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Linköpings universitet

581 83 Linköping
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Abstract

Autonomous systems require a lot of information about the environment
in which they operate in order to perform different high-level tasks. The
information is made available through various sources, such as remote and
on-board sensors, databases, GIS, the Internet, etc. The sensory input es-
pecially is incrementally available to the systems and can be represented
as streams. High-level tasks often require some sort of reasoning over the
input data, however raw streaming input is often not suitable for the higher
level representations needed for reasoning. DyKnow is a stream processing
framework that provides functionalities to represent knowledge needed for
reasoning from streaming inputs. DyKnow has been used within a plat-
form for task planning and execution monitoring for UAVs. The execution
monitoring is performed using formula progression with monitor rules spec-
ified as temporal logic formulas. In this thesis we present an analysis for
providing spatio-temporal functionalities to the formula progressor and we
extend the formula progression with spatial reasoning in RCC-8. The re-
sult implementation is capable of evaluating spatio-temporal logic formulas
using progression over streaming data. In addition, a ROS implementation
of the formula progressor is presented as a part of a spatio-temporal stream
reasoning architecture in ROS.
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Chapter 1

Introduction

The introduction chapter provides overview of the background of the work
presented in the thesis report and presents the goals of this thesis project.

1.1 Background

Autonomous systems perform different kinds of high-level functions during
run-time, like motion and task planning, event recognition, execution mon-
itoring, etc. Most of these functionalities require some sort of reasoning to
be performed. In order to perform the functions, the systems rely on in-
formation about the environment in which they operate. The information
needed to the autonomous systems is provided as different kinds of input
and is usually made available through various on-board or remote sensors,
databases, GIS, the Internet etc. Most of the data, especially the sensory
input become incrementally available during execution. These data are sus-
ceptible to different kinds of noise and usually in the raw numeric form is
not appropriate for higher level reasoning.

DyKnow [Heintz, 2009] (section 2.1) is a stream based knowledge pro-
cessing middleware framework that bridges the gap between raw numerical
data available from sensors and higher level knowledge needed for reasoning.
It provides support for processing incrementally incoming data, defined as
streams and supports varying levels of abstraction.

DyKnow has been used for execution monitoring within a UAV plat-
form [Doherty, Kvarnström, and Heintz, 2009]. The UAV platform uses
automated task planning techniques and the execution monitoring system
is responsible to check if the execution is going according to the generated
plan. The execution monitoring is performed according to specific monitor
rules, specified as temporal logic formulas. The temporal logic used, metric
temporal logic (MTL) [Koymans, 1990], supports time intervals, meaning
that formulas can be defined over specific or infinite time intervals. For ex-
ample, a monitor rule stating that a UAV must always within the next 30

1



2 CHAPTER 1. INTRODUCTION

seconds fly at altitude higher than 20 meters can be specified as a temporal
logic formula. As input data becomes incrementally available from the sen-
sors, DyKnow processes the data and evaluates the monitor formulas using
formula progression.

DyKnow provides processing of data on different levels of abstraction
that can be transformed to higher level knowledge needed for reasoning.
Therefore it is possible to support different kinds of reasoning in DyKnow.
Two such symbolic reasoning engines are already implemented in DyKnow,
a temporal logical progression engine and a chronicle recognition engine for
recognizing complex events [Heintz, 2009]. A further reasoning approach
applicable in the UAV domain is qualitative spatial and spatio-temporal
reasoning. With the support of qualitative spatio-temporal reasoning and
representation techniques it would be possible to express and monitor spa-
tial relations between objects. Therefore, it would be beneficial to provide
spatial reasoning capabilities to the execution monitoring system, since it
would extend the possible scenarios that can be monitored during execution.

There are many different possible spatial and spatio-temporal approaches
to chose from, but this thesis project is focused on integrating qualitative
spatial reasoning with the Region Connection Calculus (RCC-8) [Randell
et al., 1992] (section 3.2.2) with the existing temporal logic formula evalua-
tion, in order to provide qualitative spatio-temporal reasoning based on the
semantics of the spatio-temporal modal logic proposed by Bennett, Cohn,
Wolter, and Zakharyaschev [2002] (section 3.3.2). This would make it pos-
sible to express monitor rules that also include spatial relations. For exam-
ple, there can be monitor rules stating that the UAV must not fly over a
restricted region within the next 10 minutes, or that all UAVs must stay
over the road within the next 30 seconds. These rules can be then specified
as a spatio-temporal monitor formulas.

Although spatial relations can be determined directly from observations
of the environment or some form of qualitative data, this might not always
be sufficient. In many situations it is not possible to have the full set of
observations of the complete spatial environment, since some changes in re-
lations between objects may not be detected. Such cases include for example
incomplete or imprecise GIS data, imprecise sensors, incomplete knowledge
base of spatial relations. For example if the UAV changes its relation to a
car, and to a road which is not detected, then depending on the relation
between the car and the road it might be possible from the change of rela-
tions between the UAV and the car to determine the new relation between
the UAV and the road. This makes it possible to reason about the spatial
configurations of the UAVs and the spatial environment when dealing with
incomplete and imprecise input from various sources.

This thesis is a part of a research effort to provide an implementation of
DyKnow in ROS (Robot Operating System) [Quigley et al., 2009] (section
2.2). ROS is modular, platform and language independent, suitable for
large systems. Because of the modularity of ROS it is possible to provide
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the different parts of DyKnow as separate modules and to provide further
extensions.

1.2 Goal

The goal of the Master’s thesis project is to provide spatio-temporal reason-
ing capabilities to the existing formula progression implementation. Since
the original solution is based on temporal logic it is needed to analyze differ-
ent spatial and spatio-temporal reasoning approaches and select a suitable
approach that is compatible with the existing temporal logic and to find a
way to integrate it together with the temporal logic formula progressor.

The idea is to integrate the progressor within a spatio-temporal stream
reasoning architecture for ROS. Therefore, the additional goal of the thesis
project is to provide a ROS implementation of the progressor that can be
used as a part of the architecture or as an independent ROS module.

1.3 Thesis outline

The outline of the remainder of the thesis report is as follows:

Chapter 2 presents an overview of the DyKnow framework and the appli-
cation in automated planning and execution monitoring using formula
progression. In addition, an introduction and overview of the basic
concepts of ROS is given.

Chapter 3 presents an overview of spatial and spatio-temporal reasoning.
Different approaches and calculi found in the literature are presented,
with the main focus on RCC-8 and PSTL.

Chapter 4 contains an analysis of the system for spatio-temporal reasoning
in ROS and describes our proposed solution for incorporating spatial
reasoning into the existing formula progressor.

Chapter 5 describes in detail the ROS implementation of the formula pro-
gressor and provides an example scenario.

Chapter 6 presents and discusses the results of the performance evaluation
of the formula progressor.

Chapter 7 gives a summary of the thesis project and discusses possible
future work directions.



Chapter 2

DyKnow and ROS

This chapter provides overview of the stream based knowledge processing
middleware framework DyKnow. The basic concepts and design principles
are described and the focus is on the application in execution monitoring of
automated plans in the UAV domain, mainly the formula progression.

In addition, an introduction and overview of the basic concepts of Robot
Operating System (ROS) is provided in this chapter.

2.1 DyKnow

Autonomous systems that perform various higher level functions rely on in-
formation about the environment obtained through various distributed and
heterogeneous sources such as on-board or remote sensors, databases, GIS,
the Internet etc. Most of these data, mainly those available through sensors
often become increasingly available during run-time, so mechanisms capable
of handling streaming data are needed. In addition, the data are often noisy
and incomplete. Furthermore, these are low-level quantitative data that are
not well-fitted for higher level reasoning functionalities. Therefore there is
a need to process the data to overcome noise, incompleteness and provide
higher level knowledge representations.

Dyknow [Heintz, 2009] is a stream based knowledge processing middle-
ware framework created to integrate components dealing with raw data from
sensors, databases or similar, with components that perform higher level rea-
soning about the environment. Heintz [2009] defines a knowledge processing
middleware as a “systematic and principled software framework for bridging
the gap between the information about the world through sensing and the
knowledge needed when reasoning about the world”.

Dyknow is built on six main design requirements:

• Allow integration of sensory data from heterogeneous and distributed
sources that can be processed with various levels of abstraction and can
be finally transformed into knowledge that can be used for reasoning.

4



2.1. DYKNOW 5

• Support qualitative and quantitative processing, to deal with quanti-
tative sensory input and qualitative representations needed for higher
level reasoning.

• Support both top-down and bottom-up data flow model, to allow in-
teraction in both directions between different dependent abstraction
levels.

• Allow uncertainty on different levels of abstraction, to handle different
types of uncertainty in raw sensor data, in the symbolic representations
of objects, in events and situations, etc.

• Support flexible configurations of the processing that can be dynami-
cally changed or reconfigured to handle changes in the environment

• Support declarative specification of information to specify the desired
properties of the processing.

2.1.1 Basic Concepts

The stream-based knowledge processing middleware framework presented
by Heintz [2009] is based on knowledge processes and streams. Knowledge
processes (figure 2.1) are models of the distinct functionalities defined within
the system. A knowledge process performs processing on information gener-
ated by other processes or obtained through other sources and also generates
information itself as a result of the processing. Information exchanged be-
tween processes becomes incrementally available. To take this into account,
the information flow between the processes is modeled as streams. Hence,
the inputs and outputs of knowledge processes are in the form of streams.

The stream-based approach presents a suitable mechanism for supporting
publisher/subscriber communication model between knowledge processes.
A knowledge process can subscribe on a stream to receive the information
generated and published by another knowledge process. The knowledge
processes publish their results through a stream generator that accepts sub-
scriptions and creates streams based on a specific policy. The policy specifies
the desired properties of the stream.

Figure 2.1: Knowledge Process (from Heintz [2009])
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Furthermore there are four different types of knowledge processes de-
fined. Primitive processes take no streams as input but provide one or more
output streams. These processes provide the information from outside world
information sources, such as sensors or databases, in the form of streams.
Refinement processes take one or more streams as input and provide one or
more output streams. These processes refine the data from the input stream.
Configuration processes take one or more streams as input and create and
remove knowledge processes and streams. Mediation processes have vary-
ing number of input streams and a fixed number of output streams. These
processes allow dynamic reconfiguration of input streams.

The aforementioned concepts are defined as general requirements for a
stream-based knowledge processing middleware, and DyKnow is one such
concrete framework. In DyKnow objects and features are used to model the
environment. The world consists of distinct objects that can be concrete
or abstract. The features represent the properties of the world and can be
attributes of objects or relations between objects. A feature has a value
at every time-point and values can change over time. The objects and
the values are defined by a knowledge processing domain. A knowledge
processing domain is defined as a triple 〈O, T, P 〉 where O is a set of objects,
T a set of time-points and P a set of primitive values. For a knowledge
processing domain D = 〈O, T, P 〉 the set of all possible values is denoted
VD.

In DyKnow streams are conceptualized as fluent streams which are de-
fined as streams of samples. A sample is a triplet 〈ta, tv, v〉 where ta ∈ T is
the available time of the sample, tv ∈ T is the valid time of the sample and
v ∈ VD is the value of the sample. The interpretation of a sample is that the
value v is an actual or estimated value of a feature, at a time-point tv and
this value is available to the knowledge process at time-point ta. Therefore,
a fluent stream represents the approximation of the value of a feature over
time. The set of all possible samples in a knowledge domain D is denoted
by SD and all possible fluent streams, FD.

The knowledge processes defined for a stream-based knowledge process-
ing middleware, in DyKnow are conceptualized as sources, corresponding to
primitive processes, and computational units, that correspond to refinement
processes. A source produces output in form of streams from external data
sources, such as sensors or databases. For a knowledge processing domain
D = 〈O, T, P 〉, a source is formally defined as a function T → SD, mapping
time-points to samples. A computational unit has an internal state and has
one or more input fluent streams and one output fluent stream. To produce
the output only the most recent sample of each input stream is considered
and processed. A computational unit with n > 0 input streams is formally
defined as a mapping from a time-point, n samples and the previous internal
state to a sample and a new internal state, in particular as a partial function
T × Sn

D × VD → SD × VD.
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2.1.2 Formula Progression

DyKnow has been used as a part of a planing and execution monitor-
ing framework for unmanned aircraft systems [Doherty, Kvarnström, and
Heintz, 2009, Heintz, 2009] to provide knowledge processing of information
from heterogeneous sources on different levels of abstractions.

The UAS software platform presented by Doherty, Kvarnström, and
Heintz [2009] uses a logic-based automated planner, TALPlanner [Kvarn-
ström and Doherty, 2000] to generate mission plans for a given goal spec-
ification. In order to deduce a plan that achieves the required goals the
planner, like most classical automated planners, works under the assump-
tion that all actions are performed successfully. Therefore, execution moni-
toring is performed to handle the failures in the plan during execution. The
conditions to be monitored are specified by temporal logic formulas and are
evaluated using formula progression. The execution monitor needs to have
representations of the state of the system and environment to accurately
evaluate monitor formulas. DyKnow is used to continuously send state rep-
resentations to the execution monitor. The environment is sampled at a
certain frequency and a state is generated containing all the features needed
for the monitor formulas. The execution monitor can then detect failures as
violations of the monitor conditions specified.

Figure 2.2: Task planning and execution monitoring overview (from Heintz
[2009])

The execution monitoring formulas are specified in metric temporal logic
(MTL) [Koymans, 1990]. Three tense operators are used for formula pro-
gression, U (until), ♦ (eventually) and � (always). An example monitor
formula that specifies that when a UAV is moving faster than a certain min-
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imum speed smin, the winch must not be extended above a certain limit
wmin.

�∀uav.speed(uav) > smin → winch(uav) ≤ wmin

Such monitor formulas can be specified in the execution monitor and
they need to be evaluated to detect failures during execution. This can
be achieved by formula progression, as new states about the environment
are generated by DyKnow, the execution monitor can continuously evaluate
the monitor formulas. A formula φ that is being progressed is defined to
hold for a state sequence [s0, s1, . . . , sn] iff Progress[φ, s0] holds for the
state sequence [s1, . . . , sn]. Therefore a formula can be evaluated to true or
false as it is being progressed trough the states. The progression algorithm
used, that progresses formulas over states is based on the one introduced
by Bacchus and Kabanza [1996] for metric interval temporal logic (MITL).
However, the MITL logic defined and used by Bacchus and Kabanza [1996]
is the same as MTL defined by Koymans [1990]. In the remainder of this
report, we will use the name MTL.

In order to progress the formulas through states, the states provide values
for all the features included in the monitor formulas, for every time-point at
which the values are considered to hold. Therefore the monitor formulas are
defined on sequences of states [Heintz, 2009]. Heintz [2009] defines a state in
a knowledge processing domain D as a tuple of values in VD. Furthermore,
a state sample is defined as a sample where the value is a state. Finally, a
state stream is a stream where each stream element is a state sample. The
values might come from different and distributed sources as separate fluent
streams, however, all values in a state should have the same valid time-
point. To achieve this, the incoming fluent streams should be synchronized
to generate a state stream where each value in each state has the same
valid time (figure 2.3). In DyKnow this is done with a state synchronization
policy which specifies how the streams are synchronized and defines how
state streams are generated.

Figure 2.3: Synchronizing fluent streams in DyKnow (from Heintz [2009])

There can be different policies defined depending on the desired prop-
erties of the application. One example is to generate states when values
have become available in all input streams. Another example is to generate
a new state whenever a value becomes available in any input stream, and
assume the most recent values for the other fluent streams. Let us assume
that a monitor rule related to the speed and altitude of the UAV is speci-
fied. Then, in order to evaluate the monitor formula there is a state stream
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containing the features speed(uav1) and altitude(uav1). An example state
is 〈30.2, 27.4〉 representing the values of speed(uav1) and altitude(uav1) re-
spectively. The data for the speed and altitude of the UAV arrive from two
different sensors that are not synchronized. Let us further assume that both
fluent streams have sampling periods of 100 time units, but are sampled at
different time points, therefore are not synchronized. If we assume that first
the information about the speed arrives and next the information about the
altitude, there are different state streams that can be generated depending
on the selected policy. The first state 〈s1, a1〉 will be generated after both
values become available, and after that states are generated according to
the synchronization policy. For example, if a state is generated when a new
value becomes available in any fluent stream, the next state is generated
when the value for the speed is available, 〈s2, a1〉, then when the altitude
value arrives, 〈s2, a2〉 and then, 〈s3, a2〉, 〈s3, a3〉 and so on. If, for example,
a state is generated when values in all state streams become available, after
the first state, the state stream will contain the states 〈s2, a2〉, 〈s3, a3〉 and
so on.

2.2 ROS

The Robot Operating System1[Quigley et al., 2009] (ROS) is a software
framework for robotic systems, that “provides a structured communication
layer above the host operating systems of a heterogeneous computer clus-
ter”[Quigley et al., 2009]. ROS provides operating system services such as
hardware abstraction, low-level device control, implementation of commonly-
used functionality, message-passing between processes, and package man-
agement, as well as tools and libraries for development and deployment
[Conley, 2011]. ROS is free and open-source, and is implemented in dif-
ferent programming languages, such as C++, Python, Lisp with additional
experimental libraries implemented in Java and Lua.

The main concepts of ROS are nodes, messages, topics and services.
Nodes are the computation processes used in ROS. As the system is de-

signed to be modular, there can be many nodes. Furthermore, the nodes
can reside on different hosts. To utilize this possibility, ROS uses a peer-
to-peer topology and allows different ways of communication between nodes
via XML-RPC, namely asynchronous publisher/subscriber communication,
synchronous request/reply communication and storage on a central loca-
tion. The ROS Master provides node registration and lookup mechanisms
so that nodes can find other nodes at runtime. The Parameter Server which
is used for data storage is part of the ROS Master. The communication be-
tween nodes is done with messages. A message is a strictly typed data
structure which supports primitive types, arrays and nesting. The pub-
lisher/subscriber communication architecture is introduced through topics.

1http://www.ros.org

http://www.ros.org
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Nodes send messages by publishing to a topic, and receive messages by sub-
scribing to a topic. Topics are defined by their names. A node can publish
and subscribe to multiple topics, and there can be multiple publishers and
subscribers to a topic. For synchronous communication, the request/reply
model is provided through services. The nodes provide services, and a ser-
vice is defined by a name, the request message and the response message.
As opposed to topics, services use unique names.

The peer-to-peer network is commonly visualized as a graph (figure 2.4)
where the ROS nodes are naturally represented as nodes in the graph, and
the peer-to-peer links are represented as arcs.

Figure 2.4: ROS network



Chapter 3

Qualitative
Spatio-Temporal
Reasoning

In this chapter we present the theoretical background of qualitative spatio-
temporal reasoning and representation. We present an overview of existing
approaches and calculi found in the literature.

Qualitative knowledge represents the features and characteristics that are
unique or specific for the aspect of the world under consideration, whereas
quantitative knowledge represents numerical values according to a specified
measurement unit [Hernández, 1994].

Qualitative knowledge is often used in AI for representing different as-
pects of the world. As the aspects of the world, such as time, space, size,
shape, quantity are continuous, different qualitative representations can be
specified with different levels of granularity and expressiveness. Hence, qual-
itative reasoning can be performed with less information than when dealing
with purely quantitative knowledge. When performing reasoning about the
environment, in robotic systems for example, sometimes less precise data is
available from sensors, or less precise results are sufficient, therefore quali-
tative representation and reasoning is applicable to such scenarios.

We start this chapter with an introduction of constraint satisfaction
methods as these are commonly used for qualitative reasoning. Next, we
provide an overview on qualitative spatial reasoning (QSR) and the differ-
ent aspects of space which QSR approaches are based on, focusing on the
calculus RCC-8. The next chapter presents existing approaches for qualita-
tive spatio-temporal stream reasoning (QSTR) with focus on PSTL. Finally,
an overview of existing spatial reasoning engines is presented.

11
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3.1 Constraint Satisfaction

Constraint-based (constraint satisfaction) methods are widely used for qual-
itative reasoning. This section gives an introduction to constraint satisfac-
tion methods and techniques relevant for the remainder of this work. More
detail on constraint satisfaction can be found in Dechter [2003], Russell and
Norvig [2003] and particularly for the case of qualitative spatial and tempo-
ral reasoning in [Renz, 2002, Renz and Nebel, 2007].

A constraint satisfaction problem (CSP) is defined as a set of variables
X over a domain D and a set of constraints C. An n-ary constraint is
represented by a n-tuple of variables 〈x1, . . . , xn〉 and a n-ary relation R ⊆
Dn. An instantiation (evaluation, assignment) of the variables is defined as
a function from the set of variables to the domain of values f : X → D. The
instantiation f satisfies the constraint R(x1, . . . , xi) iff 〈f(x1), . . . , f(xn)〉 ∈
R. A solution is an instantiation that satisfies all the constraints from C. A
CSP is consistent if it has a solution.

In our work we focus on CSPs with binary constraints. Binary CSPs
can be represented by a directed graph where each node is a variable and
each edge is a relation (binary constraint). This graph is also known as
constraint network. When expressing binary constraints and relations we
will use prefix notation (R(xi, xj)) or in some cases infix notation (xiRxj).

A solution to a CSP can be found by backtracking over the domain of
values that can be assigned to variables. Since backtracking is exponential
in the number of variables, in order to improve it it is possible to apply
methods such as ordering the domain values and constraint propagation.
The main idea of these methods is to reduce the CSP to an equivalent one
that is easier to solve. Ordering the values dictates the order in which they
are assigned which influences the branching and pruning of the search tree.
Constraint propagation methods enforce various levels of local consistency,
thus reducing the domain of the variables and the size of the search space.
However, domains can be infinite as it is usually the case with spatial and
temporal variables, and then backtracking over the domain is not possible.
In the case of infinite domain, a possible approach is to formulate the binary
CSP as a relation algebra, meaning to use constraints over a finite set of
binary relations [Renz and Nebel, 2007].

A relation algebra is an algebraic structure that consists of the following:

• set of binary relations R

• operations on relations: union, intersection, complement, composition
and conversion

• relational constants: empty relation, universal relation and identity
relation

The set of relations R is closed under the defined operations on relations.
The composition relation (◦) is defined for relations R,S ∈ R as follows:



3.1. CONSTRAINT SATISFACTION 13

R ◦ S = {〈x, y〉 | ∃z : 〈x, z〉 ∈ R ∧ 〈z, y〉 ∈ S}

The composition relation is of particular interest as it is used in the
path consistency algorithm for achieving local consistency. In particular,
the path consistency algorithm enforces path consistency of a CSP. A CSP
is path consistent if for every instantiation of two variables that satisfies the
constraints, there exists an instantiation of every third variable that satisfies
the constraints between the three variables. Path consistency is enforced by
successively applying the following operation to all variables xi, xj , xk ∈ X
until a fixed point is reached:

∀k : R(xi, xj) = R(xi, xj) ∩ (R(xi, xk) ◦R(xk, xj))

If the result is the empty relation, then the CSP is inconsistent. Other-
wise, the resulting CSP is path consistent. Furthermore, the resulting CSP
has the same set of solutions as the original one.

As mentioned before, relation algebras are based on a finite set of binary
relations. In qualitative spatial and temporal representation and reasoning
approaches, these relations usually are jointly exhaustive and pairwise dis-
joint (JEPD), meaning that any pair of entities from the domain are related
by exactly one of these JEPD relations. The JEPD relations are also re-
ferred to as atomic relations or base relations. We denote the set of base
relations as B, and then the set of available relations R is the powerset of
B, R = 2B. The powerset contains all possible disjunctions of relations of
B, therefore it is possible to represent indefinite knowledge by disjunctions
(unions) of base relations. For example, x{Ri, Rj , Rk}y states that between
x and y exactly one of the base relations Ri, Rj , Rk holds.

For qualitative spatial calculi, the domains are infinite and not well struc-
tured. Therefore it is not feasible to compute the composition, instead a
weak composition can be used, which is the strongest relation that contains
the real composition [Renz and Ligozat, 2005]. Formally, weak composition
is defined as follows:

S � T = {Ri ∈ B | Ri ∩ (S ◦ T ) 6= ∅}

In some cases weak composition is equal to composition, however when
it is not the path consistency algorithm cannot be applied anymore. The
algebraic closure algorithm has the composition operator replaced with the
weak composition operator and enforces algebraic closure, or also called
a-closure, on a network [Renz and Ligozat, 2005]. In qualitative spatial
and temporal calculi, the (weak) composition of base relations is computed
using the formal semantics of the relations. The (weak) composition table
is usually pre-computed.

A scenario is a constraint network where all constraints are base rela-
tions. As the constraints can be unions of base relations, in order to find



14 CHAPTER 3. QUALITATIVE SPATIO-TEMPORAL REASONING

a scenario, the constraint network should be refined. Relation R is a re-
finement of relation S iff R ⊆ S. Refinement also applies for constraints
and sets of constraints. A set of constraints C′ is a refinement of C iff both
constraint networks have the same set of variables and for all relations R′

in C′ and all relations R in C constraining the same variables as R′, we have
R′ ⊆ R. If both C and C′ are consistent then the refinement C′ is called con-
sistent refinement. Then, a consistent scenario is defined as a scenario that
is a consistent refinement [Renz and Nebel, 2007]. If a consistent scenario
exists, then the original constraint network is consistent. For more detailed
discussion see [Renz and Nebel, 2007].

3.2 Qualitative Spatial Reasoning

The qualitative approach is suitable for expressing spatial knowledge, as
describing the spatial features of objects in natural language produces qual-
itative expressions.

There are different approaches regarding the ontology for qualitative spa-
tial representation and reasoning, however most theories are based either on
points or spatial regions as basic spatial entities [Vieu, 1997]. In addition,
there are multiple aspects of space which can be described in a qualitative
manner, such as, distance, orientation, topology, size, shape. However, most
of the work in qualitative spatial reasoning and representation is mainly fo-
cused on a single aspect of space, most commonly topology, orientation and
distance. With respect to the chosen aspect of space it is common to express
the relationships between the spatial entities with qualitative spatial rela-
tions which are called base relations. To be possible to use constraint based
reasoning methods, it is necessary the base relations to be jointly exhaustive
and pairwise disjoint (JEPD), meaning that exactly one of these relations
holds for any pair of spatial entities. Reasoning can then be performed by
using composition of the relations. Therefore it is necessary to provide a
composition table which is usually pre-computed [Renz and Nebel, 2007].

3.2.1 Aspects of space

As mentioned before, there are multiple aspects of space, but most of the cal-
culi are focused on a single aspect. In this section we present a short overview
of common and well-known approaches for different aspects of space.

3.2.1.1 Orientation

Representing qualitative orientation relations and reasoning about orienta-
tion has received a lot of attention in the QSR community. Therefore, many
different calculi have been developed.

Qualitative approach is appropriate for expressing orientation relations
and for reasoning about orientation. In natural language and communication
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orientation between spatial entities is expressed in qualitative terms, such
as, “south of”, “behind”, “to the right of”, etc.

Most approaches dealing with orientation and direction use points as
basic spatial entities in 2D space.[Renz and Nebel, 2007, Cohn and Renz,
2008].

When it comes to expressing the qualitative spatial relations describing
the orientation of one object to a reference object, the frame of reference
should also be specified. Thus, the qualitative relations specifying orienta-
tion properties are ternary, depending on the primary object, the reference
object and the frame of reference. One such approach, using ordering infor-
mation introduced by Schlieder [1993, 1995], uses three qualitative relations
+, - and 0 representing anticlockwise, clockwise and collinear relations re-
spectively for the ordering of triples of points. This ordering information
approach is further used in [Schlieder, 1995] for qualitative shape represen-
tation. Another approach is the double-cross calculus introduced by Freksa
[1992] (figure 3.1). It consists of three axes that define 15 ternary base
relations.

Figure 3.1: Freksa’s double cross [Freksa, 1992]

However, most approaches use a predetermined frame of reverence. In
this case, it is possible to express the relationship between two objects as
a binary relation with respect to the specified frame of reference. Frank
[1991] introduced cone-based and projection-based approaches for reasoning
about cardinal directions, N , E, S, W or also including NE, SE, SW , NW
depending on granularity. The projection-based method is also known as
cardinal relation algebra [Ligozat, 1998] and uses 9 JEPD relations N , E, S,
W , NE, SE, SW , NW , EQ (figure 3.2). A generalisation of this approach,
the Star calculus was introduced by Renz and Mitra [2004] proposing the use
of arbitrary level of granularity (figure 3.3). Another calculus with support
for different levels of granularity is the Orientation Point Relation Algebra
(OPRAm) [Moratz et al., 2005] and it is based on oriented points.
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Figure 3.2: Cone-based and projection-based cardinal relations [Ligozat,
1998]

Figure 3.3: Star calculi (from [Renz and Mitra, 2004])

As mentioned earlier, most of the approaches are based on points as
basic spatial entities, as it is considered to be difficult to qualitatively ex-
press relations between extended regions [Renz and Nebel, 2007, Vieu, 1997].
However, there are some approaches that are based on regions as basic spa-
tial entities. The rectangle algebra [Balbiani et al., 1998] (figure 3.4) and
the minimal bounding rectangle approach [Papadias and Theodoridis, 1997]
are based on rectangle regions with sides parallel to the axes. The direction-
relation matrix approach [Goyal and Egenhofer, 2000] and the Cardinal
Direction Calculus (CDC) [Goyal and Egenhofer, 2001, Skiadopoulos and
Koubarakis, 2005] also use a minimal bounding rectangle, such as the ex-
tended lines of the rectangle sides form 9 sectors (figure 3.4). A detailed
overview of reasoning about cardinal directions between extended objects is
available in [Liu et al., 2010].
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Figure 3.4: Rectangle algebra [Balbiani et al., 1998] and direction-relation
matrix Goyal and Egenhofer [2000] (from [Renz and Nebel, 2007])

3.2.1.2 Distance

Qualitative distance has received less attention in the literature and is usu-
ally considered in combination with orientation [Vieu, 1997]. Distance is
commonly specified as a quantitative value, however qualitative relations
about distance are also used, such as absolute binary relations like “far/-
close to” and relative ternary relations “farther/closer than”. Absolute dis-
tance can be expressed with different levels of granularity. When dealing
with relative relations the orientation should be taken in consideration. For
example, if A is far from B and B is far from C, then the distance between
A and C depends on the angle between AB and BC. The combination of
distance and orientation is called positional information [Renz and Nebel,
2007]. More detailed overviews of approaches regarding qualitative reason-
ing about distance can be found in [Vieu, 1997, Cohn and Hazarika, 2001,
Renz, 2002, Renz and Nebel, 2007, Cohn and Renz, 2008].

3.2.1.3 Topology

Topology is the aspect of space that has received the most attention in the
QSR community. Describing topological relationships can only be done in
a purely qualitative manner.

Although topology has been studied within mathematics, mathematical
topology theories are too abstract and deemed undesirable for qualitative
spatial reasoning, therefore when it comes to QSR, the focus is mostly on
mereotopology which integrates topology and mereology [Cohn and Renz,
2008].

Most topological approaches use spatial regions as basic spatial entities
and are based on Clarke’s calculus of individuals [Clarke, 1981] which uses
as a basis a single binary relation C(x, y), meaning “x connects with y”. Dif-
ferent approaches use different interpretations of the C(x, y) relation based
on the views on open, semi-open and closed regions. While Clarke [1981]
and Asher and Vieu [1995] differentiate between open and closed regions,
Randell, Cui, and Cohn [1992] in their Region Connection Calculus (RCC)
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reject that distinction. Therefore, in RCC only the topological closure of
regions is considered, thus the interpretation of the C(x, y) relation in the
RCC theory differs from the one in the calculus of individuals. While in
Clarke’s approach “connected” is interpreted that the regions share a point,
the interpretation in the RCC theory is that the topological closures of the
regions share a point [Cohn et al., 1997a]. Using the C(x, y) relation, many
different relations can be defined. Eight of those, disconnected (DC), ex-
ternally connected (EC), partially overlaps (PO), equal (EQ), tangential
proper part (TPP ), nontangential proper part (NTPP ), tangential proper
part inverse (TPPi) and nontangential proper part inverse (NTPPi) are
jointly exhaustive and pairwise disjoint [Randell et al., 1992] and are de-
noted as RCC-8 (figure 3.5). RCC-5 is another well known approach based
on the RCC theory, which uses five base relations, in particular DC and EC
are collapsed into discrete from (DR), TPP and NTPP are collapsed into
proper part (PP ) and finally, TPPi and NTPPi are collapsed into proper
part inverse (PPi) (figure 3.6). For more details about RCC-8, see section
3.2.2.

Figure 3.5: The eight JEPD relations of RCC-8 [Randell et al., 1992]

Figure 3.6: The five JEPD relations of RCC-5

Another approach, the 9-intersection model presented by Egenhofer [1991],
considers the interior, complement (exterior) and boundary of a region and
describes the topological relations between two regions by the nine possi-
ble intersections of the boundaries, interiors and complements of the two
regions. This leads to the same set of eight base topological relations as
RCC-8.

Vieu [1997] considers the inability to have different kinds of contact in
RCC as a drawback introduced by rejecting the distinction of open and
closed regions. However, Randell et al. [1992] argue that regions (physical
objects) occupying the same locations should not be distinct and that the
topological structure containing open, semi-open and closed regions is too
rich for their purposes.
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3.2.1.4 Combining multiple aspects of space

Although most of the work in QSR has been done with focus on a single
aspect of space, in reality different aspects of space cannot always be treated
independently. Therefore, there have been efforts for combining more than
one aspect of space. As mentioned before, commonly combined aspects
are orientation and distance and some of the presented orientation calculi
integrate these two aspects.

Gerevini and Renz [2002] introduce an approach that integrates quali-
tative and quantitative information about size of regions with qualitative
topological information based on RCC-8.

Another approach by Liu et al. [2009] combines topology and orientation.
It is based on RCC-8 for representing qualitative topological information
and the Rectangle Algebra (RA) and Cardinal Direction Calculus (CDC) for
representing qualitative orientation information for extended spatial entities.

Renz and Nebel [2007] provide detailed discussion about combining topo-
logical and size information, and also topological and directional information
for intervals.

3.2.2 RCC-8

RCC-8 is the best known and most widely used and studied qualitative
spatial reasoning approach [Renz, 2002]

As mentioned before, RCC [Randell et al., 1992] uses a single binary
“connected” relation to define mereotopological relations. The interpreta-
tion of the relation C(x, y) is that the topological closures of the regions x
and y share a common point. The relation C(x, y) is reflexive and symmetric
and therefore two axioms are introduced:

∀xC(x, x) (3.1)

∀xy[C(x, y)⇒ C(y, x)] (3.2)

Using C(x, y) [Randell et al., 1992] define a basic set of binary relations
and provides a formal definition. The relations are the following: DC(x, y)
(x is disconnected from y), P (x, y) (x is part of y), PP (x, y) (x is proper part
of y), x = y or as it is more commonly used EQ(x, y) (x is identical with y),
O(x, y) (x overlaps y), DR(x, y) (x is discreet from y), PO(x, y) (x partially
overlaps y), EC(x, y) (x is externally connected to y), TPP (x, y) (x is a
tangential proper part of y) and NTPP (x, y) (x is a nontangential proper
part of y). The relations P , PP , TPP and NTPP are non-symmetrical
and their inverses have been defined as P−1, PP−1, TPP−1, NTPP−1.
Note that through the text the inverse relations will be denoted as Pi, PPi,
TPPi and NTPPi. The formal definition of the relations is presented:
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DC(x, y) ≡def ¬C(x, y) (3.3)

P (x, y) ≡def ∀[C(z, x)⇒ C(z, y)] (3.4)

PP (x, y) ≡def P (x, y) ∧ ¬P (y, x) (3.5)

EQ(x, y) ≡def P (x, y) ∧ P (y, x) (3.6)

O(x, y) ≡def ∃z[P (z, x) ∧ P (z, y)] (3.7)

PO(x, y) ≡def O(x, y) ∧ ¬P (x, y) ∧ ¬P (y, x) (3.8)

DR(x, y) ≡def ¬O(x, y) (3.9)

TPP (x, y) ≡def PP (x, y) ∧ ∃z[EC(z, x) ∧ EC(z, y)] (3.10)

EC(x, y) ≡def C(x, y) ∧ ¬O(x, y) (3.11)

NTPP (x, y) ≡def PP (x, y) ∧ ¬∃z[EC(z, x) ∧ EC(z, y)] (3.12)

Pi(x, y) ≡def P (y, x) (3.13)

PPi(x, y) ≡def PP (y, x) (3.14)

TPPi(x, y) ≡def TPP (y, x) (3.15)

NTPPi(x, y) ≡def NTPP (y, x) (3.16)

In addition, a relational lattice for the set of relations is presented in
figure 3.7. The relations in the lattice are ordered such that the most general
(weakest) relations are on the top, and the most specific (strongest) relations
are at the bottom. For example, TPP implies PP , NTPP also implies
PP , and PP implies TPP or NTPP . The lattice corresponds to a set of
theorems that the authors have verified, such as:

∀xy[PP (x, y) ⇐⇒ [TPP (x, y) ∨NTPP (x, y)]] (3.17)

An additional axiom is also added to the theory, that states that every
region has a nontangential proper part:

∀x∃y[NTPP (y, x)] (3.18)

Furthermore, using the relations the authors define the following Boolean
functions: sum(x, y), the sum of x and y; Us, the universal (spatial) region;
compl(x), the complement of x; prod(x, y), the product (intersection) of
x and y and diff(x, y), the difference of x and y. From these functions,
additional relations can then be defined. Introducing the sum function leads
to possibility of having regions that consist of disconnected parts Cohn et al.
[1997a] and it can be tested with the predicate:

CON(x) ≡def ∀yz[EQ(sum(y, z), x)⇒ C(y, z)] (3.19)

[Cohn et al., 1997a] discuss possibilities to define more relations based on
C(x, y) in order to be able to describe shapes of regions (such as doughnut,
torus, etc). Furthermore, as the topological representations of the regions
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Figure 3.7: Relational lattice of relations based on C(x, y) (from [Cohn et al.,
1997a])

are considered to be convex, they introduce primitives in order to be able
to create more expressive languages. The convex hull primitive conv(x)
denotes the convex hull of a region x. A convexity predicate, stating that a
region is convex region if it is equal to its convex hull, is then defined:

CONV (x) ≡def EQ(x, conv(x)) (3.20)

As mentioned earlier, out of the relations defined by [Randell et al.,
1992], there are eight provably JEPD relations that are referred to as RCC-
8. These eight relations are DC, EC, PO, EQ, TPP , NTPP , TPPi and
NTPPi (figure 3.8). In addition to the JEPD relations, in order to be
able to perform reasoning using constraint-based methods it is necessary to
specify the compositions between the base relations. The compositions are
specified as a composition table and are obtained using the formal semantics
of the relations. However, Düntsch et al. [2001] show that the composition
for RCC-8 is actually weak composition, and the composition table is weak
composition table. The composition table of RCC-8 is shown in figure 3.9
(the * symbol denotes the universal relation). From the composition table,
given two relations R1(x, y) and R2(y, z), the possible relations between x
and z can be determined.

Figure 3.8: The eight JEPD relations of RCC-8 [Randell et al., 1992]
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Figure 3.9: The composition table of RCC-8

Example RCC-8 Let us assume an environment consisting of a road, a
property on the side of the road and a forest on the other side of the road
with a restricted region in the forest. Let us then assume that there is a
UAV above the property. The spatial configuration of the environment can
be represented by the following relations:

EC(road, property)

EC(road, forest)

DC(property, forest)

NTPP (uav, property) ∨ TPP (uav, property)

NTPP (restricted, forest)

From the specified relations, using the RCC-8 composition table and the
path-consistency algorithm can be deduced that the relation between the
UAV and the restricted region is:

DC(uav, restricted)

These relations are encoded in first-order logic, therefore reasoning about
these relations is undecidable. However, [Bennett, 1994, 1996] presents zero-
order modal encoding of the RCC-8 relations, thus proves that reasoning
over the RCC-8 relations is decidable. In particular, constants represent
regions and logical operators represent operations on regions. Furthermore,
Renz and Nebel [1999] show that path consistency decides consistency for
RCC-8. In addition, as weak composition differs from composition in RCC-
8, algebraic closure decides RCC-8 [Renz and Ligozat, 2005].
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Cohn et al. [1997b] introduce a set of envisioning axioms for specifying
temporal continuity in RCC-8. With this set of axioms it is possible to
reason about changes in spatial relations. Namely, the axioms specify which
transitions between the spatial relations are possible. The listing of the
axioms is given in Cohn et al. [1997b], however these can be represented
as a continuity network (conceptual neighborhood graph) as in figure 3.10.
For example, if for regions x and y we have EC(x, y), from the continuity
network we can observe that through continuous change of the regions, their
relation may remain the same or change to DC(x, y) or PO(x, y).

Figure 3.10: The continuity network of RCC-8 [Cohn et al., 1997b]

There are different extensions of the RCC theory, such as RCC-23 [Cohn
et al., 1997a], which is concerned with concave regions. Jihong et al. [2007]
further refine RCC-23 to RCC-62, a more expressive calculus for representing
and reasoning about concave regions.

3.3 Qualitative Spatio-Temporal Reasoning

Qualitative spatio-temporal representation and reasoning (QSTR) is con-
cerned with combining spatial and temporal reasoning. In particular this
means reasoning about spatial change. There are different approaches such
as reasoning about motion, or approaches concerned with different aspects
of space that change over time, such as change in shape, size, position, topol-
ogy. We are interested in continuous change of topological relations between
regions.

3.3.1 Approaches to Spatio-Temporal Reasoning

When it comes to combining these spatial and temporal reasoning, Wolter
and Zakharyaschev [2003] propose a “näıve” approach which suggests merg-
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ing the spatial logic and the temporal logic into a “spatio-temporal hybrid”
that provides the desired level of interaction between space and time. Fur-
thermore, they suggest that the construction of the spatio-temporal logic
should be based either on the syntactical properties, meaning the axioms
of the temporal and the spatial logic are joined together, or based on the
semantical properties, meaning the intended models of the temporal and
spatial logic are integrated into a multi-dimensional spatio-temporal struc-
ture.

In the literature, different spatio-temporal theories can be found. Muller
[1998, 2002] presents a qualitative theory of motion of spatial entities. It
extends the spatial theory by Asher and Vieu [1995] with temporal order,
introduces temporal and spatio-temporal relations and presents six motion
classes: leave, hit, reach, external, internal, cross (figure 3.11).Another the-
ory of motion is introduced by Ibrahim and Tawfik [2007] and is based on
RCC-8. This approach, uses intervals and determines the motion class based
on the RCC-8 relations that hold at the start and at the end of the interval.
It presents nine motion classes: leave, reach, hit, split, peripheral, expand,
shrink, internal, external. Furthermore they define the conceptual neighbors
for the classes and present a composition table for the motion classes.

Figure 3.11: The six motion classes (from [Muller, 1998])

Other approaches explore the use of multi-dimensional modal logic for
spatio-temporal reasoning [Bennett and Cohn, 1999, Wolter and Zakharyaschev,
2000, Bennett et al., 2002, Wolter and Zakharyaschev, 2003]. Bennett and
Cohn [1999] discuss possible uses of multi-dimensional and in particular 2D
modal logic for spatio-temporal reasoning, planar space and continuous mo-
tion. In the case of spatio-temporal reasoning, they discuss the idea of using
bi-modal logic, where one modal operator is used as a spatial modality and
one modal operator as a temporal modality. Wolter and Zakharyaschev
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[2000] introduce languages for spatio-temporal representation and reason-
ing about topological relations that change over time, the STi languages.
In this approach RCC-8 is combined with the point based propositional
temporal logic (PTL). For more details, see section 3.3.2. Bennett et al.
[2002] and Wolter and Zakharyaschev [2003] present further extensions of
the approach, in which RCC-8 is combined with branching time and interval
time based on Allen’s interval algebra. Gerevini and Nebel [2002] present a
similar approach for spatio-temporal reasoning that integrates RCC-8 with
Allen’s interval algebra, with the addition of size persistence constraint and
continuity constraint.

3.3.2 PSTL

Propositional spatio-temporal logic (PSTL) is a Cartesian product of spa-
tial and temporal structures [Wolter and Zakharyaschev, 2003], namely the
temporal logic PTL and the modal logic S4u [Bennett et al., 2002]. In par-
ticular, S4u is used to encode the topological relations of RCC-8. In this
section the focus is on the expressiveness and the semantics of the spatio-
temporal logic, for details on the modal encoding and the formal theory
refer to Wolter and Zakharyaschev [2000], Bennett et al. [2002] and Wolter
and Zakharyaschev [2003].

The point based propositional temporal logic (PTL) is based on the flow
of time 〈N, <〉 and uses the binary temporal operators S (since) and U
(until), with the intended meaning [Wolter and Zakharyaschev, 2003]:

• υUϕ (υ holds until ϕ holds)

• υSϕ (υ has been true since ϕ was true)

Based on the S and U operators, other standard operators can be defined
[Bennett et al., 2002]:

• ©+ϕ ≡def ϕUϕ (at the next moment ϕ)

• ♦+ ≡def (p ∨ ¬p)Uϕ (at some time in the future ϕ)

• �+ ≡def ¬♦+¬ϕ (always in the future ϕ)

The past counterparts ©−, ♦− and �− can be defined using the S
operator. Note that in the remainder of the report we use ©, ♦ and �
instead of ©+, ♦+ and �+ respectively.

Wolter and Zakharyaschev [2000] present different ways of introducing a
temporal dimension into the syntax of RCC-8, namely the spatio-temporal
languages STi. There are three different languages, based on the different
level of integration of the temporal operators into the RCC-8 relations.
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3.3.2.1 ST0

The language ST0 allows applications of the temporal operators S and U
and Booleans to spatial formulas. In this way it is possible to express the
changes of the spatial relations between the regions over time. For example:

♦NTPP (x, y) (3.21)

�DC(uav, restricted) (3.22)

�PP (tracked obj, visible region(uav)) (3.23)

The formula 3.21 means that the region x will eventually become non-
tangential proper part of the region y. The formula 3.22 means that the UAV
will always be disconnected from the restricted region, while the formula
3.23 means that the tracked objects is always within the visible region of
the UAV.

Furthermore, it is possible to express the transitions within the continu-
ity network of RCC-8 presented in figure 3.10 [Wolter and Zakharyaschev,
2000] for example:

�(EC(x, y)⇒©(DC(x, y) ∨ EC(x, y) ∨ PO(x, y)))

Meaning that always two externally connected (EC) regions in the next
time-step remain either in the same relation or become disconnected (DC)
or partially overlapping (PO). Such expressions can be formulated for all
transitions between the relations.

Since ST0 allows to apply the temporal operators only to spatial formu-
las, it is only possible to express the relations of the regions at the same
point in time. In reality, however, the regions themselves can change over
time.

3.3.2.2 ST1

The language ST1 is more expressive, in a way that it extends ST0 by allow-
ing application of the next-time operator © to region variables, therefore
in ST1 it is possible to express spatial relations between the extensions of
regions over time. For example, it is possible to express that the region x
will always be the same (formula 3.24), or that it will never shrink (formula
3.25) [Wolter and Zakharyaschev, 2003]:

�EQ(x,©x) (3.24)

�P (x,©x) (3.25)

Another example formula that can be expressed:

�(EQ(©uav2, uav1) ∨ PO(©uav2, uav1)) (3.26)
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Meaning that uav2 always follows uav1. In more detail, always the region
occupied in the next time point by uav2 is equal to or part of the region
occupied at the current time point by uav1.

It is possible to use more than one next-time operator, leading to:

© . . .©︸ ︷︷ ︸
k

x

representing the state of region x k steps in the future.
Furthermore, the authors present a refinement of the continuity assump-

tion of RCC-8:

�(EQ(x,©x) ∨O(x,©x))

meaning that region x at the next state will either remain the same or
will overlap with the current region x.

3.3.2.3 ST2

The language ST2 further extends ST1 by allowing application of the remain-
ing two temporal operators, eventually ♦ and always � to region variables.
It is possible to express ♦x which represents all the points that will belong
to region x in the future, and �x which represents the common points of all
future states of region x.

For example, it is possible to express the following formulas:

P (Europe,♦EU) (3.27)

�DC(♦uav1,♦uav2) (3.28)

Meaning that the current region of Europe will be part of the EU at
some point in the future (formula 3.27) and that the paths of the UAVs do
not cross in the future (formula 3.28).

As mentioned above, ♦x represents all the points that will belong to re-
gion x in the future, and �x represents the common points of all future states
of region x. These correspond to the union and intersection respectively of
all future states of the region, as they are in fact formally defined. This
presents the problem of infinite unions and intersections, which the authors
limit by introducing two possible limitations, the finite change assumption
which states “No region can change its spatial configuration infinitely of-
ten” and the finite state assumption which states “Every region can have
only finitely many possible states (although it may change them infinitely
often)”.

3.3.2.4 ST+
i

The three ST+
i languages extend the corresponding STi languages by allow-

ing union and intersection on region variables and region variables extended
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by temporal operators. The extension of RCC-8 that allows Boolean oper-
ators is denoted BRCC-8 [Wolter and Zakharyaschev, 2003].

3.4 Reasoning engines

Spatial and temporal reasoning can be treated as a constraint satisfaction
problem (section 3.1). Therefore, it is possible to use CSP solvers for spatial
and temporal reasoning.

There exist calculus-specific CSP solvers, such as the solver for RCC-8 by
Renz and Nebel [1998], and generic CSP solvers, such as the QAT1 (Quali-
tative Algebras Toolkit) project [Condotta et al., 2006a,b], SparQ2 (Spatial
Reasoning Done Qualitatively) [Wallgrün et al., 2007], GQR3 (Generic Qual-
itative Reasoner) [Gantner et al., 2008]. The distributions of all these general
constraint solvers include specifications for the most commonly used qual-
itative spatial and temporal calculi and provide functionalities for defining
new ones.

QAT [Condotta et al., 2006a,b] is a constraint programming library writ-
ten in Java, which provides generic tools for describing and reasoning over
qualitative calculi. It supports calculi with arbitrary arity which are speci-
fied using XML-based descriptions. Furthermore it provides different meth-
ods for qualitative constraint networks, such as the consistency problem,
finding all the solutions, the minimal network problem and all these are
supported by different heuristic approaches for the order of selecting vari-
ables or constraints.

SparQ [Wallgrün et al., 2007] is a constraint solver for binary and ternary
calculi. It is written in Lisp and new calculi can be specified in Lisp-like syn-
tax. It supports mapping between qualitative and quantitative information,
computing relation operations and constraint-based qualitative reasoning.
Furthermore, SparQ can be integrated in other applications as it can be run
as a server, with communication performed over TCP/IP.

3.4.1 GQR

GQR [Gantner et al., 2008] is a generic solver for binary qualitative con-
straint networks. It is written in C++ and new calculi can be specified in
text format or using XML-based descriptions. It uses path consistency and
backtracking for solving constraint networks. GQR has been designed to be
“fast and extensible generic solver” [Gantner et al., 2008]. The authors im-
plement certain features to achieve better efficiency such as: known tractable
subclasses of the calculi are used to speed up the reasoning time; weight and
cardinality heuristics for selecting constraints; efficient queue data structure

1http://www.cril.univ-artois.fr/~saade/QAT/index.php?entry=home
2http://www.sfbtr8.uni-bremen.de/project/r3/sparq/
3http://sfbtr8.informatik.uni-freiburg.de/R4LogoSpace/Tools/gqr.html

http://www.cril.univ-artois.fr/~saade/QAT/index.php?entry=home
http://www.sfbtr8.uni-bremen.de/project/r3/sparq/
http://sfbtr8.informatik.uni-freiburg.de/R4LogoSpace/Tools/gqr.html
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[Beek and Manchak, 1996] (compared to the C++ STL4 implementation);
bit vectors are used for relations resulting in memory and speed efficient so-
lution; caching of composition and converse results. Through performance
evaluation the authors have shown that their solution is scalable, although
slower than calculi specific reasoners such as the solver for RCC-8 by Renz
and Nebel [1998] and the solver for Interval Algebra by Nebel [1997].

The path-consistency algorithm Gantner et al. [2008] used in GQR (al-
gorithm 3.1) is based on the one by (ref mackworth) and it runs in O(n3)
time and O(n2) memory.

Listing 3.1 Path-consistency algorithm

Q← {(i, j)|1 ≤ i < j ≤ n}
while Q is not empty do

select and delete (i, j) from Q
for k ← 1→ n, k 6= i and k 6= j do
t← Cik ∩ (Cij ◦ Cjk)
if t 6= Cik then
Cik ← t
Cki ← t^

Q← Q ∪ {(i, k)}
end if
t← Ckj ∩ (Cki ◦ Cij)
if t 6= Ckj then
Ckj ← t
Cjk ← t^

Q← Q ∪ {(k, j)}
end if

end for
end while
return (V,C)

For generating consistent scenarios Gantner et al. [2008] use an approach
that selects different instantiations from constraints containing disjunctions
of relations based on weights assigned to the base relations. Furthermore, the
search is performed with an approach called chronological backtracking that
searches through the possible instantiations of constraints and backtracks
to the latest changed constraint when the search does not lead to a solution
(algorithm 3.2).

4Standard Template Library
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Listing 3.2 Scenario-consistency algorithm

Path-consistency(V,C)
if C contains the empty relation then
return false

end if
if there are non-basic edges then

pick such an edge e = (i, j)
for all base relations b in the label of e do
Cij ← b
if Consistent(V,C) then
return true

end if
end for

end if
return false



Chapter 4

Analysis

In this chapter we provide an analysis of the system for spatio-temporal rea-
soning in ROS and describe our proposed solution for incorporating spatial
reasoning into the existing formula progressor.

The chapter starts with description of the spatio-temporal stream rea-
soning architecture designed for usage in ROS. In the following section, the
Stream Reasoner module of the architecture is discussed, mainly introducing
the implementation and functionality of the formula progressor. Next, the
spatial reasoning specifics are described and the extensions needed to the
original formula progressor [Heintz, 2009] in order to support progression of
spatio-temporal formulas.

4.1 Spatio-temporal stream reasoning in ROS

As discussed before, DyKnow is a stream processing middleware framework
and can be used for reasoning over streams of data. In the execution moni-
toring scenario it is used to evaluate monitor formulas as information about
the environment become incrementally available. The formulas that are
evaluated may contain different features that are being monitored, such as
altitude, speed, distance, spatial relations to other objects, etc. The val-
ues for these features are obtained through various sensors and DyKnow
provides output streams for these sensory input sources.

In order to support spatio-temporal stream reasoning over incrementally
available data, there are certain issues to be considered. First, it should be
possible to incrementally evaluate spatio-temporal monitor formulas, which
can be achieved with formula progression and spatio-temporal reasoning.
Second, in order to progressively evaluate a formula the streams provid-
ing the values need to be mapped to the corresponding formula features.
The mapping can be done either manually or automatically using seman-
tic matching [Dragisic, 2011]. Third, since values in different streams may
arrive at different times, the streams need to be synchronized.

31
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The general goal is to provide ROS implementation of DyKnow. Dy-
Know relies on the publisher/subscriber communication model between knowl-
edge processes and ROS provides this model via nodes and topics. Hence,
knowledge processes in DyKnow correspond to nodes in ROS, and streams
in DyKnow correspond to topics in ROS. Therefore, each node can subscribe
and publish on multiple topics, the same as knowledge processes can have
multiple input and output streams.

Figure 4.1: Overview of the DyKnow architecture for ROS

The design of the spatio-temporal stream reasoning architecture in ROS
is presented in figure 4.1. As can be seen, the system is built around the
ROS communication platform. The system consists of three main parts:

• The Stream Reasoner which is responsible for evaluating spatio-temporal
formulas;

• The Stream Processor which is responsible for adapting topics to streams
and preparing the streams for the stream reasoner;

• The Semantic Matcher which is responsible for providing automatic
semantic matching between topics and features;

These three parts are managed by the Stream Reasoning Coordinator.
The request from the client to evaluate a formula (step 1) is handled

by the Stream Reasoning Coordinator (SRC) and is then forwarded to the
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Stream Reasoner which extracts the features (step 2). For the features
from the formula the SRC verifies that are defined in the ontology and if
there are matching topics for each feature, the stream specification that
contains topic labels (fields) for the corresponding features is created (step
3). The stream specification defines a single stream that contains all the
streams for the features from the formula. Next, the request to evaluate the
formula is sent to the Stream Reasoner with the formulas, field to feature
mapping and the name of the topic for the state stream (step 4) and then the
Stream Reasoner subscribes to the received topic (step 5). The state stream
specification is sent to the Stream Processor that subscribes to the topics
specified in the state stream specification and creates the specified topic for
the state stream (step 6). Next, the Stream Processor performs processing
over the input from the topics, such as merging and synchronization and
prepares the messages to be published on the state stream topic (step 7).
The Stream Reasoner subscribes on the state stream topic and receives the
messages, which are then mapped to states and the formulas are progressed
over the states (step 8). The results of the evaluation are published on a
Stream Reasoner topic which the SRC is subscribed to (step 9) and based
on the result of the evaluation the SRC might take some further actions or
forward the result to the client (step 10).

4.2 Stream Reasoner

The work presented in this thesis project is mainly focused on the Stream
Reasoner module of the stream reasoning architecture presented above, in
particular on the formula progressor. The main goal is to provide spatio-
temporal reasoning capabilities. For our solution, based on literature overview
we have selected the RCC-8 calculus (section 3.2.2) for the spatial reasoning
part, since it is widely studied and used approach and its properties are
well-known. Furthermore the PSTL logic (section 3.3.2) was selected for
our solution, the language ST0 in particular, since the logic adds a tempo-
ral dimension to RCC-8 and the syntax is similar to MTL. Therefore it is
possible to express MTL formulas that include RCC-8 terms and to perform
spatio-temporal reasoning based on PSTL. To perform spatio-temporal rea-
soning the spatial reasoning is performed independently from the temporal
evaluation, hence for the spatial reasoning that is performed over the RCC-8
relations the GQR reasoner (section 3.4) is selected as it supports reason-
ing in RCC-8 and it is written in C++ and can be directly used in our
implementation.

The formula progressor performs evaluation of spatio-temporal formulas
using progression. As input data are continuously received, the values and
the states of the monitored features change. Therefore the task of the for-
mula progressor is to continuously evaluate a set of given formulas, as input
data in the form of state samples that update the values of the features in
the formulas incrementally become available.
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The following presents a high level outline of the steps performed during
formula progression:

• A set of formulas and a state-stream specification are provided as
input;

• Each formula is parsed and the features are extracted and assigned
types based on the state-stream specification;

• The progressor subscribes to the corresponding stream to receive up-
dates in the form of state samples;

• As state samples arrive, the values of the features are continuously up-
dated for each time step and the formulas are continuously progressed
until there are no active formulas remaining;

• As a formula is evaluated to true or false, the formula is removed from
the set of active formulas.

A detailed step-by-step description of the process performed on a con-
crete scenario is presented in section 5.2

The formula environment, represented by the Environment class, is re-
sponsible for the operation of the formula progressor. The Environment

contains the FormulaKeeper which is responsible for parsing and evaluating
formulas. The symbol values needed for evaluating formulas, are contained
in the Environment. Furthermore, the Environment contains the spatial
reasoner, represented by the Reasoner class which is responsible for provid-
ing the GQR reasoning capabilities to the formula progressor.

4.3 Spatial Reasoning

The spatial reasoning module is intended as an extension to the existing
temporal-logic formula progression within DyKnow. The spatial reasoning
module uses GQR [Gantner et al., 2008] (section 3.4) at its basis. GQR is
a generic CSP solver, hence it provides functionalities for calculating path
consistency and generating consistent scenarios, both of which are used in
our implementation. Furthermore, GQR supports different calculi. In our
implementation we are focused on RCC-8, so GQR is only used for spatial
reasoning in RCC-8. However, since GQR supports other calculi, it would
be possible to add further support for other calculi in our implementation
as well, with some modifications.

Since we are using a region based calculus, in our implementation the
regions as basic spatial entities are represented by Region objects. In GQR
the spatial entities are represented by numbers, which are used as IDs of
the regions in our implementation. In our system the regions are named,
so the ID of a region corresponds to its representation in the underlying
reasoner. The SpatialRelation class represents the relation between two
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Region objects. The current possible relations are defined as the eight RCC-
8 relations, but other relations for other calculi can be easily defined. The
KnowledgeBase is a wrapper around the underlying representation in GQR
of spatial entities and binary relations. In GQR, each region is represented
by a number and a matrix is used for the relations between each pair of
regions. Therefore, the KnowledgeBase class provides mechanisms for ac-
cessing and modifying the relations as well as mapping between the GQR
representation of regions and the named regions used in our system. Fur-
thermore, the Reasoner class provides access to the path consistency and
scenario consistency methods of GQR.

There are two main issues that need to be addressed in our implemen-
tation, that is how we deal with definite and indefinite knowledge in the
spatial knowledge base, and how we interpret incoming updates to the spa-
tial knowledge base.

Indefinite knowledge for a pair of regions is represented as a disjunction
(union) of spatial relations, meaning it is not known which one of those
relations hold between the pair. Indefinite knowledge can occur because of
uncertainty in the observations and hence in the input, or it can be the
result of applying the path consistency algorithm. The issue with getting a
disjunction of relations for a pair of regions that is monitored in a formula
is that one cannot be certain which one of the possible relations hold. Even
though the relation included in the formula is among the possible relations
for the pair, the relations are JEPD so only one holds and therefore we
cannot be sure if it is the one in the formula. However, if the relation
included in the formula is not in the possible relations for the pair, then we
can be certain that the relation does not hold and then the spatial term is
false.

In our implementation, when there is only a single relation for a pair of
regions for an algebraically closed network, a spatial term is evaluated to
true if the relation is the same as in the formula, or false otherwise. In the
case when there are multiple possible relations (disjunction) for a pair of
regions, if the possible relations do not contain the relation corresponding
to the spatial term the term is evaluated to false. If the possible relations
contain the term, then a copy of the constraint network is made with the
relation for the pair of regions set to the one in the formula and a consistent
scenario is generated. If such a scenario exists, then the term is evaluated
to true, otherwise to false. For example when there is a disjunction of
relations, if the formula contains the spatial term DC(uav, restricted) and
after enforcing algebraic closure to the constraint network, the result is uav
EC,PO restricted then term is evaluated to false. On the other hand, if the
result is uav DC,EC restricted, if a consistent scenario where the relation
between the uav and restricted is set to DC is successfully generated, the
term is evaluated to true and otherwise to false. If there are multiple spatial
relations that contain disjunctions of base relations, this process is performed
for each spatial relation separately. This does not solve the uncertainty issue
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with the result when a term or formula is evaluated to true, because it is
not possible to be certain about the relation due to insufficient knowledge
about the spatial environment or due to imprecise input.

The second issue, regarding the incoming updates is how the spatial
relations that arrive as updates are interpreted. There are several different
aspects that need to be taken into consideration, therefore we need to make
certain assumptions regarding the format and interpretation of the incoming
state samples. First of all we need to decide for our implementation what
does a state (sample) represent with respect to the spatial knowledge base
and the spatial environment. One option is to consider that the relations
contained in the state sample provide full representation of the current state
of the spatial environment. In this case, the spatial relations between all
regions need to be included in each state sample and the spatial knowledge
base is recreated with every state sample. Another option, and the one that
we have taken in our implementation, is to have a spatial knowledge base
loaded in advance with the initial state of the spatial environment, and the
state samples contain only the relations that have changed since the previous
state. This means that if there is no change in the relation between a pair of
regions, there will be no relation for that pair included in the state stream.
The relations that are included in the state stream replace the relations in
the knowledge base. Note that with the chosen approach it is possible to
also include the relations between all regions if desired, therefore providing
the full state of the spatial environment instead of just the changes.

Another aspect to be considered is whether states can contain indefi-
nite knowledge, i.e. if it is allowed to have disjunctions of spatial relations
specified for a pair of regions. In the implementation, the relations in the
current state replace the relations in the previous state, so then it is pos-
sible to include either definite or indefinite knowledge in the state sample.
Therefore if only one relations is present for a pair of regions it is treated
as definite knowledge and the new relation replaces the relations from the
previous state. If multiple relations for a pair of regions are present in the
state sample, it is treated as indefinite knowledge. The disjunction of spatial
relations replaces the relations from the previous state.

To summarize, in the presented implementation the spatial knowledge
base is loaded in advance and the spatial relations received in the state
stream are considered as relations that have changed since the last state.
Furthermore, only the relations that hold between regions are specified and
there can be multiple relations for a pair of regions in a state stream.

4.4 Extending the MTL progressor

The original DyKnow progressor [Heintz, 2009] evaluates metric temporal
logic (MTL) formulas. For our scenario, in order to provide spatio-temporal
reasoning using formula progression, the progressor should be capable of
evaluating spatio-temporal logic formulas, therefore further modifications of
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the existing progressor are needed.
The first extension needed is to modify the formula progressor to recog-

nize the spatio-temporal formulas, so the formula parser needs to be modified
to be able to parse formulas containing RCC-8 relations. After parsing a
formula, the progressor creates an expression which is later evaluated as
updates arrive at different time steps. The expression contains other ex-
pressions which correspond to operations in the formula and symbols which
correspond to the features in the formula. The expressions can be typed
and either unary or binary. Each symbol is typed and represents the name
and type of the feature. The parsing of a formula is performed by code gen-
erated by ANTLR1 based on the rules defined for the MTL language. In
order to parse spatio-temporal formulas the ANTLR rules need to be modi-
fied. However, we have chosen a different approach where the existing MTL
specification is used for parsing and RCC-8 relations are treated and parsed
as variable symbols like any other features with arguments would be parsed,
but their type is set as a specially defined RCC8-boolean-relation. The types
of the symbols need to be specified in advance, and this is done with the
state-stream specification. For RCC-8 relations, on the other hand, the type
is detected based on the name of the symbol. If the name of the symbol is
one of the eight base RCC-8 relations, then the type of that symbol is set
to RCC8-boolean-relation.

The values of the symbols are kept in a symbol table and are updated
continuously as the new values arrive as state samples on the state stream.
As these symbols are typed it is possible to perform Boolean operations on
them based on their types, such as and, or, implies on Boolean symbols and
greater/lower than on integers. So, depending on the type and the values of
the symbols the expression can be evaluated to true or false.

For example, suppose the term p ∧ q is part of a formula where both
p and q are Boolean, the corresponding symbols need to be Boolean and
their values are continuously updated as state samples arrive and the binary
expression is continuously evaluated. For the term x > 10 where x is integer,
the corresponding symbol is of type integer, so the operation “greater than”
can be performed, i.e. the binary expression can be evaluated.

When dealing with formulas that contain RCC-8 relations, the relations
are also treated as symbols but their values are obtained differently. Al-
though it would be possible to also keep the values of the relations between
pairs of regions in a symbol table, that would only be possible for rela-
tions for which we have direct observations and hence definite knowledge.
However, as this might not be always possible, there is the need to perform
spatial reasoning to determine the relations between pairs of regions. There-
fore, instead of symbol tables, the values of RCC-8 relations are obtained
through the spatial knowledge base, which provides mechanisms for access
to the internal representation of regions and spatial relations of the reasoner
GQR. As state updates arrive, the new relations are added to the spatial

1Another Tool for Language Recognition - http://www.antlr.org

http://www.antlr.org
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knowledge base. The new relations observed and received can have an effect
on the relations between other pairs of regions and thus change the state
of the constraint network. Therefore, algebraic closure should be enforced
on the constraint network. We perform lazy evaluation, meaning that the
algebraic closure of the network is only enforced when a relation needs to
be retrieved from the spatial knowledge base, and new knowledge has been
received and added to the knowledge base since the last time the algebraic
closure of the constraint network was calculated. So, instead of using symbol
tables for the values of the RCC-8 relations from the formula, their values
are retrieved via calls to the external reasoner.

For example, the term DC(x, y) is treated as RCC-8 relation symbol in
a formula. When RCC-8 relations arrive as updates, the spatial knowledge
base is updated with the received relations. Next, when the formula is
evaluated, the relation between the regions x and y is retrieved from the
spatial knowledge base and compared with the term DC(x, y) to check if
the obtained relation is DC or not.

Evaluating the spatial terms of a formula consists of ensuring that the
spatial knowledge base is consistent and that the specified relations in the
formula hold for region-pairs of interest by checking their value in the knowl-
edge base. This, however, depends on how definite and indefinite knowledge
is treated, as discussed in the previous section.



Chapter 5

Implementation

This chapter presents the details of the ROS implementation of the formula
progressor. Some details about the design and implementation of the pro-
gressor are also available in sections 4.3 and 4.4. The implementation is
described in detail and a specific scenario is presented to highlight each of
the phases of the formula evaluation process.

5.1 ROS implementation

The ROS implementation of the progressor is part of the spatio-temporal
stream reasoning architecture described in section 4.1. Furthermore, as
already described, the system is designed to be modular so each part can be
used independently.

The formula progressor is independent and it can be used as a sep-
arate unit by itself. The implementation provides an importer interface
for handling continuously arriving data in the form of state samples in a
state stream, and an interface for publishing the results of an evaluation.
Therefore, to be used on different systems, specific implementations of the
importer and publisher interfaces need to be provided.

For our scenario, we require a ROS implementation of the formula pro-
gressor, therefore it is implemented as a ROS node. The node publishes
a service for evaluating formulas. The goal is the progressor to be run
as a node and to be able to receive requests for evaluating multiple for-
mulas during run-time. Some of the formulas may be related to others,
either only in a logical sense or may be defined over the same domain
for example. Therefore, it should be possible to group related formulas
and perform evaluation on a group of formulas, and also to evaluate mul-
tiple groups of formulas. The main operation of the node is performed
by the ROSProgressorManager which creates and manages instances of
ROSProgressor. The ROSProgressor is responsible for performing eval-
uation on a group of formulas, which receive updates on the same state-
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stream. This involves managing the formula evaluation environment in-
cluding the spatial reasoner, the state-stream importer and the result pub-
lisher. As the progressor as a ROS node is capable of performing evaluation
on multiple groups of formulas subscribed on multiple different topics, the
ROSProgressorManager manages multiple instances of the ROSProgressor,
each of which performs evaluation on its own group of formulas. Further-
more, the ROSProgressorManager is responsible for subscribing to the input
topics and forwarding the updates received to the interested ROSProgressor

instances. It is also responsible for advertising the topics and publishing the
results of the evaluation as they become available.

The stream reasoner ROS node advertises a service for evaluating for-
mulas, namely the service evaluate formulas:

Listing 5.1: EvaluateFormulas.srv

s t r i n g [ ] formulas
s t r i n g s t a t e s t r e a m t o p i c
dyknow msgs/Domain [ ] domains
dyknow msgs/Region [ ] r e g i o n s
dyknow msgs/RCC8Relation [ ] i n i t i a l r e l a t i o n s
dyknow msgs/ FieldFeatureType [ ] f i e l d t o f e a t u r e m a p p i n g
−−−
bool s u c c e s s
s t r i n g e r ro r mes sage
in t32 fo rmula group id
in t32 [ ] f o rmu la id s
s t r i n g f o r m u l a r e s u l t t o p i c

As it can be seen in the listing above, the service request contains an ar-
ray of formula strings, the name of the topic where the updates are published
(the topic to subscribe to), the contents of the domains in the formula, if
any, arrays of regions and spatial relations representing the spatial environ-
ment if the formulas contain spatial terms, and the field-to-feature mapping.
The response contains the success value, an error string, the ID of this for-
mula group, the IDs of all the formulas in this formula group and the name
of the topic on which the results will be published when the formulas are
evaluated.

The domain specification in the request is provided by an array of Domain
messages, which contain the name of the domain, and an array of strings
representing the objects in the domain.

Listing 5.2: Domain.msg

s t r i n g domain
s t r i n g [ ] o b j e c t s

Next, the request may contain an array of regions to be added and an
array of initial spatial relations. The regions defined in the Region have a
name which is the representation of the region in the formulas. In addition
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a region may contain a string that represents the type of the region and a
Boolean field that specifies whether the region is dynamic or static, both of
which are mainly intended for future use. Each spatial relation, as defined
in the RCC8Relation message contains the names of the two regions and a
string array corresponding to the RCC-8 relations between the pair.

Listing 5.3: Region.msg

s t r i n g name
s t r i n g type
bool s t a t i c

Listing 5.4: RCC8Relation.msg

s t r i n g reg ion1
s t r i n g reg ion2
s t r i n g [ ] r c c 8 r e l a t i o n

The request contains the field-to-feature mapping which is an array of
string triplets, field, feature and type, represented by the FieldFeatureType
message. The mapping is between fields in the state stream and the cor-
responding features in the formulas. The type is needed as symbols in
the formula progressor are typed, and the symbols are created during the
parsing of the formula. For example, for the simple formula always [0,

1000] altitude[uav1] > 10, the mapping could be the triplet (‘‘a-1’’,
‘‘altitude[uav1]’’, ‘‘double’’). This means that in the state samples
received, the string a-1 corresponds to the feature altitude[uav1] in the
formula and the values received are of type double.

Listing 5.5: FieldFeatureType.msg

s t r i n g f i e l d
s t r i n g f e a t u r e
s t r i n g type

As soon as the server receives the request to evaluate formulas and the
request is processed, the progressor (service) subscribes to the topic for
updates, and advertises a topic where the results will be published. In the
response message, the service sends the name of this topic. The client is
expected to subscribe to the topic and wait for the results. In addition, in
the response message the ID of the formula group and the IDs of all the
formulas are included.

The updates on the topic (which represents a state stream) arrive in
the form of a timed state samples, represented by the Sample message. In
addition to the ROS header, it contains the time for which this sample is
valid and an array of fields. Each field in the array, as defined in the Field

message, contains the name of the field and its value at the specified time
point. For the previous example, we have the field a-1 representing the
feature altitude[uav1], so a sample would contain a time point and the
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field, which in fact will have the name a-1 and some floating point value.
The values are received as strings, however they are converted to the correct
type for the evaluation of formulas.

Listing 5.6: Sample.msg

Header header
time v a l i d t i m e
F i e ld [ ] f i e l d s

Listing 5.7: Field.msg

s t r i n g name
s t r i n g value

As the updates are received continuously, the formulas get eventually
evaluated to either true or false. As mentioned before, the client is respon-
sible to subscribe on the topic published by the progressor service and wait
for the result of the progression. The result is in the form of FormulaResult
message which contains the success of the operation (not to be confused with
the result), the error message, the result of the evaluation of the specified
formula, the string representation of the formula, the valid time, the ID of
the formula and the ID of the formula group in which the formula belongs
to. Therefore, if there are multiple formulas in the group, there will be one
message of this kind for each formula.

Listing 5.8: FormulaResult.msg

bool s u c c e s s
s t r i n g error msg
bool r e s u l t
s t r i n g formula
time v a l i d t i m e
int32 fo rmu la id
in t32 fo rmula group id

5.2 Scenario

In this section we present a concrete use-case scenario, where a specified
formula is being evaluated and the whole process is explained in detail.

The following spatio-temporal formula is used:

∀u ∈ UAV�[0,600000][altitude(u) > 20 ∧DC(u, restricted)] (5.1)

The formula is interpreted as “the next ten minutes all UAVs must have
altitude higher than 20 meters and not fly over the restricted area”. The
intervals in the formulas are specified in milliseconds. Furthermore for this
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example scenario we assume a sampling period of 100 milliseconds. For
simplicity we only show the first samples below.

Since the formula is spatio-temporal, there needs to be a spatial knowl-
edge base present so spatial reasoning can be performed. Assume we have
an environment consisting of a road, a property on the side of the road, a
building inside the property, a forest on the other side of the road and a
restricted region in the forest. In addition, we have two UAVs located above
the road (figure 5.1).

Figure 5.1: Scenario environment

As discussed before, the spatial knowledge base is loaded in advance by a
call to the load spatial kb service. The request sent to the service contains
the ID of the group of formulas, for example the ID is 1, and contains the
following regions and RCC-8 relations:

Region 1: name = road ;
Region 2: name = property ;
Region 3: name = bu i l d in g ;
Region 4: name = f o r e s t ;
Region 5: name = r e s t r i c t e d ;
Region 6: name = uav1 ;
Region 7: name = uav2 ;

RCC-8 relations:

region1 region2 rcc8relation

road property EC
road building DC
road forest EC
road restricted DC
road uav1 NTPPi
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road uav2 NTPPi
property building NTPPi
property forest DC
property restricted DC
building forest DC
building restricted DC
building uav1 DC
building uav2 DC

forest restricted NTPPi
forest uav1 DC
forest uav2 DC

restricted uav1 DC
restricted uav2 DC

uav1 uav2 DC

Note that, however, not all relations between all pairs of regions need
to be specified as some of the relations can be inferred from the specified
relations by the reasoner. For example, if we have DC[property, forest] and
NTPP [building, property] then it can be inferred thatDC[building, forest].
However it is preferred to have the initial knowledge base as specified as pos-
sible since it reduces the indefinite knowledge. Furthermore, as each of the
RCC-8 relations have inverse relations, the ordering of the pair of regions is
not important.

In order to evaluate the formula specified above (5.1), a request to the
evaluate formulas service needs to be sent. The request would contain
the following:

Listing 5.9: evaluate formulas service request

formulas = {
Formula 1 :

” f o r a l l u in UAV always [ 0 , 600000]
( a l t i t u d e [ u ] > 20 and DC[ u , r e s t r i c t e d ] ) ”

}
s t a t e s t r e a m t o p i c = ” state−stream−1”
domains = {

Domain 1 :
name = ”UAV”
o b j e c t s = {”uav1 ” , ”uav2”}

}
r e g i o n s = {

Region 1 :
name = ” road ”
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Region 2 :
name = ” property ”

Region 3 :
name = ” bu i l d in g ”

Region 4 :
name = ” f o r e s t ”

Region 5 :
name = ” r e s t r i c t e d ”

Region 6 :
name = ”uav1”

Region 7 :
name = ”uav2”

}
i n i t i a l r e l a t i o n s = {

RCC8Relation 1 :
r eg ion1 = ” road ”
reg ion2 = ” property ”
r c c 8 r e l a t i o n = EC

RCC8Relation 2 :
r eg ion1 = ” road ”
reg ion2 = ” bu i l d i ng ”
r c c 8 r e l a t i o n = DC

RCC8Relation 3 :
r eg ion1 = ” road ”
reg ion2 = ” f o r e s t ”
r c c 8 r e l a t i o n = EC

RCC8Relation 4 :
r eg ion1 = ” road ”
reg ion2 = ” r e s t r i c t e d ”
r c c 8 r e l a t i o n = DC

RCC8Relation 5 :
r eg ion1 = ” road ”
reg ion2 = ”uav1”
r c c 8 r e l a t i o n = NTPPI

RCC8Relation 6 :
r eg ion1 = ” road ”
reg ion2 = ”uav2”
r c c 8 r e l a t i o n = NTPPI

RCC8Relation 7 :
r eg ion1 = ” property ”
reg ion2 = ” bu i l d i ng ”
r c c 8 r e l a t i o n = NTPPI

RCC8Relation 8 :
r eg ion1 = ” property ”
reg ion2 = ” f o r e s t ”



46 CHAPTER 5. IMPLEMENTATION

r c c 8 r e l a t i o n = DC
RCC8Relation 9 :

r eg ion1 = ” property ”
reg ion2 = ” r e s t r i c t e d ”
r c c 8 r e l a t i o n = DC

RCC8Relation 10 :
r eg ion1 = ” property ”
reg ion2 = ”uav1”
r c c 8 r e l a t i o n = DC

RCC8Relation 11 :
r eg ion1 = ” property ”
reg ion2 = ”uav2”
r c c 8 r e l a t i o n = DC

RCC8Relation 12 :
r eg ion1 = ” b u i l d ing ”
reg ion2 = ” f o r e s t ”
r c c 8 r e l a t i o n = DC

RCC8Relation 13 :
r eg ion1 = ” b u i l d ing ”
reg ion2 = ” r e s t r i c t e d ”
r c c 8 r e l a t i o n = DC

RCC8Relation 14 :
r eg ion1 = ” b u i l d ing ”
reg ion2 = ”uav1”
r c c 8 r e l a t i o n = DC

RCC8Relation 15 :
r eg ion1 = ” b u i l d ing ”
reg ion2 = ”uav2”
r c c 8 r e l a t i o n = DC

RCC8Relation 16 :
r eg ion1 = ” f o r e s t ”
reg ion2 = ” r e s t r i c t e d ”
r c c 8 r e l a t i o n = NTPPI

RCC8Relation 17 :
r eg ion1 = ” f o r e s t ”
reg ion2 = ”uav1”
r c c 8 r e l a t i o n = DC

RCC8Relation 18 :
r eg ion1 = ” f o r e s t ”
reg ion2 = ”uav2”
r c c 8 r e l a t i o n = DC

RCC8Relation 19 :
r eg ion1 = ” r e s t r i c t e d ”
reg ion2 = ”uav1”
r c c 8 r e l a t i o n = DC
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RCC8Relation 20 :
r eg ion1 = ” r e s t r i c t e d ”
reg ion2 = ”uav2”
r c c 8 r e l a t i o n = DC

RCC8Relation 21 :
r eg ion1 = ”uav1”
reg ion2 = ”uav2”
r c c 8 r e l a t i o n = DC

}
f i e l d t o f e a t u r e m a p p i n g = {

FieldFeatureType 1 :
f i e l d = ”a−1”
f e a t u r e = ” a l t i t u d e [ uav1 ] ”
type = ” double ”

FieldFeatureType 2 :
f i e l d = ”a−2”
f e a t u r e = ” a l t i t u d e [ uav2 ] ”
type = ” double ”

}
When the above evaluate formula request is received by the service

(figure 5.2) the ROSProgressorManager initializes the ROSProgressor for
that formula group, adds the spatial regions and relations if present, the do-
main, the field-to-feature mapping and the formulas to the ROSProgressor.
The ROSProgressorManager subscribes to the topic state-stream-1 and
advertises a topic where the results for this formula group will be published,
results-stream-1 which is returned to the client in the service response
message. The ROSProgressor on the other hand, loads up the spatial knowl-
edge base (figure 5.3), sets up the formula environment, the domains and
the mapping and parses the formula.

After the ROSProgressor has been initialized, it loads the spatial knowl-
edge base if requested by the ROSProgressorManager. The ROSProgressor,
initializes the spatial reasoner and the knowledge base, loads up the regions
and relations and enforces algebraic closure on the constraint network (fig-
ure 5.3). Note that if no spatial terms are used in the formula, there is no
need to load and use the spatial reasoner and the knowledge base.

After the formula has been parsed, the result is an expression which has
the following string representation:

f o r a l l #q u 0
( always [ 0 , 600000] (

( a l t i t u d e [# q u 0 q u a n t i f i e r ] b inary op 20) and
(DC[# q u 0 q u a n t i f i e r , r e s t r i c t e d ] ) ) )

which is based on the following abstract syntax tree constructed during
parsing:



48 CHAPTER 5. IMPLEMENTATION

Figure 5.2: Sequence diagram for evaluate formulas service request

Figure 5.3: Sequence diagram for load spatial kb service request

( f o r a l l ( QUANTIFIER SPEC u ( DESCRIPTOR UAV ) )
( always ( TIME INTERVAL 0 600000 )

( and
( > ( VARIABLE REFERENCE

a l t i t u d e ( DESCRIPTOR u ) ) 20 )
( VARIABLE REFERENCE

DC ( DESCRIPTOR u ) ( DESCRIPTOR r e s t r i c t e d ) )
)

)
)

As it can be seen in the abstract syntax tree, DC is treated the same as
altitude and both are parsed as a VARIABLE REFERENCE. When the symbols
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are created, the type of the symbol representing the feature altitude is set to
double based on the feature-to-field mapping provided, and the type of the
symbol representing DC is set to rcc8 boolean relation since the name
of the symbol is one of the base RCC-8 relations.

In the produced expression the arguments of altitude and DC are tied
to the quantifier u, namely #q u 0. The variable symbols, however, are
expanded based on the contents of the domain the quantifier is connected
to, so after the expansion we get altitude[uav1] and altitude[uav2] as well
as DC[uav1, restricted] and DC[uav2, restricted]. The expanded formula
looks like this:

( always [ 0 , 600000]
( ( a l t i t u d e [ uav1 ] b inary op 20) and
(DC[ uav1 , r e s t r i c t e d ] ) ) )

and
( always [ 0 , 600000]

( ( a l t i t u d e [ uav2 ] b inary op 20) and
(DC[ uav2 , r e s t r i c t e d ] ) ) )

The formula is now parsed and the expression is created, so the pro-
gression can start as soon as state samples arrive on the state stream. The
ROSProgressorManager is subscribed to the topic and as state samples ar-
rive, it forwards the messages to all instances of ROSProgressor that are
waiting on updates on that topic, since multiple formula groups can receive
updates on the same topic. The state samples arrive as a Sample message.
For example, let us assume that initially both UAVs are at altitude of 25
meters and the spatial relations remain the same as specified within the
spatial knowledge base. The following is an example of the first Sample

message that arrives:

Listing 5.10: Example state sample message

Sample :
header :

. . .
v a l i d t i m e :

s e c s = 0
nsec s = 0

f i e l d s :
f i e l d 1 :

name = ”a−1”
value = ”25.0”

f i e l d 2 :
name = ”a−2”
value = ”25.0”

Note that for simplicity in the examples the header is not included in the
listing, and we assume the valid time starts at 0, even though the system
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will internalize the time and start the progression from the time set in the
first sample received.

As the ROSProgressorManager receives the message (figure 5.4) it for-
wards it to the ROSProgressor and the update is handled by its importer.
The importer then converts the state sample time to the internal time rep-
resentation of the progression and then starts the progression of the formula
over the newly received state. Actually when the first state sample is re-
ceived the initial symbol values are set. For each next state sample, the
formula is progressed with the previous symbol values to a time point right
before the time specified in the state sample, and the symbol values are up-
dated to the new values contained in the new state sample. This is repeated
as long as state samples are received, or the formula is evaluated to true or
false.

Figure 5.4: Sequence diagram for handling updates

After the first state sample message, specified above, is received, the
values for the altitude of both UAVs are set. However, as no spatial relations
are received, no interaction with the spatial reasoner is required in this step.
Assume that in the next state, uav1 remains at the same altitude while
uav2 rises to 30 meters and furthermore, both start moving, uav1 towards
the forest and uav2 towards the property and they both move to the edge
of the road. The following is the corresponding Sample message:

Sample :
header :

. . .
v a l i d t i m e :

s e c s = 0
nsec s = 100000000

f i e l d s :
f i e l d 1 :

name = ”a−1”
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value = ”25.0”
f i e l d 2 :

name = ”a−2”
value = ”30.0”

f i e l d 3 :
name = ”TPP( uav1 , road )”
value = ””

f i e l d 4 :
name = ”EC( uav1 , f o r e s t )”
va lue = ””

f i e l d 5 :
name = ”TPP( uav2 , road )”
value = ””

f i e l d 6 :
name = ”EC( uav2 , property )”
value = ””

From the example state sample it can be seen that the non-spatial fea-
tures in the formula are represented by the corresponding fields. The spatial
relations that have changed are also included in the state sample and they
are represented by a separate field for each new relation.

When this state is received, the time is internalized to 100 and the for-
mula is progressed with the values of the previous state to time point 99 and
then the values of the newly received state sample are set. The altitudes for
both UAVs have been set in the initial state to 25 meters, and when evalu-
ating the formula those values are obtained from the symbol table. For the
spatial part of the formula however, the values are obtained via a call to the
spatial reasoner to retrieve the relation between the pairs (uav1, restricted)
and (uav2, restricted) and checked if both pairs are DC. Since there has
been no change in the spatial relations, the formula is evaluated to true
after the progression and the progression is continued with the following
expression:

( always [ 0 , 599900]
( ( a l t i t u d e [ uav1 ] b inary op 20) and
(DC[ uav1 , r e s t r i c t e d ] ) ) )

and
( always [ 0 , 599900]

( ( a l t i t u d e [ uav2 ] b inary op 20) and
(DC[ uav2 , r e s t r i c t e d ] ) ) )

This expression is identical to the one produced at the start of the pro-
gression except for the interval. The interval indicates that this expression
should be true for the next 599900 milliseconds. Such expressions for smaller
time intervals are produced after each progression over a state sample un-
til the formula is progressed over the whole remaining time interval or is
evaluated to false.
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After the formula has been progressed to time point 99, the symbol values
are updated with the new values received in the new state sample. In this
second state sample, the spatial relations that are received are added to the
spatial knowledge base.

The next state sample, listed below, represents a state where uav2 rises
further to 35 meters and uav1 partially overlaps the road and the forest and
uav2 partially overlaps the road and the property.

Sample :
header :

. . .
v a l i d t i m e :

s e c s = 0
nsec s = 200000000

f i e l d s :
f i e l d 1 :

name = ”a−1”
value = ”25.0”

f i e l d 2 :
name = ”a−2”
value = ”35.0”

f i e l d 3 :
name = ”PO( uav1 , road )”
value = ””

f i e l d 4 :
name = ”PO( uav1 , f o r e s t )”
value = ””

f i e l d 5 :
name = ”PO( uav2 , road )”
value = ””

f i e l d 6 :
name = ”PO( uav2 , property )”
value = ””

The same as before, the time of this state sample is internalized to 200
and the formula progressed over the previous state to time point 199. When
the formula is evaluated during progression the relations between the pairs
(uav1, restricted) and (uav2, restricted) need to be evaluated in the for-
mula. However, in this case the spatial relations have changed in the pre-
vious state, so as the relations are obtained from the spatial reasoner the
algebraic closure of the constraint network needs to be recalculated to re-
flect the changes in the spatial relations from the previous state and ensure
consistency of the network. As both relations remain DC the formula is
evaluated to true and the progression continues.

Note that no direct information was added during the previous state
about the relations between the UAVs and the restricted region, only the
relations between the UAVs and the road, forest and property. However as
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the relations between the road, forest and property and the restricted region
are specified, the reasoner can infer that the UAVs are disconnected from
the restricted region. In this case as the relations between the UAVs and
the restricted are specified before, the algorithm just checks the consistency
of the relations. If there is no information about these relations, the rea-
soner will however infer this from the other specified relations between the
road, forest and property and the restricted region. As discussed before, the
evaluation of RCC-8 relation symbols might result to false if the relation
between the pair is not the one expected in the formula or if the constraint
network is inconsistent. A constraint network can become inconsistent if for
example a faulty relation has been inserted in the knowledge base resulting
in a state of the spatial environment that is not possible with respect to the
relations in the knowledge base.

Assuming for the remainder of the execution the next state samples
received satisfy the rules for the UAVs flying above 20 meters and away from
the restricted region, the symbols are evaluated to true and the formula will
finally be evaluated to true.

However, if any of the symbols are evaluated to false, the expression
and hence the formula will be evaluated to false. For example, if at any
state sample the value for the altitude is lower than 20 meters then the
corresponding altitude symbol is evaluated to false and hence the full for-
mula. Regarding the RCC-8 relation symbol in the expression, if for ex-
ample at some state EC[uav1, restricted] or any other relation other than
DC is received then the result of the evaluation is false. Furthermore, if
some newly received spatial relation leads to inconsistent spatial knowledge
base the result of the evaluation is also false. Such an example is, if both
TPP [uav2, property] and TPP [uav2, forest] are received will lead to in-
consistency, since DC[property, forest] is already in the knowledge base.

When the progression is over and the formula is finally evaluated to true
or false, the ROSProgressorManager publishes EvaluateFormulaResult mes-
sage on the topic result-stream-1 containing the string representation of
the formula and the result of the evaluation. If there are multiple formulas,
one such message is sent after each formula is evaluated.



Chapter 6

Performance Evaluation

This chapter presents a performance evaluation of the formula progressor.
The goal is to evaluate the progression time of a state over one or more for-
mulas. Since there are different aspects that the progression time depends
on, there are different test cases presented and evaluated, developed to high-
light the effect of different properties of the formulas being evaluated and
taking into consideration both temporal logic formulas and spatio-temporal
logic formulas.

First the choice of test cases is presented and motivated. Next, the
results are presented and discussed.

6.1 Test cases

The focus of the performance evaluation is on the execution time of the
progressor. In particular, the average time it takes to progress a state over
the formulas being evaluated. We are mainly interested in three different
aspects of the progressors and their effect on the performance:

• Number of formulas - since the progressor can contain more than one
formula, possibly related to each other, that are progressed all together
when state samples arrive, we are interested how the progressor be-
haves for different number of formulas.

• Number of terms in a formula - usually formulas do not have a large
number of terms. However, the progressor supports quantifiers and
deals with quantified formulas by expanding the formulas for all the
elements in the domain. This can lead to evaluating formulas with
large number of terms depending on the size of the domain, which
naturally influences the time it takes to progress the formula.

• Spatial reasoning - when dealing with spatio-temporal formulas, the
evaluation of the spatial terms in the formula is executed through calls

54
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to the external spatial reasoner. Therefore, we are interested in the
performance characteristics of the progression when using the external
reasoner and mainly the effects the size of the spatial knowledge base
has on the performance.

To evaluate these aspects of the formula progression, we have defined
four test cases:

Test case 1 Evaluation of the performance of the formula progressor when
dealing with different numbers of temporal logic formulas. In this test
case the evaluated formulas do not contain spatial and spatio-temporal
terms.

Test case 2 Evaluation of the performance when dealing with different
number of terms in a formula. Both temporal and spatio-temporal
formulas are tested and compared.

Test case 3.1 Evaluation of the performance when different number of new
spatial relations are added in the knowledge base, which requires en-
forcing algebraic closure of the constraint network.

Test case 3.2 Evaluation of the performance for different sizes of the spa-
tial knowledge base, namely different numbers of regions included in
the knowledge base.

In all the test cases the average time to progress a state is tested. There-
fore, in each of the test cases, each formula was progressed over 1000 states
(time steps) to get the average time to progress a state, and each such run
was repeated 10 times. Since the focus is on the time of the progression,
the sampling is simulated and the state samples are read from a file. In
the experiments where spatial terms are used, the spatial knowledge base is
loaded from a file before the simulation is started.

The experiments were run on a Acer Aspire 6930G with Intel Core2Duo
P7350 processor at 2.00 GHz, 4 GB of RAM running OpenSUSE 11.4 with
kernel 2.6.37.6-0.9-desktop x86 64. The tested implementation uses GQR
release 1298.

The results of the experiments are presented in the following section.

6.2 Test results

Test case 1

This experiment is the same as the one performed by Heintz [2009] with
the original formula progressor. However, since changes have been made,
the goal is to test how the new implementation of the progressor handles
different numbers of formulas for evaluation.

In this test case the formula used is:
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Table 6.1: Average time to progress a state over different numbers of tem-
poral logic formulas

time (ms) p = T p = (F, T) p = (10 * F, T)

500 formulas 4.3 5.7 6.9
1000 formulas 8.8 11.6 14.6
1500 formulas 13.3 18.3 21.5
2000 formulas 18.0 24.2 29.0
2500 formulas 22.9 30.7 37.1
3000 formulas 27.6 37.2 44.8
3500 formulas 32.6 43.1 51.8
4000 formulas 36.9 50.5 59.1
4500 formulas 41.6 57.8 67.0
5000 formulas 45.9 65.1 74.5

�♦[0,1000]p

The interpretation of the formula is that p must never be false for more
than one second [Heintz, 2009]. Since the sampling time is 100 milliseconds
p must become true within 10 state samples.

Furthermore, the experiment is performed starting from 10 up to 5000
instances of this formula.

The experiment is performed, as the original, on three different state se-
quences in order to test different progression behaviors. The input sequences
used by Heintz [2009] are:

• p is always true - this is the best case scenario, as the formula is
evaluated to true immediately.

• p alternates between true and false - in this case the formula is pro-
gressed when false is received and evaluated to true when true is re-
ceived.

• p is false for 10 time steps and then true for 1 time step - the formula is
progressed for 10 time steps as finally true is received and the formula
is evaluated to true.
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Figure 6.1: Average time to progress a state over different numbers of tem-
poral logic formulas

The results presented in table 6.1 and figure 6.1 show that the increase of
processing time to evaluate the formulas is linear with the increase of number
of formulas being evaluated. The progression time varies depending on the
input sequence, as expected. However, even in the worst case scenario, 5000
instances of the formula can be progressed in less than 80 milliseconds, which
shows that the progressor is fast and efficient.

Test case 2

With this experiment the goal is to test the effect the number of terms in a
formula have to the progression time of the full formula, since progressing
a formula to the next time point entails progressing each term to the next
time point.

In this test case two formulas are used, one temporal logic formula and
one spatio-temporal logic formula:

�p1 ∧ . . . ∧ pn
�DC[r1, r2] ∧ . . . ∧DC[ri, rj ]

The number of terms n is varied from 10 to 200. In the case of the
spatio-temporal formula i and j are varied so the total number of terms will
vary from 10 to 200. Although it would be hard to imagine that a manually
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Table 6.2: Average time to progress a state over a single formula with varying
number of spatial and non-spatial terms

time (ms) temporal spatial

10 terms 0.06 0.12
20 terms 0.12 0.24
50 terms 0.29 0.57
100 terms 0.61 1.12
150 terms 0.95 1.63
200 terms 1.29 2.09

entered formula would contain a large number of terms, formulas containing
quantifiers are expanded so the number of terms might get large depending
on the size of the domains.

For this experiment the formulas need to be evaluated to true, therefore
formulas containing always and conjunction are used because those formu-
las represent the worst case scenario. When evaluating formulas and terms
under the temporal operator “always” (�) the progression needs to be per-
formed for every time step. The conjunctions are used since all the terms in
the formula need to be evaluated to true, as opposed to when disjunctions
are used and only one term needs to be true for the formula to be evaluated
to true.

We test both temporal and spatio-temporal formulas, as evaluating spa-
tial terms requires calls to the external reasoner to obtain the relations,
while the values of other non-spatial terms are kept in a symbol table.

The results of this experiment in table 6.2 and figure 6.2 present the
average time needed to progress a state over a formula with varying number
of terms. The time needed to evaluate a formula linearly increases with the
number of terms in the formula. Progressing over formulas that contain
spatial relations takes slightly more time, since it requires obtaining the
values from the spatial reasoner. However, the time to progress formulas
with large number of terms is very low, namely around 1.4 milliseconds for
a formula containing 200 non-spatial terms and around 2 milliseconds for a
formula containing 200 spatial terms.

Test case 3.1

In this experiment we focus on the number of new spatial relations being
added to the knowledge base, and their effect on the performance. In the
previous experiment for the spatio-temporal formula, no new relations are
added to the knowledge base during the progression. This means that there
is no need to enforce algebraic closure of the constraint network, as the
relations are not changing during execution and the constraint network is
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Figure 6.2: Average time to progress a state over a single formula with
varying number of spatial and non-spatial terms

already consistent. Each call to the reasoner only retrieves the spatial re-
lation between the regions. Adding new relations to the knowledge base
would require enforcing algebraic closure of the constraint network so the
new relations could be taken into consideration. As discussed earlier (chap-
ter 5), we perform lazy evaluation, meaning the enforcing of algebraic closure
is triggered when a relation is obtained from the knowledge base and new
knowledge has been added since the last time algebraic closure was enforced.

For this experiment a formula containing 100 spatial terms is used. The
experiment is performed on two different knowledge bases, one with 25 and
the other with 50 regions in the knowledge base. For both knowledge bases,
the number of new relations added at a time point during progression is
varied from 5 to 100.

From the results presented in table 6.3 and figure 6.3 it can be seen that
the number of new spatial relations being added to the spatial knowledge
base at each time step of the progression, has a negligible influence on the
progression time. Average progression time of a state over formulas when
using knowledge base with 25 regions is around 8 milliseconds despite the
variation in the number of new formulas, while the average time when a
knowledge base with 50 regions is used is around 40 milliseconds for all the
different tests with different numbers of new relations being added. It is ob-
vious that the number of regions in the knowledge base is more important.
This is expected as the time complexity of the path-consistency algorithm is
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Table 6.3: Average time to progress a state with different numbers of regions
in the KB

time (ms) 25 regions 50 regions

5 relations 6.64 41.75
10 relations 6.66 41.79
20 relations 6.70 41.83
50 relations 6.81 42.13
100 relations 6.91 42.45

Figure 6.3: Average time to progress a state with different numbers of re-
gions in the KB

dependent on the number of nodes in the constraint network. In our imple-
mentation we use lazy evaluation hence algebraic closure of the constraint
network is enforced when the relation for a pair of regions is obtained but
only if new relations have been added since the previous time the algebraic
closure procedure was performed. Therefore the number of new relations do
not influence significantly the progression time.
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Test case 3.2

From the previous experiment it is obvious that the number of regions in
the spatial knowledge base have significant influence on the performance of
the progression when dealing with spatio-temporal formulas. Therefore, in
this experiment the focus is on the number of regions in the knowledge base.

For this experiment a formula containing 100 spatial terms is used. At
each time step in the progression, the state sample contains 10 new spa-
tial relations which are added in the knowledge base. The experiment is
performed for knowledge bases containing from 20 to 100 regions.

Table 6.4: Average time to progress a state when algebraic closure needs to
be enforced

20 regions 40 regions 60 regions 80 regions 100 regions

time (ms) 2.5 22.4 70.6 164.4 333.2

Figure 6.4: Average time to progress a state when algebraic closure needs
to be enforced

Table 6.4 and figure 6.4 show the impact of the size of the knowledge
base on the average time to progress a state. The average progression is fast
for smaller knowledge bases but it goes up to 333 milliseconds for a knowl-
edge base with 100 regions. Adding new spatial relations to the knowledge
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base requires enforcing algebraic closure to the constraint network, there-
fore the size of the knowledge base has significant influence when adding
new spatial knowledge, as the number of regions are the number of nodes
in the constraint network and has a direct effect on the execution time of
the path consistency algorithm. The results are as expected, since the path
consistency algorithm has a cubic time complexity (O(n3)) on the number
of nodes in the constraint network.

There are certain changes specific for our scenarios that can be made
to the implementation of the spatial reasoner, mainly regarding enforcing
algebraic closure to a constraint network, that can improve the execution
time of the path consistency algorithm. Some of these approaches are dis-
cussed in more detail in section 7.2. One of the approaches proposed in
section 7.2, for using dynamic and static regions in a spatial knowledge base
has been implemented and tested. In particular, the same experiment was
defined for a knowledge base of 100 regions, with 95 defined as static and
5 as dynamic. The average time for progressing a state in that case is 41
milliseconds, which is considerably faster than the 333 milliseconds needed
for a spatial knowledge base of 100 regions with no distinctions between the
regions. However this approach requires further analysis and more thorough
testing and has been left as a future work.

6.3 Discussion

The experiments presented in this chapter evaluate the performance of the
formula progressor based on different aspects that the progression time de-
pends on. The experiments produced the expected results. Three different
aspects were taken into consideration and four different test cases were eval-
uated. The first aspect considered the number of formulas being evaluated
since the progressor can evaluate multiple formulas at the same time. This
experiment produced the expected results as the progression time increased
linearly with the number of formulas. Furthermore it can be concluded that
the progressor is fast when dealing with multiple formulas as a state was
progressed over 5000 formulas in less than 80 milliseconds in the worst case
scenario. The second aspect considered the number of terms in the formula,
as a formula containing quantifiers is expanded during evaluation and the
expanded formula can contain large number of terms. In this experiment
both formulas with and without spatial terms were tested. The progres-
sion time increased linearly with the number of terms, and as expected it
was a little slower for formulas containing spatial terms. The last aspect
was related to the spatial reasoning and the progression time when spatial
reasoning was performed during evaluation of the formulas. Two different
experiments were performed to test the effect of the number of new spatial
relations received at each time point and the size of the spatial knowledge
base. The experiments showed that the execution time is only influenced by
the size of the spatial knowledge base, namely the number of regions.
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Overall it can be concluded that the formula progressor is fast and effi-
cient when dealing with large number of formulas and formulas with large
number of terms. Furthermore it is scalable, since adding more formulas
or terms linearly increases the progression time. Although the progression
time might be longer when updating a spatial knowledge base with large
number of regions, the results conform with the time complexity of the path
consistency algorithm.



Chapter 7

Conclusion

7.1 Summary

Autonomous systems require a lot of information about the environment
in which they operate in order to perform different high-level tasks. The
information is made available through various sources, such as remote and
on-board sensors, databases, GIS, the Internet, etc. The sensory input es-
pecially is incrementally available to the systems and can be represented as
streams. However, performing the functionalities of the system often require
some sort of reasoning over the input data, which is often not suitable for
the higher level representations needed for reasoning. DyKnow is a stream
processing framework that provides functionalities to represent knowledge
needed for reasoning from streaming inputs.

DyKnow has been used within a platform for task planning and execution
monitoring for UAVs. The execution monitoring is performed using formula
progression with monitor rules specified as temporal logic formulas. The
goal of this thesis project was to extend the formula progression with spa-
tial reasoning. For this, an overview of existing spatial and spatio-temporal
reasoning theories and approaches available in the literature was done, with
the main focus on RCC-8 and PSTL. Furthermore, different reasoning en-
gines were analyzed and GQR was selected for our solution. In addition to
the spatial reasoning extension, the second goal is to implement the formula
progressor as a part of a spatio-temporal stream reasoning architecture in
ROS.

In this thesis report we have provided an overview of the spatio-temporal
stream reasoning architecture designed for ROS, and have presented an in-
depth analysis for providing spatio-temporal functionalities to the formula
progressor. We have implemented a solution, that extends the original for-
mula progressor with spatial reasoning functionalities, based on the RCC-8
calculus. The result implementation is capable of evaluating spatio-temporal
logic formulas using progression over streaming data. Furthermore, ROS im-
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plementation of the formula progressor was presented as a Stream Reasoner
which is a part of a spatio-temporal stream reasoning architecture in ROS.

Through performance evaluation we have shown that our solution is effi-
cient and scalable. We have evaluated our solution based on different aspects
of the system that effect the execution time. The experiments produced the
expected results. We have shown that the formula progressor is fast and
is capable of handling large number of formulas and formulas with large
number of terms. The slower part of the process is the spatial reasoning
and the size of the spatial knowledge base in particular. However, this as
well was expected, as the results conform with the time complexity of the
path-consistency algorithm used.

7.2 Discussion

In chapters 4 and 5 we have presented our solution and implementation and
motivated the choices, assumptions and directions selected to overcome some
of the problems. However, there are further possibilities to explore in order
to further improve the spatio-temporal stream reasoning. The main areas
of possible improvement are dealing with indefinite knowledge, in particular
finding ways of reducing it, and adapting the spatial reasoner to the stream
reasoning and temporal approach and dealing with incremental data.

In our implementation we rely on GQR for the spatial reasoning. How-
ever, GQR is a generic CSP solver and is not designed to support incremen-
tally and continuously changing constraints. In the following part we present
some suggestions for modifying the reasoning procedure based on three dif-
ferent perspectives relevant to our use-case scenarios and implementation:

• Stream reasoning perspective - Taking into consideration the stream-
ing nature of the incoming data and handling incremental state up-
dates.

• Spatio-temporal reasoning perspective - Using additional rules based
on spatio-temporal reasoning theory to filter relations, and modify the
constraint network to reduce indefinite knowledge.

• UAV domain perspective - Using certain properties of the domain to
add additional constraints, filter relations based on different scenarios,
or to influence the consistency check.

In the following subsections we suggest some approaches for modifying
the implementation. The approaches are grouped based on the perspective,
but note that most of the different approaches suggested are independent
from the others and could be possibly combined together.
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7.2.1 Stream reasoning perspective

In our system we deal with incrementally incoming and continuously chang-
ing data. GQR performs the reasoning on a constraint network which rep-
resent a static state and the consistency of the full constraint network is
recalculated after every change in the spatial relations. However, in reality
most of the relations between regions do not change between states. There-
fore we can reuse the previous knowledge, namely the values for the relations
between the regions in the previous state, when checking the consistency of
the new state.

To achieve this we can keep track of the previous value of the relations
between each pair of regions. As new state samples arrive, if a relation has
been changed for a pair of regions, then the relations between each of those
regions and all other regions should be examined. If the relations have not
changed, there is no need to examine further. This should be done within
the path consistency algorithm, so when propagating the constraints if the
current constraint is the same as in the previous state, it should not be
added to the queue for consistency checking any further.

7.2.2 Spatio-temporal reasoning perpsective

In the presented implementation the spatial and temporal reasoning are done
independently. First, the spatial terms are evaluated and then the formula is
progressed further. However, we can take advantage of the existing spatio-
temporal reasoning theory, in particular the continuity network of RCC-8
and include it in the spatial reasoning procedure.

The continuity network presents rules about the transitions of the re-
lations between regions. It defines the possible relations a pair of regions
might be in the next state based on the relation at the current state.

This rules can be included within the spatial reasoning for either filtering
the possible relations, or checking if the received or inferred spatial relations
are correct. In order to be possible to check or enforce the continuity net-
work rules, the relations between the regions in the previous state need to be
kept. One way to integrate this is to check the new relations and compare
with the previous ones to filter relations that are not possible. This would
reduce indefinite knowledge in the spatial knowledge base. Since removing
some relations have implications in the further propagation of constraints,
this should be implemented within the consistency check as it affects prop-
agation of values through the constraint network. Another way to integrate
this, on another level though, is to define set of formulas within the progres-
sor that need to be true at every step. The continuity network of RCC-8 can
be encoded in ST0 [Wolter and Zakharyaschev, 2000], so this approach can
be used to check if these formulas are true for every state during the pro-
gression. This way the indefinite knowledge in the spatial knowledge base
is not reduced, but received and inferred spatial relations can be checked if
they are correct.
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There are certain assumptions to be made with this approach. Most im-
portantly, a realistic situation is that a change in a relation may be skipped,
due to different possible reasons. This could possibly lead to inconsistent
or incorrect state of the constraint network in the first case, or some of the
rule formulas failing in the second case.

Regarding dealing with indefinite knowledge in our implementation (sec-
tion 4.3), there is another possible approach to reduce the number of false
positives. The idea is to take into consideration the logical operators between
the spatial terms when generating consistent scenarios. Let us consider
an example, such that a monitor formula contains DC(uav, restricted) ∧
DC(uav, road). Let us further assume that there are multiple possible rela-
tions for both pairs that contain the relation DC for both pairs of regions.
Instead of generating two consistent scenarios separately for each pair and
then evaluating the conjunction of both terms, a single consistent scenario
can be tried for a constraint network where the values for both pairs of
regions are set to the ones in the formula. However, when dealing with
disjunctions between spatial terms in the formula this is not needed. Never-
theless, this approach does not completely solve the uncertainty issue with
the result when a term or formula is evaluated to true, because it is not
possible to be certain about the relation due to insufficient knowledge about
the spatial environment or due to imprecise input.

7.2.3 UAV domain perspective

There are additional implementation details that might be considered when
focusing on a specific domain. Certain constraints exist in some domains
that need to be taken into consideration when progressing states or when
checking consistent relations. In our case, we focus on the UAV domain and
discuss scenarios relevant for the domain.

In the UAV domain, we might want to consider the UAVs as atomic units,
meaning a region that represents a UAV is the smallest region possible in
our environment. Therefore, one obvious constraint could be that no other
regions can be in NTTP or TPP relations with an UAV, and inversely the
UAV cannot be in NTPPI and TPPI relations with other regions. Enforc-
ing these constraints could reduce indefinite knowledge. This approach can
be generalized for different regions, not just UAVs. One possible way to do
this is to define different types of regions, and then have specific constraints
for the different types.

In our scenarios the spatial knowledge base represents the state of the
spatial environment, in particular spatial regions that represent objects and
regions from the outside world. Many of these regions are static, taken
from the GIS data for example, and only some regions represent the UAVs,
vehicles or other objects that move, or regions that change their size or
position. The static objects, do not change the spatial relations between
them. If two buildings are disconnected (DC) we can assume that they will
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remain like that. Therefore we can define static and dynamic regions in
the spatial knowledge base. The dynamic regions are expected to move or
change size, therefore are expected to change the spatial relations relative to
other dynamic and static regions. Assuming the initial or previous state of
the spatial knowledge base is known and available, then the spatial reasoning
can be modified to take into consideration only pairs of regions that might
have changed relations and ignore pairs of regions that are considered as
impossible to change relation. Making a distinction between static and
dynamic regions, can limit the path consistency algorithm to consider only
dynamic regions, since the relations between the static regions are known
and there is no need to recalculate the consistency for the relations between
those regions.

This approach can be combined with the approach suggested from the
stream reasoning perspective (section 7.2.1)

A test implementation where only the relations between pairs of dynamic
regions and pairs consisting of one dynamic and one static regions were
checked for consistency, while pairs of static regions were ignored. However,
this approach needs to be analyzed further and the implementation needs
to be tested, so it is recommended as a future work.

7.3 Future work

There are several directions that can be further explored in order to improve
or extend the current solution.

• Implement some of the suggestions presented in the previous section.
The presented suggestions focus on improving the performance of the
spatial reasoning by either reducing the indefinite knowledge in the
spatial database or by adapting the reasoner to streaming data.

• Add support for different spatial calculi. Since GQR is a generic con-
straint solver and supports different spatial calculi it would be possible
to provide additional support for spatial reasoning for other aspects
of space, such as orientation. GQR already contains specifications for
some calculi, but other calculi can also be specified. Implementation-
wise this would require detecting the calculi-specific terms in the for-
mula and evaluate the values of those terms via calls to the external
reasoner as done with RCC-8 terms.

• Add support for the ST1 and ST2 languages [Wolter and Zakharyaschev,
2000]. This would provide capabilities for reasoning not just about
changes between regions over time, but changes in the regions them-
selves over time. However, this would require some sort of progression
over temporally quantified region variables.
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