
Institutionen för Datavetenskap
Department of Computer and Information Science

Master’s thesis

Semantic Matching for Stream
Reasoning

by

Zlatan Dragisic

LIU-IDA/LITH-EX-A–11/041–SE

2011-10-03'

&

$

%
Linköpings universitet

SE-581 83 Linköping, Sweden

Linköpings universitet

581 83 Linköping

Institutionen för Datavetenskap
Department of Computer and Information Science

Master’s thesis

Semantic Matching for Stream
Reasoning

by

Zlatan Dragisic

LIU-IDA/LITH-EX-A–11/041–SE

2011-10-03

Supervisor: Fredrik Heintz
Department of Computer and Information Science
KPLAB - Knowledge Processing Lab

Examiner: Fredrik Heintz
Department of Computer and Information Science
KPLAB - Knowledge Processing Lab

På svenska

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare –
under en längre tid från publiceringsdatum under förutsättning att inga extra-
ordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ick-
ekommersiell forskning och för undervisning. Överföring av upphovsrätten vid
en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ
art.
Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den
omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna
sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i
sådant sammanhang som är kränkande för upphovsmannens litterära eller konst-
närliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se för-
lagets hemsidahttp://www.ep.liu.se/

In English

The publishers will keep this document online on the Internet - or its possible
replacement - for a considerable time from the date of publication barring excep-
tional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for your own use and to
use it unchanged for any non-commercial research and educational purpose. Sub-
sequent transfers of copyright cannot revoke this permission. All other uses of
the document are conditional on the consent of the copyright owner. The pub-
lisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be men-
tioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity, please
refer to its WWW home page:http://www.ep.liu.se/

© Zlatan Dragisic

Abstract

Autonomous system needs to do a great deal of reasoning during execu-
tion in order to provide timely reactions to changes in their environment.
Data needed for this reasoning process is often provided through a number
of sensors. One approach for this kind of reasoning is evaluation of tem-
poral logical formulas through progression. To evaluate these formulas it
is necessary to provide relevant data for each symbol in a formula. Map-
ping relevant data to symbols in a formula could be done manually, however
as systems become more complex it is harder for a designer to explicitly
state and maintain this mapping. Therefore, automatic support for map-
ping data from sensors to symbols would make system more flexible and
easier to maintain.

DyKnow is a knowledge processing middleware which provides the sup-
port for processing data on different levels of abstractions. The output from
the processing components in DyKnow is in the form of streams of informa-
tion. In the case of DyKnow, reasoning over incrementally available data
is done by progressing metric temporal logical formulas. A logical formula
contains a number of symbols whose values over time must be collected and
synchronized in order to determine the truth value of the formula. Mapping
symbols in formula to relevant streams is done manually in DyKnow. The
purpose of this matching is for each variable to find one or more streams
whose content matches the intended meaning of the variable.

This thesis analyses and provides a solution to the process of semantic
matching. The analysis is mostly focused on how the existing semantic
technologies such as ontologies can be used in this process. The thesis also
analyses how this process can be used for matching symbols in a formula to
content of streams on distributed and heterogeneous platforms. Finally, the
thesis presents an implementation in the Robot Operating System (ROS).
The implementation is tested in two case studies which cover a scenario
where there is only a single platform in a system and a scenario where there
are multiple distributed heterogeneous platforms in a system.

The conclusions are that the semantic matching represents an impor-
tant step towards fully automatized semantic-based stream reasoning. Our
solution also shows that semantic technologies are suitable for establishing
machine-readable domain models. The use of these technologies made the

iii

iv

semantic matching domain and platform independent as all domain and
platform specific knowledge is specified in ontologies. Moreover, seman-
tic technologies provide support for integration of data from heterogeneous
sources which makes it possible for platforms to use streams from distributed
sources.

Contents

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Background . 1
1.2 Goal . 2
1.3 Thesis outline . 3

2 DyKnow 5
2.1 Overview . 5
2.2 Basic Concepts . 6
2.3 Architecture in ROS . 8

2.3.1 ROS . 8
2.3.2 ROS implementation 9

2.4 DyKnow Federations . 11
2.4.1 Components . 12

2.5 Summary . 12

3 Semantic Technologies 15
3.1 Semantic Web . 15
3.2 RDF/RDFS . 16

3.2.1 Syntax . 17
3.3 Ontologies . 19

3.3.1 OWL . 20
3.3.2 Semantic mappings . 24

3.4 Summary . 27

4 Analysis 29
4.1 Semantic stream representation 29
4.2 Matching symbols to topics 34
4.3 Integrating data from multiple platforms 39
4.4 Design . 40
4.5 Related work . 42

v

vi CONTENTS

5 Implementation 47
5.1 Introduction . 47
5.2 Proposed solution . 47
5.3 Design . 48
5.4 Matching a formula to topics 51
5.5 Multiple Platform Scenario 53
5.6 Integration . 55
5.7 Summary . 57

6 Case studies 59
6.1 Single platform scenario . 59
6.2 Multiple platform scenario . 64
6.3 Discussion . 71

7 Performance evaluation 73
7.1 Test cases . 73
7.2 Test setup . 74
7.3 Results . 75
7.4 Conclusion . 83

8 Conclusion 85
8.1 Summary . 85
8.2 Future work . 86

Bibliography 89

A Acronyms 93

B Ontologies 95
B.1 RDF/XML representation of the ontology for platform 1 . . . 95
B.2 RDF/XML representation of the ontology for platform 2 . . . 101
B.3 RDF/XML representation of the ontology for platform 3 . . . 103

C Topic Specifications 107
C.1 XML representation of topic specifications for platform 1 . . 107
C.2 XML representation of topic specifications for platform 2 . . 108
C.3 XML representation of topic specifications for platform 3 . . 108

List of Figures

2.1 An example of a ROS computation graph. 9
2.2 DyKnow architecture in ROS. 10
2.3 An overview of the components of a DyKnow federation [17]. 11

3.1 Visualization of the ontology for the single platform scenario. 22
3.2 Visualization of the ontology of platform 2. 23
3.3 Visualization of the ontology of platform 3. 24

4.1 Process of semantic matching. 34
4.2 DyKnow architecture in ROS. 41

5.1 Components in ROS implementation of DyKnow. 48
5.2 Multiple Platform scenario - example. 54

6.1 Visualization of the ontology for the single platform scenario. 60
6.2 Visualization of the ontology for platform 2. 65
6.3 Visualization of the ontology for platform 3. 65

7.1 Varying number of concepts. 76
7.2 Varying number of irrelevant individuals. 77
7.3 Varying number of relevant individuals. 78
7.4 Varying number of irrelevant topic specifications. 79
7.5 Varying number of relevant topic specifications. 80
7.6 Varying number of features in the formula. 81
7.7 Comparing quantified and non-quantified versions of a formula. 82

vii

viii LIST OF FIGURES

List of Tables

6.1 Unary relations and argument types. 60
6.2 Binary relations and argument types. 61
6.3 Ternary relation and argument types. 61
6.4 Unary relations and argument types for platform 2. 65
6.5 Unary relations and argument types for platform 3. 66
6.6 Binary relations and argument types for platform 3. 66

7.1 Varying number of concepts. 75
7.2 Varying number of irrelevant individuals. 76
7.3 Varying number of relevant individuals. 77
7.4 Varying number of irrelevant topic specifications. 78
7.5 Varying number of relevant topic specifications. 79
7.6 Varying number of features in a formula. 80
7.7 Comparing quantified and non-quantified versions of a formula. 82

ix

x LIST OF TABLES

Listings

3.1 Bridge rule in XML. 25
3.2 Bridge rules in XML. 26
4.1 A topic specifying the features Altitude and Speed for the

sort UAV. 31
4.2 Formal grammar for SSLT . 31
4.3 Topic specifications in SSLT 32
4.4 Topic specifications in SSLT 33
4.5 DTD for the SSLT XML syntax. 35
4.6 Topic specifications in SSLT 36
5.1 Possible topics for feature Behind[car1, car2]. 52
5.2 CreateGroundingService service and relevant messages. 55
5.3 State Processor service and relevant messages. 56
6.1 Topic specifications in SSLT 61
6.2 Output from the Knowledge Manager (KM) for formula 1. . . 62
6.3 Output from the KM for formula 2. 63
6.4 Output from the KM for formula 3. 64
6.5 Mappings in XML. 66
6.6 Topic specifications for platform 2 in SSLT 67
6.7 Topic specifications for platform 3 in SSLT 67
6.8 Output from the KM for formula 1 in distributed system. . . 68
6.9 Output from the KM for formula 2 in distributed system. . . 69
6.10 Output from the KM for formula 3 in distributed system. . . 71
B.1 RDF/XML representation of the ontology for platform 1. . . 95
B.2 RDF/XML representation of the ontology for platform 2. . . 101
B.3 RDF/XML representation of the ontology for platform 3. . . 103
C.1 Topic specifications in XML. 107
C.2 Topic specifications for platform 2 in XML. 108
C.3 Topic specifications for platform 3 in XML. 108

xi

xii LISTINGS

Chapter 1

Introduction

This introductory chapter presents the background and goals of the thesis.
The chapter also describes the use-case scenarios used in the rest of the
thesis.

1.1 Background

Autonomous systems do a great deal of reasoning during execution. Some of
the functionalities in the system, such as planning, execution monitoring or
diagnosis require that the reasoning is done over incrementally available in-
formation. For example, when doing execution monitoring it is necessary to
continuously gather information from the environment to see if the changes
in the environment make the current plan invalid. The data for this kind of
reasoning is provided by sensors. However, there exists a large gap between
the numerical noisy data provided by the sensors and the exact symbolic
information often needed for reasoning.

DyKnow is a stream-based knowledge processing middleware framework
developed in the Artificial Intelligence and Integrated Computer Systems
Division (AIICS) within the Department of Computer and Information
Science (IDA) at Linköping University [17]. The main idea behind DyKnow
is to bridge the gap between sensing and reasoning. Therefore, DyKnow pro-
vides support for accepting inputs at different levels of abstraction and from
distributed sources. The output is provided in the form of sets of streams
which represent for example objects, attributes, events and relations in the
system [17].

In the fall semester of 2010 the CogRob group was formed. The aim
of the group’s projects is to make a Robot Operating System (ROS) imple-
mentation of DyKnow. ROS was chosen as a candidate for stream reasoning
because it is language independent, thin and can be used for large runtime
systems. Also, ROS is supported by a large community working on different
types of projects and problems in robotics. Given the modularity of the

1

2 CHAPTER 1. INTRODUCTION

software developed for ROS this poses an interesting prospect for further
extensions of robotic systems developed at AIICS.

The ROS implementation of DyKnow should allow evaluation of spatio-
temporal logical formulas over streams of information coming from multiple
sources in a distributed system. The evaluation of these formulas is needed
in order to support certain functionalities in a system, i.e. run-time verifi-
cation, complex event detection and spatio-temporal reasoning in general.

A temporal logical formula contains a number of variables whose values
over time must be collected and synchronized in order to determine the truth
value of the formula. In a system consisting of streams a natural approach
is to map each variable to a single stream. This works very well when there
is a stream for each variable and the person writing the formula is aware
of the meaning of each stream in the system. However, as systems become
more complex and if the set of streams or their meaning changes over time it
is much harder for a designer to explicitly state and maintain this mapping.
Therefore automatic support for mapping variables in a formula to streams
in a system is needed. The purpose of this matching is for each variable to
find one or more streams whose content matches the intended meaning of
the variable. This is a form of semantic matching between logical variables
and contents of streams. By adding this semantic matching DyKnow would
support semantic stream reasoning. The process of matching variables to
streams in a system requires that the meaning of the content of the data
streams is encoded and that this encoding can be used for matching the
intended meaning of variables with the actual content of streams.

1.2 Goal

The goal of this Master’s thesis is twofold. The first goal is to analyze
and provide a solution to the problem of semantic matching of the in-
tended meaning of symbols (variables) in logical formulas and the content of
streams. The analysis of the problem of semantic matching focuses on how
existing technologies for representing semantics can be used in the matching
process.

The second goal is to extend the ROS implementation of DyKnow with
support for this type of semantic matching. The extension of the ROS
implementation provides the following functionalities:

• it allows explicit definitions of the meaning of streams in ROS

• it uses these definitions to determine which streams are relevant for
variables in the formula

We suggest two scenarios which describe the need and use of semantic
matching for stream reasoning. These scenarios are used to test our solu-
tions.

1.3. THESIS OUTLINE 3

Single Platform Scenario

The Single Platform Scenario describes a situation where a system only has
one platform and therefore when it comes to the formula evaluation only
data streams from this platform can be used. As an example of this scenario
could be execution monitoring of an Unmanned Aerial Vehicle (UAV). One
way to achieve execution monitoring is to define a set of logical formulas
which capture the desired state of the system (i.e. the UAV should never
be closer than 3 meters from any building). If any of these formulas is
evaluated to false during execution then that means that the system is in
an undesired state and steps should be taken to correct this. Given that the
data is provided in the set of streams, an important step in the automation
of the process of formula evaluation is to provide a way of matching the
intended meaning of variables in the formula to the content of data streams.

Multiple Platform Scenario

This scenario deals with multiple platforms where each platform has its own
instance of DyKnow. Each platform should be able to cooperate with other
platforms in the system by using information which is distributed among
these platforms. The platforms can be either homogeneous or heteroge-
neous with respect to the way streams are specified on the different plat-
forms. This puts the requirement that platforms are capable of querying
both heterogeneous and homogeneous sources.

An example of this scenario in the domain of UAVs is the situation
where two unmanned aerial vehicles are monitoring traffic violations on a
road. The road is divided into two regions, one for each UAV. The use of
multiple platforms helps reduce uncertainty while the division of the road
makes it possible to monitor multiple potential traffic violations at the same
time. If we assume that the monitored traffic violation started in one region
and ended in the other one then in order for some platform to determine if
the violation actually happened it needs to cooperate with the other plat-
form which is responsible for the region where the violation ended [18]. The
reuse of data from distributed sources in this scenario would make it pos-
sible for platforms to follow the traffic violation from the beginning to the
end regardless of which region they were assigned initially. Therefore the
semantic matching should be capable of matching variables in the formula
to both local and distributed streams.

1.3 Thesis outline

Chapter 2 gives an overview of the DyKnow knowledge processing mid-
dleware. This includes basic concepts, architecture including the ROS
architecture and DyKnow Federations.

Chapter 3 describes the basic concepts of semantic technologies.

4 CHAPTER 1. INTRODUCTION

Chapter 4 analyses the problem of semantic matching.

Chapter 5 presents the design of the semantic matching component and
the way it can be integrated into the ROS implementation of DyKnow.

Chapter 6 presents two different case studies which cover the functionali-
ties and results of the implementation.

Chapter 7 evaluates the performance of the semantic matching component
in the ROS implementation of DyKnow.

Chapter 8 gives a short discussion and summary of the thesis together
with possible extensions.

Chapter 2

DyKnow

This chapter introduces DyKnow [17] which is a stream-based knowledge
processing middleware framework. It presents basic concepts and the archi-
tecture of DyKnow together with an overview of a possible implementation
in ROS. Finally, the chapter shortly describes DyKnow Federations.

2.1 Overview

Systems today have large amounts of data at their disposal. The data is
often available either through a variety of sensors or from the Internet.
However, it is most often incomplete and noisy. On the other hand, func-
tionalities such as execution monitoring and complex event detection often
require clear and symbolic knowledge about the real word. Therefore, in or-
der to use data from sensors in the aforementioned functionalities it should
be processed. The processing of this data is usually divided into a number
of distinct functionalities which are modeled as knowledge processes [17].
For example, an object recognition process might accept an image as input
and provide a set of recognized objects as output. To provide output some
knowledge processes require input information from multiple knowledge pro-
cesses. However, information needed for processing is usually incrementally
available and the actual processing can not be started until all the necessary
information has been acquired. To address this issue the information flow
between processing components can be modeled in terms of streams [17].
Therefore, in this case inputs and outputs of knowledge processes would be
in form of streams.

Given that a number of knowledge processes might use an output from
some process there must exist a mechanism for replicating streams. This
can be done via a stream generator to which knowledge processes need to
subscribe to. Subscription to stream generators also includes a policy which
specifies the desired properties of a stream such as delay and order.

DyKnow is a stream-based middleware framework and provides support

5

6 CHAPTER 2. DYKNOW

for modeling of knowledge processing and implementation of stream-based
knowledge processing applications. The applications can be represented as
a network of knowledge processes connected via streams [17]. The following
section gives an overview of components in DyKnow and describes how they
map to concepts in stream-based knowledge processing.

2.2 Basic Concepts

Domains used in DyKnow describe two different types of entities: objects
and features. Objects are building blocks of the world and can be both
abstract and non-abstract while features represent object properties.

DyKnow implements two knowledge processes: sources and computa-
tional units. Knowledge processes offer fluent streams generators which
produce fluent streams which comply with a certain fluent stream policy.
The rest of this section describes these concepts in more details.

Fluent stream

A fluent stream consists of a stream (set) of samples. Samples are triples of
the form 〈ta, tv, v〉 where ta is available time, tv valid time and v is a value,
which can either represent an observation or an approximation of some fea-
ture. Available time represents the time when the sample is available for
processing by the receiving process. Valid time, on the other hand, repre-
sents the time when the fact is true. It is obvious that the valid time and
the available time are most often not the same because a certain amount of
time is needed to do the processing of data. Therefore we can define the
delay of a fact to be the processing time, i.e. ta− tv. An example of a fluent
stream is the following set:

f = {〈1, 1, v1〉, 〈2, 1, v2〉, 〈4, 2, v3〉, 〈5, 6, v4〉}

In this case, the fluent stream f consists of four samples where each
sample is defined with an available time, a valid time and a value.

Source

A source represents a primitive process. Unlike other types of knowledge
processes, primitive processes do not require input streams. The input data
for these processes comes from the outside world, for example sensors or
databases. Primitive processes adapt this data and provide output in the
form of streams.

A function which represents a source maps time points to samples [17].
An example of a source is a process which adapts the data from sensors into
streams or processes which read an input from a user.

2.2. BASIC CONCEPTS 7

Computational Unit

A computational unit is a type of refinement process. A refinement process
represents a knowledge process which generates one or more new streams
of samples from one or more input streams. In the case of a computational
unit the output is only a single fluent stream. Computations in a compu-
tational unit are done each time a new sample from some input stream is
available. However, given that input streams might not produce samples
with the same available time, a computational unit uses the most recent
samples in the input streams which do not produce new samples at the time
of computations. An example of a computational unit is a process which
estimates the speed of an object based on the position of that object at
certain time points.

Fluent Stream Policies

In some scenarios receivers might impose constraints on the properties of
streams. For example, the receiver could have a requirement that the max-
imum delay of each sample is at most 2 ms. In order to impose desired
properties on the streams, DyKnow defines fluent stream policies. Fluent
stream policies make it possible to define 5 different types of constraints:

• change constraint - defines how consecutive samples relate to one an-
other. For example, it is possible to define that a sample needs to
differ in either value or time stamp from the previous sample. Change
constraint can also be used to restrict samples based on their valid
times. An example is the situation where valid times of two consec-
utive samples need to differ by value t which represents the sample
period.

• delay constraint - used for specifying maximum delay of a fluent stream
(the difference between available and valid time).

• duration constraint - used to specify a constraint on the valid times
of the samples in a stream, for example if a duration is defined to be
between time-point 200 and time-point 300 then samples with valid
times which are not in this interval will be filtered out.

• order constraint - used for specifying ordering of samples based on
their available times. For example, it is possible to specify an ordering
where each subsequent sample has a valid time larger or equal to the
valid time of the sample before it.

• approximation constraint - defines how the system deals with the sit-
uation when some of samples in a stream are missing or they do not
satisfy the policy. One way to deal with this problem is to produce
a sample based on the approximation of available samples. DyKnow
allows two types of approximation constraints: no approximation in

8 CHAPTER 2. DYKNOW

which case approximations are not allowed and most recent sample
where approximations are allowed and are made using the most recent
samples of available samples.

Fluent stream generator

Each knowledge process has a fluent stream generator which provides output
in the form of streams. The streams generated by a fluent stream generator
comply with the constraints defined by their fluent stream policies. This
makes it possible to produce a number of different streams from the same
input which are adopted to the needs of the receivers.

2.3 Architecture in ROS

2.3.1 ROS

ROS is a software framework for robotic software and as such it includes
appropriate libraries and development tools. However, it also provides low-
level device control and hardware abstractions which are the functionalities
of an operating system. The main goal of ROS is to ”support code reuse in
robotics research and development” [9]. The framework itself is multilingual
with the full support for C++, Lisp and Python. Each programming lan-
guage has its associated client library which provides the tools and functions
needed for developing ROS software.

The framework was made to be as thin as possible meaning that the ROS
software is easy to integrate with other frameworks [9]. ROS developers are
also encouraged to write libraries which reveal only the functional interfaces
while hiding unnecessary complexities. These libraries should not depend
on ROS thus making them reusable in other systems [24].

The software written for ROS is organized into packages which contain
nodes, libraries or configurations. Packages can be organized into stacks
providing certain ”aggregate functionality” [9].

Nodes represent computational processes in the system and are written
using the client libraries. The communications between nodes is done by
passing messages on topics using the XML-RPC where topics represent a
named bus. Therefore, in order for a node to communicate with other nodes
it needs to publish or subscribe to a certain topic. Messages in this case are
simple structures containing primitive types or nested structures. Arrays of
primitive types or arrays of structures (messages) are also allowed. Topics
support multiple subscribers and publishers, however each topic can be used
for publishing messages of only one type.

ROS also provides support for request/reply communication using ser-
vices. A service is defined as a combination of two messages, a request
message and a reply message. The node which provides a certain service
has an associated name used for discovery.

2.3. ARCHITECTURE IN ROS 9

The architecture of a system written for ROS is in the form of a Com-
putation Graph. The concepts in this graph are organized into a peer to
peer network. Taking this into account the Computation Graph requires
a discovery service. This is done through the ROS Master which provides
registration and lookup services to the nodes. Whenever a node wants to
publish something or provide a service it needs to advertise it with the Mas-
ter. Similarly, the nodes use the Master to find information about other
nodes and to properly set up the communication with them [9].

Figure 2.1: An example of a ROS computation graph.

Figure 2.1 gives an example of a ROS computation graph. It represents
a process which takes a position and estimates a speed of an object. If an
object’s speed is above some threshold a warning system publishes a warn-
ing message on a standard output. In order to make speed estimations the
/speed estimator node has to communicate with the /position estimator

node to acquire the current position of some object. This communication is
done over the /topics/positions topic. The /position estimator pub-
lishes new position estimations on this topic while the /speed estimator

node needs to subscribe to it in order to acquire the latest estimations.
Communication between the /speed estimator node and the /warning system

node is implemented in the similar manner through the /topics/speeds

topic. Finally, the builtin /rosout topic is used by the /warning system

node to publish warning messages to the standard output.

2.3.2 ROS implementation

The architecture of the ROS implementation of DyKnow is shown in Figure
2.2.

10 CHAPTER 2. DYKNOW

Figure 2.2: DyKnow architecture in ROS.

As the figure shows there are three main components in the system:
Stream Processor, Knowledge Manager and Formula Progressor. The un-
derlying ROS system keeps track of all available topics in the system. Topics
in ROS map to fluent streams in DyKnow. ROS also provides all the nec-
essary discovery services.

When it comes to actual applications which use DyKnow they usually
require data from a number of fluent streams at precise points in time.
However, fluent streams do not necessarily have the same valid times and
therefore not all of them are available at the time points as the application
needs them. To deal with this problem, the Stream Processor was introduced
into the architecture. The main task of the Stream Processor is to merge
and synchronize the required streams (topics) in the ROS system into a
single state stream. The state stream is defined as a stream of state samples
where state samples are samples which have state as a value, i.e. a tuple of
values.

The Knowledge Manager in this architecture is a mediator between the
Stream Processor and the Formula Progressor. The idea behind the Knowl-
edge Manager is to provide a service which returns a state stream name
(topic name) of a stream which contains the necessary data for formula pro-
gression. To achieve this the Knowledge Manager first extracts features from
the formula. These features are then checked against the defined topics to
find those which contain the relevant data. This information is then sent to
the Stream Processor which generates the state stream.

2.4. DYKNOW FEDERATIONS 11

If the state stream was successfully set up the Formula Progressor can use
it to acquire the data needed for evaluating formula using the progression.

2.4 DyKnow Federations

Many robotic applications require cooperation of multiple agents in order
to complete a certain mission or a task. Cooperation requires sharing and
merging of information from distributed sources. One approach most com-
monly used in multi-agent applications today uses a central node responsible
for merging and processing of information distributed among a number of
agents. However, this approach introduces a high communication overhead
and puts large requirements on the central node. DyKnow Federations use
a decentralized model in which each node does much of the computations
and processing locally.

In order to deal with the communication overhead, DyKnow Federations
proposes a model where each platform has its own DyKnow instance.

In multi-agent environments agents have to delegate some tasks or plans
to other agents in order to achieve cooperative tasks [17]. To deal with
this issue DyKnow Federation framework uses the delegation framework
from [11]. This framework requires that DyKnow instances on platforms
are treated as services which interact with each other using the speech-
act based interaction. Usually platforms have a number of agents with
a set of services which together with an Interface Agent form an Agent
level. Each platform also has a Platform specific level with the DyKnow
instance. The communication between layers is done through the interface
of the Gateway Agent while the communication between platforms (more
specifically agents) is done through the Interface Agent. Figure 2.3 gives an
overview of components in DyKnow Federation.

Figure 2.3: An overview of the components of a DyKnow federation [17].

12 CHAPTER 2. DYKNOW

The delegation framework deals with three different types of services:

• private - service available only to agents on the same platform

• public - available to all agents

• protected - service available to agents on the same platform or to
agents on other platforms but in this case communication is done
through the Interface Agent

In order to keep track of available services and allow for their discovery
the delegated framework uses a Directory Facilitator (DF) database. Each
platform has its own local instance of DF with the information about pro-
tected and private services local to that platform. Information about public
services are kept in the global DF.

2.4.1 Components

In order for a platform to participate in a federation DyKnow Federation, the
framework requires that it implements 3 components: DyKnow Federation
Service, Export Proxy and Import Proxy.

The DyKnow Federation Service is the central component in the DyKnow
Federation framework. It is used for both finding and sharing information
among DyKnow instances. Each platform which implements this compo-
nent is registered with the local DF. Therefore, the DF can be used for the
discovery of other platforms participating in the federation. The commu-
nication between platforms is done indirectly through the Interface Agent.
In other words, if a platform A wants to communicate with platform B,
the request is sent to the Interface Agent on platform B which forwards the
request to the DyKnow Federation Service on that platform. This indirec-
tion is required because the DyKnow Federation Service is implemented as
a protected service. However, one issue with this kind of communication is
that platforms should be aware of the labels of available services (stream
generators) on the other platform. A proposed solution is to form a set of
global semantic labels to which the local labels would be mapped to. Thus
if platform A needs information about current altitude of platform B it can
translate its local label into an agreed semantic label which is used in the
request.

The Export Proxy deals with the subscriptions to stream generators on
a platform. It implements the export method which is used to set up a
subscription for a receiver. On the receiving end the Import Proxy is used
for receiving streams and making them locally available.

2.5 Summary

Data provided by sensors is usually noisy and incomplete. On the other
hand, autonomous systems require clear and symbolic knowledge in order

2.5. SUMMARY 13

to implement certain functionalities. Therefore, in order to make use of
sensor data it should be processed. A natural approach is to model the
sensor data as streams. In this case the processing could be implemented as
a set of knowledge processes where each knowledge process has some distinct
functionality and has input and output in the form of streams.

DyKnow is a stream-based middleware framework and provides support
for modeling of knowledge processing and implementation of stream-based
knowledge processing applications. It defines two types of entities, objects
and features where features represent building blocks of the world and fea-
tures are object properties. DyKnow also provides support for sharing and
merging of information from multiple distributed sources through DyKnow
Federations.

This chapter has dealt with the ROS implementation of DyKnow. ROS is
a software framework for robotic software. It is based on a publish/subscribe
architecture meaning that computational units (nodes) are communicating
by publishing messages or subscribing to a named bus (topic).

The ROS implementation of DyKnow consists of three main components:
Stream Processor, Knowledge Manager and Formula Progressor. The main
task of the Formula Progressor is evaluation of logical formulas through
progression. In order to do this the Formula Progressor needs to subscribe
to a stream which contains relevant data for each symbol in a formula.
Finding relevant topic specifications is the task of the Knowledge Manager
which bases this decision on the meaning of content of streams. The relevant
topic specifications are passed to the Stream Processor which sets up a state
stream to which the Formula Progressor has to subscribe to evaluate the
formula.

14 CHAPTER 2. DYKNOW

Chapter 3

Semantic Technologies

This chapter gives an overview of relevant semantic technologies for this
thesis. The focus is on the semantic technologies used on the Semantic web,
more specifically the Resource Description Framework (RDF) and the Web
Ontology Language (OWL).

3.1 Semantic Web

The World Wide Web (WWW) offers incredible amounts of easily accessible
data. The data is organized into documents which are interconnected with
hyperlinks and thus can easily be browsed. The simplicity of the WWW can
be considered as the main reason for its fast development and success [20].
Web pages have some structure which is mostly in the form of meta-data
used by web-browsers to display them correctly. However, the body of a
web page is usually without explicit structure. This lack of structure of the
documents and the data makes it difficult for automated agents to interpret
the meaning of the information.

In some cases query answering on the WWW requires the combination
of data from different sources. Horrocks [20] gives an example of a query
which should return all heads of states of all EU countries. To answer this
query two lists are required, a list of EU countries and a list of heads of
states. If we assume that these lists have different sources then with the
current design of the WWW queries of this kind could not be answered.

The Semantic Web1 is a World Wide Web Consortium (W3C) extension
proposal which aims to make the WWW more accessible to machines and
thus allow automatic processing of data. To achieve this the Semantic Web
introduces annotations to documents on the web which capture the seman-
tics of the content [1]. The W3C provides a set of recommendations for the
technologies to be used on the Semantic Web. The semantic annotations

1http://www.semanticweb.org

15

http://www.semanticweb.org

16 CHAPTER 3. SEMANTIC TECHNOLOGIES

are done using a combination of the Extensible Markup Language (XML)
and RDF. XML in this case provides a syntax and an exchange mecha-
nisms while RDF provides components needed for describing resources and
relations between them. However, RDF lacks the expressiveness needed for
the modeling of problem domains. Domains are modeled using ontologies
which allow for the formal description of a conceptualization [1]. The follow-
ing sections give more details about the technologies used on the Semantic
Web, more specifically RDF and the Web Ontology Language (OWL).

As stated before, the WWW lacks the support for queries which require
combinations of data from different distributed sources. The use of ontolo-
gies in the Semantic Web makes it possible to define mappings between
concepts in distributed sources and in this way enable the aforementioned
queries. However, automated mapping is still limited and is an active re-
search area [14]. Current automated mapping strategies are mostly based
either on structure of ontologies or linguistic properties of concepts in the
ontologies. However, these strategies can automatically map only a part of
semantically related concepts. [7].

From the perspective of artificial intelligence the development of the Se-
mantic Web represent an interesting aspect. Both the Semantic Web and
artificial intelligence aim at making machines capable of intelligent behavior.
Artificial intelligence aims at the human-level intelligence which the Seman-
tic Web can not provide but as Halpin [14] argues the artificial intelligence
could benefit from the development of a usable ontology of the real world.

However, the Semantic Web has a number of challenges to overcome. An
obvious problem is that currently the Semantic Web is not widespread and
therefore the process of upgrading the WWW to conform to the Semantic
Web poses a considerable challenge given the size of the current WWW
[3]. To achieve integration of data from different sources the Semantic Web
should be able to cope with sources that are heterogeneous in some sense,
i.e. language, design of ontologies, etc [3].

3.2 RDF/RDFS

RDF provides the means for describing resources on the WWW in the form
of declarative statements. Resources in this case are Web documents and
RDF is used to describe information such as title, author, creation date,
etc. [22]. Statements are usually written in XML, but other notations are
also possible. RDF is based on the notion of a Uniform Resource Identifier
(URI). This makes it possible to directly reference non-local resources on
the Internet [20]. URIs are usually organized into namespaces. To shorten
the syntax, the XML-based RDF syntax makes use of qualified names for
the URIs of the RDF resources in which case a namespace is assigned a
prefix which together with the local name forms a qualified name of the
resource [22].

Statements in RDF are triples consisting of a subject, a predicate and

3.2. RDF/RDFS 17

an object. Each statement describes a subject with a value (object) for a
certain property (predicate) and can be represented as two nodes (subject
and object) connected by an edge (predicate). A set of statements then
forms a graph [20]. The following example gives the value altitude1 for the
property altitude of the UAV instance uav1. Each component of this triple
is represented as a URI.

<<ht tp : //www. example . org /uavs/uav1> ,
<ht tp : //www. example . org / f e a t u r e s / a l t i t u d e> ,
<ht tp : //www. example . org / a l t i t u d e / a l t i t ud e 1>>

By using qualified names for URIs the previous example could be repre-
sented in the following manner:

<xmlns:uavs=” ht tp : //www. example . org /uavs/#”>
<xmln s : f e a tu r e s=” ht tp : //www. example . org / f e a t u r e s/#”>
<xm ln s : a l t i t ud e s=” ht tp : //www. example . org / a l t i t u d e/#”>

<uavs:uav1 , p r o p e r t i e s : a l t i t u d e , a l t i t u d e s : a l t i t u d e 1>

In this case namespaces of the subject, the predicate and the object were
specified and assigned a prefix (uavs, feature, altitudes) which together
with a local name (uav1, altitude and altitude1) form a qualified name
of the resource.

However, RDF is domain independent and does not provide adequate
support for modeling domains [1]. Therefore, an extension called the Resource
Description Framework Schema (RDFS) was proposed which includes the
expressive power needed for defining ontologies. The RDFS allows engineers
to describe classes and properties and to define hierarchies of classes and hi-
erarchies of properties. These notions are very similar to Object Oriented
Programming.

3.2.1 Syntax

Each XML-based RDF document begins with an XML declaration together
with a declaration of the namespaces used in the document. The RDF and
RDFS specific tags are also organized into namespaces which refer to the
defining RDF documents.

RDF resources are defined using the rdf:Description element. This
element has an attribute rdf:about which holds a reference to the resource
of the subject [22]. The property of the subject is represented as the content
of the rdf:Description element [1]. RDF allows multiple declarations of
properties in one rdf:Description element. Properties are referenced in
the same way as subjects, with qualified names. The value of a property can
either be a plain literal or another resource. Literals are usually treated as
strings, however if an application which uses RDF resources needs explicit
types, it is possible to assign datatypes by pairing URI reference of the
datatype with the literal [22]. If the value of a property is another resource

18 CHAPTER 3. SEMANTIC TECHNOLOGIES

then it is possible to either declare a new resource description nested under
the property or to make a reference to a defined resource. The referencing
is done with the use of the rdf:Resource attribute.

The following example defines the resource platform1 and its three prop-
erties (type, color and altitude). The color is declared as a nested resource
while the property altitude refers to an already defined resource.

<?xml version=” 1 .0 ”?>
<rdf:RDF

xmlns : rd f=” ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”
xmln s : p r ope r t i e s=” ht tp : //www. example . org / p r op e r t i e s/#”
xmlns : co l o r=” ht tp : //www. example . org / c o l o r s/#”>

<r d f :D e s c r i p t i o n rd f : about=”plat form1 ”>
<p r op e r t i e s : t y p e> f l y i n g</ p r op e r t i e s : t y p e>
<p r o p e r t i e s : c o l o r>
<r d f :D e s c r i p t i o n rd f : about=” co l o r 1 ”>
<c o l o r : c o d e rd f : da ta type=” ht tp : //www.w3 . org /2001/

XMLSchema#Int eg e r ”>123</ c o l o r : c o d e>
</ r d f :D e s c r i p t i o n>

</ p r o p e r t i e s : c o l o r>
<p r o p e r t i e s : a l t i t u d e r d f : r e s o u r c e=” a l t 1 ”/>

</ r d f :D e s c r i p t i o n>
</rdf:RDF>

As stated before, RDF is not suitable for describing domains as a do-
main specification usually includes information which captures the relations
between the classes in the domain and RDF allows only specifications of
simple statements about instances of classes. RDFS is a W3C recommen-
dation which gives the support for defining classes and properties together
with their hierarchies. To achieve this RDFS introduces a number of specific
resources and properties [22]. Classes are defined as regular RDF resources
but the property is set to rdf:type and the property value is set to a RDFS
resource rdfs:Class. Properties are defined in an analogues manner with
the RDFS resource rdfs:Property. The property rdf:type is also used to
declare that a RDF resource is an instance of certain class.

Class and property hierarchies are defined using the properties
rdfs:subPropertyOf and rdfs:subClassOf. It is possible for a class or a
property to have any number of super and sub concepts.

RDFS also introduces a possibility of defining restrictions on the prop-
erties. In RDFS it is possible to define the domain and range of a certain
property. A domain defines classes which can have a certain property while
the range defines which types (classes) can be used for the value of the
property.

The following code gives an example of a simple class hierarchy. The
class Object is the top class and MovingObject is its child. Class FlyingOb-
ject is a subclass of MovingObject. Finally, class UAV inherits from both
FlyingObject and MovingObject.

3.3. ONTOLOGIES 19

<?xml version=” 1 .0 ”?>
<rdf:RDF

xmlns : rd f=” ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”
xmlns : rd f s=” ht tp : //www.w3 . org /2000/01/ rdf−schema#”
xml:base=” ht tp : // example . org /schemas/ v e h i c l e s ”>

<r d f :D e s c r i p t i o n rd f : about=”Object ”>
<r d f : t yp e r d f : r e s o u r c e=” ht tp : //www.w3 . org /2000/01/ rdf−

schema#Class ”/>
</ r d f :D e s c r i p t i o n>

<r d f :D e s c r i p t i o n rd f : ID=”MovingObject”>
<r d f : t yp e r d f : r e s o u r c e=” ht tp : //www.w3 . org /2000/01/ rdf−

schema#Class ”/>
<rd f s : subC la s sO f r d f : r e s o u r c e=”#Object ”/>

</ r d f :D e s c r i p t i o n>

<r d f :D e s c r i p t i o n rd f : ID=”FlyingObject ”>
<r d f : t y p e r d f : r e s o u r c e=” ht tp : //www.w3 . org /2000/01/ rdf−

schema#Class ”/>
<rd f s : subC la s sO f r d f : r e s o u r c e=”#MovingObject”/>

</ r d f :D e s c r i p t i o n>

<r d f :D e s c r i p t i o n rd f : ID=”UAV”>
<r d f : t y p e r d f : r e s o u r c e=” ht tp : //www.w3 . org /2000/01/ rdf−

schema#Class ”/>
<rd f s : subC la s sO f r d f : r e s o u r c e=”#MovingObject”/>
<rd f s : subC la s sO f r d f : r e s o u r c e=”#FlyingObject ”/>

</ r d f :D e s c r i p t i o n>
</rdf:RDF>

RDF provides support for defining groups of items, for example it is
possible to define that a certain property has a group of resources or literals
as a value. Three different container types are possible:

• rdf:Bag - defines a group that may have duplicates and where the
ordering is not important

• rdf:Seq - defines a group that may have duplicates and where the
ordering is important

• rdf:Alt - defines a group of alternatives.

3.3 Ontologies

An ontology represents a formal model of a domain [28]. It includes class
hierarchies, properties and relationships between the concepts. As stated
before, RDFS provides a way of describing ontologies but it lacks the support
for describing more complicated concepts usually needed for describing more

20 CHAPTER 3. SEMANTIC TECHNOLOGIES

complex domains. Antoniou and Harmelen [1] list a number of limitations
of RDFS:

• it does not support cardinalities

• inability of representing disjoint classes

• no support for boolean expressions, conjunction, disjunction, negation

• only supports a limited number of restrictions on properties

3.3.1 OWL

The Web Ontology Language (OWL) is a W3C ontology language recom-
mendation. OWL uses a RDF/XML syntax but other syntaxes also ex-
ist which provide higher readability for humans. This section uses the
XML/RDF syntax.

Reasoning about an ontology is used to extract or rather make explicit
knowledge which is implicit in the ontology. For example if A is a subclass
of B and B is a subclass of C, a reasoning process could infer that A is also a
subclass of C. This type of reasoning is based on class inference. Reasoners
can also be used to determine the coherence of an ontology or more precisely
to determine if some concept (class) is unsatisfiable. A class is unsatisfiable if
the interpretation of that class is an empty set in all models of the ontology.

Three different versions of OWL currently exists. These sub-languages
differ in the expressiveness they have and thus give the engineer a possibility
to choose the one which satisfies his application’s ontology requirements [29].

• OWL Full - Has maximal expressiveness with complete compatibility
with RDF. However, it does not guarantee completeness nor decid-
ability for reasoning.

• OWL DL - Supports only the decidable subset of OWL Full expres-
siveness. It is based on description logics and guarantees completeness
and decidability [19]. The disadvantage is that it does not have full
compatibility with RDF.

• OWL Lite - Provides the basic features which include class and prop-
erty hierarchies and support for simple cardinalities (0 or 1). Some
restrictions on properties are possible and reasoning is both complete
and decidable. With these restrictions OWL Lite is easier to use than
OWL DL and is suitable for inexperienced users. It also has a lower
complexity than OWL DL [29].

When it comes to reasoning in OWL DL reasoners guarantee complete-
ness and decidability. The main reason for this is the fact that OWL DL is
based on Description Logics which itself is based on a decidable fragment of
First Order Logic [29]. OWL Full on the other hand does not restrict type

3.3. ONTOLOGIES 21

separation meaning that it is possible to define a class which is an individual
at the same time and therefore can not guarantee decidability [29].

Each OWL document has a header which defines the namespaces used
in the ontology, together with imports and assertions about the ontology
(version, comments etc.). Imports, defined with owl:import, allow users to
reuse parts of or whole ontologies. The rest of the OWL document represents
the body and includes entity declarations. Similar to RDFS, in OWL it is
possible to define classes, properties and instances.

Classes are defined using the owl:Class element. OWL defines two
special classes, owl:Thing and owl:Nothing. Each defined class is a subclass
of owl:Thing. owl:Nothing defines an empty class and thus each defined
class is a super class of owl:Nothing. Therefore if some class is equivalent to
owl:Nothing that means that the class is unsatisfiable. Class hierarchies are
defined in the same way as in RDFS using the rdfs:subClassOf element.
However, OWL also adds support for defining disjoint classes. This is done
using the owl:disjointWith element.

OWL defines two types of properties: datatype property and object
property. A datatype property has a data value as the value. An object
property, on the other hand, has a class instance as the value and is used
to define relations between two instances. Hierarchy, range and domain of
properties are defined using the same methods and syntax as in RDFS. OWL
also implements a number of special types of properties. These include:

• transitive property - P (x, y) ∧ P (y, z)⇒ P (x, z)

• symmetric property - P (x, y)⇔ P (y, x)

• functional property - P (x, y) ∧ P (x, z)⇒ y = z

• inverse functional property - P (y, x) ∧ P (z, x)⇒ y = z

As stated before OWL includes additional constructs which give the engi-
neer more expressive power. These constructs allow the engineer to describe
classes as boolean expressions of other classes and properties. OWL supports
union, intersection and complement which correspond to owl:unionOf,
owl:intersectionOf and owl:complementOf in OWL syntax. In order to
specify additional restrictions on the values of properties OWL supports uni-
versal and existential quantifiers together with the cardinality mechanisms.
Universal and existential quantifiers are declared using the owl:allValuesFrom
and owl:someValuesFrom constructs. When it comes to cardinality, three
different cardinality restrictions can be specified in OWL: minimal, maximal
and exact. These restrictions are specified through the owl:minCardinality,
owl:maxCardinality and owl:cardinality constructs respectively.

As an example ontology we are going to use our example scenarios pre-
sented in section 1.2. In the Single Platform Scenario we are dealing with a
single platform which is doing execution monitoring. In order to do execu-
tion monitoring the platform needs to have input from its environment. For

22 CHAPTER 3. SEMANTIC TECHNOLOGIES

example, assume that one of the monitoring formulas says that the platform
should never be closer than 3 meters to any building then in that case the
sensors on the platform need to provide data about the current position of
the platform and the position of the buildings in the area. However, to eval-
uate formulas of this kind the platform also requires the list of all buildings
in the environment in order to check that neither of them is closer than
3 meters. One way to deal with this issue is to model the environment.
The domain model in Single Platform Scenario would include all the enti-
ties in the environment together with their relations. As discussed earlier,
ontologies support representing formal models of a domain.

In DyKnow we differentiate between two types of entities, objects which
represent the building blocks of the world (cars, houses, etc.) and features
which represent properties of the world and its objects (altitude, position,
etc.). Therefore our ontology for the scenarios would have to reflect this.
To achieve this we propose two different hierarchies, one for objects in the
domain and one for features of the domain. Figures 3.1 shows one of the
ontologies that could be used in the Single Platform Scenario.

Figure 3.1: Visualization of the ontology for the single platform scenario.

3.3. ONTOLOGIES 23

As the object hierarchy shows, the domain deals with two types of ob-
jects, static and moving objects. Static objects in this case represent some
points of interest while moving objects enumerate different types of vehicles
in the domain. The actual objects or instances of the classes are not shown
in the visualization but also need to be included in the ontology. The on-
tology includes 5 objects: uav1 and uav2 of type UAV and car1, car2 and
car3 of type Car. The full ontology specification can be found in Appendix
B.1.

Features describe relations in the domain and are represented as rela-
tions in the ontology. These relations in our ontology are described as an
intersection class. The intersection includes the class which defines the ar-
ity of the feature (UnaryRelation, BinaryRelation, TernaryRelation) and
enumeration of possible classes for each argument. The enumeration is done
using object properties arg1, arg2 and arg3 which specify the order of the
arguments. For example, feature Altitude which represents an altitude of
some UAV is defined as follows:

Altitude ⊆ UnaryRelation ∩ ∀arg1.UAV

meaning that Altitude is a unary relation and the first argument must
be of type UAV .

Another example is feature Behind:

Behind ⊆ BinaryRelation ∩ ∀arg1.Object ∩ ∀arg2.Object

This feature describes a relation which takes two arguments and is used
to test if some entity (argument 1) is behind another entity (argument 2).
In this case both arguments have to be of type Object.

In the case of the Multiple Platform Scenario we are dealing with three
platforms. The ontology for the first platform is the same as the one pro-
posed earlier for the Single Platform Scenario. Unlike the first platform,
the second and the third platform capture only the part of the environment
presented in the ontology for the first platform. There are 2 objects defined
in the ontology, car11 and car12 of type Automobile which correspond re-
spectively to objects car1 and car2 in the first ontology. The ontology for
the second platform is given in Figure 3.2 and deals only with cars in the
environment. The ontology also defines two features, Speed and Position.
The full ontology definition is given in Appendix B.2.

Figure 3.2: Visualization of the ontology of platform 2.

24 CHAPTER 3. SEMANTIC TECHNOLOGIES

Similarly, the third platform deals only with flying vehicles or aircrafts
and defines 5 objects, uas20, uas21 and uas22 of type UnmannedAircraftSystem
and heli1 and heli2 of type MannedAircraftSystem. The ontology defines
4 relations, unary relations Alt, Height and Spd and a binary relation Near.
Relations Alt and Height are defined to be equivalent.

Figure 3.3: Visualization of the ontology of platform 3.

Reasoning in these scenarios is required to infer implicit relations in the
ontologies. As a simple example we can take the feature Behind from the
first ontology which accepts arguments of type Object. Therefore objects
uav1 and uav2 of type UAV could not be used as arguments to this feature
even though all objects defined in the ontology are essentially of type Object.
With the reasoner support these relations would be included in the ontology
and uav1 and uav2 could be used as the arguments to feature Behind. The
full specification of the ontology is provided in Appendix B.3.

3.3.2 Semantic mappings

In order to reuse knowledge from other ontologies we need to specify the
relations between concepts in different ontologies together with a reasoning
mechanism which can reason over multiple ontologies [26]. The relations
are called semantic mappings and implement relations such as subclass,
superclass and equivalence.

Much work has been done related to representation of semantic map-
pings between ontologies such as [6], [13], [21]. Work done by Serafini and
Tamilin [27] differs from the aforementioned works as it also presents a
reasoning mechanism for reasoning over multiple ontologies connected by
semantic mappings. The semantic mappings specifications in their work are
based on Context OWL (COWL) presented in [6]. In order to support rea-
soning over multiple distributed ontologies Serafini and Tamilin reuse the
idea of Distributed Description Logics (DDL) presented in [4] which provides

3.3. ONTOLOGIES 25

the support for formalizing collection of ontologies connected by semantic
mappings. The reasoning with DDL is based on a tableau reasoning tech-
nique for local description logics which was extended to support multiple
ontologies.

In this report we are going to use the method for representing semantic
mappings presented in [6] as it provides the support for explicit semantic
mappings between classes and individuals in ontologies together with a XML
representation which can easily be queried. In this representation mappings
between ontologies is represented as a set of bridge rules (mappings). Each
bridge rule requires the specification of a source and a target ontology entity
together with the type of the bridge rule. An entity can be a property, a
concept or an individual in which case it is only possible to specify that
individuals are the same. Supported bridge rule types are:

• c1 ≡ c2 – c1 is equivalent to c2

• c1 v c2 – c1 is more specific than c2

• c1 w c2 – c1 is more general than c2

• c1⊥c2 – c1 is disjoint with c2

• c1 ? c2 – c1 is compatible with c2 meaning that c1 might relate to c2

• i1 ≡ i2 – individual i1 is the same as individual i2

Bouquet et al. [6] also suggested an XML schema for representing bridge
rules. An example of a bridge rule represented in XML is given in 3.1.

Listing 3.1: Bridge rule in XML.

<cowl :br idgeRule cowl :br−type=” equiv ”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. example . com/ onto logy#

Pos i t i on ”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. semanticweb . org /

on t o l o g i e s /2011/5/ Di s t r ibuted . owl#Pos i t i on ”/>
</ cowl :br idgeRule>

As the listing shows, the source concept and the target concept need to
be represented with full URIs. The attribute br-type holds the type of the
bridge rule. In the XML schema the following names are used for bridge
rule types:

• equiv – ≡

• into – v

• onto – w

• incompat – ⊥

• compat – ?

• same – individuals are the same

26 CHAPTER 3. SEMANTIC TECHNOLOGIES

If we go back to the ontologies in the Multiple Platform scenario pre-
sented in the previous section we see that even though they refer to the same
objects in the real world there is no way for a machine to infer that these
objects are the same. Therefore to support reuse of information from multi-
ple platforms it is required to specify the bridge rules between concepts and
individuals in the ontologies. The bridge rules for the ontologies presented
in the previous section are given in listing 3.2.

Listing 3.2: Bridge rules in XML.
<cowl:mapping>
<cowl :br idgeRule cowl :br−type=” equiv ”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. example . com/ ontology#

GroundVehicle ”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/5/ Di s t r ibuted . owl#GroundVehicle ”/>
</ cowl :br idgeRule>

<cowl :br idgeRule cowl :br−type=” equiv ”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. example . com/ ontology#Car”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/5/ Di s t r ibuted . owl#Automobile”/>
</ cowl :br idgeRule>

<cowl :br idgeRule cowl :br−type=” equiv ”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. example . com/ ontology#Pos i t i on ”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/5/ Di s t r ibuted . owl#Pos i t i on ”/>
</ cowl :br idgeRule>

<cowl :br idgeRule cowl :br−type=” equiv ”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. example . com/ ontology#Speed”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/5/ Di s t r ibuted . owl#Speed”/>
</ cowl :br idgeRule>

<cowl :br idgeRule cowl :br−type=” equiv ”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. example . com/ ontology#UAV”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/6/ d i s t r i bu t ed uav s . owl#UnmannedAircraftSystem”/>
</ cowl :br idgeRule>

<cowl :br idgeRule cowl :br−type=” equiv ”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. example . com/ ontology#Close ”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/6/ d i s t r i bu t ed uav s . owl#Near”/>
</ cowl :br idgeRule>

<cowl :br idgeRule cowl :br−type=” equiv ”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. example . com/ ontology#Alt i tude ”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/6/ d i s t r i bu t ed uav s . owl#Height ”/>
</ cowl :br idgeRule>

<cowl :br idgeRule cowl :br−type=” equiv ”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. example . com/ ontology#Speed”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/6/ d i s t r i bu t ed uav s . owl#Spd”/>
</ cowl :br idgeRule>

<cowl :br idgeRule cowl :br−type=”same”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. co−ode . org / on t o l o g i e s /ont . owl#

uav1”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/6/ d i s t r i bu t ed uav s . owl#uas20”/>
</ cowl :br idgeRule>

<cowl :br idgeRule cowl :br−type=”same”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. co−ode . org / on t o l o g i e s /ont . owl#

uav2”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/6/ d i s t r i bu t ed uav s . owl#uas21”/>
</ cowl :br idgeRule>

<cowl :br idgeRule cowl :br−type=”same”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. co−ode . org / on t o l o g i e s /ont . owl#

car1 ”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/5/ Di s t r ibuted . owl#car11 ”/>
</ cowl :br idgeRule>

<cowl :br idgeRule cowl :br−type=”same”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. co−ode . org / on t o l o g i e s /ont . owl#

3.4. SUMMARY 27

car2 ”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/5/ Di s t r ibuted . owl#car12 ”/>
</ cowl :br idgeRule>

</ cowl:mapping>

In this case only two types of bridge rules are used, equivalence between
classes and owl:sameAs relation between individuals.

3.4 Summary

This chapter has presented the idea of the Semantic Web. The Semantic
Web represents a World Wide Web Consortium (W3C) extension proposal
which aims at making current WWW more machine accessible by encoding
semantics of data on the Web. This is achieved by semantically annotating
data on the Web through a number of semantic technologies. One such
technology is the Resource Description Framework (RDF) which provides
the support for describing resources on the WWW in the form of declara-
tive statements. However, RDF lacks the support for representing structure.
The Resource Description Framework Schema (RDFS) is an extension of the
RDF which provides the mechanism for domain modeling and allows defi-
nition of classes and their hierarchies. RDFS has a number of limitations,
more specifically it is not possible to define boolean expression nor cardi-
nality between classes in a model. These expressions are supported in the
Web Ontology Language (OWL) which provides the support for represent-
ing ontologies where ontologies represent a formal model of a domain [28].
Ontologies contain three types of entities: individuals (instances), concepts
(classes) and properties. With OWL it is possible to define boolean expres-
sions in an ontology such as conjunction, disjunction and equivalence as well
as universal and existential quantifiers. The OWL also allows specifications
of cardinality constraints, for example minimum and maximum cardinality.

In order to integrate data from multiple ontologies it is necessary to es-
tablish relations between classes and instances in different ontologies. These
relations are called semantic mappings and implement relations such as sub-
class, superclass and equivalence. The chapter has presented a COWL repre-
sentation of semantic mappings in which case the mappings between classes
and instances are represented as bridge rules.

28 CHAPTER 3. SEMANTIC TECHNOLOGIES

Chapter 4

Analysis

Reasoning over incrementally available information in autonomous systems
is needed to support a number of functionalities such as execution monitor-
ing and planning. The data needed for reasoning is provided by physical
sensors and requires processing [16]. As shown earlier, DyKnow can be used
to bridge the gap between the data available from sensors and the infor-
mation needed for reasoning. The output from DyKnow is in the form of
streams.

One technique for incremental reasoning with streams supported by Dy-
Know is ”progression of metric temporal logic to incrementally evaluate
logical formulas” [15]. In order to evaluate formulas it is necessary to map
variables to streams of data based on the content of data streams. This can
be done manually. However, this makes the system fragile as any changes
in the streams or additions of new streams would mean that the mappings
have to be checked and potentially changed. The automation of this process
would make the system more versatile and easier to use.

The problem of matching variables in logical formulas and content of
streams can be divided into two subproblems:

• representing knowledge about the semantics of content of streams

• using this knowledge to match the intended meaning of variables to
appropriate streams

The following sections describe these problems in more detail and provide
possible solutions.

4.1 Semantic stream representation

Our goal is to automate the process of matching the intended meaning of
variables to content of streams in a system. Therefore the representation of
semantics of streams needs to be machine readable. This makes it possible

29

30 CHAPTER 4. ANALYSIS

for the system to reuse this knowledge in reasoning about which stream
content corresponds to which variable in a logical formula. The knowledge
about the meaning of content of streams needs to be specified by a user.
By assigning meaning to stream content the streams do not have to use
predetermined names, hard-coded in the system. This would also make the
system domain independent meaning that it could be used to solve different
problems in a variety of domains.

An important step in semantic stream representations is to establish the
vocabulary for the representation. In other words it is necessary to establish
which entities exist in the environment. One way to do this is it to model
the domain and the relationships between the entities in the domain. To
make this usable in the process of semantic matching the domain model
should be interpretable by machines.

Ontologies provide suitable support for modeling machine readable do-
main models. As discussed, ontologies also provide reasoning support and
support for semantic mapping which is necessary for the reuse of data on
distributed platforms. The ontologies used to model the domain in DyKnow
differentiate between two types of entities, objects and features.

After establishing a vocabulary of the domain the next step is to find a
way of representing streams and encoding knowledge about the content of
the streams. Each representation of a stream should include all the infor-
mation necessary to subscribe to the stream. In our solution we want to
make a ROS implementation of DyKnow in which case streams correspond
to topics in ROS. Each topic has an associated topic name and a message
type which are used for establishing subscriptions. To access the output of a
stream it is also necessary to know which field contains which data. All this
information together with the encoding of the content of the stream should
be included in the stream representation.

The stream representation should support specification of the following
topic categories:

• topics containing sorts

• topics containing features

• topics containing objects

The first category represents topics which are used to enumerate objects
of a certain sort. These topics can be used when there is a need for the
list of all objects of some sort. For example, if we have a formula which is
quantified over some variable then in order to evaluate it all possible values
of this variable are needed.

The second category represents topics which contain fluents for features.
An example of a topic containing data for the features Altitude and Speed
for every object of sort UAV is given in Listing 4.1.

4.1. SEMANTIC STREAM REPRESENTATION 31

Topic name : t op i c1
Message type : UAVMsg
Fields :
i n t id
f l o a t a l t
f l o a t spd

Listing 4.1: A topic specifying the features Altitude and Speed for the sort
UAV.

Finally, the third category represents topics which contain a single object.
These topics are used to add a level of indirection. For example, a topic can
contain some feature for a currently tracked object while the id of a currently
tracked object can be a value of another topic.

In order to encode the content of the aforementioned topics we propose
the Semantic Specification Language for Topics (SSLT). The SSLT provides
the means for representing content of topics in a system. Each topic repre-
sentation defined in the SSLT includes all the necessary information needed
for subscribing to the topic such as topic name, message type, fields contain-
ing feature data and id fields. The formal grammar for SSLT is presented
in Listing 4.2.

Listing 4.2: Formal grammar for SSLT .

prog : expression+ | EOF ;

expression : ’ t o p i c ’ topic name ’ c o n t a i n s ’

(feature l i s t | sort | object) ;

topic name : NAME ’ : ’ NAME ;

feature l i s t : feature (’ , ’ feature)∗ ;

feature : feature name ’= ’ MSGFIELD for part ? ;

feature name : NAME ’ (’ feature args ’) ’ ;

feature args : feature arg (’ , ’ feature arg)∗ ;

feature arg : entity name al ias ? ;

for part : ’ f o r ’ entity (’ , ’ entity)∗ ;

entity : sort | object ;

entity name : NAME;

al ias : ’ as ’ NAME;

32 CHAPTER 4. ANALYSIS

object : ent i ty fu l l ;

sort : sort type ent i ty fu l l ;

ent i ty fu l l : NAME ’= ’ MSGFIELD ;

sort type : ’ some ’ | ’ e v e r y ’ ;

NAME : (’ a ’ . . ’ z ’ | ’A ’ . . ’Z ’ | ’ 0 ’ . . ’ 9 ’)+ ;

MSGFIELD : NAME ’ . ’ NAME;

As mentioned earlier, the first category of topics is used to enumerate
objects of some sort. In SSLT it is possible to define both topics containing
all objects of a sort and topics containing only a subset of objects. This can
be specified in SSLT using the some and every keywords.

Listing 4.3: Topic specifications in SSLT .

topic top i c1 :UAVMsg contains s o r t some UAV = msg . id

topic top i c2 :UAVMsg contains s o r t every UAV = msg . id

Listing 4.3 gives the SSLT specifications for two topics enumerating ob-
jects in a sort. topic1 contains only a subset of all objects of sort UAV
while topic2 contains all objects of the same sort. As the listing shows
the topic specifications include names of the topics (topic1 and topic2),
message types (UAVMsg) and the id fields (msg.id).

The topics containing features are specified in a similar manner. How-
ever, in this case a list of arguments for each feature is also needed. Argu-
ments can either be objects or sorts in which case the topic contains data for
the feature for all possible combinations of the specified argument. Listing
4.4 shows an example of five different topic specifications. The first topic,
topic1, contains feature Altitude for object uav1. The data for the altitude
can be found in the field msg.alt. Similarly, topic topic2 defines the fea-
ture Speed for uav1. However, it is important to note the difference between
these two topics. In the case of topic1 object argument uav1 is implicit and
therefore no additional data needs to be specified. On the other hand, in
topic topic2 the object argument is not implicit and needs to be computed
from a field in a topic. This field is specified after the for keyword.

Topic topic3 defines the same feature but for multiple UAVs. In this
case the feature is only defined for a subset of UAVs. Topics topic4, topic5
and topic6 specify topics which contain feature Behind which is of arity 2.
They differ only in the types of arguments they have. It is important to note
that if we are defining a topic for a feature which has a sort as an argument
we need to define if the topic contains some or all instances of this sort. This
is done using some and every keywords. If these keywords are not specified

4.1. SEMANTIC STREAM REPRESENTATION 33

then the specified topic contains data for a single object with a name and
id field specified after the for keyword.

SSLT allows the definition of multiple features in one topic specification.

Listing 4.4: Topic specifications in SSLT .

topic top i c1 :UAVMsg contains Alt i tude (uav1)=msg . a l t

topic top i c2 :UAVMsg contains Speed (uav1)=msg . spd for uav1=
msg . id

topic top i c3 :UAVMsg contains Alt i tude (UAV)=msg . a l t for some
UAV = msg . id

topic top i c4 :UAVMsg contains Behind (uav1 , uav3)=msg . behind
for uav1 = msg . id1 , uav3 = msg . id2

topic top i c5 :UAVMsg contains Behind (uav2 , uav1)=msg . behind
for uav2 = msg . id1 , uav1 = msg . id2

topic top i c6 :UAVMsg contains Behind (UAV, uav2)=msg . behind
for every UAV = msg . id1 , uav2 = msg . id2

The syntax might introduce some ambiguities, for example let us consider
the next example:

topic top i c1 :UavMsg contains Behind (uav1 , uav1) for uav1 =
msg . id1 , uav1 = msg . id2

In this case the topic defines the feature Behind with two arguments
which have the same identifier, uav1. However, the arguments are in differ-
ent parts of the message, argument 1 is computed from the field id1 while
the second argument is computed from the field id2. Given that both argu-
ments have the same identifier the only way to determine which is the first
and which is the second argument in the for part is to base this decision on
the ordering. However, in cases when a topic defines multiple features with
the same argument the topic specifications would be unreadable. To deal
with this ambiguity the SSLT introduces aliases. The aliases are specified
in the feature argument list and later used after the for keyword. Therefore,
the unambiguous topic specification for the example would be defined as
follows:

topic top i c1 :UavMsg contains
Behind (uav1 as arg1 , uav1 as arg2) for arg1 = msg .

id1 , arg2 = msg . id2

34 CHAPTER 4. ANALYSIS

4.2 Matching symbols to topics

So far we have discussed how to specify the meaning of a very general class
of typed streams which have tuples as values. To achieve automatic se-
mantic matching of intended meaning of symbols to content of streams an
agent should be able to automatically determine which topics are relevant
for which symbol based on their content. In the case of metric temporal
formulas, features correspond either to terms (non-boolean value) or pred-
icates (boolean values) in the formula while the arguments correspond to
objects in the environment. Therefore the matching problems consists of
two subproblems, finding and extracting features from the logical formula
and finding relevant topic specifications for these features. The process of
semantic matching is shown in Figure 4.1.

Figure 4.1: Process of semantic matching.

Feature arguments in a logical formula can either be constants or vari-
ables. Arguments which are constants are considered as objects in the en-

4.2. MATCHING SYMBOLS TO TOPICS 35

vironment. Variables on the other hand are quantified variables and can be
replaced with any value from the domain of a variable. The domain of a
variable represents all possible values a variable can have and in our case
this maps to a sort in the domain model. Therefore, arguments which are
variables can be replaced with a sort from the domain model. As an example
let us consider the following formula

forall x in UAV Behind[x, uav1] and Altitude[uav1] > 10

Both Behind[x, uav1] and Altitude[uav1] are terms and therefore rep-
resent features in the domain model. uav1 is a constant and therefore has
to refer to an object in the environment. However, x is a quantified vari-
able and therefore all instances of sort UAV in the domain model need to
be considered. Taking this into account features Behind[UAV, uav1] and
Altitude[uav1] would be extracted from the formula.

After completing the feature extraction from a logical formula the next
step in semantic matching is to find relevant topics for these features. As
we mentioned before the semantics of each topic is encoded in the topic
specification. However, the proposed topic specification language is not
suitable for querying. Therefore, we propose an XML structure which would
include all the information from the SSLT topic specification. Listing 4.5
presents the Document Type Definition (DTD) for the SSLT XML syntax.
XML is a suitable candidate because it is machine readable and provides
good support for querying.

Listing 4.5: DTD for the SSLT XML syntax.

<!DOCTYPE Topic specs [
<!ELEMENT Topic specs (Topic)∗>
<!ELEMENT Topic (SSL , (f e a t u r e+ | s o r t | ob j e c t)) >
<!ATTLIST Topic msgtype NMTOKEN #REQUIRED >
<!ATTLIST Topic name ID #REQUIRED >

<!ELEMENT SSL (#PCDATA) >

<!ELEMENT f e a t u r e (ob j e c t | s o r t)+ >
<!ATTLIST f e a t u r e name NMTOKEN #REQUIRED >
<!ATTLIST f e a t u r e va lue NMTOKEN #REQUIRED >

<!ELEMENT ob j e c t EMPTY >
<!ATTLIST ob j e c t name NMTOKEN #REQUIRED >
<!ATTLIST ob j e c t va lue NMTOKEN #IMPLIED >

<!ELEMENT s o r t EMPTY >

36 CHAPTER 4. ANALYSIS

<!ATTLIST s o r t a l l o b j e c t s NMTOKEN #REQUIRED >
<!ATTLIST s o r t name NMTOKEN #REQUIRED >
<!ATTLIST s o r t va lue NMTOKEN #REQUIRED >

]>

An example of an XML structures for the topic specifications from the
previous example are given in listing 4.6.

Listing 4.6: Topic specifications in SSLT

<Topic specs>
<Topic msgtype=”UAVMsg” name=” top i c1 ”>
<f e a t u r e name=”Al t i tude ” value=”msg . a l t ”>
<ob j e c t name=”uav1”/>

</ f e a tu r e>
</Topic>

<Topic msgtype=”UAVMsg” name=” top i c2 ”>
<f e a t u r e name=”Speed” value=”msg . spd”>
<ob j e c t name=”uav1” value=”msg . id ”/>

</ f e a tu r e>
</Topic>

<Topic msgtype=”UAVMsg” name=” top i c3 ”>
<f e a t u r e name=”Al t i tude ” value=”msg . a l t ”>
<s o r t name=”UAV” value=”msg . id ” a l l o b j e c t s=” f a l s e ” />

</ f e a tu r e>
</Topic>

<Topic msgtype=”UAVMsg” name=” top i c4 ”>
<f e a t u r e name=”Behind” value=”msg . behind”>
<ob j e c t name=”uav1” value=”msg . id1 ” />
<ob j e c t name=”uav3” value=”msg . id2 ” />

</ f e a tu r e>
</Topic>

<Topic msgtype=”UAVMsg” name=” top i c5 ”>
<f e a t u r e name=”Behind” value=”msg . behind”>
<ob j e c t name=”uav2” value=”msg . id1 ” />
<ob j e c t name=”uav1” value=”msg . id2 ” />

</ f e a tu r e>
</Topic>

<Topic msgtype=”UAVMsg” name=” top i c6 ”>
<f e a t u r e name=”Behind” value=”msg . behind”>
<s o r t name=”UAV” value=”msg . id1 ” a l l o b j e c t s=” true ” />
<ob j e c t name=”uav2” value=”msg . id2 ” />

</ f e a tu r e>
</Topic>

</Top ic specs>

4.2. MATCHING SYMBOLS TO TOPICS 37

Each topic is defined in the element Topic. This element contains two
attributes, msgtype and name which correspond to the message type and
topic name. Features are defined using the feature tag which contains
the name of the feature and the topic field which stores the data for this
feature. The list of feature arguments are defined as children to the feature
element. Each argument includes the type (object or sort), name and id field.
The sorts also include a boolean all objects attribute which defines if the
argument covers all objects of certain type or only a subset.

The aforementioned XML specifications consisting of topic specifications
are queried in order to find relevant topics for the extracted features. Find-
ing relevant topics differs depending on which types of arguments a feature
has. First we consider the case where a feature only has constant argu-
ments. In this case, topics containing the matching feature with matching
arguments should be found. This process includes multiple steps. In the
first step only topics containing the queried feature are extracted from the
topic specifications. For example, assume that we are querying the list of
topic specifications given in Listing 4.6 for relevant topics for the feature
Behind[uav1, uav2] then the output from the first step of the matching
would be the following topic specifications:

<Topic msgtype=”UAVMsg” name=” top i c4 ”>
<f e a t u r e name=”Behind” value=”msg . behind”>
<ob j e c t name=”uav1” value=”msg . id1 ” />
<ob j e c t name=”uav3” value=”msg . id2 ” />

</ f e a tu r e>
</Topic>

<Topic msgtype=”UAVMsg” name=” top i c5 ”>
<f e a t u r e name=”Behind” value=”msg . behind”>
<ob j e c t name=”uav2” value=”msg . id1 ” />
<ob j e c t name=”uav1” value=”msg . id2 ” />

</ f e a tu r e>
</Topic>

<Topic msgtype=”UAVMsg” name=” top i c6 ”>
<f e a t u r e name=”Behind” value=”msg . behind”>
<s o r t name=”UAV” value=”msg . id1 ” a l l o b j e c t s=” true ” />
<ob j e c t name=”uav2” value=”msg . id2 ” />

</ f e a tu r e>
</Topic>

In the next step of the algorithm this new list of topic specifications is
used to extract only those topics which contain matching arguments. To
find topics with matching arguments an ontology is queried to find sorts
of each argument. In each subsequent step of the algorithm an argument
object is chosen and used to extract topic specifications which have this
object or a sort of this object as an argument. This step is repeated for

38 CHAPTER 4. ANALYSIS

every argument of the feature using the list from the previous iteration of
the algorithm. Taking this into account the next step of the algorithm in
the previous example would be to extract topic specifications which either
have uav1 or sort UAV as the first argument. Therefore, the output from
this step of the algorithm would be topics topic4 and topic6. In the final
step, we are extracting topic specifications based on their second argument
which in our example should either be the object uav2 or the sort UAV. The
following list of topic specifications is used as the input to this iteration of
the algorithm.

<Topic msgtype=”UAVMsg” name=” top i c4 ”>
<f e a t u r e name=”Behind” value=”msg . behind”>
<ob j e c t name=”uav1” value=”msg . id1 ” />
<ob j e c t name=”uav3” value=”msg . id2 ” />

</ f e a tu r e>
</Topic>

<Topic msgtype=”UAVMsg” name=” top i c6 ”>
<f e a t u r e name=”Behind” value=”msg . behind”>
<s o r t name=”UAV” value=”msg . id1 ” a l l o b j e c t s=” true ” />
<ob j e c t name=”uav2” value=”msg . id2 ” />

</ f e a tu r e>
</Topic>

In this case only topic topic6 is relevant as topic topic4 specifies fea-
ture Behind which has an object uav3 as the second argument. Therefore
the result of matching feature Behind[uav1, uav2] to topic specifications in
Listing 4.6 is the following topic specification:

<Topic msgtype=”UAVMsg” name=” top i c5 ”>
<f e a t u r e name=”Behind” value=”msg . behind”>
<s o r t name=”UAV” value=”msg . id1 ” a l l o b j e c t s=” true ” />
<ob j e c t name=”uav2” value=”msg . id2 ” />

</ f e a tu r e>
</Topic>

Topic topic5 contains feature Behind for multiple objects as the first argu-
ment is a sort. Therefore, in order to get data for feature Behind[uav1, uav2]
it is necessary to filter out messages which have uav1 and uav2 for the first
and second argument respectively. In our design, this is done using the id
fields defined in the specification. Currently the value of the id field is ac-
quired directly from an object name and represents the numeric part of the
name. Therefore, in the case of topic5 only messages which have values
id1 = 1 and id2 = 2 would contain the data for feature Behind[uav1, uav2].

Next we consider the case where a feature has one or more variable ar-
guments. In this case, the first step of the matching algorithm is to find all
possible values for variable arguments. As mentioned earlier, the domain
of a variable corresponds to a sort in the ontology. Therefore to acquire
all possible values of a variable it is necessary to query the ontology for

4.3. INTEGRATING DATA FROM MULTIPLE PLATFORMS 39

all instances (objects) of a certain sort. After acquiring these objects, the
next step is to form new features on an object level meaning that the argu-
ments to these features need to be objects. This requires making all possible
combinations with other arguments using the acquired objects. For exam-
ple if Behind[uav1, UAV] is extracted from the logical formula and UAV
has two instances in the domain, uav1 and uav2 then Behind[uav1, uav1]
and Behind[uav1, uav2] would be the result after expansion. The expanded
features are matched to topic specifications using the same algorithm for
features with constant arguments presented earlier.

4.3 Integrating data from multiple platforms

Previous sections described a possible solution for semantic matching be-
tween the intended meaning of variables and content of streams. In some sit-
uations it might happen that a platform does not have the necessary streams
to evaluate a logical formula. Platforms in a distributed system might be
able to reuse relevant streams from distributed platforms. However, in order
to do so ontologies on the distributed platforms need to describe the same
parts of the environment as the ontology on which the formula is being
evaluated.

Another issue is that even if the ontologies deal with the same part of
real world they might not use the same concept names. An example of
this problem is visible in the ontologies for the Multiple Platform Scenario
described in section 3.3. The ontology for the first platform deals with
both aerial and ground vehicles while the ontology for the second platform
describes only the subset which covers cars. However, even though these
two ontologies refer to the same cars in the real world the topic specification
can not be used on different platforms because their names differ.

This problem can be solved with semantic mapping between two on-
tologies described in Section 3.3.2. The simplest approach to a semantic
matching process with multiple platforms is to take each expanded feature
and try to map this feature and its arguments to a feature on a distributed
platform. If this is successful then the last step is to query the distributed
platform’s topic specification for this mapped feature using the matching
algorithm described in the previous section.

For example, assume that we are trying to match the feature Near[uav1, uav2]
to topic specifications on distributed platforms. The extract from the list of
specified bridge rules is given in the following listing.

<cowl:mapping>
<cowl :br idgeRule cowl :br−type=” equiv ”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. example . com/ ontology#Near”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. another−example . com/ ontology#

Close ”/>
</ cowl :br idgeRule>

<cowl :br idgeRule cowl :br−type=”same”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. example . com/ ontology / in s t anc e s#

uav1”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. another−example . com/ in s t anc e s#

uas22”/>

40 CHAPTER 4. ANALYSIS

</ cowl :br idgeRule>

<cowl :br idgeRule cowl :br−type=”same”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. example . com/ ontology / in s t anc e s#

uav2”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. another−example . com/ in s t anc e s#

uas23”/>
</ cowl :br idgeRule>

</ cowl:mapping>

As the listing shows feature Near maps to feature Close on a distributed
platform. The next step is to map all the arguments and in our example ob-
jects uav1 and uav2 map to objects uas22 and uas23 respectively. Therefore,
feature Close[uas22, uas23] is used while querying for topic specifications on
the distributed platform.

4.4 Design

The Single Platform Scenario introduced in section 1.2 deals with execution
monitoring. One way to implement execution monitoring is to provide a
set of control formulas which need to be evaluated at certain time points.
The platform gets information about the environment from a number of
different sensors. For example, the position might be provided by a GPS
system, altitude by an on-board altimeter and distance to nearby objects
by a proximity sensor. However, if we take a formula that says that the
platform should never be closer than 3 meters to any building then in order
to evaluate this formula it must be possible to acquire values for each symbol
in the formula. As mentioned before, DyKnow adapts the raw sensor data
and provides the output in the form of streams. Before these streams can be
used for the formula evaluation, it is necessary to map features represented
by symbols in the formula to streams containing the relevant data for these
features.

In the Multiple Platform Scenario the platforms are monitoring a road
for potential traffic violations. Similar to the Single Platform Scenario,
each platform has a number of sensors which provide information about the
environment, i.e. radar speed guns used to monitor the speed of cars on the
road. Platforms deal with a set of formulas which need to be evaluated, i.e.
no car on the monitored road should ever exceed a speed of 60 km/h for
more than 5 minutes. As we mentioned in section 1.2 the monitored region
is divided between the platforms in order to be able to monitor multiple
potential traffic violations. Therefore, if a car is driving over the limit in
one region for 2 minutes before it enters the other region then the platform
needs data about the speed of the car from the other platform in order to
determine if the driver made a traffic violation.

In both scenarios each formula might require a number of streams to be
evaluated. However, fluent streams do not necessarily have the same valid
times and therefore not all of them are available at the time point the system
needs them.

Therefore, to support reasoning over incrementally available information

4.4. DESIGN 41

the system should solve a number of issues. First of all, the system should
be able to evaluate logical formulas. To evaluate formulas each symbol in
a formula should be automatically mapped to one or more streams which
contain values for this symbol. However, before these streams can be used
for the formula evaluation they need to be synchronized.

Our solution consists of three main components Stream Processor, Knowl-
edge Manager (KM) and Formula Progressor which deal with the aforemen-
tioned issues. The ROS implementation of DyKnow is shown in figure 4.2.

Figure 4.2: DyKnow architecture in ROS.

The Formula Progressor evaluates formulas through progression. If a
formula is evaluated to false then certain measures should be taken, for
example if the platform in the Single Platform Scenario is closer than 3
meters to a building measures should be taken in order to avoid collision.
To do the evaluation the Formula Progressor requires the state stream name
where the state stream represents a stream of state samples. State samples
are defined as samples whose value is a state, i.e. a tuple of values. The
process of state synchronization is done by the Stream Processor which
provides the state stream topic name as an output.

The task of finding relevant topics (streams) for variables in the logical
formula is passed to the Knowledge Manager. The Knowledge Manager sup-
ports the process of semantic matching of the intended meaning of variables
in the formula and content of streams. Therefore, the Knowledge Manager
accepts a grounding context as an input and provides a stream request as an

42 CHAPTER 4. ANALYSIS

output. A grounding context contains a formula and stream constraints and
specifies how to ground symbols in a formula to the content of topics in ROS.
On the other hand, a stream request contains relevant topics for features in
a formula together with all the necessary information needed for subscribing
to these topics. To achieve this the Knowledge Manager requires access to
a domain ontology and topic specifications in a system. Stream constraints
from a grounding context are passed to the Stream Process which takes this
information into account while setting up a state stream topic. In some cases
variables in a logical formula might have multiple relevant topics. However,
the Formula Progressor expects only a single sample for each variable in
the formula. In our solution, a stream request contains all relevant topic
specifications for each feature in a formula and the actual merging of these
topics into a single output is done by the Stream Processor.

Stream adapters in the architecture bridge the gap between DyKnow
and ROS and are used for adapting streams from DyKnow to topics in ROS
and vice versa.

In distributed systems each platform is independent and implements the
aforementioned components. The platforms can reuse data from other dis-
tributed platforms and to do this each platform has to be able to access both
ontologies and topic specifications on different platforms. To support inter-
operability between the platforms the user has to specify semantic mappings
between the ontologies.

The following chapter provides the implementation details for the Knowl-
edge Manager.

4.5 Related work

Semantic Web technologies provide support for annotating data with seman-
tic meta-data. Works by Bröring et al. [8] and Sheth et al. [28] use these
technologies for representing the meaning of sensor observations on a sensor
network which conforms to the Sensor Web Enablement (SWE). The SWE
is an initiative proposed by the Open Geospatial Consortium (OGC) which
aims at providing a set of standards for enabling discovery, exchange and
processing of sensor observations [5]. In order to support these function-
alities sensors need to be modeled to capture their characteristics. These
characteristics include sensor name, sensor model as well as temporal (e.g.
sensor sample rate), spatial (e.g. sensor location) and thematic characteris-
tics (e.g. sensor provides data about water temperature). Bröring et al. [8]
propose a publish/subscribe model for sensor network based on a seman-
tic matchmaking mechanism. The semantic matching is done by creating
an ontology for each publishing sensor based on its characteristic and an
ontology which represents a requested service. The next step of semantic
matching is to align these ontologies and determine if they match. If they
do then the sensor provides relevant data for the service.

4.5. RELATED WORK 43

Similar work has been done by Goodwin and Russomanno [12] who pro-
pose a discovery system which semantically annotates sensors and their
services. Sensor semantic annotations are based on the OntoSensor on-
tology [25] which describes sensor characteristics such as sensitivity, mass,
frequency, etc.

Work done by Sheth et al. [28] presents an extension of sensor model-
ing languages in SWE which includes semantic annotations called Semantic
Sensor Web. By connecting these semantic annotations to different on-
tologies it is possible to do more complex queries as well as reason about
sensor domains. For example, a timestamp of a sensor observation could
be semantically annotated with a concept from an ontology which describes
temporal concepts. This extension would allow more complex queries about
the timestamp, for example a query to determine if the timestamp is within
some interval given that a concept of interval is described in the temporal
ontology. It is important to note that in the case of Semantic Sensor Web
the focus is on semantic annotation of sensor observations while the works
by Bröring et al. and Goodwin and Russomanno focus on semantic sensor
modeling.

Another example of the work which uses semantic technologies for knowl-
edge representation is the KNOWROB framework [31]. KNOWROB is a
knowledge processing framework for autonomous personal robots [31]. On-
tologies in this framework are used for representing encyclopedic knowledge
about an environment such as possible object classes or action classes in
an environment. Individuals on the other hand represent specific instances
of objects, actions or events which are computed from observations coming
from sensors. The fact that the knowledge is encoded in ontologies makes
it possible to share this knowledge among multiple systems. Somewhat
similar approach is the idea of RoboEarth proposed by Waibel et al. [33].
RoboEarth is a World Wide Web for Robots and as such is used for sharing
knowledge across multiple heterogeneous platforms. It consists of a database
which stores both data and its semantic information encoded using the Web
Ontology Language (OWL). The ontology used for encoding data stores in-
formation about objects, environments and action recipes. This allows both
syntactic-based and semantic-based queries on data and therefore allows
platforms to reuse knowledge which was acquired earlier.

In the Multiple Platform scenario we have dealt with the situation where
multiple heterogeneous information sources have to share information in or-
der to solve some task. One way to solve this interoperability problem is
by using ontologies to semantically annotate information and information
sources. Wache et al. [32] suggest that the works on ontology-based informa-
tion integration deal with three types of ontology architectures: single ontol-
ogy approach, multiple ontology approach and hybrid ontology approach. In
the single ontology approach, multiple information sources have to conform
to a single global ontology. In other words, a system has a mediator which
contains a domain model and models of all information sources. The media-

44 CHAPTER 4. ANALYSIS

tor also needs to have a set of mappings which relate concepts in models on
individual information sources and concepts in a global domain model. An
example of this architecture is SIMS [2] in which case queries are written
using concepts from a global ontology. It is a mediator’s job to decompose
a query and relate its part to relevant information sources. Similar work
was done by Cruz et al. [10] who proposed a peer to peer data management
architecture for data integration. Their architecture consists of peers with
local schemas and one super peer which contains the global ontology which
defines the global vocabulary of a system [10]. The RoboEarth approach [33]
can also be categorized into the single ontology approach as it consists of a
single database which contains data and its semantic information.

In the multiple ontologies approach each source has its own local ontology
instance which is used to capture the semantics of the information source. As
Wache et al. [32] argue an advantage of this approach is the independence
of information sources, meaning that changes in a local ontology do not
influence other local ontologies. However, this independence also makes it
difficult to compare information from different sources [32]. To deal with this
problem it is necessary to establish semantic mappings between concepts in
different distributed ontologies. An example of this architecture is the work
done by Mena et al. [23] on the OBSERVER system. The OBSERVER
system consists of multiple heterogeneous platforms connected with semantic
mappings. Semantic mappings are based on lexical relations and represent
mappings such as synonym, hyponym, hypernym, etc. Other approaches to
semantic mappings such as those proposed by Bouquet et al. [6] and Serafini
and Tamilin [26] allow mappings based on semantic correspondence. In this
case it is possible to define relations such as equivalence, ”more general” and
”less general” between entities in different ontologies.

Finally, in the hybrid approach each information source has its own local
ontology, however each of these ontologies is built upon some global vocab-
ulary [32]. The fact that ontologies are built upon some global vocabulary
makes it possible to compare information from different sources without
the need for semantic mappings. A global vocabulary describes basic terms
while local ontologies combine these terms to form complex terms. Work
done by Stuckenschmidt et al. [30] proposes an approach in which a global
vocabulary is represented in the form of an ontology which describes prim-
itives of the vocabulary. However, similar to the single ontology approach
queries which require information from multiple sources need to be written
using the global vocabulary.

It is important to note that ontologies used for these data integration
approaches can either be developed for a specific domain similar to our
solution to the semantic matching problem or a relevant existing ontolo-
gies can be used. For example, OpenCyc 1 ontology is an upper ontology
meaning that it is used to encode generic knowledge about a number of do-
mains. Another example are Semantic Web for Earth and Environmental

1http://www.cyc.com/opencyc

http://www.cyc.com/opencyc

4.5. RELATED WORK 45

Terminology (SWEET)2 ontologies which are ”middle-level” ontologies and
are used in a combination with a domain specific ontology. This means that
concepts from a domain specific ontology are related to concepts in SWEET
ontologies thus allowing the extraction of new knowledge about concepts
(from a domain specific ontology).

Our approach for information integration relates to the multiple ontology
approach. Each platform has its own ontology and the platforms’ ontologies
are connected with semantic mappings. Semantic mappings in our approach
are similar to the one proposed by Bouquet et al. [6]. The main reason
for the choice of this approach was to allow greater independence between
platforms thus allowing the platforms to define ontologies without the need
for conforming to some global vocabulary (ontology). This independence
also simplifies individual platforms as platforms only need to know about
concepts in their local ontology. When it comes to querying distributed
sources with this approach, platforms use concepts from the local ontology
in queries. These concepts are then mapped to concepts in ontologies on
distributed sources in order to extract relevant information.

2http://sweet.jpl.nasa.gov/

http://sweet.jpl.nasa.gov/

46 CHAPTER 4. ANALYSIS

Chapter 5

Implementation

The chapter provides the implementation details for the Knowledge Manager
(KM). This includes an overview of the design and components used in the
implementation.

5.1 Introduction

The main task of the KM is the process of matching features in a logical
formula to content of streams in the system. It accepts a formula as an input
and provides relevant streams for each extracted feature from the formula. In
order to support this service the KM needs to be provided with an ontology
which represents the domain model of a platform and topic specifications
represented in SSLT . The KM also provides support for specifying new
topics.

Currently, the KM supports reuse of data from distributed platforms.
However, in order to do so the KM has to have access to ontologies and
topic specifications on these distributed platforms together with semantic
mappings which map concepts on a local platform with concepts on dis-
tributed platforms.

5.2 Proposed solution

The main characteristics of our implementation are:

• The implementation of the KM is written in Java

• The Jena Semantic Web Framework 1 and its Ontology API is used
to deal with ontologies

1http://jena.sourceforge.net/

47

http://jena.sourceforge.net/

48 CHAPTER 5. IMPLEMENTATION

• The lexer and parser code for the topic specification language is gen-
erated using Another Tool for Language Recognition (ANTLR)2

• Pellet3 is used as a reasoning mechanism for the ontologies

• JNI implementation of rosjava4 is used for the integration with the
Stream Processor and the Formula Progressor in ROS implementation
of DyKnow

5.3 Design

The KM consists of four main components:

• Ontology component

• Topic Specification component

• Formula processing component

• KM interface

Figure 5.1: Components in ROS implementation of DyKnow.

2http://www.antlr.org/
3http://clarkparsia.com/pellet/
4http://www.ros.org/wiki/rosjava

http://www.antlr.org/
http://clarkparsia.com/pellet/
http://www.ros.org/wiki/rosjava

5.3. DESIGN 49

Figure 5.1 gives an overview of relations between different components.
The blue arrows show the process of matching formulas to a variable while
the red arrows show the process of adding new topic specifications. The
following sections describe the aforementioned components in more details.

Knowledge Manager interface

The KM interface provides a high level interface consisting of a number of
methods which cover the main functionality of the KM:

• checkFormula - returns relevant topics for features in a logical formula

• addTopic - addition of new topic specifications

• removeTopic - removal of topic specification

• getTopicSpecification - returns a topic specification for some topic

• listTopicSpecifications - list all topic specifications in a system

• listTopics - list all topics in a system

• listSort - lists all objects of some sort

To provide these high level services the KM interface reuses the func-
tionalities from other components. The interface is implemented as a façade
pattern which simplifies the use of the KM while hiding the implementation
details for other components.

Ontology component

The ontology component provides the necessary classes needed for the use
of ontologies in the KM. The implementation mostly relies on the Jena
Semantic Framework. To simplify the topic specifications and the processing
of formulas we have disregarded the URIs in the resource names in the
ontology. This was possible because the local names have to be unique on the
ontology level and therefore uniquely reference the resources. This required
the extension of the ontology model in the Jena Semantic Framework with
methods which only deal with local names of resources.

The ontology component also implements methods which are used to
check if some feature or features are present in the ontology and are correctly
defined with respect to the ontology. As stated before DyKnow deals with
features and objects. The same applies to domain ontologies in the KM. The
domain ontology consists of a hierarchy of classes representing sorts(types)
of objects. The actual object instances are represented as individuals of
classes in the ontology. KM currently supports sort hierarchies which are
represented as taxonomies meaning that the hierarchies are organized using
the is-a (subclass/superclass) relationships between classes. The features,

50 CHAPTER 5. IMPLEMENTATION

on the other hand, are represented as intersection classes. Components of
these intersection classes include the type of the relation (e.g. unary, binary)
and classes which encode the accepted types of arguments of the relation.

The following two axioms give an example of the representation of fea-
tures Altitude and Behind in the ontology.

Altitude ⊆ UnaryRelation ∩ ∀arg1.UAV
Behind ⊆ BinaryRelation ∩ ∀arg1.(UAV ∪ Car) ∩ ∀arg2.(UAV ∪ Car)

Altitude represents a unary relation whose argument is of sort UAV while
Behind is defined as a binary relation whose arguments can either be of
sort UAV or Car. As the example shows, the ontology has to have prede-
fined classes which represent the arity of the relation (UnaryRelation and
BinaryRelation) together with object properties (arg1 and arg2) which are
used to enumerate sorts of objects which can appear as arguments to a rela-
tion. This representation is similar to the predicate representation found in
CycL 5 which unlike OWL supports predicates with arity higher than two.
The current implementation of the KM supports unary, binary and ternary
relations.

Formula processing component

The task of the formula processing component is extraction of features from
a logical formula. The formulas are represented in the metric temporal logic
and the current implementation uses the metric temporal logic parser and
lexer in order to extract the data needed for processing. This data includes
types of quantifiers, quantified variables, domains of quantified variables
and predicates/terms with arguments. Predicates or terms in formulas are
treated as features in the ontology while the arguments are treated as objects
(instances of classes). Domains of quantified variables are represented as
classes in the ontology. An Abstract Syntax Tree (AST) containing this
data is constructed during the parsing and lexical analysis and is used for
extracting features. These features are then checked against the ontology
using the ontology component to determine if features map to relations in the
ontology. For example, if we have the feature Altitude[uav1] it is necessary
to determine if a relation Altitude exists in the ontology and if uav1 is a
proper argument for this relation.

Topic Specification component

This component deals with the topic specifications. It has two main func-
tionalities:

• It provides an interface for addition of semantic specifications for topics

5http://www.cyc.com/

http://www.cyc.com/

5.4. MATCHING A FORMULA TO TOPICS 51

• It provides an interface for searching the topic specifications based on
the semantics of the topics

In order to implement these two functionalists the KM has to be able to
determine the content of each topic. As discussed in the previous chapter,
SSLT provides support for encoding the content of topics. The topic spec-
ifications are saved in an XML file using the structure defined in 4.2. The
XML file is queried using XQuery.

When adding new specifications each specification is checked in the on-
tology to determine if the feature exists in the ontology and its arguments
satisfy the definition in the ontology. In our implementation more specific
arguments are allowed, for example if feature Altitude is defined for aerial
vehicles then the topic specification for altitude of unmanned aerial vehicle
(subclass of aerial vehicle) is a valid specification.

The following section gives more details about the actual process of
matching the features in a formula to topics in the KM.

5.4 Matching a formula to topics

The KM interface provides an entry point to the underlying system through
a number of methods. This section focuses on the checkFormula method
which is used for matching features in a formula to topics. The input to
the checkFormula method is a string which represents the formula in the
metric temporal logic. The formulas are first passed through the metric
temporal logic parser which extracts the AST. This tree is used in the next
step to extract all features from the formula. Constants in the formula are
considered to be objects in the domain while in the case of variables we take
that the domain of the variable represents some sort in the ontology. For
example, for the following formula:

∀ x in Car(Behind[car1, x])

car1 is considered an object in the ontology while the second argument of
the feature would range over all instances of the class Car in the domain.

When all of the features in the formula have been extracted the next
step is to check if these features correspond to the domain definition. In
this step the domain ontology is checked to see if all features satisfy the
requirements defined in the ontology. The requirements include name of the
feature, arity and types of arguments. If the argument is a constant, checks
are made to determine if the object with this name exists in the ontology.
If this is the case, the sort of this object is determined in the ontology and
used to determine if the argument type is correct. In the case of a variable,
the domain of the variable (sort) is used for argument checks.

If the tests were successful and the formula is correct with respect to
the ontology the set of features is sent to the Topic Specification component
which needs to find relevant topics. The first task of the Topic Specification

52 CHAPTER 5. IMPLEMENTATION

component is to expand features which have sorts as arguments. To do this,
the ontology is queried to get all objects in the domain which have these sorts
as their classes. The next step is to make all possible combinations of the
feature using the acquired objects. If we take the formula from the earlier
example the following feature is sent to the Topic Specification component:

Behind[car1, Car]

where Car represents the sort as described earlier. Given that the sort
Car has two instances, car1 and car2, then the feature would be expanded
into following features:

Behind[car1, car1]
Behind[car1, car2]

The expanded features are added to the list of features which need to be
synchronized to provide the necessary data used in the formula progression.
The next step is to find relevant topics for these features. As stated in the
previous chapter, all topic specifications are stored in the XML file. Given
that all features in this set are on the object level (the arguments are objects)
we consider that the relevant topics for some feature are those which have
these objects or the sorts of these objects as arguments. This process was
described in more detail in section 4.2.

Listing 5.1: Possible topics for feature Behind[car1, car2].

<Topic msgtype=”CarMsg” name=” top i c1 ”>
<f e a t u r e name=”Behind” value=”msg . behind”>

<s o r t name=”Car” value=”msg . id ”/>
<s o r t name=”Car” value=”msg . id2 ”/>

</ f e a tu r e>
</Topic>
<Topic msgtype=”CarMsg” name=” top i c1 ”>

<f e a t u r e name=”Behind” value=”msg . behind”>
<s o r t name=”Car” value=”msg . id ”/>
<s o r t name=” car2 ” value=”msg . id2 ”/>

</ f e a tu r e>
</Topic>
<Topic msgtype=”CarMsg” name=” top i c1 ”>

<f e a t u r e name=”Behind” value=”msg . behind”>
<s o r t name=” car1 ” value=”msg . id ”/>
<s o r t name=”Car” value=”msg . id2 ”/>

</ f e a tu r e>
</Topic>
<Topic msgtype=”CarMsg” name=” top i c1 ”>

<f e a t u r e name=”Behind” value=”msg . behind”>
<s o r t name=” car1 ” value=”msg . id ”/>
<s o r t name=” car2 ” value=”msg . id2 ”/>

</ f e a tu r e>
</Topic>

5.5. MULTIPLE PLATFORM SCENARIO 53

When checking for the relevant topics, the current implementation of
the KM also tries to find equivalent features in the ontology and if such a
feature is found the ontology is checked in order to find all objects which
are the same as objects in the initial feature. If more then one such object
is found for an argument then those objects are used to form combinations
with objects from other arguments (if any). These combinations are then
tested in the Ontology component to make sure that they comply with the
ontology. If we take the running example and assume that car45 is the same
as car1 and that the feature Behind has the equivalent feature Back which
takes the arguments of type Car then features

Back[car1, car2]
Back[car45, car2]

would be tested for relevant topics while testing for Behind [car1, car2].
It is obvious that in some cases a certain feature will have more relevant
topics. With the current implementation all of these topics would be sent
to the Stream Processor which should do the merging in order to get one
output for each feature. The merging process could be based on relevance
(chronology of the messages, ranking of sources, etc.).

5.5 Multiple Platform Scenario

In the Multiple Platform scenario the KM deals with multiple ontologies and
multiple sources with topic specifications. In order to make use of data on
different platforms there must exist some kind of relation between concepts
in the local ontology and concepts in the distributed ontology. Therefore, it
is required to specify mappings from local concepts in the ontology to con-
cepts in the distributed ontology. This is done using the COWL mappings
described in section 3.3.2. The source concepts in these mappings are the
concepts in the local ontology while the concepts in distributed ontologies
are target concepts. The mappings include both mappings between con-
cepts and individuals where the mappings between concepts define subclass,
superclass or equivalence relation while the mappings between individuals
can only define equivalence.

The process of matching topics to formulas described in section 5.4 is
extended with the support for checking topic specifications on distributed
platforms. Each feature from the formula (after expansion) is taken and
first checked against the local topic specifications. In the next step of the
algorithm the feature is checked against the distributed topic specifications.
To do this the KM first constructs an ontology which combines the local
ontology and the distributed one. The new ontology model also includes
relevant mappings and a reasoner (Pellet) which adds new entailments re-
sulting from the relations in the model. This new model is used to query
for features equivalent to the selected feature. The same thing is done for

54 CHAPTER 5. IMPLEMENTATION

the arguments of the selected feature. If the equivalent feature exists and
all arguments of the selected feature can be mapped to objects in the dis-
tributed ontology, the feature is added to the list of features that needs to
be checked for correctness in the distributed ontology. This step is crucial
as the ontology and the mappings are defined by a user and are therefore
susceptible to accidental errors, e.g. a feature Speed in distributed ontology
is defined to accept arguments of type Car, but car1 from the local ontol-
ogy maps to uav1 which is of type UAV which means that this feature is
not valid on this distributed platform and therefore it cannot provide this
data. If the features are correct in the distributed ontology, the KM tries
to find relevant topics in the distributed topic specifications following the
same method described earlier for the local topic specifications. Relevant
topics are added to the list of topics that need to be merged for the selected
feature. This process is repeated for each distributed ontology.

Let us consider the example presented in the following figure.

Figure 5.2: Multiple Platform scenario - example.

5.6. INTEGRATION 55

A mapping shows that the feature Altitude in the local ontology is equiv-
alent to the feature Height in the distributed ontology. The feature Height
is equivalent to the feature UavAltitude where both concepts are in the
distributed ontology. While matching Altitude using the aforementioned
matching process UAV Altitude would not be considered as there does not
exist an explicit relationship between these two concepts. In order to find
both explicitly and implicitly defined equivalent features we introduce a rea-
soner in our implementation. As described a reasoner adds new entailments
to the ontology and in the case of the KM this means that while searching
for the equivalent features and objects the features that can be acquired
through transitivity would also be included. Using the reasoner the feature
UAV Altitude was also found in the example.

5.6 Integration

The components described so far are not ROS dependent in the sense that
they do not use the ROS framework. This was mainly done to simplify the
code for ROS integration and allow the use of the KM in other systems which
are not based on ROS. Taking this into account the implementation for the
integration only requires one class which uses the KM implementation. For
the integration with other components in ROS we used the rosjava jni which
is based on Java Native Interface (JNI) meaning that the method calls are
done by wrapping calls to C++ implementation of the client library.

As discussed earlier, the KM extracts an initial set of features from the
formula and expands this set to form the final list of features (on the object
level) that need to be synchronized. Each feature from this set has zero or
more relevant topics which need to be merged into one output to provide
necessary data to the Progressor. To deal with these sets, the KM provides
the output in the form of StateStreamSpecification. This information is used
by the Stream Processor to do the necessary subscriptions. StateStream-
Specification is a class that contains an array of FeatureSpecifications, one
for each feature which needs to be synchronized. The FeatureSpecification,
on the other hand, contains a set of relevant topics for the feature where each
topic is represented with the class FeatureTopicSpecification which contains
following fields: name, message type, the field containing the data and a set
of FeatureArgumentSpecifications. FeatureArgumentSpecification specifies
a single argument of a feature. If an argument is implicit in a topic then
FeatureArgumentSpecification contains only the object identifier of the ar-
gument. On the other hand, if an arguments is computed from a field in
a topic then it is necessary to specify the field from which the argument is
computed together with the required value for that field.

The communication between ROS components is done using ROS ser-
vices. The Progressor communicates with the KM via the Formula service
provided by the KM.

56 CHAPTER 5. IMPLEMENTATION

Listing 5.2: CreateGroundingService service and relevant messages.

CreateGroundingContext . s rv :
s t r i n g formula
durat ion de lay be fo r e approx imat i on
StreamConstra ints s t r e a m c o n s t r a i n t s
−−−
bool s u c c e s s
s t r i n g e r ro r mes sage
s t r i n g s t r eam top i c
s t r i n g s t r e a m c o n s t r a i n t v i o l a t i o n t o p i c

StreamConstra ints . msg :
time s t a r t t i m e # 0 = now
time end time # 0 = f o r e v e r
durat ion sample per iod # 0 = no sample per iod
durat ion sa mp l e pe r i od de v i a t i on # 0 = no dev i a t i on a l lowed
durat ion max delay # 0 = i n f i n i t e
bool o r d e r e d o n v a l i d t i m e # do samples a r r i v e ordered

by v a l i d time ?
bool un ique va l i d t ime # are v a l i d t imes unique ?

As listing 5.2 shows the KM takes the string which represents the for-
mula and returns the name of the stream topic which contains the data if the
call was successful. Moreover, if a call is not successful then error message is
used for error reporting. The service call also includes the StreamConstraints
which specify constraints on a stream and delay before approximation which
determines how long the Stream Processor can wait before approximating
streams. Given that the stream constraints can be violated the reply from
the CreateGroundingContext contains the name of a topic where these con-
straint violations are published.

The Stream Processor is also implemented as a server and its main task
is to provide the support for setting up streams. The service message (Cre-
ateStateStream.srv) is represented in listing 5.3. Request to this service is
in the form of StateStreamSpecification message which represents a set of
topics for each feature. The task of the ROS implementation of the KM is
to take the output represented in the form of StateStreamSpecification and
adapt it into the ROS version of this class.

Listing 5.3: State Processor service and relevant messages.

CreateStateStream . srv :
s t r i n g stream name
S t a t e S t r e a m S p e c i f i c a t i o n s t a t e s t r e a m s p e c
−−−
bool s u c c e s s
s t r i n g e r ro r mes sage

5.7. SUMMARY 57

s t r i n g s t r eam top i c
s t r i n g s t r e a m c o n s t r a i n t v i o l a t i o n t o p i c

S t a t e S t r e a m S p e c i f i c a t i o n . msg
s t r i n g state name
F e a t u r e S p e c i f i c a t i o n [] f e a t u r e s # Synchronize these f e a t u r e s
durat ion de lay be fo r e approx imat i on
StreamConstra ints s t r e a m c o n s t r a i n t s

F e a t u r e S p e c i f i c a t i o n . msg
s t r i n g feature name
Fe a tu r e Top i cSpe c i f i c a t i on [] t o p i c s # Merge these t o p i c s

Fe a tu r e Top i cSpe c i f i c a t i on . msg :
s t r i n g topic name
s t r i n g top ic msg type
s t r i n g t o p i c f i e l d
FeatureArgumentSpec i f i cat ion [] arguments

FeatureArgumentSpec i f i cat ion . msg :
bool constant
s t r i n g o b j e c t i d e n t i f i e r
s t r i n g o b j e c t i d e n t i f i e r p r e f i x
s t r i n g f i e l d
s t r i n g r e q u i r e d f i e l d v a l u e
S t r ingPa i r [] renaming map

5.7 Summary

This chapter has presented a design of the Knowledge Manager (KM) which
provides the support for semantic matching in the ROS implementation of
DyKnow. It consists of four components: Knowledge Manager Interface,
Ontology component, Topic Specification component and Formula Process-
ing component. The Knowledge Manager Interface provides a set of high
level methods which capture the main functionality of the KM. The Ontol-
ogy component is used when dealing with ontologies, for example querying
for objects of a certain sort or checking if a feature is correctly defined with
respect to an ontology. The main task of the Formula Processing component
is the extraction of features from a logical formula. Finally, the Topic Spec-
ification component allows adding new topic specifications and querying the
existing set of topic specifications.

The KM supports use of information from distributed heterogeneous
sources. In this case the process of semantic matching requires the specifi-
cation of semantic mappings between the ontology on a local platform and

58 CHAPTER 5. IMPLEMENTATION

ontologies on distributed platforms. When searching for equivalent features
on distributed platforms the KM makes use of the reasoning mechanism
in order to allow discovery of equivalent classes which were not explicitly
defined through semantic mappings.

The integration with the ROS implementation of DyKnow is done through
ROS services where the KM defines a service which takes a formula and pro-
vides a set of relevant topic specifications for features in the formula.

Chapter 6

Case studies

This chapter presents two case studies which cover the functionality of the
Knowledge Manager (KM). The first case study deals with a single platform
scenario meaning that the platform uses only knowledge which is directly
available to it. The second case study covers the multiple platform scenario.
In this case the distributed system contains three platforms, one of which is
the same as in the Single Platform Scenario.

6.1 Single platform scenario

This case study covers the Single Platform scenario covered in the previ-
ous chapters. The scenario deals with the situation where there is only
one platform in the system doing execution monitoring by evaluating con-
trol formulas. The platform is provided with the set of topic specifications
available in the system which it uses to determine relevant topics for the
formula. The vocabulary of the topic specifications is provided in the form
of an ontology.

Ontology

The ontology used in the Single Platform Scenario is presented in figure
6.1. As the figure shows the domain deals with two types of objects, static
and moving objects. Static objects are some points of interest (house, road,
crossing) while the moving objects define different types of vehicles (aerial
vehicle, car, UAV).

59

60 CHAPTER 6. CASE STUDIES

Figure 6.1: Visualization of the ontology for the single platform scenario.

The ontology also defines a number of relations differing in the number of
arguments. Tables 6.1, 6.2 and 6.3 give an overview of the defined relations
with types of their arguments.

Relation Argument 1 type

Altitude AerialV ehicle
Fast MovingObject
Color V ehicle

GroundSpeed UAV
Slow MovingObject
Size Object
Speed MovingObject

Position Object

Table 6.1: Unary relations and argument types.

6.1. SINGLE PLATFORM SCENARIO 61

Relation Argument 1 type Argument 2 type

Above Object Object
In Object Object

Close Object Object

Table 6.2: Binary relations and argument types.

Relation Argument 1 type Argument 2 type Argument 3 type

Between Object Object Object

Table 6.3: Ternary relation and argument types.

It is important to note that relations Speed and GroundSpeed are defined
to be equivalent. However, they do not accept the same types of arguments.

This domain also defines a number of instances of classes which represent
objects in the domain. We have the following objects in this domain:

UAVs uav1 and uav2

Cars car1, car2 and car3

Topic specifications

In this case study we define nine topics. Topic specifications with the syntax
in SSLT are presented in listing 6.1.

Listing 6.1: Topic specifications in SSLT .

topic top i c1 :UAVMsg contains Alt i tude (uav1) = msg . a l t for
uav1 = msg . id , Speed (uav1)=msg . spd for uav1 = msg . id

topic top i c2 :UAVMsg contains Alt i tude (UAV) = msg . a l t for
some UAV = msg . id

topic top i c3 : CarMsg contains Speed (car1) = msg . spd for
car1 = msg . id

topic top i c4 : CarMsg contains Speed (car2) = msg . spd for
car2 = msg . id

topic top i c5 : CarMsg contains Speed (car3) = msg . spd for
car3 = msg . id

topic top i c6 :UavMsg contains Close (uav1 , uav2) = msg . c l o s e
for uav1 = msg . id1 , uav2 = msg . id2

topic top i c7 :UavMsg contains Close (uav2 , uav1) = msg . c l o s e
for uav1 = msg . id2 , uav2 = msg . id1

62 CHAPTER 6. CASE STUDIES

topic top i c8 :UavMsg contains Close (uav1 , UAV) = msg . c l o s e
for uav1 = msg . id1 , some UAV = msg . id2

topic top i c9 :UavMsg contains GroundSpeed (uav2) = msg . spd
for uav2 = msg . id

Topic topic1 contains altitude (field alt) and speed (field spd) for the
object uav1. Similarly, topic2 also contains altitude, however in this case
for some objects of the sort UAV . Topics, topic3, topic4 and topic5,
contain the feature Speed for objects car1, car2 and car3 respectively. The
next three topics contain the feature Close with different combinations of
the arguments. Finally, topic9 contains the feature GroundSpeed for the
object uav2.

The XML representation of the topic specifications is given in Appendix
C.1.

Formulas

We are going to test three formulas in this scenario. The formulas should
show the main functionalities of the KM. The structure of the synchroniza-
tion request will be provided for each formula.

Formula 1: �((Altitude[uav1] > Altitude[uav2]) and (Speed[uav1] > 50))

The given formula covers the basic functions of the KM. It does not re-
quire expansions because the formula does not have any quantified variables.
Therefore we only need to test the three features that appear in the formula.

Listing 6.2: Output from the KM for formula 1.

Feature : A l t i tude [uav1]
Topics to merge :

Topic : top ic1 , Message type : UavMsg , Id : msg . id = 1 ,
F i e ld : msg . a l t

Topic : top ic2 , Message type : UavMsg , Id : msg . id = 1 ,
F i e ld : msg . a l t

Feature : A l t i tude [uav2]
Topics to merge :

Topic : top ic2 , Message type : UavMsg , Id : msg . id = 2 ,
F i e ld : msg . a l t

Feature : Speed [uav1]
Topics to merge :

Topic : top ic1 , Message type : UavMsg , Id : msg . id = 1 ,
F i e ld : msg . spd

6.1. SINGLE PLATFORM SCENARIO 63

The feature Altitude[uav1] requires the merging of two topics because
both topic1 and topic2 are relevant for this feature. On the other hand,
Altitude[uav2] has only one candidate, topic2.

Topic topic1 is the only relevant topic for feature Speed[uav1] because
it is the only topic which contains feature Speed for the object uav1.

Formula 2: forall x in UAV y in Car �(Altitude[x] > 10 and Speed[x] >
Speed[y])

In this case we are dealing with two quantified variables, x with UAV as
the domain and y which has Car as the domain. Therefore the expansion is
needed and as listing 6.3 shows the features were expanded to cover all ob-
jects of the aforementioned domains. The output for features Altitude[uav1],
Altitude[uav2] and Speed[uav1] is the same as in the previous example.
However, this formula also requires feature Speed[uav2] which is not explic-
itly defined with any topic in the system. The only possible candidate for
this feature is topic9 which defines an equivalent feature GroundSpeed for
uav2.

Finally, topics topic3, topic4 and topic5 are relevant for features
Speed[car1], Speed[car2] and Speed[car3].

Listing 6.3: Output from the KM for formula 2.

Feature : A l t i tude [uav2]
Topics to merge :

Topic : top ic2 , Message type : UavMsg , Id : msg . id = 2 ,
F i e ld : msg . a l t

Feature : A l t i tude [uav1]
Topics to merge :

Topic : top ic1 , Message type : UavMsg , Id : msg . id = 1 ,
F i e ld : msg . a l t

Topic : top ic2 , Message type : UavMsg , Id : msg . id = 1 ,
F i e ld : msg . a l t

Feature : Speed [uav2]
Topics to merge :

Topic : top ic9 , Message type : UavMsg , Id : msg . id = 2 ,
F i e ld : msg . spd

Feature : Speed [uav1]
Topics to merge :

Topic : top ic1 , Message type : UavMsg , Id : msg . id = 1 ,
F i e ld : msg . spd

Feature : Speed [car3]
Topics to merge :

64 CHAPTER 6. CASE STUDIES

Topic : top ic5 , Message type : CarMsg , Id : msg . id = 3 ,
F i e ld : msg . spd

Feature : Speed [car2]
Topics to merge :

Topic : top ic4 , Message type : CarMsg , Id : msg . id = 2 ,
F i e ld : msg . spd

Feature : Speed [car1]
Topics to merge :

Topic : top ic3 , Message type : CarMsg , Id : msg . id = 1 ,
F i e ld : msg . spd

Formula 3: forall x in UAV �(Close[uav1, x])

In this formula we have a binary feature Close. As the formula shows, one
of the arguments to the feature is quantified therefore we need to expand
the feature.

The output from the KM in listing 6.4 shows that both topic6 and
topic8 might contain data for feature Close[uav1, uav2] while topic8 is
the only candidate for feature Close[uav1, uav1].

Listing 6.4: Output from the KM for formula 3.

Feature : Close [uav1 , uav2]
Topics to merge :

Topic : top ic6 , Message type : UavMsg , Id : msg . id1 = 1 ,
Id : msg . id2 = 2 , F i e ld : msg . c l o s e

Topic : top ic8 , Message type : UavMsg , Id : msg . id1 = 1 ,
Id : msg . id2 = 2 , F i e ld : msg . c l o s e

Feature : Close [uav1 , uav1]
Topics to merge :

Topic : top ic8 , Message type : UavMsg , Id : msg . id1 = 1 ,
Id : msg . id2 = 1 , F i e ld : msg . c l o s e

6.2 Multiple platform scenario

In this scenario there are three platforms in the system including the plat-
form from the previous scenario. An example of this scenario was presented
in section 1.2 which covered a situation where multiple platforms are moni-
toring a road for traffic violations.

In order to show the differences between different scenarios the formulas
are again checked on the platform from the previous scenario however in this
case this platform has the possibility to use information from two distributed
heterogeneous platforms.

6.2. MULTIPLE PLATFORM SCENARIO 65

Ontologies

As mentioned before the platform on which we are testing formulas is the
same one we used in section 6.1 (named platform 1 in this scenario). The
ontology is given in figure 6.1. The system also contains two other platforms,
platform 2 which deals only with cars in the domain and platform 3 which
deals only with Aircraft Systems.

The ontology used on platform 2 is given in figure 6.2.

Figure 6.2: Visualization of the ontology for platform 2.

Two unary relations, Position and Speed, are defined in the ontology.
The table 6.4 gives an overview of the argument types for the relations.

Relation Argument 1 type

Speed Automobile
Position V ehicle

Table 6.4: Unary relations and argument types for platform 2.

The ontology also defines two objects, car11 and car12 which are of sort
Automobile.

Platform 3 has an ontology defining Unmanned Aircraft Systems.

Figure 6.3: Visualization of the ontology for platform 3.

66 CHAPTER 6. CASE STUDIES

As shown in figure 6.3 the ontology for platform 3 defines two types of
aircrafts, manned and unmanned aircraft system. The ontology also defines
a number of relations presented in listings 6.5 and 6.6. Features Alt and
Height are defined to be equivalent.

Relation Argument 1 type

Alt Aircraft
Height Aircraft
Spd Aircraft

Table 6.5: Unary relations and argument types for platform 3.

Relation Argument 1 type Argument 2 type

Near Aircraft Aircraft

Table 6.6: Binary relations and argument types for platform 3.

There are 5 defined objects in the ontology: uas20, uas21 and uas22 of
sort UnmannedAircraftSystem and heli1 and heli2 of sort MannedAircraftSystem.

Mappings

In order for platform 1 to reuse knowledge from platform 2 and platform 3
we need to specify mappings between concepts in these ontologies. Listing
6.5 gives the mappings used in this scenario. In this solution we only used
mappings which show equivalence between classes (bridge type equiv) and
equivalence between individuals (bridge type same), however other mappings
are possible.

Listing 6.5: Mappings in XML.
<cowl:mapping>
<cowl :br idgeRule cowl :br−type=” equiv ”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. example . com/ ontology#

GroundVehicle ”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/5/ Di s t r ibuted . owl#GroundVehicle ”/>
</ cowl :br idgeRule>
<cowl :br idgeRule cowl :br−type=” equiv ”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. example . com/ ontology#Car”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/5/ Di s t r ibuted . owl#Automobile”/>
</ cowl :br idgeRule>
<cowl :br idgeRule cowl :br−type=” equiv ”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. example . com/ ontology#Pos i t i on ”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/5/ Di s t r ibuted . owl#Pos i t i on ”/>
</ cowl :br idgeRule>
<cowl :br idgeRule cowl :br−type=” equiv ”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. example . com/ ontology#Speed”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/5/ Di s t r ibuted . owl#Speed”/>
</ cowl :br idgeRule>
<cowl :br idgeRule cowl :br−type=” equiv ”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. example . com/ ontology#UAV”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/6/ d i s t r i bu t ed uav s . owl#UnmannedAircraftSystem”/>
</ cowl :br idgeRule><cowl :br idgeRule cowl :br−type=” equiv ”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. example . com/ ontology#Close ”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/6/ d i s t r i bu t ed uav s . owl#Near”/>
</ cowl :br idgeRule>
<cowl :br idgeRule cowl :br−type=” equiv ”>

6.2. MULTIPLE PLATFORM SCENARIO 67

<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. example . com/ ontology#Alt i tude ”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/6/ d i s t r i bu t ed uav s . owl#Height ”/>
</ cowl :br idgeRule>
<cowl :br idgeRule cowl :br−type=” equiv ”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. example . com/ ontology#Speed”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/6/ d i s t r i bu t ed uav s . owl#Spd”/>
</ cowl :br idgeRule>
<cowl :br idgeRule cowl :br−type=”same”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. co−ode . org / on t o l o g i e s /ont . owl#

uav1”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/6/ d i s t r i bu t ed uav s . owl#uas20”/>
</ cowl :br idgeRule>
<cowl :br idgeRule cowl :br−type=”same”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. co−ode . org / on t o l o g i e s /ont . owl#

uav2”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/6/ d i s t r i bu t ed uav s . owl#uas21”/>
</ cowl :br idgeRule>
<cowl :br idgeRule cowl :br−type=”same”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. co−ode . org / on t o l o g i e s /ont . owl#

car1 ”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/5/ Di s t r ibuted . owl#car11 ”/>
</ cowl :br idgeRule>
<cowl :br idgeRule cowl :br−type=”same”>
<cowl : sourceConcept r d f : r e s o u r c e=” ht tp : //www. co−ode . org / on t o l o g i e s /ont . owl#

car2 ”/>
<cowl : targetConcept r d f : r e s o u r c e=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/5/ Di s t r ibuted . owl#car12 ”/>
</ cowl :br idgeRule>

</ cowl:mapping>

Topic specifications

There are 3 topics defined for platform 2 and they are presented in listing
6.6

Listing 6.6: Topic specifications for platform 2 in SSLT .

topic c a r s t op i c 1 : AutomobileMsg contains Speed (Automobile)
= msg . speed for some Automobile = msg . id

topic c a r s t op i c 2 : AutomobileMsg contains Speed (car11) =
msg . speed for car11 = msg . id

topic c a r s t op i c 3 : AutomobileMsg contains
Pos i t i on (Automobile) = msg . speed for every Automobile
= msg . id

As the listing shows, carstopic1 and carstopic2 define feature Speed.
carstopic1 contains data about Speed for some objects of sort Automobile
while carstopic2 contains feature Speed for car11. carstopic3 contains
feature Position for all objects of the sort Automobile.

Listing 6.7: Topic specifications for platform 3 in SSLT .

topic uas top i c1 : UasMsg contains
Spd(UnmannedAircraftSystem) = msg . speed for every
UnmannedAircraftSystem = msg . id

topic uas top i c2 : UasMsg contains Spd(uas20) = msg . speed for
uas20 = msg . id

68 CHAPTER 6. CASE STUDIES

topic uas top i c3 : UasMsg contains Spd(uas22) = msg . speed for
uas22 = msg . id

topic uas top i c4 : UasMsg contains Height (uas20) = msg . he ight
for uas20 = msg . id

topic uas top i c5 : UasMsg contains Alt (uas21) = msg . a l t for
uas21 = msg . id

topic uas top i c6 : UasMsg contains
Near (UnmannedAircraftSystem , uas22) = msg . near for
every UnmannedAircraftSystem = msg . id1 , uas22 = msg . id2

topic uas top i c7 : UasMsg contains
Near (UnmannedAircraftSystem , uas21) = msg . near for
every UnmannedAircraftSystem = msg . id1 , uas21 = msg . id2

topic uas top i c8 : UasMsg contains Near (uas21 ,
UnmannedAircraftSystem) = msg . near for uas21 =
msg . id2 , every UnmannedAircraftSystem = msg . id2

First three topics contain feature Spd for the whole sort UnmannedAircraftSystem,
uas20 and uas22 respectively. Topics uastopic4 and uastopic5 contain
features Height for uas20 and Alt for uas21. Finally, topics uastopic6,
uastopic7 and uastopic8 contain feature Near with different objects (sorts)
in the argument lists.

Formulas

In this section we are going to test the formulas from the single platform
scenario. The section will highlight which topics are acquired from the
distributed sources.

Formula 1: �((Altitude[uav1] > Altitude[uav2]) and (Speed[uav1] > 50))

The listing 6.8 shows the output from the KM when the platform uses knowl-
edge from distributed sources. Given that in this formula we only use objects
of sort UAV the output does not contain any topics from platform 2. It is
important to note that uastopic4 was also included even though there is no
direct mapping between Altitude on platform 1 and Height on platform 3.
As mention earlier this was possible because the ontology reasoner includes
all entailments resulting from the transitive property of equivalence relation.

Listing 6.8: Output from the KM for formula 1 in distributed system.

Feature : A l t i tude [uav1]
Topics to merge :

6.2. MULTIPLE PLATFORM SCENARIO 69

Topic : top ic1 , Message type : UavMsg , Id : msg . id = 1 ,
F i e ld : msg . a l t

Topic : top ic2 , Message type : UavMsg , Id : msg . id = 1 ,
F i e ld : msg . a l t

Topic : uastopic4 , Message type : UasMsg , Id : msg . id =
20 , F i e ld : msg . he ight

Feature : A l t i tude [uav2]
Topics to merge :

Topic : top ic2 , Message type : UavMsg , Id : msg . id = 2 ,
F i e ld : msg . a l t

Topic : uastopic5 , Message type : UasMsg , Id : msg . id =
21 , F i e ld : msg . a l t

Feature : Speed [uav1]
Topics to merge :

Topic : top ic1 , Message type : UavMsg , Id : msg . id = 1 ,
F i e ld : msg . spd

Topic : uastopic1 , Message type : UasMsg , Id : msg . id =
20 , F i e ld : msg . speed

Topic : uastopic2 , Message type : UasMsg , Id : msg . id =
20 , F i e ld : msg . speed

Formula 2: forall x in UAV y in Car �(Altitude[x] > 10 and Speed[x] >
Speed[y])

The output in listing 6.9 is very similar to the output in the previous ex-
ample. However, in this situation the formula also includes features with
arguments of type Car. As it was previously suggested platform 2 contains
data on objects of sort Automobile which directly map to objects of sort
Car on platform 1.

Listing 6.9: Output from the KM for formula 2 in distributed system.

Feature : A l t i tude [uav2]
Topics to merge :

Topic : top ic2 , Message type : UavMsg , Id : msg . id = 2 ,
F i e ld : msg . a l t

Topic : uastopic5 , Message type : UasMsg , Id : msg . id =
21 , F i e ld : msg . a l t

Feature : A l t i tude [uav1]
Topics to merge :

70 CHAPTER 6. CASE STUDIES

Topic : top ic1 , Message type : UavMsg , Id : msg . id = 1 ,
F i e ld : msg . a l t

Topic : top ic2 , Message type : UavMsg , Id : msg . id = 1 ,
F i e ld : msg . a l t

Topic : uastopic4 , Message type : UasMsg , Id : msg . id =
20 , F i e ld : msg . he ight

Feature : Speed [uav2]
Topics to merge :

Topic : top ic9 , Message type : UavMsg , Id : msg . id = 2 ,
F i e ld : msg . spd

Topic : uastopic1 , Message type : UasMsg , Id : msg . id =
21 , F i e ld : msg . speed

Feature : Speed [uav1]
Topics to merge :

Topic : top ic1 , Message type : UavMsg , Id : msg . id = 1 ,
F i e ld : msg . spd

Topic : uastopic1 , Message type : UasMsg , Id : msg . id =
20 , F i e ld : msg . speed

Topic : uastopic2 , Message type : UasMsg , Id : msg . id =
20 , F i e ld : msg . speed

Feature : Speed [car3]
Topics to merge :

Topic : top ic5 , Message type : CarMsg , Id : msg . id = 3 ,
F i e ld : msg . spd

Feature : Speed [car2]
Topics to merge :

Topic : top ic4 , Message type : CarMsg , Id : msg . id = 2 ,
F i e ld : msg . spd

Topic : ca r s top i c1 , Message type : AutomobileMsg , Id :
msg . id = 12 , F i e ld : msg . speed

Feature : Speed [car1]
Topics to merge :

Topic : top ic3 , Message type : CarMsg , Id : msg . id = 1 ,
F i e ld : msg . spd

Topic : ca r s top i c1 , Message type : AutomobileMsg , Id :
msg . id = 11 , F i e ld : msg . speed

6.3. DISCUSSION 71

Topic : ca r s top i c2 , Message type : AutomobileMsg , Id :
msg . id = 11 , F i e ld : msg . speed

Formula 3: forall x in UAV �(Close[uav1, x])

Similar to formula 1, formula 3 also does not contain any objects of sort
Car and therefore can not use any data from platform 2. uastopic7 is the
only topic included from topic specifications on platform 3.

Listing 6.10: Output from the KM for formula 3 in distributed system.

Feature : Close [uav1 , uav2]
Topics to merge :

Topic : top ic6 , Message type : UavMsg , Id : msg . id1 = 1 ,
Id : msg . id2 = 2 , F i e ld : msg . c l o s e

Topic : top ic8 , Message type : UavMsg , Id : msg . id1 = 1 ,
Id : msg . id2 = 2 , F i e ld : msg . c l o s e

Topic : uastopic7 , Message type : UasMsg , Id : msg . id1 =
20 , Id : msg . id2 = 21 , F i e ld : msg . near

Feature : Close [uav1 , uav1]
Topics to merge :

Topic : top ic8 , Message type : UavMsg , Id : msg . id1 = 1 ,
Id : msg . id2 = 1 , F i e ld : msg . c l o s e

6.3 Discussion

The case studies presented in this chapter covered the main functionalities
of the KM. The first test covered the Single Platform Scenario which dealt
with a single platform implementing execution monitoring. Three formulas
with different levels of complexity were tested. The KM managed to extract
features from the formulas and find relevant streams for them based on the
streams’ content.

In the Multiple Platform Scenario the distributed system consists of three
platforms covering different parts of the domain. In this test we used the
same formulas in order to emphasize differences between outputs in these
two tests. This scenario showed how the KM can reuse data from multiple
distributed and heterogeneous platforms. The interoperability between the
platforms was supported by semantic mappings between concepts in different
ontologies.

The output also showed that with the current implementation of the
KM the expansion of features with quantified arguments can significantly in-
crease the number of features that need to be checked against topic specifica-
tions. If we also include features which are acquired through reasoning then

72 CHAPTER 6. CASE STUDIES

this increase can not be ignored. Another way to deal with this problem is to
query the topic specifications with non-expanded features. In other words if
we extract the feature Altitude[UAV] from a formula where UAV is a sort
then this feature should also be used to query topic specifications. With
this approach querying topic specifications which contain features which
have sorts as arguments is trivial. However, if we assume that UAV has
two instances, uav1 and uav2 then topics specifying features Altitude[uav1]
and Altitude[uav2] are also relevant for feature Altitude[UAV] and should
be included in the solution. In order to support this the queries would re-
quire a number of sub-queries which would be used to determine objects of
a sort. Therefore, with this approach the semantic matching process would
deal with a smaller number of features but the actual queries against topic
specifications would be more complex.

Chapter 7

Performance evaluation

This chapter presents a performance evaluation of the Knowledge Manager
(KM) in the ROS implementation of DyKnow. The goal of the performance
evaluation is to see which aspects of semantic matching affect the perfor-
mance of the KM and in what way.

7.1 Test cases

This performance evaluation is based on execution time. In this case we
consider the execution time to be the time it takes to produce a call to
the Stream Processor after acquiring a formula. Given that the semantic
matching consists of a number of steps, the execution time is also divided
in five phases:

• Preprocessing – includes loading of ontologies and topic specifications
into memory

• Extracting features – includes feature extraction from a logical formula

• Checking features – includes the process of checking extracted features
against an ontology

• Matching topic specifications – process of querying for relevant topic
specifications

• ROS integration – transforming classes used in the KM to classes used
in ROS implementation of the KM

The test cases used in the performance evaluation are based on four different
aspects of semantic matching:

1. Size of an ontology – number of concepts, number of relevant and
irrelevant 1 individuals in an ontology

1Relevant individuals are individuals which are of the same class as objects in the
formula

73

74 CHAPTER 7. PERFORMANCE EVALUATION

2. Number of topic specifications – number of relevant and irrelevant
topic specifications

3. Size of a formula – number of features in a formula

4. Type of features in the formula – quantified and non-quantified argu-
ments

Taking into account these different aspects we have designed the follow-
ing test cases for performance evaluation:

Test case 1.1 – the number of concepts in an ontology is varied (0 to 200)
while the number of individuals and topic specifications is kept con-
stant

Test case 1.2 – the number of irrelevant individuals is varied (0 to 200)
while the number of concepts and topic specifications is kept constant

Test case 1.3 – the number of relevant individuals is varied (0 to 200)
while the number of concepts and topic specifications is kept constant

Test case 2.1 – the number of irrelevant topic specifications is varied (0
to 500) while the number of concepts, individuals and relevant topic
specifications is kept constant

Test case 2.2 – the number of relevant topic specifications is varied (100
to 500) while the number of concepts, individuals and irrelevant topic
specifications is kept constant

Test case 3 – the number of features in the formula is varied (10 to 50)
while the number of concepts, individuals and topic specifications is
kept constant

Test case 4 – two versions of the same formula are tested, one with quan-
tifiers and one without. This is done for three formulas with varying
number of features (3, 9, 27).

7.2 Test setup

The test cases were run on a Dell Studio 1558 equipped with a 1.6 GHz six-
core Intel i7-720QM processor and 4 gigabytes of memory running Ubuntu
11.04 with ROS 1.4.9 (Diamondback).

Ontologies and topic specifications used in the test cases were randomly
generated. Each generated ontology contains at least concepts A, B, C,
D and E where concepts B, C, D and E are subclasses of A. Ontologies
also need to include at least 3 individuals (b1, b2, b3 of class B) which are
relevant for logical formulas used in the test cases and therefore can not
change throughout the tests. Ontologies define three relations: X, Y and

7.3. RESULTS 75

Z where X is a unary, Y is a binary and Z is a ternary relation. All of
the aforementioned relations accept arguments of sort A. Other concepts
in ontologies were generated randomly and were either defined to be a top
concept or a subconcept of a randomly chosen previously generated concept.

7.3 Results

Test case 1.1 - Varying number of concepts

An ontology with 200 concepts and 200 individuals was generated for this
test case. Out of 200 individuals, 3 are relevant (b1, b2, b3) and the rest
are irrelevant. The following formula with 9 features was used in the test
case:

X[b1] and X[b2] and X[b3] and Y [b1, b1] and Y [b1, b2] and Y [b1, b3]
and Z[b1, b2, b1] and Z[b1, b2, b2] and Z[b1, b2, b3]

The setup of the test case included in total 20 topic specifications. Each
feature had exactly one relevant topic specification and the rest were irrele-
vant for features in the formula.

In each iteration of the test we added 25 concepts to the ontology while
keeping the number of individuals and topic specifications constant.

Number of concepts 25 50 75 100 125 150 175 200

Preprocessing 197 202 173 181 183 203 176 189
Extracting features 28 32 28 32 30 26 28 28
Checking features 1807 2379 2937 4651 5308 5595 5978 6426
Matching topic specs 546 542 554 544 558 562 551 547
Integrating with ROS 2 2 2 2 2 2 2 2

Total 2580 3157 3694 5410 6081 6388 6735 7192

Table 7.1: Varying number of concepts.

76 CHAPTER 7. PERFORMANCE EVALUATION

Figure 7.1: Varying number of concepts.

Figure 7.1 shows a linear increase in time when increasing number of
concepts in the ontology from 25 to 75 and from 100 to 200. However, there
is a sudden increase in execution time when going from 75 to 100 concepts
in the ontology. Given that this increase is more obvious in the phase of
feature checking one could accredit this to the internals of the Jena Semantic
Web Framework. As expected, an increase in the number of concepts in the
ontology has the highest impact on the phase of feature checking while the
phase of matching topic specifications is constant.

Test case 1.2 - Varying number of irrelevant individuals

This test case uses the same formula, ontology and topic specifications from
the previous test case. However, in this case in each iteration of the test case
25 individuals were added to the ontology while keeping number of concepts
constant (200 concepts from the previous test case).

Num. of irrel. ind. 0 25 50 75 100 125 150 175 200

Preprocessing 188 186 206 184 172 191 185 178 189
Extracting features 29 29 29 30 29 29 29 29 27
Checking features 4944 5219 5465 5682 5805 6032 6205 6305 6450
Matching topic specs 575 560 557 546 550 561 567 558 570
Integrating with ROS 3 2 2 2 2 3 2 2 3
Total 5739 5996 6259 6444 6558 6816 6988 7072 7239

Table 7.2: Varying number of irrelevant individuals.

7.3. RESULTS 77

Figure 7.2: Varying number of irrelevant individuals.

Figure 7.2 shows that an increase in irrelevant individuals impacts the exe-
cution time far less than an increase in the number of concepts (an increase
of approximately 1.5 seconds when going from 0 to 200 individuals compared
to approximately 5 seconds when going from 25 - 200 concepts). Similar to
the previous test case, table 7.2 shows that the increase in time is most
obvious in the feature checking phase.

Test case 1.3 - Varying number of relevant individuals

Individuals in the ontology used in previous test cases are replaced with 200
relevant individuals (individuals of the same class as b1, b2 and b3). The
ontology also contains 200 concepts from the previous test case. The test
case reuses topic specifications and the formula from earlier tests.

Similar to the previous test case 25 individuals are added in every iter-
ation of the test.

Num. of rel. ind. 0 25 50 75 100 125 150 175 200

Preprocessing 178 176 183 203 190 198 191 191 176
Extracting features 28 30 30 29 30 30 29 32 29
Checking features 5086 5164 5400 5657 5715 5984 6060 6295 6514
Matching topic specs 565 549 555 556 721 567 791 574 582
Integrating with ROS 2 2 2 2 2 3 2 2 2
Total 5859 5921 6170 6447 6658 6782 7073 7094 7303

Table 7.3: Varying number of relevant individuals.

78 CHAPTER 7. PERFORMANCE EVALUATION

Figure 7.3: Varying number of relevant individuals.

Figure 7.3 shows that the increase in execution time is almost the same
as in the previous test. Therefore, we can conclude that the execution of the
KM is only influenced by the number of individuals regardless of whether
they are relevant or irrelevant.

Test case 2.1 - Varying number of irrelevant topic spec-
ifications

The test case uses an ontology with 50 concepts and 50 relevant individuals
and the formula from earlier tests. The topic specifications contain 9 rele-
vant topic specifications (one for each feature in the formula) and a varying
number of irrelevant topic specifications (from 0 to 500). Irrelevant topic
specifications were randomly generated and differ only in one argument from
the relevant topic specifications.

Number of irrelevant topic specs 0 100 200 300 400 500

Preprocessing 188 184 183 193 184 185
Extracting features 28 27 29 29 28 28
Checking features 1969 2034 2038 2040 2101 2200
Matching topic specs 585 831 1026 1243 1345 1345
Integrating with ROS 2 3 4 3 3 3
Total 2772 3079 3280 3508 3661 3761

Table 7.4: Varying number of irrelevant topic specifications.

7.3. RESULTS 79

Figure 7.4: Varying number of irrelevant topic specifications.

As expected Table 7.4 shows that the phase of feature checking is not
influenced by an increase in the number of topic specifications. The increase
is visible in the phase of matching topic specification and amounts to up to
200 ms for every 100 new topic specifications.

Test case 2.2 - Varying number of relevant topic specifi-
cations

This test case uses the same setup as test case 2.1 with respect to the ontol-
ogy and the formula. However, in this case the topic specification contains 9
irrelevant topic specifications and a varying number of relevant topic spec-
ifications (0 to 500). In each iteration of the test number of relevant topic
specifications is increased by 100.

Number of relevant topic specs 0 100 200 300 400 500

Preprocessing 199 186 186 192 191 191
Extracting features 28 28 30 29 29 29
Checking features 2003 1925 2063 1949 2040 2015
Matching topic specs 574 818 1064 1258 1433 1490
Integrating with ROS 2 4 4 4 6 4

Total 2806 2961 3347 3432 3699 3729

Table 7.5: Varying number of relevant topic specifications.

80 CHAPTER 7. PERFORMANCE EVALUATION

Figure 7.5: Varying number of relevant topic specifications.

The results presented in Table 7.5 show very similar results to the ones
presented in Table 7.4 which implies that the process of finding relevant
topic specifications is only influenced by an increase in the number of topic
specifications and is the same regardless of whether topic specifications are
relevant or irrelevant.

Test case 3 - Varying number of features in a formula

In this test case the number of features in the formula in each iteration of the
test is increased by 10. The test setup also included 50 topic specifications
(one for each feature) and an ontology with 50 concepts and 51 relevant
individuals.

Number of features 10 20 30 40 50

Preprocessing 181 181 177 198 178
Extracting features 28 30 31 34 36
Checking features 1929 2090 2355 2746 3089
Matching topic specs 633 1031 1172 1325 1486
Integrating with ROS 2 4 3 3 4

Total 2773 3336 3738 4306 4793

Table 7.6: Varying number of features in a formula.

7.3. RESULTS 81

Figure 7.6: Varying number of features in the formula.

Table 7.6 and Figure 7.6 show that the increase in execution time is linear
when increasing number of features in a formula. The results also show
that both the phase of feature checking and the phase of matching topic
specifications are impacted by an increase in the number of features in a
formula. This is expected as higher number of features mean that more
checks need to be done against the ontology together with additional queries
against topic specifications. It was also expected that the phase of feature
extraction will be impacted as more features have to be extracted from the
formula. However, the increase in extraction time is negligible with respect
to the total execution time.

Test case 4 - Quantified or non-quantified arguments

In this test case we compare quantified to non-quantified versions of the
same formula. Test case tested the following formulas:

forall x in B (Z[x, d1, e1])
forall x in B, y in D (Z[x, y, e1])

forall x in B, y in D, z in E(Z[x, y, z])

against their respective expanded versions. Similar to the earlier test cases,
the topic specifications contain only one relevant topic for each expanded
feature and the total number of topic specifications does not change through-
out the test. The ontology used in this test case has 50 concepts and 50
individuals.

82 CHAPTER 7. PERFORMANCE EVALUATION

quant
3

non-
quant

3

quant
9

non-
quant

9

quant
27

non-
quant
27

Preprocessing 194 199 187 186 196 183
Extracting features 27 27 28 29 32 31
Checking features 1586 1697 1580 2268 98 3062
Matching topic specs 485 521 693 630 1332 1041
Integrating with ROS 2 2 2 3 3 4
Total 2294 2446 2490 3116 1661 4321

Table 7.7: Comparing quantified and non-quantified versions of a formula.

Figure 7.7: Comparing quantified and non-quantified versions of a formula.

Results presented in Figure 7.7 show that formulas with quantified variables
require less time for semantic matching. The obvious difference is in the
phase of feature checking. However, this is somewhat expected as checking
features with object arguments is done in two steps, the first where an
ontology is queried for arguments’ sorts and the second where these sorts
are checked against a relation in the ontology. If one or more arguments
of a feature is a sort then the first step is skipped for this argument. This
is visible in the test case with 27 quantified features (quant27) where the
feature checking phase took only 97 ms while the same phase took around 3
seconds in the test case with 27 non-quantified features. This shows that the
queries to acquire arguments’ sorts are much more expensive than checking
these sorts against a relation in the ontology.

The results also show that the phase of matching topic specifications
requires more time when quantified variables are used. This was expected
as in the case of features with sort arguments additional steps are required
for feature expansion.

7.4. CONCLUSION 83

7.4 Conclusion

The presented test cases covered different aspects of the semantic matching
process. The acquired results were expected and showed that the changes
in ontologies have the greatest impact on the phase of feature checking.
Similarly, the changes in topic specifications affect the phase of matching
topic specifications the most.

The results also show that the phase of feature checking is relatively
expensive and has the initial cost of 2 seconds when checking 10 features
with object arguments. The problem lies in the fact that we are not using
URIs and therefore need to iterate through the whole list of individuals when
checking if an object exists in an ontology. However, it was unexpected that
an increase with 200 individuals would result in approximately 2 seconds
increase in the total execution time. Additional tests were done and they
showed that when querying for a list of individuals in the Jena Semantic
Web Framework only the first call is expensive while every subsequent call
takes less time. For example, in test case 3 with 50 features the first query
for a list of individuals takes 1200 ms while every other call takes less than 20
ms. This could imply that Jena Semantic Framework loads the individuals
into memory and that this loading is what accounts for the high costs of the
feature checking phase.

One way to deal with this problem is to either introduce URIs into topic
specifications or to use predefined URIs in the ontology. The first solution
would complicate topic specifications as it would require that a user specifies
URI for every resource in a topic specification. On the other hand, the
second solution would limit the use of distributed heterogeneous ontologies
in the system.

However, even with this additional cost the Knowledge Manager per-
forms well and there is only a linear increase in time when increasing number
of topic specifications in a system or number of entities in an ontology. It
is also important to note that semantic matching is done only once for each
formula at subscription time which makes the cost of semantic matching
acceptable given its advantages.

84 CHAPTER 7. PERFORMANCE EVALUATION

Chapter 8

Conclusion

8.1 Summary

Autonomous systems have a number of sensors at their disposal. Data pro-
vided by sensors is incrementally available and can be represented in the
form of streams. This makes it possible for autonomous systems to run
functionalities which do reasoning over incrementally available data. How-
ever, in order to use this data for functionalities such as execution moni-
toring and spatio-temporal reasoning it is necessary to process the data, as
data produced by sensors is often noisy and not suitable for reasoning. The
processing adapts noisy data from sensors into exact symbolic information
needed for reasoning. DyKnow is one example of a knowledge processing
middleware which provides the support for bridging the gap between sensing
and reasoning.

The reasoning needed for the aforementioned functionalities is based on
evaluating logical formulas. To evaluate these formulas it is necessary to
provide relevant data for each symbol in the formula. In DyKnow this is
done manually by specifying mappings between symbols in a formula and
streams. The goal of this Master’s thesis was to analyze and provide a
solution to the problem of automatic semantic-based matching of symbols
in a logical formula to content of streams. The analysis was focused on how
the existing semantic technologies could be used in the process of semantic
matching. It showed that ontologies can be used for representing machine-
readable domain models and therefore can be used for establishing a common
vocabulary for users and autonomous systems. The use of ontologies also
makes the system domain independent as different ontologies could be used
to define different environments and applications.

The analysis also showed that in order to support semantic matching it
is necessary to establish a machine-readable encoding of content of streams.
Given that in our solution we wanted to implement semantic matching in
the ROS implementation of DyKnow this meant that we had to design a rep-

85

86 CHAPTER 8. CONCLUSION

resentation of content of topics. For this purpose the Semantic Specification
Language for Topics (SSLT) was developed which provides the means for
specifying content of three different categories of topics, topics containing
objects, sorts and features.

The semantic matching in the ROS implementation of DyKnow was im-
plemented in the Knowledge Manager (KM) and tested in two scenarios, the
Single Platform and the Multiple Platform scenario. The use case studies
show that the KM is able to use data from both homogeneous and het-
erogeneous distributed sources. To support this interoperability between
platforms it is necessary to provide semantic mappings between concepts in
ontologies on different platforms. The implementation also includes a rea-
soning mechanism for ontologies which allows for the discovery of equivalent
features not explicitly defined.

Finally, we have also presented a performance evaluation of our imple-
mentation. The performance evaluation showed how different aspects of a
system (number of entities in an ontology, number of topic specifications,
etc.) impact the execution time. An analysis of the test results shows that
the fact that we do not use URIs in topic specifications has a significant im-
pact on the execution time as searching for an entity in an ontology requires
iterating through a list of all entities. The URIs were not included in our
solution as that would mean that a user needs to know and specify an URI
for every resource in a topic specification thus making the process of topic
specifications more complex. However, the semantic matching is done only
once for each formula at subscription time which makes this cost acceptable
given the advantages that semantic matching offers.

In conclusion, the solution to the semantic matching problem proposed in
this thesis represents an important step towards fully automatized semantic-
based stream reasoning. Our solution also shows that semantic technologies
can be used for establishing machine-readable domain models. The use of
these technologies made the semantic matching domain and platform inde-
pendent as all domain and platform specific knowledge is specified in ontolo-
gies. Semantic matching of ontologies is an active research area and there
currently exist a number of mechanisms for mapping concepts in distributed
ontologies. In our solution the use of semantic mappings made it possible for
systems to support reuse streams on distributed heterogeneous platforms.

8.2 Future work

There are a number of opportunities to improve the current implementation
and extend it with new functionalities. Some of them are enumerated in the
following list:

• Extending the semantic matching to consider the properties of streams
– in some cases the choice of a relevant stream for some feature could
also be based on the properties of that stream such as maximum delay

8.2. FUTURE WORK 87

and sample period. This would require the extension of SSLT with
support for specifying stream properties.

• Extend the semantic matching to support ontologies which do not
conform to our proposed model – as discussed, ontologies used in the
semantic matching need to have a separate class hierarchy to enumer-
ate possible features in a formula. However, some existing ontologies
might use properties for this purpose. One way to support these on-
tologies is to make some form of an ontology adapter which would
accept ontologies of this form and adapt them to one suitable for the
semantic matching.

• Dynamic adaptation to changes in streams – the current implemen-
tation is static in the sense that changes in streams (addition of new
objects to a sort, addition and removal of streams) will only be in-
cluded in future calls for semantic matching. Dynamic adaptation to
changes in streams could be implemented in the KM. In this case
the KM would have to monitor changes in streams and adapt active
subscriptions to conform to these changes.

• Improving performance of semantic matching – performance evalua-
tion showed that the fact that topic specifications do not use URIs
imposes high costs in the feature checking phase. One way to solve
this is to either add URIs to topic specifications or to override the Jena
Semantic Web Framework methods for fetching entities in an ontology
with methods which do not require URIs.

88 CHAPTER 8. CONCLUSION

Bibliography

[1] G. Antoniou and F. Van Harmelen. A semantic web primer, volume 24.
The MIT Press, December 2004.

[2] Y. Arens, C.N. Hsu, and C.A. Knoblock. Query processing in the sims
information mediator. Advanced Planning Technology, 32:78–93, 1996.

[3] V.R. Benjamins, J. Contreras, O. Corcho, and A. Gomez-Perez. Six
challenges for the semantic web. KR2002 (ISOCO White Paper), 2002.

[4] A. Borgida and L. Serafini. Distributed description logics: Assimilating
information from peer sources. Journal on Data Semantics, pages 153–
184, 2003.

[5] M. Botts, G. Percivall, C. Reed, and J. Davidson. OGC R© sensor web
enablement: Overview and high level architecture. GeoSensor networks,
pages 175–190, 2008.

[6] P. Bouquet, F. Giunchiglia, F. Harmelen, L. Serafini, and H. Stucken-
schmidt. C-OWL: Contextualizing ontologies. The SemanticWeb-ISWC
2003, pages 164–179, 2003.

[7] P. Bouquet, L. Serafini, and S. Zanobini. Semantic coordination: a new
approach and an application. The SemanticWeb-ISWC 2003, pages
130–145, 2003.

[8] A. Bröring, P. Maué, K. Janowicz, D. Nüst, and C. Malewski.
Semantically-enabled sensor plug & play for the sensor web. Sensors,
11(8):7568–7605, 2011.

[9] Ken Conley. Ros introduction. Internet:
http://www.ros.org/wiki/ROS/Introduction/, July 18, 2011 [Au-
gust 10, 2011].

[10] I. Cruz, H. Xiao, and F. Hsu. Peer-to-peer semantic integration of
xml and rdf data sources. Agents and Peer-to-Peer Computing, pages
108–119, 2005.

89

90 BIBLIOGRAPHY

[11] Patrick Doherty and John-Jules Meyer. Towards a delegation frame-
work for aerial robotic mission scenarios. In 11th International Work-
shop on Cooperative Information Agents,2007. Springer, 2007.

[12] J.C. Goodwin and D.J. Russomanno. Ontology integration within a
service-oriented architecture for expert system applications using sensor
networks. Expert Systems, 26(5):409–432, 2009.

[13] B.C. Grau, B. Parsia, and E. Sirin. Working with multiple ontologies
on the semantic web. The Semantic Web–ISWC 2004, pages 620–634,
2004.

[14] Harry Halpin. The Semantic Web: The origins of artificial intelligence
redux. In Third International Workshop on the History and Philosophy
of Logic, Mathematics, and Computation (HPLMC-04 2005), 2005.

[15] F. Heintz, J. Kvarnström, and P. Doherty. Stream reasoning in Dy-
Know: A knowledge processing middleware system. In Proc. 1st Intl
Workshop Stream Reasoning, 2009.

[16] F. Heintz, J. Kvarnström, and P. Doherty. Stream-Based Reasoning
Support for Autonomous Systems. In Proceeding of ECAI 2010: 19th
European Conference on Artificial Intelligence, pages 183–188, 2010.

[17] Fredrik Heintz. DyKnow: a stream-based knowledge processing middle-
ware framework. Ph.d. thesis, Linköping University, 2009.

[18] Fredrik Heintz and Patrick Doherty. Federated DyKnow, a Distributed
Information Fusion System for Collaborative UAVs. In Proceedings of
the 11th International Conference on Control, Automation, Robotics
and Vision (ICARCV), 2010.

[19] I. Horrocks. OWL: A description logic based ontology language. Logic
Programming, pages 1–4, 2005.

[20] Ian Horrocks. Ontologies and the Semantic Web. Communications of
the ACM, 51(12):58, December 2008.

[21] A. Maedche, B. Motik, N. Silva, and R. Volz. MAFRA – a map-
ping framework for distributed ontologies. Knowledge Engineering and
Knowledge Management: Ontologies and the Semantic Web, pages 69–
75, 2002.

[22] Frank Manola and Eric Miller. RDF Primer. Internet:
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/, Febru-
ary 10, 2004 [April 20, 2011].

[23] E. Mena, A. Illarramendi, V. Kashyap, and A.P. Sheth. Observer: An
approach for query processing in global information systems based on
interoperation across pre-existing ontologies. Distributed and Parallel
Databases, 8(2):223–271, 2000.

BIBLIOGRAPHY 91

[24] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng. Ros: an open-source robot op-
erating system. In ICRA Workshop on Open Source Software, 2009.

[25] D.J. Russomanno, C. Kothari, and O. Thomas. Building a sensor on-
tology: A practical approach leveraging iso and ogc models. In The
2005 International Conference on Artificial Intelligence, pages 17–18,
2005.

[26] L. Serafini and A. Tamilin. Drago: Distributed reasoning architecture
for the semantic web. The Semantic Web: Research and Applications,
pages 361–376, 2005.

[27] Luciano Serafini and Andrei Tamilin. DRAGO: Distributed reasoning
architecture for the semantic web. The Semantic Web: Research and
Applications, pages 361–376, 2005.

[28] A. Sheth, C. Henson, and S.S. Sahoo. Semantic sensor web. IEEE
Internet Computing, pages 78–83, 2008.

[29] Michael K. Smith, Chris Welty, and Deborah L. McGuin-
ness. OWL Web Ontology Language Guide. Internet:
http://www.w3.org/TR/owl-guide/, February 10, 2004 [April 20,
2011].

[30] H. Stuckenschmidt, H. Wache, T. Vöogele, and U. Visser. Enabling
technologies for interoperability. Information sharing: Methods and
Applications, pages 35–46, 2000.

[31] M. Tenorth and M. Beetz. Knowrob - knowledge processing for au-
tonomous personal robots. In Intelligent Robots and Systems, 2009.
IROS 2009. IEEE/RSJ International Conference on, pages 4261–4266.
IEEE, 2009.

[32] H. Wache, T. Voegele, U. Visser, H. Stuckenschmidt, G. Schus-
ter, H. Neumann, and S. Hübner. Ontology-based integration of
information-a survey of existing approaches. In IJCAI-01 workshop:
ontologies and information sharing, volume 2001, pages 108–117, 2001.

[33] M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Galvez-
Lopez, K. Haussermann, R. Janssen, J.M.M. Montiel, A. Perzylo,
B. Schiessle, M. Tenorth, O. Zweigle, and R. van de Molengraft.
Roboearth. Robotics Automation Magazine, IEEE, 18(2):69–82, 2011.

92 BIBLIOGRAPHY

Appendix A

Acronyms

AIICS Artificial Intelligence and Integrated Computer Systems Division

ANTLR Another Tool for Language Recognition

AST Abstract Syntax Tree

COWL Context OWL

DDL Distributed Description Logics

DF Directory Facilitator

DTD Document Type Definition

IDA Department of Computer and Information Science

KM Knowledge Manager

MITL Metric Interval Temporal Logic

OWL Web Ontology Language

RDF Resource Description Framework

RDFS Resource Description Framework Schema

ROS Robot Operating System

SSLT Semantic Specification Language for Topics

SWEET Semantic Web for Earth and Environmental Terminology

UAV Unmanned Aerial Vehicle

URI Uniform Resource Identifier

XML Extensible Markup Language

93

94 APPENDIX A. ACRONYMS

W3C World Wide Web Consortium

WWW World Wide Web

Appendix B

Ontologies

B.1 RDF/XML representation of the ontol-
ogy for platform 1

Listing B.1: RDF/XML representation of the ontology for platform 1.

<?xml version=” 1 .0 ”?>

< !DOCTYPE rdf:RDF [
<!ENTITY onto logy ” h t tp : //www. example . com/ ontology#” >
< !ENTITY xsd ” ht tp : //www.w3 . org /2001/XMLSchema#” >
< !ENTITY r d f s ” h t tp : //www.w3 . org /2000/01/ rdf−schema#” >
< !ENTITY ont ” h t tp : //www. co−ode . org / on t o l o g i e s /ont . owl#” >
< !ENTITY rd f ” h t tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#” >

]>

<rdf:RDF xmlns=” ht tp : //www.w3 . org /2002/07/ owl#”
xml:base=” ht tp : //www.w3 . org /2002/07/ owl”
xmlns : rd f s=” ht tp : //www.w3 . org /2000/01/ rdf−schema#”
xmlns:ont=” ht tp : //www. co−ode . org / on t o l o g i e s /ont . owl#”
xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema#”
xmlns : rd f=” ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”
xmlns :onto logy=” ht tp : //www. example . com/ onto logy#”>

< !−−
//
//
// Object Propert ies

//
//
−−>

< !−− h t t p : //www. example .com/ontology#arg1 −−>
<ObjectProperty rd f : about=”&ontology ; arg1 ”/>

< !−− h t t p : //www. example .com/ontology#arg2 −−>
<ObjectProperty rd f : about=”&ontology ; arg2 ”/>

95

96 APPENDIX B. ONTOLOGIES

< !−− h t t p : //www. example .com/ontology#arg3 −−>
<ObjectProperty rd f : about=”&ontology ; arg3 ”/>

< !−−
//

//
// Classes
//
//
−−>

< !−− h t t p : //www. co−ode . org/ on to log i e s /ont . owl#GroundSpeed −−>
<Class rd f : about=”&ont ; GroundSpeed”>

<equ iva l en tC la s s r d f : r e s o u r c e=”&ontology ; Speed”/>
<rd f s : subC la s sO f>

<Class>
< i n t e r s e c t i o nO f rd f :parseType=” Co l l e c t i on ”>

<r d f :D e s c r i p t i o n rd f : about=”&ontology ;
UnaryRelation ”/>

<Re s t r i c t i o n>
<onProperty r d f : r e s o u r c e=”&ontology ; arg1 ”/>
<al lValuesFrom rd f : r e s o u r c e=”&ontology ;UAV”/

>
</ Re s t r i c t i o n>

</ i n t e r s e c t i o nO f>
</Class>

</ rd f s : subC la s sO f>
</Class>

< !−− h t t p : //www. example .com/ontology#Above −−>
<Class rd f : about=”&ontology ; Above”>

<rd f s : subC la s sO f>
<Class>

< i n t e r s e c t i o nO f rd f :parseType=” Co l l e c t i on ”>
<r d f :D e s c r i p t i o n rd f : about=”&ontology ;

BinaryRelat ion ”/>
<Re s t r i c t i o n>

<onProperty r d f : r e s o u r c e=”&ontology ; arg1 ”/>
<al lValuesFrom rd f : r e s o u r c e=”&ontology ;

Object ”/>
</ Re s t r i c t i o n>
<Re s t r i c t i o n>

<onProperty r d f : r e s o u r c e=”&ontology ; arg2 ”/>
<al lValuesFrom rd f : r e s o u r c e=”&ontology ;

Object ”/>
</ Re s t r i c t i o n>

</ i n t e r s e c t i o nO f>
</Class>

</ rd f s : subC la s sO f>
</Class>

< !−− h t t p : //www. example .com/ontology#Aeria lVehic le −−>
<Class rd f : about=”&ontology ; Ae r i a lVeh i c l e ”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”&ontology ; Veh ic l e ”/>
</Class>

< !−− h t t p : //www. example .com/ontology#Al t i tude −−>
<Class rd f : about=”&ontology ; A l t i tude ”>

<rd f s : subC la s sO f>
<Class>

< i n t e r s e c t i o nO f rd f :parseType=” Co l l e c t i on ”>
<r d f :D e s c r i p t i o n rd f : about=”&ontology ;

UnaryRelation ”/>
<Re s t r i c t i o n>

<onProperty r d f : r e s o u r c e=”&ontology ; arg1 ”/>
<al lValuesFrom rd f : r e s o u r c e=”&ontology ;

Ae r i a lVeh i c l e ”/>

B.1. RDF/XML REPRESENTATION OF THE ONTOLOGY FOR
PLATFORM 1 97

</ Re s t r i c t i o n>
</ i n t e r s e c t i o nO f>

</Class>

</ rd f s : subC la s sO f>
</Class>

< !−− h t t p : //www. example .com/ontology#Between −−>
<Class rd f : about=”&ontology ; Between”>

<rd f s : subC la s sO f>
<Class>

< i n t e r s e c t i o nO f rd f :parseType=” Co l l e c t i on ”>
<r d f :D e s c r i p t i o n rd f : about=”&ontology ;

TernaryRelat ion ”/>
<Re s t r i c t i o n>

<onProperty r d f : r e s o u r c e=”&ontology ; arg1 ”/>
<al lValuesFrom rd f : r e s o u r c e=”&ontology ;

Object ”/>
</ Re s t r i c t i o n>
<Re s t r i c t i o n>

<onProperty r d f : r e s o u r c e=”&ontology ; arg2 ”/>
<al lValuesFrom rd f : r e s o u r c e=”&ontology ;

Object ”/>
</ Re s t r i c t i o n>
<Re s t r i c t i o n>

<onProperty r d f : r e s o u r c e=”&ontology ; arg3 ”/>
<al lValuesFrom rd f : r e s o u r c e=”&ontology ;

Object ”/>
</ Re s t r i c t i o n>

</ i n t e r s e c t i o nO f>
</Class>

</ rd f s : subC la s sO f>
</Class>

< !−− h t t p : //www. example .com/ontology#BinaryRelation −−>
<Class rd f : about=”&ontology ; BinaryRelat ion ”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”&ontology ; Re lat ion ”/>
</Class>

< !−− h t t p : //www. example .com/ontology#Car −−>
<Class rd f : about=”&ontology ; Car”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”&ontology ; MannedGroundVehicle
”/>

</Class>

< !−− h t t p : //www. example .com/ontology#Close −−>
<Class rd f : about=”&ontology ; Close ”>

<rd f s : subC la s sO f>
<Class>

< i n t e r s e c t i o nO f rd f :parseType=” Co l l e c t i on ”>
<r d f :D e s c r i p t i o n rd f : about=”&ontology ;

BinaryRelat ion ”/>
<Re s t r i c t i o n>

<onProperty r d f : r e s o u r c e=”&ontology ; arg1 ”/>
<al lValuesFrom rd f : r e s o u r c e=”&ontology ;

Object ”/>
</ Re s t r i c t i o n>
<Re s t r i c t i o n>

<onProperty r d f : r e s o u r c e=”&ontology ; arg2 ”/>
<al lValuesFrom rd f : r e s o u r c e=”&ontology ;

Object ”/>
</ Re s t r i c t i o n>

</ i n t e r s e c t i o nO f>
</Class>

</ rd f s : subC la s sO f>
</Class>

< !−− h t t p : //www. example .com/ontology#Color −−>

98 APPENDIX B. ONTOLOGIES

<Class rd f : about=”&ontology ; Color ”>
<rd f s : subC la s sO f>

<Class>
< i n t e r s e c t i o nO f rd f :parseType=” Co l l e c t i on ”>

<r d f :D e s c r i p t i o n rd f : about=”&ontology ;
UnaryRelation ”/>

<Re s t r i c t i o n>
<onProperty r d f : r e s o u r c e=”&ontology ; arg1 ”/>
<al lValuesFrom rd f : r e s o u r c e=”&ontology ;

Veh ic l e ”/>
</ Re s t r i c t i o n>

</ i n t e r s e c t i o nO f>
</Class>

</ rd f s : subC la s sO f>
</Class>

< !−− h t t p : //www. example .com/ontology#Crosssing −−>
<Class rd f : about=”&ontology ; Cros s s ing ”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”&ontology ; S ta t i cObjec t ”/>
</Class>

< !−− h t t p : //www. example .com/ontology#Fast −−>
<Class rd f : about=”&ontology ; Fast ”>

<rd f s : subC la s sO f>
<Class>

< i n t e r s e c t i o nO f rd f :parseType=” Co l l e c t i on ”>
<r d f :D e s c r i p t i o n rd f : about=”&ontology ;

UnaryRelation ”/>
<Re s t r i c t i o n>

<onProperty r d f : r e s o u r c e=”&ontology ; arg1 ”/>
<al lValuesFrom rd f : r e s o u r c e=”&ontology ;

Object ”/>
</ Re s t r i c t i o n>

</ i n t e r s e c t i o nO f>
</Class>

</ rd f s : subC la s sO f>
</Class>

< !−− h t t p : //www. example .com/ontology#GroundVehicle −−>
<Class rd f : about=”&ontology ; GroundVehicle ”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”&ontology ; Veh ic l e ”/>
</Class>

< !−− h t t p : //www. example .com/ontology#Hel icopter −−>
<Class rd f : about=”&ontology ; He l i c op t e r ”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”&ontology ;
UnmannedAerialVehicle ”/>

</Class>

< !−− h t t p : //www. example .com/ontology#House −−>
<Class rd f : about=”&ontology ; House”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”&ontology ; S ta t i cObjec t ”/>
</Class>

< !−− h t t p : //www. example .com/ontology#In −−>
<Class rd f : about=”&ontology ; In ”>

<rd f s : subC la s sO f>
<Class>

< i n t e r s e c t i o nO f rd f :parseType=” Co l l e c t i on ”>
<r d f :D e s c r i p t i o n rd f : about=”&ontology ;

BinaryRelat ion ”/>
<Re s t r i c t i o n>

<onProperty r d f : r e s o u r c e=”&ontology ; arg1 ”/>
<al lValuesFrom rd f : r e s o u r c e=”&ontology ;

Object ”/>
</ Re s t r i c t i o n>
<Re s t r i c t i o n>

<onProperty r d f : r e s o u r c e=”&ontology ; arg2 ”/>

B.1. RDF/XML REPRESENTATION OF THE ONTOLOGY FOR
PLATFORM 1 99

<al lValuesFrom rd f : r e s o u r c e=”&ontology ;
Object ”/>

</ Re s t r i c t i o n>
</ i n t e r s e c t i o nO f>

</Class>
</ rd f s : subC la s sO f>

</Class>

< !−− h t t p : //www. example .com/ontology#MannedAerialVehicle −−>
<Class rd f : about=”&ontology ; MannedAerialVehicle ”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”&ontology ; Ae r i a lVeh i c l e ”/>
</Class>

< !−− h t t p : //www. example .com/ontology#MannedGroundVehicle −−>
<Class rd f : about=”&ontology ; MannedGroundVehicle”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”&ontology ; GroundVehicle ”/>
</Class>

< !−− h t t p : //www. example .com/ontology#MovingObject −−>
<Class rd f : about=”&ontology ; MovingObject”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”&ontology ; Object ”/>
</Class>

< !−− h t t p : //www. example .com/ontology#Object −−>
<Class rd f : about=”&ontology ; Object ”/>

< !−− h t t p : //www. example .com/ontology#Posi t ion −−>
<Class rd f : about=”&ontology ; Pos i t i on ”>

<rd f s : subC la s sO f>
<Class>

< i n t e r s e c t i o nO f rd f :parseType=” Co l l e c t i on ”>
<r d f :D e s c r i p t i o n rd f : about=”&ontology ;

UnaryRelation ”/>
<Re s t r i c t i o n>

<onProperty r d f : r e s o u r c e=”&ontology ; arg1 ”/>
<al lValuesFrom rd f : r e s o u r c e=”&ontology ;

Object ”/>
</ Re s t r i c t i o n>

</ i n t e r s e c t i o nO f>
</Class>

</ rd f s : subC la s sO f>
</Class>

< !−− h t t p : //www. example .com/ontology#RMAX −−>
<Class rd f : about=”&ontology ;RMAX”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”&ontology ;
UnmannedAerialVehicle ”/>

</Class>

< !−− h t t p : //www. example .com/ontology#Relation −−>
<Class rd f : about=”&ontology ; Re lat ion ”/>

< !−− h t t p : //www. example .com/ontology#Road −−>
<Class rd f : about=”&ontology ; Road”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”&ontology ; S ta t i cObjec t ”/>
</Class>

< !−− h t t p : //www. example .com/ontology#Size −−>
<Class rd f : about=”&ontology ; S i z e ”>

<rd f s : subC la s sO f>
<Class>

< i n t e r s e c t i o nO f rd f :parseType=” Co l l e c t i on ”>
<r d f :D e s c r i p t i o n rd f : about=”&ontology ;

UnaryRelation ”/>
<Re s t r i c t i o n>

<onProperty r d f : r e s o u r c e=”&ontology ; arg1 ”/>
<al lValuesFrom rd f : r e s o u r c e=”&ontology ;

Object ”/>

100 APPENDIX B. ONTOLOGIES

</ Re s t r i c t i o n>
</ i n t e r s e c t i o nO f>

</Class>
</ rd f s : subC la s sO f>

</Class>

< !−− h t t p : //www. example .com/ontology#Slow −−>
<Class rd f : about=”&ontology ; Slow”>

<rd f s : subC la s sO f>
<Class>

< i n t e r s e c t i o nO f rd f :parseType=” Co l l e c t i on ”>
<r d f :D e s c r i p t i o n rd f : about=”&ontology ;

UnaryRelation ”/>
<Re s t r i c t i o n>

<onProperty r d f : r e s o u r c e=”&ontology ; arg1 ”/>
<al lValuesFrom rd f : r e s o u r c e=”&ontology ;

Object ”/>
</ Re s t r i c t i o n>

</ i n t e r s e c t i o nO f>
</Class>

</ rd f s : subC la s sO f>
</Class>

< !−− h t t p : //www. example .com/ontology#Speed −−>
<Class rd f : about=”&ontology ; Speed”>

<rd f s : subC la s sO f>
<Class>

< i n t e r s e c t i o nO f rd f :parseType=” Co l l e c t i on ”>
<r d f :D e s c r i p t i o n rd f : about=”&ontology ;

UnaryRelation ”/>
<Re s t r i c t i o n>

<onProperty r d f : r e s o u r c e=”&ontology ; arg1 ”/>
<al lValuesFrom rd f : r e s o u r c e=”&ontology ;

MovingObject”/>
</ Re s t r i c t i o n>

</ i n t e r s e c t i o nO f>
</Class>

</ rd f s : subC la s sO f>
</Class>

< !−− h t t p : //www. example .com/ontology#Sta t i cOb jec t −−>
<Class rd f : about=”&ontology ; S ta t i cObjec t ”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”&ontology ; Object ”/>
</Class>

< !−− h t t p : //www. example .com/ontology#TernaryRelation −−>
<Class rd f : about=”&ontology ; TernaryRelat ion ”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”&ontology ; Re lat ion ”/>
</Class>

< !−− h t t p : //www. example .com/ontology#UAV −−>
<Class rd f : about=”&ontology ;UAV”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”&ontology ;
UnmannedAerialVehicle ”/>

</Class>

< !−− h t t p : //www. example .com/ontology#UGV −−>
<Class rd f : about=”&ontology ;UGV”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”&ontology ;
UnmannedGroundVehicle”/>

</Class>

< !−− h t t p : //www. example .com/ontology#UnaryRelation −−>
<Class rd f : about=”&ontology ; UnaryRelation ”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”&ontology ; Re lat ion ”/>
</Class>

< !−− h t t p : //www. example .com/ontology#UnmannedAerialVehicle −−>

B.2. RDF/XML REPRESENTATION OF THE ONTOLOGY FOR
PLATFORM 2 101

<Class rd f : about=”&ontology ; UnmannedAerialVehicle ”>
<rd f s : subC la s sO f r d f : r e s o u r c e=”&ontology ; Ae r i a lVeh i c l e ”/>

</Class>

< !−− h t t p : //www. example .com/ontology#UnmannedGroundVehicle −−>
<Class rd f : about=”&ontology ; UnmannedGroundVehicle”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”&ontology ; GroundVehicle ”/>
</Class>

< !−− h t t p : //www. example .com/ontology#Vehic le −−>
<Class rd f : about=”&ontology ; Veh ic l e ”>

<rd f s : subC la s sO f r d f : r e s o u r c e=”&ontology ; MovingObject”/>
</Class>

< !−−
//
//
// Ind i v i dua l s
//
//
−−>

< !−− h t t p : //www. co−ode . org/ on to log i e s /ont . owl#car1 −−>
<NamedIndividual rd f : about=”&ont ; car1 ”>

<r d f : t yp e r d f : r e s o u r c e=”&ontology ; Car”/>
</NamedIndividual>

< !−− h t t p : //www. co−ode . org/ on to log i e s /ont . owl#car2 −−>
<NamedIndividual rd f : about=”&ont ; car2 ”>

<r d f : t yp e r d f : r e s o u r c e=”&ontology ; Car”/>
</NamedIndividual>

< !−− h t t p : //www. co−ode . org/ on to log i e s /ont . owl#car3 −−>
<NamedIndividual rd f : about=”&ont ; car3 ”>

<r d f : t yp e r d f : r e s o u r c e=”&ontology ; Car”/>
</NamedIndividual>

< !−− h t t p : //www. co−ode . org/ on to log i e s /ont . owl#uav1 −−>
<NamedIndividual rd f : about=”&ont ; uav1”>

<r d f : t yp e r d f : r e s o u r c e=”&ontology ;UAV”/>
</NamedIndividual>

< !−− h t t p : //www. co−ode . org/ on to log i e s /ont . owl#uav2 −−>
<NamedIndividual rd f : about=”&ont ; uav2”>

<r d f : t yp e r d f : r e s o u r c e=”&ontology ;UAV”/>
</NamedIndividual>

</rdf:RDF>

B.2 RDF/XML representation of the ontol-
ogy for platform 2

Listing B.2: RDF/XML representation of the ontology for platform 2.

<?xml version=” 1 .0 ”?>

< !DOCTYPE rdf:RDF [
<!ENTITY owl ” h t tp : //www.w3 . org /2002/07/ owl#” >
< !ENTITY xsd ” ht tp : //www.w3 . org /2001/XMLSchema#” >
< !ENTITY r d f s ” h t tp : //www.w3 . org /2000/01/ rdf−schema#” >
< !ENTITY rd f ” h t tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#” >
< !ENTITY Dis t r ibuted ” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/5/ Di s t r ibuted . owl#” >
]>

102 APPENDIX B. ONTOLOGIES

<rdf:RDF xmlns=” ht tp : //www. semanticweb . org / on t o l o g i e s /2011/5/
Di s t r ibuted . owl#”
xml:base=” ht tp : //www. semanticweb . org / on t o l o g i e s /2011/5/

Di s t r ibuted . owl”
xmlns : rd f s=” ht tp : //www.w3 . org /2000/01/ rdf−schema#”
xmlns :D i s t r ibuted=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/5/ Di s t r ibuted . owl#”
xmlns:owl=” ht tp : //www.w3 . org /2002/07/ owl#”
xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema#”
xmlns : rd f=” ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”>

<owl:Ontology rd f : about=” ht tp : //www. semanticweb . org / on t o l o g i e s
/2011/5/ Di s t r ibuted . owl”/>

< !−−
//
//
// Object Propert ies
//
//
−−>

< !−− h t t p : //www. semanticweb . org/ on to l og i e s /2011/5/Dis t r i bu ted .
owl#arg1 −−>

<owl :ObjectProperty rd f : about=”&Dis t r ibuted ; arg1 ”/>

< !−− h t t p : //www. semanticweb . org/ on to l og i e s /2011/5/Dis t r i bu ted .
owl#arg2 −−>

<owl :ObjectProperty rd f : about=”&Dis t r ibuted ; arg2 ”/>

< !−−
//
//
// Classes
//
//
−−>

< !−− h t t p : //www. semanticweb . org/ on to l og i e s /2011/5/Dis t r i bu ted .
owl#Automobile −−>

<owl :C la s s rd f : about=”&Dis t r ibuted ; Automobile”>
<rd f s : subC la s sO f r d f : r e s o u r c e=”&Dis t r ibuted ; GroundVehicle ”/>

</ owl :C la s s>

< !−− h t t p : //www. semanticweb . org/ on to l og i e s /2011/5/Dis t r i bu ted .
owl#GroundVehicle −−>

<owl :C la s s rd f : about=”&Dis t r ibuted ; GroundVehicle ”>
<rd f s : subC la s sO f r d f : r e s o u r c e=”&Dis t r ibuted ; Veh ic l e ”/>

</ owl :C la s s>

< !−− h t t p : //www. semanticweb . org/ on to l og i e s /2011/5/Dis t r i bu ted .
owl#Posi t ion −−>

<owl :C la s s rd f : about=”&Dis t r ibuted ; Pos i t i on ”>
<rd f s : subC la s sO f>

<owl :C la s s>
<ow l : i n t e r s e c t i o nO f rd f :parseType=” Co l l e c t i on ”>

<r d f :D e s c r i p t i o n rd f : about=”&Dis t r ibuted ;
UnaryRelation ”/>

<ow l :R e s t r i c t i o n>
<owl :onProperty r d f : r e s o u r c e=”&Dis t r ibuted ;

arg1 ”/>
<owl :a l lValuesFrom rd f : r e s o u r c e=”&

Dis t r ibuted ; Veh ic l e ”/>
</ ow l :R e s t r i c t i o n>

</ ow l : i n t e r s e c t i o nO f>
</ owl :C la s s>

</ rd f s : subC la s sO f>

B.3. RDF/XML REPRESENTATION OF THE ONTOLOGY FOR
PLATFORM 3 103

</ owl :C la s s>

< !−− h t t p : //www. semanticweb . org/ on to l og i e s /2011/5/Dis t r i bu ted .
owl#Speed −−>

<owl :C la s s rd f : about=”&Dis t r ibuted ; Speed”>
<rd f s : subC la s sO f>

<owl :C la s s>
<ow l : i n t e r s e c t i o nO f rd f :parseType=” Co l l e c t i on ”>

<r d f :D e s c r i p t i o n rd f : about=”&Dis t r ibuted ;
UnaryRelation ”/>

<ow l :R e s t r i c t i o n>
<owl :onProperty r d f : r e s o u r c e=”&Dis t r ibuted ;

arg1 ”/>
<owl :a l lValuesFrom rd f : r e s o u r c e=”&

Dis t r ibuted ; Automobile”/>
</ ow l :R e s t r i c t i o n>

</ ow l : i n t e r s e c t i o nO f>
</ owl :C la s s>

</ rd f s : subC la s sO f>
</ owl :C la s s>

< !−− h t t p : //www. semanticweb . org/ on to l og i e s /2011/5/Dis t r i bu ted .
owl#UnaryRelation −−>

<owl :C la s s rd f : about=”&Dis t r ibuted ; UnaryRelation ”/>

< !−− h t t p : //www. semanticweb . org/ on to l og i e s /2011/5/Dis t r i bu ted .
owl#Vehic le −−>

<owl :C la s s rd f : about=”&Dis t r ibuted ; Veh ic l e ”/>

< !−− h t t p : //www.w3 . org /2002/07/owl#Thing −−>
<owl :C la s s rd f : about=”&owl ; Thing”/>

< !−−
//
//
// Ind i v i dua l s
//
//
−−>

< !−− h t t p : //www. semanticweb . org/ on to l og i e s /2011/5/Dis t r i bu ted .
owl#car11 −−>

<owl:NamedIndividual rd f : about=”&Dis t r ibuted ; car11 ”>
<r d f : t yp e r d f : r e s o u r c e=”&Dis t r ibuted ; Automobile”/>

</ owl:NamedIndividual>

< !−− h t t p : //www. semanticweb . org/ on to l og i e s /2011/5/Dis t r i bu ted .
owl#car12 −−>

<owl:NamedIndividual rd f : about=”&Dis t r ibuted ; car12 ”>
<r d f : t yp e r d f : r e s o u r c e=”&Dis t r ibuted ; Automobile”/>

</ owl:NamedIndividual>
</rdf:RDF>

B.3 RDF/XML representation of the ontol-
ogy for platform 3

Listing B.3: RDF/XML representation of the ontology for platform 3.

<?xml version=” 1 .0 ”?>

< !DOCTYPE rdf:RDF [
<!ENTITY xsd ” ht tp : //www.w3 . org /2001/XMLSchema#” >
< !ENTITY r d f s ” h t tp : //www.w3 . org /2000/01/ rdf−schema#” >

104 APPENDIX B. ONTOLOGIES

< !ENTITY rd f ” h t tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#” >
< !ENTITY d i s t r i bu t ed uav s ” h t tp : //www. semanticweb . org / on t o l o g i e s

/2011/6/ d i s t r i bu t ed uav s . owl#” >
]>

<rdf:RDF xmlns=” ht tp : //www.w3 . org /2002/07/ owl#”
xml:base=” ht tp : //www.w3 . org /2002/07/ owl”
xmlns : rd f s=” ht tp : //www.w3 . org /2000/01/ rdf−schema#”
xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema#”
xmlns : rd f=” ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”
xmln s :d i s t r i bu t ed uav s=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/6/ d i s t r i bu t ed uav s . owl#”>
<Ontology rd f : about=” ht tp : //www. semanticweb . org / on t o l o g i e s

/2011/6/ d i s t r i bu t ed uav s . owl”/>

< !−−
//
//
// Object Propert ies
//
//
−−>

< !−− h t t p : //www. semanticweb . org/ on to l og i e s /2011/6/
d i s t r i bu t ed uav s . owl#arg1 −−>

<ObjectProperty rd f : about=”&d i s t r i bu t ed uav s ; arg1 ”/>

< !−− h t t p : //www. semanticweb . org/ on to l og i e s /2011/6/
d i s t r i bu t ed uav s . owl#arg2 −−>

<ObjectProperty rd f : about=”&d i s t r i bu t ed uav s ; arg2 ”/>

< !−−
//
//
// Classes
//
//
−−>

< !−− h t t p : //www. semanticweb . org/ on to l og i e s /2011/6/
d i s t r i bu t ed uav s . owl#Aircra f t −−>

<Class rd f : about=”&d i s t r i bu t ed uav s ; A i r c r a f t ”/>

< !−− h t t p : //www. semanticweb . org/ on to l og i e s /2011/6/
d i s t r i bu t ed uav s . owl#Alt −−>

<Class rd f : about=”&d i s t r i bu t ed uav s ; Alt ”>
<equ iva l en tC la s s r d f : r e s o u r c e=”&d i s t r i bu t ed uav s ; Height ”/>
<rd f s : subC la s sO f>

<Class>
< i n t e r s e c t i o nO f rd f :parseType=” Co l l e c t i on ”>

<r d f :D e s c r i p t i o n rd f : about=”&d i s t r i bu t ed uav s ;
UnaryRelation ”/>

<Re s t r i c t i o n>
<onProperty r d f : r e s o u r c e=”&d i s t r i bu t ed uav s ;

arg1 ”/>
<al lValuesFrom rd f : r e s o u r c e=”&

d i s t r i bu t ed uav s ; A i r c r a f t ”/>
</ Re s t r i c t i o n>

</ i n t e r s e c t i o nO f>
</Class>

</ rd f s : subC la s sO f>
</Class>

< !−− h t t p : //www. semanticweb . org/ on to l og i e s /2011/6/
d i s t r i bu t ed uav s . owl#BinaryRelation −−>

<Class rd f : about=”&d i s t r i bu t ed uav s ; BinaryRelat ion ”/>

B.3. RDF/XML REPRESENTATION OF THE ONTOLOGY FOR
PLATFORM 3 105

< !−− h t t p : //www. semanticweb . org/ on to l og i e s /2011/6/
d i s t r i bu t ed uav s . owl#Height −−>

<Class rd f : about=”&d i s t r i bu t ed uav s ; Height ”>
<rd f s : subC la s sO f>

<Class>
< i n t e r s e c t i o nO f rd f :parseType=” Co l l e c t i on ”>

<r d f :D e s c r i p t i o n rd f : about=”&d i s t r i bu t ed uav s ;
UnaryRelation ”/>

<Re s t r i c t i o n>
<onProperty r d f : r e s o u r c e=”&d i s t r i bu t ed uav s ;

arg1 ”/>
<al lValuesFrom rd f : r e s o u r c e=”&

d i s t r i bu t ed uav s ; A i r c r a f t ”/>
</ Re s t r i c t i o n>

</ i n t e r s e c t i o nO f>
</Class>

</ rd f s : subC la s sO f>
</Class>

< !−− h t t p : //www. semanticweb . org/ on to l og i e s /2011/6/
d i s t r i bu t ed uav s . owl#MannedAircraftSystem −−>

<Class rd f : about=”&d i s t r i bu t ed uav s ; MannedAircraftSystem”>
<rd f s : subC la s sO f r d f : r e s o u r c e=”&d i s t r i bu t ed uav s ; A i r c r a f t ”/>

</Class>

< !−− h t t p : //www. semanticweb . org/ on to l og i e s /2011/6/
d i s t r i bu t ed uav s . owl#Near −−>

<Class rd f : about=”&d i s t r i bu t ed uav s ; Near”>
<rd f s : subC la s sO f>

<Class>
< i n t e r s e c t i o nO f rd f :parseType=” Co l l e c t i on ”>

<r d f :D e s c r i p t i o n rd f : about=”&d i s t r i bu t ed uav s ;
BinaryRelat ion ”/>

<Re s t r i c t i o n>
<onProperty r d f : r e s o u r c e=”&d i s t r i bu t ed uav s ;

arg1 ”/>
<al lValuesFrom rd f : r e s o u r c e=”&

d i s t r i bu t ed uav s ; A i r c r a f t ”/>
</ Re s t r i c t i o n>
<Re s t r i c t i o n>

<onProperty r d f : r e s o u r c e=”&d i s t r i bu t ed uav s ;
arg2 ”/>

<al lValuesFrom rd f : r e s o u r c e=”&
d i s t r i bu t ed uav s ; A i r c r a f t ”/>

</ Re s t r i c t i o n>
</ i n t e r s e c t i o nO f>

</Class>
</ rd f s : subC la s sO f>

</Class>

< !−− h t t p : //www. semanticweb . org/ on to l og i e s /2011/6/
d i s t r i bu t ed uav s . owl#Spd −−>

<Class rd f : about=”&d i s t r i bu t ed uav s ; Spd”>
<rd f s : subC la s sO f>

<Class>
< i n t e r s e c t i o nO f rd f :parseType=” Co l l e c t i on ”>

<r d f :D e s c r i p t i o n rd f : about=”&d i s t r i bu t ed uav s ;
UnaryRelation ”/>

<Re s t r i c t i o n>
<onProperty r d f : r e s o u r c e=”&d i s t r i bu t ed uav s ;

arg1 ”/>
<al lValuesFrom rd f : r e s o u r c e=”&

d i s t r i bu t ed uav s ; A i r c r a f t ”/>
</ Re s t r i c t i o n>

</ i n t e r s e c t i o nO f>
</Class>

</ rd f s : subC la s sO f>

106 APPENDIX B. ONTOLOGIES

</Class>

< !−− h t t p : //www. semanticweb . org/ on to l og i e s /2011/6/
d i s t r i bu t ed uav s . owl#UnaryRelation −−>

<Class rd f : about=”&d i s t r i bu t ed uav s ; UnaryRelation ”/>

< !−− h t t p : //www. semanticweb . org/ on to l og i e s /2011/6/
d i s t r i bu t ed uav s . owl#UnmannedAircraftSystem −−>

<Class rd f : about=”&d i s t r i bu t ed uav s ; UnmannedAircraftSystem”>
<rd f s : subC la s sO f r d f : r e s o u r c e=”&d i s t r i bu t ed uav s ; A i r c r a f t ”/>

</Class>

< !−−
//
//
// Ind i v i dua l s
//
//
−−>

< !−− h t t p : //www. semanticweb . org/ on to l og i e s /2011/6/
d i s t r i bu t ed uav s . owl#he l i 1 −−>

<NamedIndividual rd f : about=”&d i s t r i bu t ed uav s ; h e l i 1 ”>
<r d f : t yp e r d f : r e s o u r c e=”&d i s t r i bu t ed uav s ;

MannedAircraftSystem”/>
</NamedIndividual>

< !−− h t t p : //www. semanticweb . org/ on to l og i e s /2011/6/
d i s t r i bu t ed uav s . owl#he l i 2 −−>

<NamedIndividual rd f : about=”&d i s t r i bu t ed uav s ; h e l i 2 ”>
<r d f : t yp e r d f : r e s o u r c e=”&d i s t r i bu t ed uav s ;

MannedAircraftSystem”/>
</NamedIndividual>

< !−− h t t p : //www. semanticweb . org/ on to l og i e s /2011/6/
d i s t r i bu t ed uav s . owl#uas20 −−>

<NamedIndividual rd f : about=”&d i s t r i bu t ed uav s ; uas20”>
<r d f : t yp e r d f : r e s o u r c e=”&d i s t r i bu t ed uav s ;

UnmannedAircraftSystem”/>
</NamedIndividual>

< !−− h t t p : //www. semanticweb . org/ on to l og i e s /2011/6/
d i s t r i bu t ed uav s . owl#uas21 −−>

<NamedIndividual rd f : about=”&d i s t r i bu t ed uav s ; uas21”>
<r d f : t yp e r d f : r e s o u r c e=”&d i s t r i bu t ed uav s ;

UnmannedAircraftSystem”/>
</NamedIndividual>

< !−− h t t p : //www. semanticweb . org/ on to l og i e s /2011/6/
d i s t r i bu t ed uav s . owl#uas22 −−>

<NamedIndividual rd f : about=”&d i s t r i bu t ed uav s ; uas22”>
<r d f : t yp e r d f : r e s o u r c e=”&d i s t r i bu t ed uav s ;

UnmannedAircraftSystem”/>
</NamedIndividual>

</rdf:RDF>

Appendix C

Topic Specifications

C.1 XML representation of topic specifications
for platform 1

Listing C.1: Topic specifications in XML.

<Topic specs>
<Topic msgtype=”UavMsg” name=” top i c1 ”>
<f e a tu r e name=”Alt i tude ” value=”msg . a l t ”>
<ob j e c t name=”uav1” value=”msg . id ”/>

</ f e a tu r e>
<f e a tu r e name=”Speed” value=”msg . spd”>
<ob j e c t name=”uav1” value=”msg . id ”/>

</ f e a tu r e>
</Topic>
<Topic msgtype=”UavMsg” name=” top i c2 ”>
<f e a tu r e name=”Alt i tude ” value=”msg . a l t ”>
<s o r t a l l o b j e c t s=” f a l s e ” name=”UAV” value=”msg . id ”/>

</ f e a tu r e>
</Topic>
<Topic msgtype=”CarMsg” name=” top i c3 ”>
<f e a tu r e name=”Speed” value=”msg . spd”>
<ob j e c t name=” car1 ” value=”msg . id ”/>

</ f e a tu r e>
</Topic>
<Topic msgtype=”CarMsg” name=” top i c4 ”>
<f e a tu r e name=”Speed” value=”msg . spd”>
<ob j e c t name=” car2 ” value=”msg . id ”/>

</ f e a tu r e>
</Topic>
<Topic msgtype=”CarMsg” name=” top i c5 ”>
<f e a tu r e name=”Speed” value=”msg . spd”>
<ob j e c t name=” car3 ” value=”msg . id ”/>

</ f e a tu r e>
</Topic>
<Topic msgtype=”UavMsg” name=” top i c6 ”>
<f e a tu r e name=”Close ” value=”msg . c l o s e ”>
<ob j e c t name=”uav1” value=”msg . id1 ”/>
<ob j e c t name=”uav2” value=”msg . id2 ”/>

</ f e a tu r e>
</Topic>
<Topic msgtype=”UavMsg” name=” top i c7 ”>
<f e a tu r e name=”Close ” value=”msg . c l o s e ”>

107

108 APPENDIX C. TOPIC SPECIFICATIONS

<ob j e c t name=”uav2” value=”msg . id1 ”/>
<ob j e c t name=”uav1” value=”msg . id2 ”/>

</ f e a tu r e>
</Topic>
<Topic msgtype=”UavMsg” name=” top i c8 ”>
<f e a tu r e name=”Close ” value=”msg . c l o s e ”>
<ob j e c t name=”uav1” value=”msg . id1 ”/>
<s o r t a l l o b j e c t s=” f a l s e ” name=”UAV” value=”msg . id2 ”/>

</ f e a tu r e>
</Topic>
<Topic msgtype=”UavMsg” name=” top i c9 ”>
<f e a tu r e name=”GroundSpeed” value=”msg . spd”>
<ob j e c t name=”uav2” value=”msg . id ”/>

</ f e a tu r e>
</Topic>

</Topic specs>

C.2 XML representation of topic specifications
for platform 2

Listing C.2: Topic specifications for platform 2 in XML.

<Topic specs>
<Topic msgtype=”AutomobileMsg” name=” ca r s t op i c 1 ”>
<f e a tu r e name=”Speed” value=”msg . speed”>
<s o r t a l l o b j e c t s=” f a l s e ” name=”Automobile” value=”msg . id ”/>

</ f e a tu r e>
</Topic>
<Topic msgtype=”AutomobileMsg” name=” ca r s t op i c 2 ”>
<f e a tu r e name=”Speed” value=”msg . speed”>
<ob j e c t name=” car11 ” value=”msg . id ”/>

</ f e a tu r e>
</Topic>
<Topic msgtype=”AutomobileMsg” name=” ca r s t op i c 3 ”>
<f e a tu r e name=”Pos i t i on ” value=”msg . speed”>
<s o r t a l l o b j e c t s=” true ” name=”Automobile” value=”msg . id ”/>

</ f e a tu r e>
</Topic>

</Topic specs>

C.3 XML representation of topic specifications
for platform 3

Listing C.3: Topic specifications for platform 3 in XML.

<Topic specs>
<Topic msgtype=”UasMsg” name=” uastop i c1 ”>
<f e a tu r e name=”Spd” value=”msg . speed”>
<s o r t a l l o b j e c t s=” true ” name=”UnmannedAircraftSystem” value=”msg

. id ”/>
</ f e a tu r e>

</Topic>
<Topic msgtype=”UasMsg” name=” uastop i c2 ”>
<f e a tu r e name=”Spd” value=”msg . speed”>
<ob j e c t name=”uas20” value=”msg . id ”/>

</ f e a tu r e>

</Topic>
<Topic msgtype=”UasMsg” name=” uastop i c3 ”>
<f e a tu r e name=”Spd” value=”msg . speed”>

C.3. XML REPRESENTATION OF TOPIC SPECIFICATIONS FOR
PLATFORM 3 109

<ob j e c t name=”uas22” value=”msg . id ”/>
</ f e a tu r e>

</Topic>
<Topic msgtype=”UasMsg” name=” uastop i c4 ”>
<f e a tu r e name=”Height ” value=”msg . he ight ”>
<ob j e c t name=”uas20” value=”msg . id ”/>

</ f e a tu r e>
</Topic>
<Topic msgtype=”UasMsg” name=” uastop i c5 ”>
<f e a tu r e name=”Alt ” value=”msg . a l t ”>
<ob j e c t name=”uas21” value=”msg . id ”/>

</ f e a tu r e>
</Topic>
<Topic msgtype=”UasMsg” name=” uastop i c6 ”>
<f e a tu r e name=”Near” value=”msg . near ”>
<s o r t a l l o b j e c t s=” true ” name=”UnmannedAircraftSystem” value=”msg

. id1 ”/>
<ob j e c t name=”uas22” value=”msg . id2 ”/>

</ f e a tu r e>
</Topic>
<Topic msgtype=”UasMsg” name=” uastop i c7 ”>
<f e a tu r e name=”Near” value=”msg . near ”>
<s o r t a l l o b j e c t s=” true ” name=”UnmannedAircraftSystem” value=”msg

. id1 ”/>
<ob j e c t name=”uas21” value=”msg . id2 ”/>

</ f e a tu r e>
</Topic>
<Topic msgtype=”UasMsg” name=” uastop i c8 ”>
<f e a tu r e name=”Near” value=”msg . near ”>
<ob j e c t name=”uas21” value=”msg . id2 ”/>
<s o r t a l l o b j e c t s=” true ” name=”UnmannedAircraftSystem” value=”msg

. id2 ”/>
</ f e a tu r e>

</Topic>
</Topic specs>

110 APPENDIX C. TOPIC SPECIFICATIONS

Avdelning, Institution
Division, Department

Datum
Date

Spr̊ak

Language

� Svenska/Swedish

� Engelska/English

�

Rapporttyp
Report category

� Licentiatavhandling

� Examensarbete

� C-uppsats

� D-uppsats

� Övrig rapport

�

URL fr elektronisk version

ISBN

ISRN

Serietitel och serienummer
Title of series, numbering

ISSN

Linköping Studies in Science and Technology

Thesis No. LIU-IDA/LITH-EX-A–11/041–SE

Titel
Title

Författare
Author

Sammanfattning
Abstract

Nyckelord
Keywords

Autonomous system needs to do a great deal of reasoning during execution in order to provide timely
reactions to changes in their environment. Data needed for this reasoning process is often provided
through a number of sensors. One approach for this kind of reasoning is evaluation of temporal logical
formulas through progression. To evaluate these formulas it is necessary to provide relevant data for
each symbol in a formula. Mapping relevant data to symbols in a formula could be done manually,
however as systems become more complex it is harder for a designer to explicitly state and maintain this
mapping. Therefore, automatic support for mapping data from sensors to symbols would make system
more flexible and easier to maintain. DyKnow is a knowledge processing middleware which provides
the support for processing data on different levels of abstractions. The output from the processing
components in DyKnow is in the form of streams of information. In the case of DyKnow, reasoning
over incrementally available data is done by progressing metric temporal logical formulas. A logical
formula contains a number of symbols whose values over time must be collected and synchronized in
order to determine the truth value of the formula. Mapping symbols in formula to relevant streams
is done manually in DyKnow. The purpose of this matching is for each variable to find one or more
streams whose content matches the intended meaning of the variable. This thesis analyses and provides a
solution to the process of semantic matching. The analysis is mostly focused on how the existing semantic
technologies such as ontologies can be used in this process. The thesis also analyses how this process
can be used for matching symbols in a formula to content of streams on distributed and heterogeneous
platforms. Finally, the thesis presents an implementation in the Robot Operating System (ROS). The
implementation is tested in two case studies which cover a scenario where there is only a single platform
in a system and a scenario where there are multiple distributed heterogeneous platforms in a system.
The conclusions are that the semantic matching represents an important step towards fully automatized
semantic-based stream reasoning. Our solution also shows that semantic technologies are suitable for
establishing machine-readable domain models. The use of these technologies made the semantic matching
domain and platform independent as all domain and platform specific knowledge is specified in ontologies.
Moreover, semantic technologies provide support for integration of data from heterogeneous sources which
makes it possible for platforms to use streams from distributed sources.

AIICS,
Dept. of Computer and Information Science
581 83 Linköping

2011-10-03

-

LIU-IDA/LITH-EX-A–11/041–SE

-

http://urn.kb.se/resolve?urn=urn:
nbn:se:liu:diva-71669

2011-10-03

Semantic Matching for Stream Reasoning

Zlatan Dragisic

××

Semantic Matching, Stream Reasoning, DyKnow, Semantic Web,
OWL, ROS

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-71669
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-71669

	List of Figures
	List of Tables
	Introduction
	Background
	Goal
	Thesis outline

	DyKnow
	Overview
	Basic Concepts
	Architecture in ROS
	ROS
	ROS implementation

	DyKnow Federations
	Components

	Summary

	Semantic Technologies
	Semantic Web
	RDF/RDFS
	Syntax

	Ontologies
	OWL
	Semantic mappings

	Summary

	Analysis
	Semantic stream representation
	Matching symbols to topics
	Integrating data from multiple platforms
	Design
	Related work

	Implementation
	Introduction
	Proposed solution
	Design
	Matching a formula to topics
	Multiple Platform Scenario
	Integration
	Summary

	Case studies
	Single platform scenario
	Multiple platform scenario
	Discussion

	Performance evaluation
	Test cases
	Test setup
	Results
	Conclusion

	Conclusion
	Summary
	Future work

	Bibliography
	Acronyms
	Ontologies
	RDF/XML representation of the ontology for platform 1
	RDF/XML representation of the ontology for platform 2
	RDF/XML representation of the ontology for platform 3

	Topic Specifications
	XML representation of topic specifications for platform 1
	XML representation of topic specifications for platform 2
	XML representation of topic specifications for platform 3

