different topics to synchronize. By observing
any system one unavoidably alters it to some extent, in this case the impact of the
tests have been kept to a minimum by storing the performance timings in memory
while running the tests and doing all the calculations afterwards.

The delays in the system can be divided groups.

First there is the delay between publishing on a topic and the subscriber receiving
it. This delay is very much dependent on the spin rate in ROS and unavoidable
when communicating on ROS topics.

There is also the internal delay in the stream processor between when a message
arrives to it and the point in time where the message has been fully processed.
Fully processed in this context means that the stream processor has gone through
all the necessary procedures such as updating the buffers and, if possible, even
publishing a state.

Lastly there is the so called perceived delay between the data’s arrival to a stream
generator and when it becomes part of a published state on a stream. This delay
can be significantly higher since the stream processor sometimes has to wait a
while to make sure that all the information for each synchronized state has arrived
although it is important to note that it does not significantly exceed the maximum
allow delay. If the stream generator can be sure that all the data regarding the
specific synchronization time already has arrived there is no need to wait. The
total delay will be higher than the perceived delay because of the aforementioned
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transportation delays when communicating between nodes.

5.1 Performance measurements

Performance tests are vital to determine the overhead introduced by the DyKnow
components. There are a lot of facets to the environment and focus with regard
to performance measurements will be on latencies as well as throughput. The
performance has been tested for varying numbers of stream generators, synchro-
nized streams and merged streams, respectively. For each one of these tests three
delays where measured. Average delays were measured as delay per field. 1) The
transport delay between original publication on a topic to arrival at the stream
processor, to show the overhead of ROS. 2) The internal delay between arrival at
the stream processor and the point in time where the incoming message has been
processed. 3) The perceived delay between original publication and publication
on the state stream. It is worth noting that the delay between publication on the
state stream and receiving the state is not included in the perceived delay so the
actual delay should amount to the perceived delay plus a corresponding transport
delay to compensate.

5.1.1 Measurement Overhead

To accurately measure the performance of the stream processing requires looking
up and adding timing information which normally is not needed and this introduces
some measurement overhead. Since IO operations are generally quite costly the
overhead is minimized by eliminating them when running the tests and keeping
track of only the accumulated delays and the average is calculated by dividing by
the total number of instances.

Currently it is very hard to entirely eliminate the logging in ROS which makes
it complicated to make the tests entirely reliable. Measures have been taken to
minimize the logging done by ROS though although some logging such as the
logging of subscribers and publishers in rosmaster.log was still active. An effort
was made to try to avoid measuring at the same time as I/O operations were
performed since debugging printouts reliably impaired performance.

Each specific performance test needs a varying number of active topics to run.
This introduces the question whether or not only the required topics should be
running. Having a high quantity of topics running at once each of which can also
have a high rate of messages introduces a load on the system which can affect
the tests. In order to make the performance measurements comparable all of the
topics used in a performance measurement should be running even if they are not
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used in that specific test since they will be used in later tests and they should have
the same overhead in terms of background processes.

5.1.2 Settings and Test System

Callbacks in ROS are processed in a node by calling spin at a predefined rate.
These tests were run without a rate defining a waiting period between the spins
since waiting between each spin could have an impact on the test results. As
a result the CPU utilization during these tests were high since the system was
constantly checking for callbacks to process, as an example simply having an empty
node calling ros::spin causes similar load on the system which indicates that this is
independent of the stream processing implementation. CPU load is of course much
more reasonable at a fixed rate for ros::spin and the faster the stream processing
is the faster rate can be used. While performing these tests the publishers had a
fixed rate between spins and when there were subscribers to the streams from the
stream generators the subscribers were run without waiting period between the
spins in order to receive the messages from the stream as fast as possible.

The system used ran ROS Electric Emys on the operating system Lubuntu 10.10
(www.lubuntu.net, in essence a lightweight Ubuntu 10.10 with LXDE) on an older
laptop: Dell Inspiron 640m with an Intel Core 2 T5500 @ 1.66 Ghz, 2 GB RAM and
upgraded with an Crucial m4 SSD running firmware 0309. System specifications
are listed so the results can be reproduced and compared, in practice the stream
processing functionality described in this thesis should be able to run on systems
capable of running ROS itself since the stream processor module does not use
any external libraries beyond what is included in ROS. This includes embedded
systems such as the autonomous UAVs discussed in this thesis.

A 120 publishers each publishing at a rate of 20 messages per second were set up
along 120 subscribers to the streams (not all of them published to). The message
type for these topics was UAV which was described in section 2.1.4. Through
services the test system starts and destroys the required streams by formulating
SPL expressions. The SPL expressions all had a sample rate of 0.2 (one sample
every 200 milliseconds). When varying a variable in the tests the stream(s) were
always set up to subscribe to a large set of topics, for instance when setting up
a hundred stream generators they all subscribed to different topics and when
synchronizing a hundred fields they all came from different topics from the pool
of publishers running.
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5.1.3 Internal Latencies and Perceived Latencies

The latencies are divided into two categories. The first category of latencies is
called internal latencies and refers to the delay between a subscriber in the stream
processor receiving the message and when it is done processing it. The perceived
delay on the other hand includes more than just this processing such the delay
between publication and arrival and delays caused by having to wait for messages
to arrive on others topics to give us an approximation of a particular feature for a
certain sync time. The perceived latencies measures the total overhead as viewed
by the client whereas the internal latencies are more closely related to the efficiency
of the implementation.

5.1.4 Varying the Number of Stream Generators

These charts show how the performance of the system is affected by having mul-
tiple stream generators running in a stream processor. Each stream generator is
synchronizing fields from two topics.
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Internal Delays When Varying the Number of Stream Generators

Figure 5.1: The average internal delays per field for a varying number of stream
generators running.

(a) stream generator min internal (b) stream generator max internal

Figure 5.2: Stream Generator min/max internal delays
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Perceived Delays When Varying the Number of Stream Generators

Figure 5.3: The average perceived delays per field for a varying number of stream
generators running.

(a) stream generator min perceived (b) stream generator max perceived

Figure 5.4: Stream Generator min/max perceived delays
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Transport Delays When Varying the Number of Stream Generators

Figure 5.5: The average transport delays per field for a varying number of stream
generators running.

(a) stream generator min transport (b) stream generator max transport

Figure 5.6: Stream Generator min/max transport delays
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5.1.5 Varying the Number of Select Statements to Merge

These charts show how the performance of the system is affected when merging
from several topics in the stream processor.
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Internal Delays When Varying the Number of Select Statements to
Merge

(a) 2-80 (b) 2-100

Figure 5.7: The average internal delays per field for a varying number of topics to
merge from.

(a) merge min internal (b) merge max internal

Figure 5.8: Merge min/max internal delays
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Perceived Delays When Varying the Number of Select Statements to
Merge

(a) 2-80 (b) 2-100

Figure 5.9: The average perceived delays per field for a varying number of topics
to merge from.

(a) merge min perceived (b) merge max perceived

Figure 5.10: Merge min/max perceived delays
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Transport Delays When Varying the Number of Select Statements to
Merge

Figure 5.11: The average transport delays per field for a varying number of topics
to merge from.

(a) merge min transport (b) merge max transport

Figure 5.12: Merge min/max transport delays
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5.1.6 Varying the Number of Select Statements to Synchro-
nize

These charts show how the performance of the system is affected when synchro-
nizing from several topics in the stream processor.
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Internal Delays When Varying the Number of Select Statements to
Synchronize

Figure 5.13: The average internal delays per field varying number of topics to
synchronize.

(a) sync min internal (b) sync max internal

Figure 5.14: Sync min/max internal delays
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Perceived Delays When Varying the Number of Select Statements to
Synchronize

Figure 5.15: The average perceived delays per field for a varying number of topics
to synchronize.

(a) sync min perceived (b) sync max perceived

Figure 5.16: Sync min/max perceived delays
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Transport Delays When Varying the Number of Select Statements to
Synchronize

Figure 5.17: The average transport delays per field for a varying number of topics
to synchronize.

(a) sync min transport (b) sync max transport

Figure 5.18: Sync min/max transport delays
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5.2 Discussion

5.2.1 Latencies

Transport Delays

With constantly spinning nodes the delays for communicating between nodes is
negligible when there are few messages being sent. Introducing a delay between
each spin for subscribing nodes also introduces a corresponding delay since the
node has to wait until it checks for updates on the topic. Having constantly spin-
ning nodes to minimize delays can be undesirable because of the extra processing
power required for the exuberant spinning. Even at very high rates the process-
ing usage is very manageable compared to forgoing the delay between each spin
entirely.

When sending hundreds of messages at once the transport delays seem to increase
by quite a lot though. Anomalous values in the performance charts which occur
at the higher numbers in the tests correlate quite well with the transport delays.
Separate measurements where only the transport delays are measured involving
only regular ROS publishers and subscribers seem to confirm this. Probably since
the messages are published in batches at roughly the same time which causes some
congestion with regard to the throughput since incoming and outgoing messages
are processed one by one in the callbacks when the nodes are spinning. The
transport delays are not that big of an issue for the stream processor up until
a point. This could be where the accumulated transport delays exceed the max
delay allowed by the policies in the stream generators. At this point it is a problem
since the predictions for when the messages are supposed to arrive do not reflect
the actual arrival and it becomes hard for the stream processor to receive the
messages with the data relevant for each sample. A lower rate eliminates this issue
of congestion entirely and produces much nicer graphs as can be seen. Discussing
current limitations of a system is always more interesting though.

Perceived Delays

Another thing to notice is that the perceived delays can also depend on the timed
events in the form of timeouts when states should be published. The management
of such timed events was discussed in 4.7 and their accuracy depend on the sys-
tem being able to deal with incoming messages fast enough and check whether
the timed events have been reached. This matters since handling these events in
an expedient manner is what enables the states in the stream to get published
in a timely fashion. The ROS real-time package rosrt was not used in the cur-
rent implementation since it is experimental and not considered API-stable right
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now yet this might be a viable option in the future for timing critical publishers/-
subscribers and timed events which are designed for real-time applications. The
currently available functionality should be sufficient for most purposes though
considering the performance.

In these tests both the internal and the perceived delays were generally very low.
Much of this is thanks to how the stream processor chooses the first synchro-
nization time based on the first incoming messages as described earlier and it is
important to note that the perceived delays can be much more significant if the
sync times are inconvenient with regard to that they often require the stream gen-
erators to wait for incoming messages. In these tests the stream generators did
not have to wait long for the messages to arrive which makes the perceived delays
quite close to the internal delays. It is also noteworthy that the perceived delays
do not include the transport delays which can be significant when the system has
to deal with a large amount of streams.

Perceived delays can be amplified by factors such as if the nodes seldom spin to
deal with callbacks or if the sync times are constantly out of sync with when the
incoming messages are actually published. Implementing an algorithm which take
the sample period deviation into consideration might improve that latter aspect.
If an explicit start time for the stream is omitted the stream generator seems to
do a fairly good job of setting the first sync time to make this much less of an
issue though as seen in the performance tests.

Publishing the incoming messages at roughly the same times and starting the
stream generators without deliberately choosing dispersed sync times might have
a negative impact on the performance in these tests as a more even distribution
temporally would ease the load when synchronizing. Starting several streams at
once seems like a common use case though considering applications such as formula
evaluation and the performance under these conditions is encouraging.

Internal Delays

As can be expected the internal delays are always lower than the perceived delays
even though they are quite similar here. It is worth noting that both the perceived
and internal delays are much lower than the transport delays by quite a large factor.

Dealing with Delays

Lowering the rates on the incoming topics and the outgoing stream is one way
to solve the congestion issue. Figure 5.19, 5.20 and 5.21 illustrate what happens
when running publishers on 200 topis and creating resulting streams with a sample
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period of 400 ms where each incoming topic has a period of 100 ms. To avoid
congestion the rates only really need to be lowered when the tests reach very
high numbers on the x-axis and they could probably be higher overall without
congestion being an issue. For the lesser numbers on the x-axis the rates can
be vastly higher. A good solution to this which is in line with the overarching
design goals of DyKnow would be to dynamically adapt the rates in the system at
run-time to avoid congestion while retaining higher rates when possible.

As demonstrated by the figures; increasing the sample period gives the system more
time to deal with the transportation delays and thus preventing congestion. As
expected the synchronization is slightly more demanding than the other operations
and the computational complexities for the tests were encouraging when congestion
was averted. With regard to the tests varying the number of stream generators
and varying the number of selects per merge; they both produced a constant delay
per field.

Figure 5.19: The average perceived delays per field for a varying number of stream
generators.

Figure 5.20: The average perceived delays per field for a varying number of topics
to merge.
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Figure 5.21: The average perceived delays per field for a varying number of topics
to synchronize.

Throughput

In general in ROS a too high throughput can result in dropped messages on the
topics. Dropped messages could result in the progressor failing to receive vital
information about a formula it is evaluating. Although monitoring if we drop
messages is easily checked by reading the message header this is desirable to avoid
altogether by keeping the rates reasonable enough for ROS to handle.

Concerning stream reasoning throughput in ROS there are certain theoretical lim-
itations such as when either the stream processing can’t be done fast enough in
the stream processor node to provide the stream or some of the topics have an
overwhelming load which causes messages to be dropped. The frequencies of in-
put (topics to synchronize) as well as output (sample stream to progressor) are
relevant. One way to deal with dropped messages as well as packetloss in general
would be to use the sequence ID in cached message headers to see if any messages
are missing. However, whether or not this would be useful is arguable, especially
since congestion could be a larger issue as shown by the increasing transport delays.

For very high sample periods it could be desirable to integrate the progressor
in the stream processor node to entirely eliminate the risk of dropped message
between them although one of the benefits of having different nodes is that you can
distribute them on different cores or platforms and balance the load. Furthermore
rates high enough to cause dropped messages are probably undesirable for the
state streams since the progressor has to handle the incoming data which is why
it is good to specify a reasonable sample rate in the stream specification even if
the stream processor is fast enough to deliver a higher rate. Therefore it should
not be a problem for the stream processing in practice.
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5.2.2 Testing Overhead

Regarding the overhead introduced by the performance tests: measurement tools
such as valgrind and sysprof seem to indicate the function ros::Time::now() does
introduce a small amount of overhead since this function is called far more fre-
quently to add performance timings.

5.2.3 Scalability

The current implementation seems to be scalable in large part due to how fast it is
able to process incoming and outgoing data sequentially which enables the server
node to process a large quantity of streams without issues. Further testing with
several nodelets instead of a stream processor node could however be interesting
in terms of scalability and micromanagement of thread handling could improve
performance when running a large amount of streams at once. The option to
easily disable logging globally in ROS would also help since I/O operations are
costly and one does not want to fill the available space on an embedded system
over time.

DyKnow and ROS both have attributes which makes the stream processing very
scalable. ROS’ fundamental architecture of nodes connected by topics makes it
quite scalable since it is then easy to distribute processing power by have the nodes
run on different platforms dealing with different degrees of complexity. Doing all
the computations on the embedded system inside the robot itself isn’t always
desirable if battery life can be extended by doing calculations elsewhere, such as
locally in another system or in the cloud. The modularity of ROS’ node based
architecture enables efficient distributed computing for instance in the form of
cloud computing and multicore computing[17]. Another aspect of DyKnow worthy
of mention here is dynamic reconfiguration based on runtime data which could play
an integral part of load balancing the streams used in ROS to further improve the
scalability.
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Conclusions and Future
Work

The analysis of the underlying design of ROS support the notion that ROS is
very much extensible with DyKnow inspired functionalities such as stream reason-
ing and the implementation outlined here corroborates that while offering good
performance with a small overhead.

Extending ROS with such functionality was made easier by the similarities be-
tween concepts in ROS and DyKnow although some hurdles were overcome in the
process as well. The stream reasoning architecture is designed with these simi-
larities and the concept of modularity in mind. Stream processing operations to
select, merge and synchronize streams of data in ROS work well on their own and
offer potential in many other applications such as in the aforementioned stream
reasoning architecture.

The SPL syntax was thought of after getting most if not all stream processing
functionality to work. If one started with the SPL there is a good chance the syntax
would have been less complex in terms of size. There would probably be some
downsides with that approach, for instance that the BNF would probably contain
some relations which are difficult to implement due to lack of recursive messages
in ROS and also it would be another layer of abstraction which could change
a lot from iteration from iteration during the development process. Therefore
developing the Stream Specification and how it is handled first made more sense.
Having SPL as a direct interface with the stream processor and omitting the step
of having a stream specification entirely would however be an alternative which
would allow an arbitrary C++ structure to describe the streams, this however
might be less modular and makes the parsing much more important.
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The development process has been very iterative with lots of different implemen-
tations along the way to try out new things and lots of reflection whether or not
they are easy to use and efficient. Ease of use and legibility are however abstract
concepts which are hard to measure objectively without extensive user studies yet
this must not be used as an excuse to ignore their importance and they have cer-
tainly at least been taken into account here. Admittedly the starting point has
been to develop solutions which work efficiently and then in each iteration trying
to add, replace and improve. Sometimes different ways of doing things such as for
instance policy-based subscriptions have been implemented in parallel to compare
the solutions. There are a lot of aspects to consider while writing code and try-
ing to achieve both elegance and speed and seeing solutions side by side can help
immensely at times.

6.1 Future Work

There are several directions in which this work can be explored further. For
instance the system could adapt to take variables such as the system’s current
free resources into account when deciding on things like the publishers and the
streams sample rates. Furthermore, as discussed in section 5.2.1 the system would
benefit from the feature to dynamically change these rates at runtime to ensure
smooth performance even under extraordinary circumstances. Such load balancing
related work would have the added benefit of being applicable in several of the
many domains where streams of data are involved.

The sample period deviation could use some further investigations as to how a so-
lution such as the one presented in the analysis would affect aspects of the system’s
performance, especially with regard to the perceived delay when synchronizing a
multitude of incoming asynchronous topics. The stream processor could also be
extended to provide higher level stream operations, such as logic, arithmetic and
complex event processing. Naturally SPL can then also be extended to reflect these
changes. Aside from that the DyKnow stream reasoning architecture in ROS can
also be extended with more modules and be developed further with for instance
better support for distributed systems with heterogeneous robotics platforms. The
work on ROS also continues and as always more research is required for robots in
general and autonomous UAVs in particular to reach their full potential to help
us in the future, no matter if it is with regard to helping us with mundane chores
or helping us with search and rescue missions where lives are at stake.
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