
Institutionen för datavetenskap
Department of Computer and Information Science

Examensarbete

Design Space Exploration of the Quality of
Service for Stream Reasoning Applications

av

Viet Ha Nguyen

LIU-IDA/LITH-EX-A--12/027--SE

 2012-08-09

Linköpings universitet

SE-581 83 Linköping, Sweden
Linköpings universitet

581 83 Linköping

På svenska

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare –
under en längre tid från publiceringsdatum under förutsättning att inga extra-
ordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för
ickekommersiell forskning och för undervisning. Överföring av upphovsrätten
vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ
art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i
den omfattning som god sed kräver vid användning av dokumentet på ovan
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan
form eller i sådant sammanhang som är kränkande för upphovsmannens litterära
eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se
förlagets hemsida http://www.ep.liu.se/

In English

The publishers will keep this document online on the Internet - or its possible
replacement - for a considerable time from the date of publication barring
exceptional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for your own use and to
use it unchanged for any non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional on the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be
mentioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity,
please refer to its WWW home page: http://www.ep.liu.se/

© Viet Ha Nguyen

Final thesis

Design Space Exploration of the
Quality of Service for Stream

Reasoning Applications

by

Viet Ha Nguyen

LIU-IDA/LITH-EX-A–12/027–SE

August 9, 2012

Final thesis

Design Space Exploration of the
Quality of Service for Stream

Reasoning Applications

by

Viet Ha Nguyen

LIU-IDA/LITH-EX-A–12/027–SE

August 9, 2012

Supervisor: Dr. Unmesh D. Bordoloi
Dr. Fredrik Heintz

Examiner: Prof. Dr. Zebo Peng

Abstract

An Unmanned Aerial Vehicle (UAV) is often an aircraft with no crew that
can fly independently by a preprogrammed plan, or by remote control. Sev-
eral UAV applications, like autonomously surveillance and traffic monitor-
ing, are real-time applications. Hence tasks in these applications must com-
plete within specified deadlines.

Real Time Calculus (RTC) is a formal framework for reasoning about real-
time systems and in particular streaming applications. RTC has its mathe-
matical roots in Network Calculus. It supports timing analysis, estimating
loads and predicting memory requirements.

In this thesis, a formal analysis of real-time stream reasoning for UAV ap-
plications is conducted. The performance analysis is based on RTC using
an abstract performance model of the streaming reasoning on board a UAV.
In this study, we consider two different scheduling methods, first-in-first-out
(FIFO) and fixed priority (FP). In the FIFO scheduling model the priorities
of the tasks are assigned and processed based on the order of their arrival,
while in the FP scheduling model the priorities of the tasks are preassigned.
The Quality of Service (QoS) of these applications is calculated and ana-
lyzed in a proposed design space exploration framework.

QoS can be defined differently depending on what field we are studying
and in this thesis we are interested in studying the delays of the real-time
stream reasoning applications when (i) we fix jitters and number of instances
and vary the periods, (ii) we fix the periods and number of instances and
vary the jitters, and (iii) we fix the periods, jitters and vary the number of
instances.

iii

Acknowledgements

I would like to express my gratitude towards my examiner, Prof. Dr. Zebo
Peng and my two supervisors, Dr. Unmesh D. Bordoloi and Dr. Fredrik
Heintz for providing me an opportunity to work on this project. I would like
to thank both my supervisors for supporting me with ideas and guidance
throughout the thesis. Last but not least, my family for always supporting
and encouraging me with their best wishes.

iv

Contents

1 Introduction 1
1.1 Problem definition . 2
1.2 Motivation . 3
1.3 Related Works . 3
1.4 Organization . 4

2 Real Time Calculus 5
2.1 Events - Arrival curves . 5
2.2 Resources - Service curves . 7
2.3 Computing delays . 7
2.4 RTC implementations . 8

2.4.1 Events . 8
2.4.2 Resources . 9
2.4.3 Scheduling methods 11

3 A design space exploration framework 13
3.1 The performance model . 16

3.1.1 FIFO model . 16
3.1.2 FP model . 18

4 Case study 19
4.1 Experimental setup . 19
4.2 First in first out analysis . 20
4.3 Fixed priority analysis . 23

5 Conclusion 33

Bibliography 34

v

List of Figures

1.1 A typical real-time system. 2

2.1 Events in time domain and RTC. 6
2.2 Parameter definitions for events in time domain. 6
2.3 Resource in time domain and RTC. 7
2.4 The maximum delay of an event. 8
2.5 Parameter definitions for events in RTC. 8
2.6 Different events defined in RTC. 9
2.7 Different resources defined in RTC. 10

3.1 Design space exploration steps. 13
3.2 Block view of the suggested design space exploration framework. 14
3.3 Example on how combinations of different task parameters

are arranged. 15
3.4 Block view of the suggested FIFO model. 17
3.5 Block view of the suggested FP model. 18

4.1 Delay for task 3, with period P3 fixed at (a) 10 ms and (b)
15 ms. 24

4.2 Delay for task 3, with period P3 fixed at (a) 20 ms and (b)
25 ms. 25

4.3 Delay for task 3, with period P3 fixed at (a) 30 ms and (b)
35 ms. 25

4.4 Delay for task 3, with period P3 fixed at (a) 40 ms and (b)
45 ms. 26

4.5 Delay for task 3, with period P3 fixed at (a) 50 ms and (b)
55 ms. 26

4.6 Delay for task 3, with P3 period fixed at 40 ms. 27
4.7 Delay of four tasks with period variation in the range 5-70 ms. 27
4.8 Delay for task 3, with jitter fixed at 10 ms in 3D-view. 29
4.9 Delay of four tasks with jitter variation in the range 0-70 ms. 30
4.10 Delay of four tasks with instance variation in the range 1-300. 31
4.11 Delay of task 3 with fixed number of instances in 3D view. . . 32

vi

List of Tables

4.1 Default task information for First-in-First-out scheduling. . . 20
4.2 Default task information for Fixed-Priority scheduling. 20
4.3 Task set when varying the number of instances. 21
4.4 Task set when varying the periods. 21
4.5 Task set when varying the jitters. 21
4.6 Task set when varying the periods. 23
4.7 Task set when varying the jitters. 29
4.8 Task set when varying the number of instances. 31

vii

Chapter 1

Introduction

An Unmanned Aerial Vehicle (UAV) is usually an aircraft with no pilot on
board. UAVs can be controlled remotely by pilots on the ground or they can
fly independently based on some preprogrammed plans. We are mainly in-
terested in autonomous UAVs which are UAVs with little or no involvement
of a pilot on the ground. Most existing UAV applications today are basi-
cally remote controlled aircraft. They are widely used in many applications,
for instance, delivering supplies to potentially dangerous areas and scanning
urban areas for traffic violations or criminal activities. On board the UAV
there is an embedded real-time system which often has well-defined, fixed-
time constraints. Real-time systems in general are often associated with
deadlines therefore reasoning must be done within the defined deadlines or
the system will fail. Broadly, real-time systems can be classified into two
types: soft real-time systems and hard real-time systems.

• In a soft real-time system, if some deadlines are missed, these will not
lead to severe consequences.

• In a hard real-time system, a missed deadline would result in a catas-
trophic failure of the system.

Assume a UAV [1] is given a task of monitoring a small urban area for
potential or ongoing criminal activities. In order to reason about the current
activities it is necessary for the UAV to create a world model and maintain
the correspondence between this world model and the real world. For traffic
monitoring this involves, for example, creating symbolic representations of
cars. One approach to acquiring such a symbolic representation is to analyze
video sequence taken by on-board cameras. The analysis could be based on
an image-based tracking system together with some object classification and
anchoring algorithms.

In a real-time system such as a UAV, there may be stream reasoning
applications which are modeled and implemented using the DyKnow [1, 2]

1

2 Introduction

Output StreamInput Stream Processor

Figure 1.1: A typical real-time system.

stream-based knowledge reasoning middleware. Dyknow models a streaming
application as a set of computational units connected by streams. A com-
putational unit represents a computation which takes one or more streams
as inputs and produces one or more streams as output. Each stream is as-
sociated with a policy which is a declarative representation of its desired
properties. Figure 1.1 shows how a typical real-time system which contain
input streams, reasoning units and output streams. An example application
could be reasoning over video streams to detect traffic violations for a UAV
monitoring an urban area. If the application is missing its deadline it can
lead to unwanted results such as traffic violations that are not detected.
Therefore we need to provide Quality of Service (QoS) guarantees for such
systems. QoS can be defined differently depending on what field we are
studying. For instance, in a shop the QoS can be customer satisfactions or
the different variety of products that the shop can offer and in a restaurant,
the QoS can be delivery time of the meals to the customers. In real-time
systems, there are many ways to measure the QoS, for example buffer re-
quirements, delays, CPU usage etc. and in this work we are interested in
studying how the delays of the stream reasoning applications behave because
the timing behavior for these streaming applications are not yet known.

1.1 Problem definition

The stream reasoning applications are running on a uniprocessor environ-
ment. Let τ = {T1, T2, . . . , Tn} denotes the set of stream reasoning applica-
tions running on this processor. Assuming that for each task Ti, the period
is Pi, the jitter is Ji, minimum inter-arrival distance Di where i = 1 . . . n.
We also assume that the best-case and the worst-case execution times of
a task Ti are given as BCETi and WCETi, respectively, where i = 1. . . n.
There is also an assumption that there can be more than one instance of
a task to arrive at the same moment. Here, the number of instance means
the number of copies of a certain task, where these instances have the same
period, jitter and minimum inter-arrival distance.

1. The problem is to develop a methodology for deriving a RTC per-
formance model, given a particular DyKnow stream application and

1.2 Motivation 3

a specific system specification. The system specification includes the
processor information as well as scheduling policies to be used.

2. How the RTC performance models can be used for design space explo-
ration of stream reasoning applications modeled using DyKnow. We
consider the following case when doing design space exploration.

(a) The dependence of the QoS on the number of instances with fixed
periods and jitters.

(b) The dependence of the QoS on the jitters with fixed periods and
number of instances.

(c) The dependence of the QoS on the periods with fixed jitters and
number of instances.

1.2 Motivation

One way to estimate the QoS is to conduct simulations. Computer based
simulation techniques can only model and simulate the behavior of a system
but cannot provide guarantees because these techniques can only simulate
a small part of the possible behaviors of a system. Moreover this method
is time consuming and it is costly to build and maintain complex models.
Therefore, it is necessary to perform a formal analysis of the system. This
can be done by doing a formal analysis of the whole system. The theory
used for the formal analysis is Real Time Calculus (RTC). This can be done
by using an abstract performance model by applying the RTC theory to
determine (i) when the system functions properly and (ii) the border where
the system may potentially have failures.

1.3 Related Works

RTC [3, 4] has been used as a general framework for analyzing different
system properties with respect to timing analysis, loads on various compo-
nents and on-chip buffer memory requirements of heterogeneous platform-
based architectures, in a single coherent way. The framework is shown to
be capable of formal analysis of different system properties in heterogeneous
platform-based design using different scheduling policies.

Wandeler and Thiele [5, 6] have applied RTC to different modular per-
formance analysis in an actual case study on an in-car radio navigation
system with several system architectures. The analysis based on the model
is efficient and suitable for early design space exploration due to its high
level abstraction. By the case study of an actual in-car radio system the
authors showed that the model is also suitable for modeling control-oriented
and distributed software-intensive systems. It has been shown that the

4 Introduction

abstract functionality models can be combined to modules for modular per-
formance analysis of an embedded system. RTC has also been used during
design space exploration as presented in [6]. In [7] Henia et al. proposed
a design space exploration tool flow based on SymTA/S. The tool supports
heterogeneous architectures, complex task dependencies and context aware
analysis. It determines system-level performance data such as end-to-end
latencies, bus and processor utilization, and worst-case scheduling scenar-
ios. SymTA/S furthermore combines optimization algorithms with system
sensitivity analysis for rapid design space exploration [7].

On board the UAV [1] there are several stream reasoning applications
modeled using the DyKnow stream-based knowledge processing middleware
[2]. The system uses metric temporal logic and chronic recognition to detect
complex situations such as take overs and intersection behaviors. Because
the UAV is a real-time embedded system and the computational resources
are limited, there is a need to analyze how to best use these resources in
order to guarantee the QoS of the applications.

1.4 Organization

The thesis is organized as follows. Chapter 1 gives a brief introduction on
the objective and methods to be used in the study. In Chapter 2, the con-
cepts and theories behind RTC are described. The design space exploration
framework is presented in Chapter 3. Chapter 4 provides the results of a
case study and Chapter 5 contains the conclusion of this thesis and some
future work suggestions.

Chapter 2

Real Time Calculus

When designing embedded real-time systems it is desirable to explore dif-
ferent possibilities as early in the design stage as possible. This requires
information from the system level performance analyses. RTC has been
widely used as formal analysis framework [3, 4, 5, 6] for analyzing and rea-
soning about real-time systems, especially streaming applications. RTC is
based on Network Calculus [8] and its basic concepts are also extended to
the domain of real-time embedded systems. The root of network Calcu-
lus is the theory of min-plus and max-plus algebra [4, 6]. The framework
supports timing analysis, load estimation and prediction of the memory
requirements. RTC requires an abstract performance model. This model
contains the necessary information regarding the resources, communication,
involved dedicated hardware/software components and also the architecture
itself. The input streams will be modeled as arrival curves whereas the re-
sources will be modeled as services curves. How the modeling of events and
resources is done, will be described in detail in the next section.

2.1 Events - Arrival curves

Let us define a data stream R(t) as a number of events in the time interval
[0,t). Assuming that the events arriving within any time interval is bounded
above by a right-continuous, non-negative, sub-additive function called up-
per arrival curve αu and lower arrival curve αl, respectively. R(t), αu and
αl are related by the following inequality

αl(t− 0) ≤ R(t) ≤ αu(t− 0)

where αl(0) = αu(0) = 0 at t = 0. This means that between a time
interval ∆ the minimum and maximum number of events will be αl(∆) and
αu(∆), respectively.

5

6 Real Time Calculus

events

3

t

events

α
l

α
u

4

∆
(b)(a)

∆’

Figure 2.1: Events in time domain and RTC.

In the time domain there are four events arriving within the time of 3
ms as shown in Fig. 2.1a. In RTC the events are modeled into two curves,
upper and lower arrival curves, respectively according to Fig. 2.1b. The
ring marked places shows how many events are arriving at the time interval
∆′ where ∆′ = 3. The events are modeled with the common pattern of
period, p, jitter, j and minimum inter-arrival distance, d. Here, period is
the distance between each event arrival, jitter is the deviation of the true
period of a certain event and minimum inter-arrival distance is the distance
between each event with jitter. Fig. 2.2a shows purely periodic events with
period p while Fig. 2.2b shows events with jitter j and minimum inter-arrival
distance d.

p

p j d

(a)

(b)

Figure 2.2: Parameter definitions for events in time domain.

2.2 Resources - Service curves 7

t

availability

3

availability

β
l

β
u

∆

(b)(a)
∆’

Figure 2.3: Resource in time domain and RTC.

2.2 Resources - Service curves

Similar to the upper and lower arrival curves, we denote the lower and upper
service curves as βl and βu, respectively. Let C(t) defines the available
reasoning power from a certain resource over the time interval [0,t). C(t),
βl and βu are related by the following inequality

βl(t− 0) ≤ C(t) ≤ βu(t− 0)

where βl(0) = βu(0) = 0. As shown in Fig.2.3a, the shaded marked
area is the available resource of a system between [0,3) ms while in RTC
this resource can be transformed into two curves, upper and lower service
curves, respectively as shown in Fig. 2.3b. The ring marked places shown
in Fig. 2.3b indicates the minimum and maximum resources at the time
interval ∆′ where ∆′ = 3.

2.3 Computing delays

Assuming a case with a single event that is bounded by an upper arrival
curve αu is processed on a resource bounded by a lower service curve βl,
then the maximum delay D (see Fig. 2.4) experienced by this particular
event can be found by applying the inequality

D ≤ sup∆≥0{inf{τ ≥ 0 : αu(∆) ≤ βl(∆ + τ))}}

The maximum delay is the maximum horizontal distance between the up-
per arrival curve, αu and the lower service curve, βl. When a certain event
stream is processed by a various number of components then the maximum
delay of each individual component can be summed together, resulting in
an end-to-end delay guarantee.

The events and resources can be modeled by applying the RTC theory.
This theory is implemented as a Matlab toolbox which allows you to eval-

8 Real Time Calculus

α
u

β
l

Maxmimum delay D

∆

Figure 2.4: The maximum delay of an event.

uate different system properties based on this theory. Some of its specific
functions used for this study will be described in the next section.

2.4 RTC implementations

2.4.1 Events

Events in RTC are modeled with the pattern of three parameters: period
(p), jitter (j) and minimum inter-arrival distance (d) of an event. Fig. 2.5
shows how different parameters for the RTC function rtcpjd(p,j,d). As can
be seen in the figure, if j = 0 then the upper and the lower arrival curves
represent a purely periodic event. This function models the event according
to these three parameters. Fig. 2.6 shows typical examples of arrival curves.
The arrival curves in Fig. 2.6a model a strictly periodic event, while the
arrival curves in Fig. 2.6b model a periodic event with jitter. Figures 2.6c
and 2.6d show a periodic event with bursts and an event stream with more
advanced timing behavior, respectively.

events

∆

2j

p

p-j p+j

α
l

p

p

p

α
u

Figure 2.5: Parameter definitions for events in RTC.

2.4 RTC implementations 9

0 10 20 30
0

2

4

6

∆

of

 e
ve

nt
s

0 10 20 30
0

2

4

6

8

∆

of

 e
ve

nt
s

0 50
0

5

10

15

∆

of

 e
ve

nt
s

0 50
0

5

10

15

∆

of

 e
ve

nt
s

a b

dc

αu

αu

αl

αu

αl

αu

αl
αl

Figure 2.6: Different events defined in RTC.

2.4.2 Resources

There are many functions that model different service curves (Fig. 2.7). Fig.
2.7a shows an example of a full service curve modeled with the RTC function
rtcfs(b), where b is the bandwidth. This function will create a full service
resource. An arrival task will be guaranteed with this resource as soon as
it arrives. Figure 2.7b shows a time division multiple access (TDMA) re-
source modeled with the function rtctdma(s,c,b) where s is the slot length
allocated on a resource with a total bandwidth b and a TDMA cycle c. Fig.
2.7c shows a bounded delay resource which can be created by using the
function rtcbd(d,b) where d is the maximum delay and b is the bandwidth.
A periodic service can be modeled with this function rtcps(s,p,b) where a
share of s is allocated within every period p, on a resource with a total
bandwidth of b is shown in Fig. 2.7d.

10 Real Time Calculus

0 5 10
0

5

10

∆

of

 c
yc

le
s

0 5 10
0

2

4

6

∆

of

 c
yc

le
s

0 5 10
0

5

10

15

∆

of

 c
yc

le
s

0 10 20
0

5

10

∆

of

 c
yc

le
s

c

a b

d

βu

βu

β l
βu

β l

β l

βu

β l

Figure 2.7: Different resources defined in RTC.

2.4 RTC implementations 11

2.4.3 Scheduling methods

There are several scheduling policies implemented on-board the UAV such
as first-in-first-out (FIFO) and fixed-priority (FP). FIFO is a scheduling
policy which is based on the order of arrival of the tasks. The first tasks
arrive will be assigned the highest priority while the task arrive last will be
assigned lowest priority. FP is also a scheduling policy which is based on
preassigned priorities of the tasks. Tasks running with both FIFO and FP
policy are preemptive which means if a lower priority task is running and a
higher priority task arrives, the higher priority task will be granted access to
the resource. Following is a more detailed implementation of the scheduling
policies. FIFO and FP are implemented as FIFO [4] component and Greedy
Processing Component (GPC) [4], respectively.

First in first out

The output of a first-in-first-out (FIFO) processing component is calculated
by the RTC function for the case of two events rtcfifo(α1, ed1, α2, ed2, β),
where α1 and α2 are the two arrival curves with corresponding execution
demands ed1 and ed2, respectively, and the service curve β. In this case the
events are processed in the order of their arrival at the component.

[α′1 del1 buf1 α
′
2 del2 buf2 β

′] = rtcfifo(α1, ed1, α2, ed2, β)

The function computes the output arrival curves, the worst-case delays
for the events, the necessary buffer requirements and the remaining service.
Here, the execution demand ed is a matrix containing the worst-case and
the best-case execution demands [wced bced]. The execution demands can
be a scalar in this case if wced = bced (worst-case execution demand =
best-case execution demand). This function will issue a warning if the set
of events is not schedulable.

Fixed priority

For fixed priority (FP) scheduling, an abstract component known as GPC
will be used to model the execution of tasks on a single resource. The
GPC is a component that is triggered whenever an event is available on the
input event stream (described by the arrival curve α) and produces a single
output event stream (described by the arrival curve α′). At every event
arrival, a task is instantiated to process the incoming event [9]. Considering
an example function with two events

[α1′u α1′l β1′u β1′l del1 buf1]= rtcgpc(α1u α1l β1u β1l ed1)
[α2′u α2′l β2′u β2′l del2 buf2]= rtcgpc(α2u α2l β1′u β1′l ed2)

The function will process each event individually and the resource left
after reasoning the first event will be available for the next event. The

12 Real Time Calculus

function rtcgpc takes the upper and lower arrival curve αu, αl as input, with
corresponding execution demand ed and a service curve β. Here, the matrix
ed also contains two values, worst-case and best-case execution demands
[wced bced]. As a result, we obtain the output arrival curves, the worst-case
delays for the events, the necessary buffer requirements and the remaining
service for the next event. The execution demands for FP can be reasoned
in the same way as FIFO component.

Chapter 3

A design space exploration
framework

Design space exploration is an essential part during a design and there are
many iterations over a large space of configurations until the optimal solution
is achieved. As shown in Fig. 3.1, we can vary the application data in
the Applications block or we can change to different architectures in the
Platforms block or even change to different scheduling algorithms in the
Scheduling Policies blocks. Each time we change a certain input to one of
these three blocks, we will get a new RTC performance model.

Applica ons Pla!orms

Scheduling

Policies

Analysis

Analysis

Results

Figure 3.1: Design space exploration steps.

We have to manually edit the inputs to these performance models and

13

14 A design space exploration framework

this can be a time consuming task if the data is bounded over a large inter-
val. Therefore we can automate this process by automatically generate all
the necessary combination of data and RTC performance models.

Figure 3.2 shows a high level view of the proposed framework that con-
tains four essential parts. The structure of the design space exploration
remains the same but there are two new blocks added, Program block and
DyKnow application data block. By entering a number as input to the
program, different files containing different combinations of the tasks are
generated. The number specifies how large range a certain parameter is var-
ied. For each task there are four parameters: period, jitter, minimum inter-
arrival distance, WCET and BCET. The RTC performance model contains
the following blocks: DyKnow application data, Applications, Platforms and
Scheduling Policies. The RTC performance model will be described in more
detail in the next section.

Applica�ons Pla orms

Scheduling

Policies

Analysis

Analysis

Results

Program
DyKnow

applica�on data
a number

Figure 3.2: Block view of the suggested design space exploration framework.

15

Algorithm 3.0.1: RTC(n)

n← Input
for i← 0 to n

reset starting point task 2
GenT1(i)
for j ← 0 to n

reset starting point task 3
GenT2(j)
for k ← 0 to n

reset starting point task 4
GenT3(k)
for l← 0 to n

GenT4(l)
GenPerfModel(n)

The Program block in Fig. 3.2 contains the program-code that generates
all the possible combinations of the task data and the performance models.
The program is compacted into the pseudo-code as shown in algorithm 3.0.1.
There are four nested loops in algorithm 3.0.1. Each for loops will generate
data corresponding to each task. At the end of the algorithm, the function
GenPerfModel(n) generates all the performance models corresponding to
the case you want to study. Fig. 3.3 shows an example of how the tasks
were arranged if we want to have different combinations of the tasks when
varying a certain parameter. As shown in Fig. 3.3, the periods are varied
according to column one, five and nine.

Figure 3.3: Example on how combinations of different task parameters are
arranged.

16 A design space exploration framework

3.1 The performance model

In this section, we propose and construct two models based on the schedul-
ing methods FIFO and FP and the problem formulation mentioned at the
introduction. Details regarding each model are described later in this chap-
ter.

Algorithm 3.1.1: [del buf util] = Perf(case)

case← Input
switch case
case = period
construct the curves
calculate [del buf util]
save to file

case = jitter
construct the curves
calculate [del buf util]
save to file

case = instance
construct the curves
calculate [del buf util]
save to file

We can also have a closer look at Applications, Platforms and Scheduling
Policies blocks in Fig. 3.2 which contains the performance models (the
RTC code) that were generated by the program in the Program block. The
RTC code for the performance analysis can be described by the pseudo-code
in algorithm 3.1.1. There will be three different cases for each scheduling
methods, variations of the periods, jitters and the number of instances. In
each case, the datafile that was generated from the algorithm 3.0.1 will be
used to create arrival curves and service curves. The function rtcfifo and
rtcgpc for the calculation of the matrix containing the information of how
the delays, buffers and utilization behaves. During the calculation of the
matrix [del, buf, util], if any of the values turn out to be infinite, then these
values will be automatically converted to a reasonable high number. For the
visualization of the data we receive from the experiments, we use two other
Matlab toolboxes, Curve Fit and Surface Fit.

3.1.1 FIFO model

Considering a FIFO component with n event streams and one resource as
in Fig 3.4. For each set of incoming event streams αi,∀i = 1 . . . n to the

3.1 The performance model 17

FIFO component, edi,∀i = 1 . . . n is given as a matrix containing the worst-
case and best-case execution demands and the service curve β. The event
streams are arriving at the component all at the same time but the one that
arrives first will get the chance to get processed first. The available resource
for all the event streams in this model is the processor. As outputs of this
model we obtain three different matrices containing the delays, the buffer
requirements and the remaining services.

ed1

ed2

ed3

edn-1

edn

α1

α2

α3

αn

.

.

.

βCPU

α’1

α’2

α’3

α’n-1

α’n

.

.

.

β’CPU

F
IF

O
 C

o
m

p
o

n
e

n
t

Figure 3.4: Block view of the suggested FIFO model.

18 A design space exploration framework

3.1.2 FP model

As mentioned in Chapter 2, the FP scheduling is using the greedy processing
component [4]. Considering a FP model with n event streams, αi,∀i =
1 . . . n and a resource β1 as shown in Fig 3.5. For each set of incoming event
streams, edi,∀i = 1 . . . n is given as a matrix containing worst-case and best-
case execution demands. Compared to the previous model, the event streams
in this model are processed in a greedy manner, that means for example,
the event stream α1 has the highest priority and will have full access to the
resource βCPU . The remaining resource, β′1, is the available resource for the
incoming event stream α2 when the event stream α1 finishes. This process
continues until all event streams are processed. This may also result in not
enough resources available for the lower priority tasks. As outputs of this
model we obtain three different matrices containing the delays, the buffer
requirements and the remaining services.

GPCGPC

GPCGPC

GPCGPC

GPCGPC

ed1

ed2

edn-1

edn

α1

α2

αn-1

αn

.

.

.

.

.

.

βCPU

β’1

β’n-1

β’n

α’1

α’2

α’n-1

.

.

.

α’n

Figure 3.5: Block view of the suggested FP model.

Chapter 4

Case study

In this chapter we apply the proposed design space exploration framework in
the previous chapter for two different cases. There are many design spaces,
such as timing, resource usage, energy consumption, etc., to be explored. As
mentioned in Chapter 1, we want to study the timing quality, in particular
the delays of the stream reasoning applications. We have constructed two
general performance models (FIFO and FP) in the previous chapter. The
analysis is conducted at first over a large range of data with large granularity
between each iteration then reduce the resolution down to study important
parts with more detailed granularity, if there exists such a range.

4.1 Experimental setup

The actual hardware platform in this case is a Pentium III with a processor
speed of 700 MHz. The applications are modeled using DyKnow [2]. There
is one stream with logical formula: Always Not p Implies Eventually Always
p. This stream contains states. In each state a different value is assignged
to the variable p in the logical formula. When the state in the formula is
updated, we get a new task. These are the tasks that we have defined in the
problem formulation in Chapter 1. Updating the formula requires different
amount of timing depending on what has happened before. This can be
modeled with one task per state of the formula updating [1]. The events
are modeled according to the common event pattern of (p,j,d) as mentioned
earlier and the default information are given in Tables 4.1 and 4.2.

Based on the default data we roughly estimate the range of task pa-
rameters which is of interest to the analysis. The tasks are performed with
repeating parameters and all their possible combinations. The combination
of the task parameters can be arranged as shown in Fig. 3.3. For both
scheduling methods we vary the periods, the jitters and the number of in-

19

20 Case study

Task Period Jitter WCET

T1 70 0 0.07
T2 60 0 0.06
T3 30 0 0.03

Table 4.1: Default task information for First-in-First-out scheduling.

Task Period Jitter WCET BCET

T1 70 0 0.07 0.045
T2 60 0 0.06 0.03
T3 30 0 0.06 0.06
T4 30 0 0.03 0.03

Table 4.2: Default task information for Fixed-Priority scheduling.

stances. When changing the number of instances (the number of instances
here means how many copies of a certain tasks that are executed at a certain
time), the WCET and BCET are affected (see example 4.1). Since Matlab is
ignoring the infinite values, all infinite numbers are automatically converted
to a high number. The Matlab version used for this study is R2010b.

Example 4.1

The number of instances means the number of copies of that task. All
instances are considered as a single task but the total worst-case execution
time is affected. Considering an example task with WCET of 30 ms, we run
1000 instances of that task, then the WCET will be 30× 10−3× 103= 30 s.

4.2 First in first out analysis

In this section, we present the results after the formal analysis with the
FIFO scheduler according to Fig. 3.4. We consider three cases with varying
(i) the number of instances, (ii) the periods and (iii) the jitters of all three
tasks.

Case 1 - Instance variation

In this case, we vary the number of instances according to Table 4.3. The
number of instances is varied between 1 and 50. When varying the number
of instances, the granularity is 5. The periods are fixed at the default periods
which presented in Table 4.1 and the jitters are fixed at zero for all three
tasks.

4.2 First in first out analysis 21

Task Period Jitter WCET

T1 70 0 0.07 (1. . . 50)
T2 60 0 0.06 (1. . . 50)
T3 30 0 0.03 (1. . . 50)

Table 4.3: Task set when varying the number of instances.

With fixing the periods and jitters, the delays of the three tasks are
found to increase linearly with increasing the number of instances.

Case 2 - Period variation

For the first case we vary the periods of all tasks according to Table 4.4.
The number of instances is fixed to 10 and the jitter is fixed at zero for all
tasks. We guess the range of the periods which might be of interest for this
study which is between 5. . . 70 ms. For each analysis, the periods are varied
with a granularity of 5 ms.

Task Period Jitter WCET

T1 5. . . 70 0 0.7
T2 5. . . 70 0 0.6
T3 5. . . 70 0 0.3

Table 4.4: Task set when varying the periods.

Case 3 - Jitter variation

For this case we vary the jitters of all the three tasks according to Table
4.5. The range which the jitters was varied is between 0 and 70 ms. The
granularity of the jitter variation is 5 ms. We keep the number of instances
fixed at 10 like in the case 1 and the periods for the three tasks are fixed at
the default periods presented in Table 4.1.

Task Period Jitter WCET

T1 70 0. . . 70 0.7
T2 60 0. . . 70 0.6
T3 30 0. . . 70 0.3

Table 4.5: Task set when varying the jitters.

For both period and jitter variations we can conclude as two different
cases: (i) jitter < period and (ii) jitter ≥ period.

22 Case study

Case (i): jitter < period (including the case for jitter = 0 and the periods
varied between 5. . . 70) the delays of all the tasks are always 1.6 ms no matter
the change of periods or jitter.

Case (ii): jitter ≥ period the delays of all the tasks change to a different
value but the delays are still the same for all three tasks (see example 4.2).

From here we can make a conclusion which is only true in this study that
FIFO scheduling is not a good option for the DyKnow applications because
we can not distinguish between the delays of the tasks. Furthermore we can
not know which task have higher priority, since the delays are same for all
the tasks.

Example 4.2

Considering two tasks with the following parameters in order to explain
why the delay of task 3 did not vary despite the variation of the periods and
jitters.

• Task 1: P1 = 3 ms, J1 = 0, minimum inter-arrival distance = 0 and
execution demand = 1 ms

• Task 2: P2 = 4 ms, J2 = 0, minimum inter-arrival distance = 0 and
execution demand = 2 ms

1. First case: we schedule two tasks using the FIFO component with
task 1 arrives first and task 2 arrives just right after. This means the
worst case delay for task 2 would be the sum of the execution demands
of both task 1 and task 2, which is 3 ms.

2. Second case: now considering the opposite of case 1 i.e., task 2 arrives
first. This will also result in the same sum of the delays for the two
tasks (3 ms).

4.3 Fixed priority analysis 23

4.3 Fixed priority analysis

In this study, we deal with four tasks by applying the Fig. 3.5 proposed
in Chapter 4 and using the task information from Table 4.2. We study the
influence on the delay of task 3 by varying the parameters of tasks 1 and 2
while keeping the parameters of task 3 fixed. When we monitor the impact
on the delay of task 3, the delay of task 4 will be ignored because it is the
lowest priority task and does not affect any other tasks. We also consider
three cases with varying (i) the periods, (ii) the jitters and (iii) the number
of instances for all four tasks.

Case 1 - Period variation

In this case, the periods for all four tasks are varied according to Table 4.6.
We simply guess the range of the period which we think is interesting which
is between 5 and 70 ms. The same granularity has been used like case 1
with the FIFO scheduler which is an interval of 5 ms between each analysis.
The number of instances of all four tasks are fixed at 100 and the jitters of
the four tasks are fixed at zero.

Task Period Jitter WCET BCET

T1 5. . . 70 0 7 4.5
T2 5. . . 70 0 6 3
T3 5. . . 70 0 6 6
T4 5. . . 70 0 3 3

Table 4.6: Task set when varying the periods.

We are interested in studying two cases: 1) task 3’s maximum delay, D3

with task 3’s period fixed at different values and 2) the maximum delays
for all four tasks when their periods are set to the same value. For all the
cases of period variations, D3 never exceed 59 ms so therefore after 59 ms we
consider the delay is infinite and will be set to 60 ms. D3 will be represented
by both 2D- and 3D-graphs. Our experiments show that with the period
of task 3, P3, fixed at 5 ms, its delay becomes infinite for all values of P1

and P2 in the range 5-70 ms. As can be seen in Fig. 4.1a, if P1 and P2 are
larger than 30 ms, D3 will be stable which is the dark-blue area in the Fig.
4.6. When P1 and P2 are less than 15 ms, D3 approaches infinite values,
consequently the dark-red region as shown in the Figure 4.6.

24 Case study

10 20 30 40 50 60 70

10

20

30

40

50

60

70

Period task 1 (ms)

P
er

io
d

ta
sk

 2
 (

m
s)

10 20 30 40 50 60 70

10

20

30

40

50

60

70

Period task 1 (ms)

P
er

io
d

ta
sk

 2
 (

m
s)

(a) (b)
Figure 4.1: Delay for task 3, with period P3 fixed at (a) 10 ms and (b) 15
ms.

The delay-graphs will be shown for P3 between 10ms and 55 ms because
below 10 ms, D3 will always be infinite and above 55 ms D3 will be similar
to two previous graphs. From Figures 4.1-4.5, D3 are represented with 2D
graphs (where x-axis is variation of P1, y-axis is variation of P2 and the
contour of D3 depending on P1 and P2) with three different regions where
P3 is fixed at different values. The dark-red area is where D3 is infinite,
the dark-blue area is where D3 is stable and the line that clearly distinguish
these two regions is where D3 may potentially get infinite.

Fig. 4.1a shows D3 with its period being fixed at 10 ms while P1 and
P2 vary in the range of 5-70 ms. This also means that we can have many
different variation of P1 and P2, but there are trade-offs. Comparing the
case when P1 is 25 ms and P2 is 50 ms and the case when P1 is 35 ms and P2

is 30 ms, the total period of three tasks is 85 ms and 75 ms, respectively. We
notice here that by the later choice we can already save 10 ms of resource
usage. When P3 increases from 10 ms to 15 ms the stable region of D3

also increases which can be seen in Fig. 4.1b. Here we also have many
possibilities of the choices of P1 and P2. Consider the comparison of the
case when P1 is 15 ms and P2 is 45 ms with the case when P1 is 25 ms
and P2 is 20 ms, the total period of three tasks here is 75 ms and 60 ms,
respectively. Here we spared 5 ms more compared with the case when P3

is 10 ms and D3 is still in the stable region. If recall from Chapter 3 at
requirement 2a, when varying the periods the following condition Di ≤ Pi

should hold. In this case the dark-blue region depicts D3 stable at 19 ms
which is larger than P3.

4.3 Fixed priority analysis 25

10 20 30 40 50 60 70

10

20

30

40

50

60

70

Period task 1 (ms)

P
er

io
d

ta
sk

 2
 (

m
s)

10 20 30 40 50 60 70

10

20

30

40

50

60

70

Period task 1 (ms)

P
er

io
d

ta
sk

 2
 (

m
s)

(a) (b)
Figure 4.2: Delay for task 3, with period P3 fixed at (a) 20 ms and (b) 25
ms.

10 20 30 40 50 60 70

10

20

30

40

50

60

70

Period task 1 (ms)

P
er

io
d

ta
sk

 2
 (

m
s)

10 20 30 40 50 60 70

10

20

30

40

50

60

70

Period task 1 (ms)

P
er

io
d

ta
sk

 2
 (

m
s)

(a) (b)
Figure 4.3: Delay for task 3, with period P3 fixed at (a) 30 ms and (b) 35
ms.

With P1, P2 varied between 5-70 ms and P3 is fixed at different values
between 20-35 ms, the stable region for D3 does not changes much compared
to when P3 is fixed at 15 ms, which can be seen in Figures 4.2-4.3. As shown
in Fig. 4.2a, if P1 and P2 is selected as 25 ms and 15 ms, respectively, P3

is fixed at 20 ms. The total period of all three tasks is 60 ms and D3 is 19
ms which is smaller than P3. Consider the case when P3 is fixed at 25, 30
and 35 ms with P1 and P2 is selected to 20 ms and 15 ms, respectively, D3

behaves the same way as the case when P3 is fixed at 20 ms.

26 Case study

10 20 30 40 50 60 70

10

20

30

40

50

60

70

Period task 1 (ms)

P
er

io
d

ta
sk

 2
 (

m
s)

10 20 30 40 50 60 70

10

20

30

40

50

60

70

Period task 1 (ms)

P
er

io
d

ta
sk

 2
 (

m
s)

(a) (b)
Figure 4.4: Delay for task 3, with period P3 fixed at (a) 40 ms and (b) 45
ms.

10 20 30 40 50 60 70

10

20

30

40

50

60

70

Period task 1 (ms)

P
er

io
d

ta
sk

 2
 (

m
s)

10 20 30 40 50 60 70

10

20

30

40

50

60

70

Period task 1 (ms)

P
er

io
d

ta
sk

 2
 (

m
s)

(a) (b)
Figure 4.5: Delay for task 3, with period P3 fixed at (a) 50 ms and (b) 55
ms.

With P1, P2 varied between 5-70 ms and P3 is fixed at different values
between 40-55 ms, the stable region for D3 does not changed much com-
pared to when P3 is fixed at 35 ms, which can be seen in Figures 4.4-4.5.
As shown in Fig. 4.4a, if P1 and P2 is selected as 25 ms and 15 ms, re-
spectively, P3 is fixed at 40 ms. The total period of all three tasks is 80 ms
and D3 is 19 ms which is smaller than P3. Consider the case for when P3 is
fixed at 45, 50 and 55 ms with P1 and P2 are selected to 20 ms and 15 ms,
respectively, D3 behaves the same way as the case when P3 is fixed at 40 ms.

4.3 Fixed priority analysis 27

20

40

60

20

40

60

0

20

40

60

80

Period task 1 (ms)Period task 2 (ms)

D
el

ay
 ta

sk
 3

 (
m

s)

Figure 4.6: Delay for task 3, with P3 period fixed at 40 ms.

So far we have only displayed 2D-graphs of D3. Fig. 4.6 shows D3 when
fixing P3 at 40 ms while P1 and P2 are varied between 5-70 ms. The reason
we only show a 3-D graph of D3 with P3 fixed at 40 ms is because we choose
this period to be the default one. From the designer’s point of view this 3D
graph is not as straight forward as the 2D graphs. We can see that on the
border between the stable delay region and the infinite delay region there
are observation points that is interesting to study which can be carried out
by varying a more detailed granularity around that region.

10 20 30 40 50 60 70
0

10

20

30

40

50

60

Period task 1−4 (ms)

D
el

ay
 (

m
s)

 Delay (task 1)
 Delay (task 2)
 Delay (task 3)
 Delay (task 4)

Figure 4.7: Delay of four tasks with period variation in the range 5-70 ms.

Now we consider the influence of the periods P1-P4 on the delay of each
task. The x-axis in Fig. 4.7 shows when the periods of all four tasks are
set at the same value while the y-axis shows the delay of each task. The

28 Case study

periods are varied in the range 5-70 ms. As can be seen in the figure, if the
period of all four tasks is smaller than 10 ms the resulting delay of T2−4

already becomes infinite and hence the system will not work. Reasoning of
two tasks requires the period of task 1 and task 2 to be at least 12 ms or
larger P1,2 ≥ 12 ms. For the case with three tasks, as already discussed
previously, a finite delay of task 3 is ensured if the period of all three tasks
are larger than 20 ms, P1,2,3 ≥ 20 ms. As shown in the figure, a finite delay
for all four tasks can be guaranteed if the periods of all four tasks is in the
range 25 ≤ P1,2,3,4 ≤ 70 ms. Thus, in the case of four tasks, choosing all
the periods P1,2,3,4 of 25 ms can guarantee minimal resource usage.

4.3 Fixed priority analysis 29

Case 2 - Jitter Variation

In this case, we vary the jitter of task 1, J1 and task 2, J2, and monitor how
their variation affects the delay on task 3. We fix the number of instances of
all the three tasks at 100 and the periods at zero. Since the default jitters
for all the three tasks are zero, the lower limit of the jitters should be zero.
The upper limit is 70 ms, because 70 ms is the longest period out of the
three. In this case, when we are studying the delay of task 3 then we are
ignoring task 4 because it does not have any affects on the higher priority
tasks.

Task Period Jitter WCET BCET

T1 40 0. . . 70 7 4.5
T2 40 0. . . 70 6 3
T3 40 0. . . 70 6 6
T4 40 0. . . 70 3 3

Table 4.7: Task set when varying the jitters.

0

20

40

60

0

20

40

60

0

20

40

60

80

Jitter task 1 (ms)Jitter task 2 (ms)

D
el

ay
 ta

sk
 3

 (
m

s)

Figure 4.8: Delay for task 3, with jitter fixed at 10 ms in 3D-view.

In the case of jitter for task 3 being fixed at 5 ms, the delay for task 3,
D3 varies as shown in Figures 4.8. D3 first increases and then stays constant
for an amount of time which can be seen as different plateaus in the figure.
D3 will keep increasing if J1 and J2 increases. The reason for why D3 is
increasing as different plateaus is because, if we allow more jitter of higher
priority tasks, we allow more higher priority tasks to arrive and therefore
the lower priority task (in this case T3) has to wait till both T1 and T2

finishes running. In some range where we vary the jitter, it does not affect
more instances of higher priority tasks to arrive and therefore we can see a

30 Case study

constant plateau.

Figure 4.9 shows the delay for all three tasks with the same jitter. The
x-axis in the figure represents the jitters of all four tasks are set at the same
value while the y-axis shows the delay of each task. As shown in the figure,
the delays increase accordingly with the variation of the jitters. If we set
the same jitter of all the three tasks and vary them with the same amount,
the delays of all the four tasks change similarly to the case when fixing the
jitter of task 3 (in Fig. 4.8)

0 10 20 30 40 50 60 70

10

20

30

40

50

60

70

80

Jitter task 1−4 (ms)

D
el

ay
 (

m
s)

 Delay (task 1)
 Delay (task 2)
 Delay (task 3)
 Delay (task 4)

Figure 4.9: Delay of four tasks with jitter variation in the range 0-70 ms.

Throughout the variations of J1 and J2, D3 behaves in similar pattern.
D3 is raised upwards in the Z-direction.

4.3 Fixed priority analysis 31

Case 3 - Instance variation

In this case, we study the change of the delays with respect to the variation
of the number of instances with fixed periods and jitters of all the three tasks
at 40 ms and zero, respectively. The minimum number of instances for each
task is set to 1 while the maximum number of instances can be estimated
from the WCETs of all four tasks (0.045+0.03+0.06+0.03= 0.165 ms) and
their fixed period (40 ms). The maximum number of instances is estimated
to be 40/0.165 = 242 (∼ 300) and is rounded to the nearest hundred. The
granularity of the number of instances variation is 20.

Task Period Jitter WCET BCET

T1 40 0 0.07 (1. . . 300) 0.045 (1. . . 300)
T2 40 0 0.06 (1. . . 300) 0.03 (1. . . 300)
T3 40 0 0.06 (1. . . 300) 0.06 (1. . . 300)
T4 40 0 0.03 (1. . . 300) 0.03 (1. . . 300)

Table 4.8: Task set when varying the number of instances.

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

of instances task 1−4

D
el

ay
 (

m
s)

 Delay (task 1)
 Delay (task 2)
 Delay (task 3)
 Delay (task 4)

Figure 4.10: Delay of four tasks with instance variation in the range 1-300.

The result of the experiment is shown in Figures 4.10 and 4.11. We no-
tice that the delays increase linearly with increasing the number of instances
as can be seen in Fig. 4.10. The x-axis in the figure shows the number of
instances for all four tasks set at the same value while the y-axis is the delay
of each task.

32 Case study

The delay of task 3, D3, fixed at 100 instances and the number of in-
stances of task 1 and task 2 varying between 1 to 300. As can be seen in Fig.
4.11, that D3 increases linearly with increasing of the number of instances
of tasks 1 and 2 up to 300.

50
100

150
200

250
300

50
100

150
200

250
300

0

20

40

of instance task 1# of instance task 2

D
el

ay
 ta

sk
 3

 (
m

s)

Figure 4.11: Delay of task 3 with fixed number of instances in 3D view.

Chapter 5

Conclusion

In summary, we have used RTC for the design space exploration of the QoS
for stream reasoning applications on board a UAV using an abstract per-
formance model of the system. The dependences of the delays was studied
on

• the variation of the periods of tasks with fixed jitters and fixed number
of instances,

• the variation of the jitters with fixed periods of tasks and fixed number
of instances, and

• the number of instances with fixed periods and jitters

We applied the proposed design space exploration framework to two spe-
cific cases, FIFO and FP scheduling. For each case there are three different
design space exploration options.

For FIFO scheduling we found that the delays of the stream reasoning
applications did not vary despite the fact that the application parameters
(jitters and periods) varied. The reason is that the function implemented
(rtcfifo) in RTC toolbox is dealing with the worst-case behaviors and there-
fore the delays of each tasks is the total execution time of all the tasks.
When varying the number of instances the delays are increasing linearly.

For FP scheduling the most interesting part of the design space explo-
ration is when we vary the periods of these applications. There were many
possible options of the periods to choose and if we choose the periods of
all four tasks, P1,2,3,4 = 25 ms then the resource usage is optimal. When
looking at the 3-D graphs (period variations) of the delays, we also notice
that there are observation points on the border between stable and unstable
delay. The study can be focused even more with more detailed granularity
within this region. The delays of all four tasks are found to be different

33

34 Conclusion

plateaus staying constant for a amount of time and then increasing again
when varying the jitters. When varying the number of instances the delays
give rise to the same pattern as with a FIFO scheduler.

Future work

There are often challenges. The time it takes to get the results after each
experiment varies depending on which parameter we vary. For the case when
we vary the jitters and number of instances, the time is estimated to roughly
eight hours until all experiment finishes. Studying the impact of the periods
on the delays takes roughly one to one and a half week depending on the
granularity of the study.

In this thesis only the case of a uniprocessor environment was stud-
ied. The analysis can be extended to a multiprocessor environment. When
dealing with multiprocessor environment we can, for instance, estimate the
end-to-end delay of the task after being processed by different resources.

Three different matrices: the delay, buffer and utilization matrices can
be obtained from the RTC performance model which has been generated
for the analysis. We have done studies for the delays in this thesis. The
buffer requirements and CPU utilizations can also be studied in the same
approach as used for the delay.

The framework can be improved even further, for example, the different
constants declared at the beginning of the main code can be acquired as
input from the user instead. This will be more flexible and you do not need
to recompile the code when you make changes. As a start of this framework,
it is developed as a terminal based program. This can be improved by
making a graphical user interface.

Bibliography

[1] F. Heintz, DyKnow: A Stream-Based Knowledge Processing Middleware
Framework. PhD thesis, 2009.

[2] F. Heintz, J. Kvarnström, and P. Doherty, “Bridging the sense-reasoning
gap: DyKnow - Stream-based middleware for knowledge processing,”
Advanced Engineering Informatics, vol. 24, no. 1, pp. 14–26, 2010.

[3] S. Chakraborty, S. Künzli, and L. Thiele, “A general framework for
analysing system properties in platform-based embedded system de-
signs,” in Design Automation and Test in Europe (DATE), (Munich,
Germany), pp. 190–195, IEEE Press, 2003.

[4] E. Wandeler and L. Thiele, “Real-Time Calculus (RTC) Toolbox.”
http://www.mpa.ethz.ch/Rtctoolbox.

[5] E. Wandeler and L. Thiele, “Abstracting functionality for modular per-
formance analysis of hard real-time systems,” in Asia and South Pacific
Desing Automation Conference (ASP-DAC), (Shanghai, P.R. China),
pp. 697—-702, 2005.

[6] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse, “System archi-
tecture evaluation using modular performance analysis - a case study,”
Software Tools for Technology Transfer (STTT), vol. 8, no. 6, pp. 649 –
667, 2006.

[7] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis - the symta/s approach,” in IEE
Proceedings Computers and Digital Techniques, 2005.

[8] J.-Y. Le Boudec and P. Thiran, Network calculus: a theory of determinis-
tic queuing systems for the internet. Berlin, Heidelberg: Springer-Verlag,
2001.

[9] W. Haid and L. Thiele, “Complex task activation schemes in system level
performance analysis,” in Proceedings of the 5th IEEE/ACM interna-
tional conference on Hardware/software codesign and system synthesis,
CODES+ISSS ’07, (New York, NY, USA), pp. 173–178, ACM, 2007.

35

Avdelning, Institution
Division, Department

Datum
Date

Spr̊ak

Language

� Svenska/Swedish

� Engelska/English

�

Rapporttyp
Report category

� Licentiatavhandling

� Examensarbete

� C-uppsats

� D-uppsats

� övrig rapport

�

URL för elektronisk version
http://www.ep.liu.se

ISBN

ISRN

Serietitel och serienummer
Title of series, numbering

ISSN

Titel
Title

Design Space Exploration of the Quality of Service for Stream Reasoning Applications

Författare
Author

Sammanfattning
Abstract

Nyckelord
Keywords

An Unmanned Aerial Vehicle (UAV) is often an aircraft with no crew that can
fly independently by a preprogrammed plan, or by remote control. Several UAV
applications, like autonomously surveillance and traffic monitoring, are real-time
applications. Hence tasks in these applications must complete within specified
deadlines.

Real Time Calculus (RTC) is a formal framework for reasoning about real-
time systems and in particular streaming applications. RTC has its mathematical
roots in Network Calculus. It supports timing analysis, estimating loads and
predicting memory requirements.

In this thesis, a formal analysis of real-time stream reasoning for UAV appli-
cations is conducted. The performance analysis is based on RTC using an abstract
performance model of the streaming reasoning on board a UAV. In this study, we
consider two different scheduling methods, first-in-first-out (FIFO) and fixed priority
(FP). In the FIFO scheduling model the priorities of the tasks are assigned and
processed based on the order of their arrival, while in the FP scheduling model
the priorities of the tasks are preassigned. The Quality of Service (QoS) of these
applications is calculated and analyzed in a proposed design space exploration
framework.

QoS can be defined differently depending on what field we are studying and
in this thesis we are interested in studying the delays of the real-time stream
reasoning applications when (i) we fix jitters and number of instances and vary the
periods, (ii) we fix the periods and number of instances and vary the jitters, and (iii)
we fix the periods, jitters and vary the number of instances.

ESLAB, Software and Systems,
Department of Computer and Information Science
SE-581 83 Linköping, Sweden

August 9, 2012

-

LIU-IDA/LITH-EX-A–12/027–SE

-

August 9, 2012

Viet Ha Nguyen

××

real time calculus, RTC, quality of service, QoS, delays, design space explo-
ration

	Blank Page

