
Institutionen för datavetenskap
Department of Computer and Information Science

Final thesis

Evaluating the use of DyKnow in
multi-UAV traffic monitoring applications

by

Tommy Persson

LIU-IDA/LiTH-Ex-A--09/019--SE

 2009-03-24

Linköpings universitet

SE-581 83 Linköping, Sweden
Linköpings universitet

581 83 Linköping

Linköping University
Department of Computer and Information Science

Final Thesis

Evaluating the use of DyKnow in
multi-UAV traffic monitoring applications

by

Tommy Persson

LIU-IDA/LiTH-Ex-A--09/019--SE

2009-03-24

Supervisor: Fredrik Heintz
 IDA, Linköpings universitet

Anders Holmberg
 SAAB AB

Examiner: Patrick Doherty
 IDA, Linköpings universitet

På svenska

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare –
under en längre tid från publiceringsdatum under förutsättning att inga extra-
ordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för
ickekommersiell forskning och för undervisning. Överföring av upphovsrätten
vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ
art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i
den omfattning som god sed kräver vid användning av dokumentet på ovan
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan
form eller i sådant sammanhang som är kränkande för upphovsmannens litterära
eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se
förlagets hemsida http://www.ep.liu.se/

In English

The publishers will keep this document online on the Internet - or its possible
replacement - for a considerable time from the date of publication barring
exceptional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for your own use and to
use it unchanged for any non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional on the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be
mentioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity,
please refer to its WWW home page: http://www.ep.liu.se/

© Tommy Persson

Abstract
This Master’s thesis describes an evaluation of the stream-based knowledge pro-
cessing middleware framework DyKnow in multi-UAV traffic monitoring applica-
tions performed at Saab Aerosystems. The purpose of DyKnow is “to provide
generic and well-structured software support for the processes involved in gen-
erating state, object, and event abstractions about the environments of complex
systems.”[10] It does this by providing the concepts of streams, sources, computa-
tional units (CUs), entity frames and chronicles.

This evaluation is divided into three parts: A general quality evaluation of
DyKnow using the ISO 9126-1 quality model, a discussion of a series of questions
regarding the specific use and functionality of DyKnow and last, a performance
evaluation. To perform parts of this evaluation, a test application implementing
a traffic monitoring scenario was developed using DyKnow and the Java Agent
DEvelopment Framework (JADE).

The quality evaluation shows that while DyKnow suffers on the usability side,
the suitability, accuracy and interoperability were all given high marks.

The results of the performance evaluation high-lights the factors that affect the
memory and CPU requirements of DyKnow. It is shown that the most significant
factor in the demand placed on the CPU is the number of CUs and streams. It
also shows that DyKnow may suffer dataloss and severe slowdown if the CPU is
too heavily utilized. However, a reasonably sized DyKnow application, such as the
scenario implemented in this report, should run without problems on systems at
least half as fast as the one used in the tests.

v

Sammanfattning
Den här exjobbsrapporten beskriver en utvärdering av DyKnow i multi-UAV tra-
fikövervakningsapplikationer. DyKnow är ett “knowledge processing middleware
framework” vars syfte är “to provide generic and well-structured software support
for the process involved in generating state, object, and event abstractions about
the environments of complex systems.”[10] DyKnow gör detta genom att tillhan-
dahålla koncept som “streams, “sources,” “computational units (CUs),” “entity
frames” och “chronicles.”

Denna utvärdering är delad i tre delar: en generell kvalitetsutvärdering av
DyKnow med hjälp av kvalitetsmodellen i ISO 9126-1, en diskussion av en serie
frågor rörande användningen av DyKnow och dess funktionalitet och sist, en pre-
standautvärdering. För att utföra delar av den här utväderingen utvecklades en
testapplikation som implementerar ett trafikövervakningsscenario. Till detta an-
vändes DyKnow och Java Agent DEvelopment Framework (JADE). Ett kapitel är
tillägnat implementeringen av denna testapplikation.

Resultaten av kvalitetsutvärderingen visar att DyKnow lider lite vad gäller
användarvänlighet. Däremot fick lämpligheten, noggranhet och interoperabiliteten
bra betyg.

Prestandautvärderingen visar vilka faktorer som påverkar DyKnow vad gäller
minnes- och processorkrav. Utvärderingen visar att antalet strömmar och CUs är
vad som påverkar CPU-belastningen mest. Den visar även att DyKnow riskerar
att förlora data och att saktas ned när CPU-belastningen blir för hög. En rimligt
dimensionerad applikation, såsom det scenario som implementeras i den här rap-
porten, bör kunna köras utan problem på maskiner åtminstone hälften så snabba
som den som användes i testerna.

vi

Acknowledgments

First, I would like to thank the Decision Support & Autonomous Systems group at
Saab Aerosystems for giving me the opportunity to perform this Master’s thesis.
I would also like to thank my two advisors Anders Holmberg, SAAB and Fredrik
Heintz, Linköping University for their help and advice in writing this report. I
also thank Patrick Doherty for being willing to be my examiner.

vii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Goal . 2
1.3 Multi-agent systems . 3
1.4 Information and data fusion . 3
1.5 Limitations . 4
1.6 Influences . 4
1.7 Outline . 4

2 Scenario 5
2.1 Requirements . 5
2.2 Specification . 5

3 DyKnow 7
3.1 Concepts . 7
3.2 Architecture . 8

3.2.1 CORBA . 8
3.2.2 The Dynamic Object Repository 9
3.2.3 The Symbol Manager . 10
3.2.4 The Chronicle Recognition Engine 10
3.2.5 The Time and Alarm servers 10

3.3 Using DyKnow . 10
3.3.1 System requirements . 10
3.3.2 Defining sources . 11
3.3.3 Defining streams . 11
3.3.4 Defining computational units 12
3.3.5 Defining chronicles . 12
3.3.6 Defining entity frames . 13

3.4 Summary . 13

4 Implementation 15
4.1 Extending DyKnow for information sharing 15

4.1.1 Import and export proxies 15
4.2 Implementing the scenario . 16

4.2.1 Fluent streams . 17

ix

x Contents

4.2.2 Sources . 17
4.2.3 Computational Units . 18
4.2.4 Chronicles . 18

4.3 Enabling multi-agent behavior with JADE 19
4.3.1 DyKnow agents . 20
4.3.2 Operator agent . 22

4.4 Summary . 23

5 Framework evaluation 25
5.1 Metrics . 25

5.1.1 The ISO 9126-1 quality model 25
5.1.2 DyKnow-specific evaluation metrics 28

5.2 ISO 9126-1 evaluation results . 28
5.2.1 Functionality . 28
5.2.2 Reliability . 29
5.2.3 Usability . 29
5.2.4 Efficiency . 30
5.2.5 Maintainability . 30
5.2.6 Portability . 30

5.3 DyKnow-specific evaluation metrics discussion 31
5.3.1 How easy is it to implement a chosen fusion strategy? . . . 31
5.3.2 How easy is it to use different types of information sources

in DyKnow? . 31
5.3.3 How easy is it to integrate DyKnow into an existing envi-

ronment? . 32
5.3.4 How easy is it to implement the scenario-specific chronicles

in DyKnow? . 33
5.3.5 How easy is to include some kind of operator control in the

system? . 35
5.3.6 How can temporary loss of input or communication channels

be handled? . 35
5.3.7 How much work was needed to extend the single-UAV sce-

nario to the multi-UAV scenario? 36
5.4 Summary . 37

5.4.1 ISO 9126-1 evaluation summary 37

6 Performance evaluation 39
6.1 Metrics and test cases . 39

6.1.1 Test setup . 40
6.2 Results . 40

6.2.1 Memory consumption and CPU usage 41
6.2.2 Sample delay time . 42

6.3 Conclusion . 47

7 Conclusion 49

A Acronyms 51

Contents xi

B Listings 53

C Tables 56

Bibliography 60

Chapter 1

Introduction

This report presents the work done in a Master’s thesis during the fall of 2008.
This introductory chapter describes the goals of the thesis and introduces some of
the concepts and terms used throughout the report.

1.1 Background

The Decision Support & Autonomous Systems group at Saab Aerosystems is run-
ning a research program in the area of autonomous systems and multi-agent sys-
tems. The aim of the research is to develop technologies for nEUROn1 and Skel-
dar2, as well as future platforms. One important part of the research program is
to establish collaboration with researchers at Linköping University and to transfer
technologies developed there to SAAB.

One such technology is the stream-based knowledge processing middleware
framework DyKnow. DyKnow is currently developed by researchers at the Ar-
tificial Intelligence & Integrated Computer Systems Division (AIICS) at the De-
partment of Computer and Information Sciences (IDA) at Linköping University,
LIU. The main purpose of DyKnow is “to provide generic and well-structured
software support for the processes involved in generating state, object, and event
abstractions about the environments of complex systems.”[10]

DyKnow has been successfully used in several UASTech (Unmanned Aircraft
Systems Technology) projects at AIICS on their UAV (Unmanned Aerial Vehicle)
platforms. There DyKnow is mainly used to create high level representations of the
environment the UAVs inhabits. These are used by for example planning software
when generating routes and actions.[9]

The research group at SAAB wishes to determine if DyKnow is suitable for
the purpose of achieving joint situational awareness among a group of agents. To
evaluate whether it is suitable is the goal of this thesis.

1Dassault nEUROn, an experimental Unmanned Combat Air Vehicle (UCAV) developed
jointly by several European companies, including SAAB.

2A multi-purpose prototype helicopter UAV.

1

2 Introduction

1.2 Goal

The goal of this project is to evaluate the use of the DyKnow middleware to
achieve joint situational awareness in applications requiring multiple agents to
work together and share information. This evaluation is presented in three parts.

• A performance evaluation. The purpose of this evaluation is to document the
behavior of DyKnow when stressed in various ways and to identify potential
bottlenecks that might constrain the kinds of systems on which DyKnow
may be used.

• A quality evaluation of DyKnow, not focusing on specific features but in-
stead on the general characteristics of DyKnow. The evaluation tries to
find the strengths and weaknesses of the current implementation of DyKnow
which can be used to highlight specific areas where it can be improved. This
evaluation is performed according to the ISO 9126-1 quality model[6].

• By answering the following questions regarding the use and functionality of
DyKnow.

1. How easy is it to ...

(a) ... implement a chosen information fusion strategy?
(b) ... use different types of information sources in DyKnow?
(c) ... integrate DyKnow into an existing environment?
(d) ... implement the scenario-specific chronicles in DyKnow?
(e) ... include some kind of operator control in the system?

2. How can temporary loss of input or communication channels be han-
dled?

3. How much work is needed to extend a single-UAV scenario to a multi-
UAV scenario?

In order to perform this evaluation, a scenario was defined and a DyKnow ap-
plication implementing it was developed. The details of the scenario are described
in the next chapter, but it can be summarized as follows:

Two stationary UAVs are positioned with a mostly disjoint view of a road.
It is the job of the UAVs to detect events such as an overtake between two cars
traveling on the road. They do this by continually estimating the positions of the
two cars. Because the overtake happens so that neither UAV witness the whole
event, it is required that the two UAVs share and merge their information about
the event they each possess.

The details of the DyKnow application implementing this scenario is given in
Chapter 4.

1.3 Multi-agent systems 3

1.3 Multi-agent systems

Before moving on it is useful to understand what a multi-agent system is. But let’s
first define what an agent is. The following definition is provided in Introduction
to MultiAgent Systems [14].

An agent is a computer system that is situated in some environment,
and that is capable of autonomous action in this environment in order
to meet its design objectives.

In the scenario described each UAV can be viewed as an agent. The UAV’s
environment is the road and the cars that drive on it. The actions it may perform
are to monitor the objects on the road for events and to share information with
the other UAV.

A multi-agent system is a system that contains a number of agents who interact
with each other. Each agent has its own area of the environment in which it may
act and observe.

1.4 Information and data fusion

To be able to work together agents need to share and combine information from
multiple sources. The act of combining information and sensor data from multiple
sources, such as systems and agents is typically referred to as “data fusion” or
“information fusion.”[5] This area has been the subject of much research and
in 1985 the Joint Directors of Laboratories (JDL) Data Fusion Working Group
developed a functional model for data fusion [13].

A revised version of the model [13] consists of five levels of processing, outlined
below.

Level 0 - Sub-Object Data Assessment is the estimation and prediction of
object states on the pixel- or signal-level.

Level 1 - Object Assessment refers to the process of estimating the state of
an individual object from observations.

Level 2 - Situation Assessment is aimed at developing a description of the
different entities and their relationships in their environment.

Level 3 - Impact Assessment tries to use the current situation to predict fu-
ture threats and opportunities.

Level 4 - Process Refinement refers to the process of monitoring and improv-
ing the overall fusion process.

Another level has since been proposed. This new level 5 is called “User Refine-
ment.” Its purpose is to “delineate the human from the machine in the process
refinement”[4].

4 Introduction

1.5 Limitations
There are some important related areas that will not be discussed in this report.
One such area is the design of information fusion algorithms. Instead, only the
possibility of implementing a chosen fusion algorithm in DyKnow is discussed in
the evaluation.

Also, the DyKnow test application is developed and used only on a single
computer. Any effects stemming from the use of a network, such as latency or
bandwidth is not taken in account in the evaluation. Instead, the theoretical
result of latency and bandwidth is discussed briefly.

Another limitation is the decision to use only one pair of UAVs in the test
scenario. This was done to simplify the scenario. Despite this limitation, the
application and the evaluation are as general as possible.

1.6 Influences
Report on extending DyKnow for Multi-Node Distributed Networks - A Prototype
Implementation [7] describes a method of extending DyKnow to allow for multi-
agent functionality. This is in fact the approach the was used in this report as
well.

A quality framework for developing and evaluating original software compo-
nents [3] illustrates how the ISO 9126-1 quality model can be used to evaluate
original software components. This article served as the main influence on the
choice of evaluation method.

1.7 Outline
The disposition of the rest of the report is as follows:

Chapter 2 describes the details of the test scenario.
Chapter 3 gives an overview of DyKnow, its architecture, its functionality and

its use.
Chapter 4 discusses the implementation details of the DyKnow application

implementing the test scenario.
Chapter 5 presents the results of the general evaluation and discusses the ques-

tions regarding the functionality and use of DyKnow.
Chapter 6 provides the results of the performance evaluation and discusses

conclusions made from them.
Lastly, Chapter 7 summarizes the report.

Chapter 2

Scenario

To evaluate a middleware framework such as DyKnow, it is suitable to develop a
scenario that properly addresses the concerns that the reviewing party wishes to
focus on. The requirements of the scenario as well as the chosen specification used
in this evaluation is described below.

2.1 Requirements
The requirements placed on the scenario is that it must describe a series of events
that needs to be recognized. Recognition of these events must require the cooper-
ation of multiple agents.

2.2 Specification
The chosen scenario consists of two stationary UAVs. The field of view of the
UAVs are disjoint except for a small common patch between them (2.1). Their
purpose is to track objects (cars) moving on the road and to monitor events such
as overtakes between cars. An overtake in this scenario is divided into the three
events, a car being at first behind, then beside and finally ahead of the other car.

These events will be distributed over the two UAV:s respective field of view.
The UAV:s will need to share and fuse information to be able to monitor events
happening on the border between their fields of view. The scenario is illustrated
in Figure 2.1 on the next page.

This scenario provides the foundation for the evaluation of DyKnow presented
in Chapter 5.

5

6 Scenario

Figure 2.1. An illustration of the scenario as outlined in Section 2.2

Chapter 3

DyKnow

Before moving on to the implementation of the test software it is important to
understand how DyKnow works and what features exist. This chapter will describe
the relevant concepts in DyKnow and how they may be used to enable a developer
to write a high-level knowledge processing application.

For the interested party, a complete description of DyKnow is given in DyKnow:
A Stream-Based Knowledge Processing Middleware Framework [8].

3.1 Concepts
The main concepts that an application developer using DyKnow will need to
understand are streams, sources, computational units (CUs), entity frames and
chronicles. Used together these elements form a complete knowledge processing
application.

• Streams, or as they are also called, fluent streams are streams of samples.
Each sample in a stream contains a value and three different time points:
the creation time, the time point at which the sample is valid and the time
of the query which created the sample. In the latest version of DyKnow a
sample has two time points: the valid time and the available time, where the
available time is the time when the sample is available to the receiver. An
example stream would be a series of values representing measurements from
a sensor.

• A source is a process capable of generating a stream of samples.

• Computational units or CUs for short, are processes that take an arbitrary
number of streams as input and then outputs new samples into another
stream. The computational unit is automatically called each time a new
sample is available in one of the streams it subscribes to. A common use
case is to use computational units as filters.

• Entity frames are user-defined types that can be used as values in samples.
These entity frames are similar to C-type structs and may contain any type

7

8 DyKnow

Figure 3.1. An example DyKnow application showing how sources (circles), streams
(arrows) and computational units (boxes) may be connected.

of values allowed by CORBA1, including user-defined IDL-types2 and other
entity frames.

• Chronicles describe a specific series of events with metric temporal con-
straints on the event occurrences that should be recognized. An event in this
case might be the changing of a value in the samples of a stream from “true”
to “false” (or any other value for that matter). For example, a left_of at-
tribute signifying if a car is to the left of another car might shift from “false”
to “true” from one sample to the next.

Figure 3.1 shows how multiple sources, streams and computational units can
be connected to form a DyKnow application.

3.2 Architecture

This section describes the major components in DyKnow and their roles. The
different components are called the Dynamic Object Repository, the Symbol Man-
ager, the Chronicle Recognition Engine, the Time Server and the Alarm Server.
These components are all implemented as CORBA servers that an application
programmer can interact with.

3.2.1 CORBA

CORBA is a standard defined by the Object Management Group (OMG) that
provides an architectural framework for developing distributed systems.

The major features of CORBA are [11]:

1Common Object Request Broker Architecture. described in Section 3.2.1.
2Interface Definition Language. A language used to define CORBA objects.

3.2 Architecture 9

The OMG Interface Definition Language, IDL, is used for defining object
interfaces independent of any particular programming language or platform.

Language mappings specify how the different IDL constructs are implemented
in a specific programming language. In C++, interfaces are mapped to
classes and operations are mapped to class member functions.

Operation invocation and dispatch facilities allow the invocation of requests
on remote CORBA objects.

Object adapters allow a user to interact with an object without knowing its
exact type.

Inter-ORB Protocols provide a standardized way for ORBs3 developed by dif-
ferent vendors to communicate. Specified protocols include GIOP (General
Inter-ORB Protocol) and IIOP (Internet Inter-ORB Protocol).

The CORBA specification also defines a number of services [11] that an ORB-
vendor must implement.

One of the standardized CORBA services available is the OMG Naming Ser-
vice. DyKnow makes extensive use of this service. The Naming Service is basically
a directory where one can register CORBA servers. This directory can then be
browsed easily and references to the registered CORBA servers may be retrieved
by name instead of long and complicated URI4 strings.

Also provided is the OMG Event Service which provides a decoupled communi-
cations model that can be used instead of relying on strict client-server synchronous
request invocations. The model defines suppliers that produce events that con-
sumers receive. The suppliers and consumers communicates through an event
channel that they they must register to. Using the event channel many-to-many
relationships between consumers and suppliers are possible. This event system is
used much inside DyKnow to notify different subsystems that there is processing
to be done. It is possible for a DyKnow application programmer to listen in on
all these internal events but it is usually not necessary since defining streams and
computational units is often enough.

3.2.2 The Dynamic Object Repository

The Dynamic Object Repository or DOR is a soft real-time database that is used
to store all samples processed by DyKnow. The DOR is available as a CORBA
service (dor). A programmer uses the DOR to add computational units and
primitive streams to the system. It is then possible to reference the CUs when
adding new streams that connect them.

3Object Request Broker. The central component of any CORBA implementation.
4Uniform Resource Identifier.

10 DyKnow

3.2.3 The Symbol Manager

The symbol manager acts as a look-up table in DyKnow. It is through the sym-
bol manager that one can create, replace, retrieve or remove descriptors used to
refer to streams and computational units. The symbol manager is exposed to the
programmer as the CORBA service symbol_manager.

3.2.4 The Chronicle Recognition Engine

Chronicle recognition in DyKnow is provided by a piece of software called the
chronicle recognition system (CRS) developed by France Telecom. DyKnow wraps
this system with its own CORBA server (cre).

Using this wrapper it is simply a matter of calling a method to register a
pre-compiled chronicle in the system. The CRE will then output successfully
recognized chronicle instances in the stream chronicles. It is possible to set up
a separate event channel to listen to recognized chronicles.

3.2.5 The Time and Alarm servers

The time server provides a simple interface to get the global time in a DyKnow
application. This can be useful when the application is distributed on multiple
computers.

Using the alarm server it is possible to schedule any kind of task by defining
a TimerCallback-object. This object will need a start time, a stop time, a delay
time, and a time value for how much time should pass between each call to the
callback.

3.3 Using DyKnow

3.3.1 System requirements

DyKnow is written in C++ on top of ACE5 and TAO6. The version of DyKnow
used in this report relied on version 1.4a of the OCI7 distribution of TAO although
it is possible other versions might work as well. Other dependent libraries include
Boost.

No specific requirements on CPU speed or memory have been determined, but
some insight might be learned from Chapter 6 where the performance of DyKnow
is evaluated.

5ADAPTIVE Communication Environment. “A freely available, open-source object-
oriented (OO) framework that implements many core patterns for concurrent communication
software.”[12]

6The ACE ORB. A real-time CORBA implementation built upon the ACE framework.
7Available at http://www.theaceorb.com/downloads/1.4a/index.html

3.3 Using DyKnow 11

3.3.2 Defining sources

A source in DyKnow is simply a function that returns a sample when asked. The
following piece of C++ code shows the type definition of the function.

typedef boost : : funct ion <I d l : : Dyknow : : Sample∗
(const I d l : : Time&, const std : : s t r i n g&)>

GetSample

This source function is then wrapped in a structure called “SensorInterfaceWrap-
per” before it can be added to the DOR and made available for creation of named
streams.

3.3.3 Defining streams

There are a number of ways to add a stream to a DyKnow application, depending
mostly on which type of stream one wants to add.

Firstly, computed streams are streams that receive their samples from a com-
putational unit. Secondly, a named stream is connected to a source. It pulls
samples from the source it references with a given sample rate. Lastly, there is the
primitive streams. These streams are not connected to anything else. Samples are
explicitly added by any component in the system.

The different types of streams are all created in a similar way. First a policy is
defined, determining the type of the stream and what values may be placed in it
as well as various constraints that can be placed on the stream. Using this policy
object a descriptor is created by the symbol manager.

The constraints that can be placed on a stream include:

Duration Constraints Specifies a time interval within which samples should be
valid.

Sample period The difference in valid time between two consecutive samples.

Cache Constraint There are two fundamental cache constraints, the Time Cache
Constraint which specifies how long a sample may be stored and the Size
Cache Constraint which determines how many samples may be stored simul-
taneously.

Temporal Constraint (Also know as Order Constraint) Specifies how the sam-
ples should be ordered with regard to their valid times, while still being
ordered by the time they were made available. Options include any order,
monotone (increasing), and strict monotone (increasing, with no samples
with the same time point).

Delay Constraint Specifies the maximum difference between the available time
and the valid time of a sample.

These constraints are all declarative, they specify conditions that a stream
should satisfy. It is up to DyKnow to satisfy them.

12 DyKnow

3.3.4 Defining computational units
Computational units are any function objects implementing either of the following
operator()-methods:

I d l : : Dyknow : : Sample∗
operator () (const I d l : : Dyknow : : SampleSeq& input ,

const I d l : : Time query_time)

I d l : : Dyknow : : SampleSeq∗
operator () (const I d l : : Dyknow : : SampleSeq& input ,

const I d l : : Time query_time)

The second version is needed when a computational unit needs to return mul-
tiple samples in the same function call.

A computational unit is added to the DOR in much the same way that a source
is, using a wrapper object. In this case the computational unit is wrapped by a
CompUnitWrapper object before it is passed on to the DOR. To actually use the
CU it is also necessary to set it up with a policy and create a descriptor in the
symbol manager.

3.3.5 Defining chronicles
Chronicles are defined in a special language specifically created for that purpose
[8]. To define a chronicle it is first required to define the attributes which the
chronicle will have observations about. The different values of an attribute must
be defined by a domain.

To illustrate, a very simple chronicle may look like the one below:

domain Boolean = {true , false , unknown}
domain Objects = ~{}

attribute some_stream . i s _ l a r g e [? ob j e c t]
{

? ob j e c t in Objects
? va lue in Boolean

}

chronicle i s_ l a rg e_chron i c l e [? ob j e c t]
{

event (some_stream . i s _ l a r g e [? ob j e c t] : (false , true) , t1)
noevent (some_stream . i s _ l a r g e [? ob j e c t] : (true , fa l se) , (t1 +1, t2))

t1 < t2
t2 − t1 in [1 00 , 100]

}

This chronicle will check if the attribute is_large in the stream some_stream
is ever set to true and then stays true for 100 time units. The stream.attribute

3.4 Summary 13

naming convention used above is not something natively supported by the chron-
icle recognition system. It is up to DyKnow to serve CRS with the appropriate
information.

Any recognized chronicle is added to the chronicles stream which CUs or
others can then read.

3.3.6 Defining entity frames
As noted before, it is possible to use any CORBA-compatible value type as a value
in a sample. That includes strings, integers, booleans and other simple types. It
is also possible to define sequences and aggregations of the available types. User-
defined CORBA IDL-types can also be used.

DyKnow provides an object type called EntityFrame that may contain a se-
quence of attribute-value pairs of many different types. To simplify their usage it
is possible to write definition files that are then compiled into full C++ CORBA-
compatible classes ready for use in streams and computational units. This allows
a user to simply call “obj.GetMyAttribute()” instead of manually traversing the
list of all attributes.

A small definition file showing how an EntityFrame might be constructed is
displayed below:

MyEntityFrameType MY_ENTITY_FRAME_TYPE
long a t t r i b 1 de fau l t_va lue1
double a t t r i b 2 de fau l t_va lue2
bool a t t r i b 3 de fau l t_va lue3
EntityFrame MyOtherEntityFrameType I d l : : Dyknow : : EntityFrame ()

3.4 Summary
This chapter has given an introduction to DyKnow, its concepts, architecture and
feature set. It has described streams and how they relate to samples, sources and
computational units. An introduction to the basic syntax and functionality of
chronicles has also been given. With this information it is time to move on to
describing a test application implementing the scenario outlined in the previous
chapter. This is done in the next chapter.

Chapter 4

Implementation

This chapter describes the implementation details of a DyKnow application that
successfully implements the scenario outlined in Chapter 2. The work that went
into creating this implementation serves as the basis for the evaluation described
in Chapter 5.

The chapter begins with a section dedicated to a description of how DyKnow
can be extended to enable information sharing between multiple instances. In
Section 4.2 the actual scenario implementation is discussed. Finally in Section 4.3
the implementation of a multi-agent environment using JADE1 is discussed.

4.1 Extending DyKnow for information sharing
As the version of DyKnow available to the author doesn’t offer any support for
multi-agent environments it is necessary to extend it with this functionality. One
such approach is to use import and export proxies registered in each DyKnow-
instance[7]. This is also the approach that was chosen in this implementation and
it is described further below.

4.1.1 Import and export proxies
The job of the two proxies is to provide an interface for exporting streams from
one DyKnow-instance to another. The proxies are called ImportProxy and Ex-
portProxy and are provided as CORBA-services in each DyKnow-instance. One
may then simply request the export proxy from another DyKnow-instance and call
the appropriate methods to begin exporting a stream. To differentiate between
the two active DyKnow-instances, they are each given a unique unit number on
start-up.

The methods provided by the ExportProxy service are the following:

start_exporting(from_semantic_label, to_semantic_label, unit) Calling
this method will begin exporting the stream referred to by from_semantic_label

1Java Agent DEvelopment Framework. A middleware for developing multi-agent systems.

15

16 Implementation

Figure 4.1. An overview of the different parts in the scenario implementation and how
they are connected. Rectangles represent computational units while rounded rectangles
are chronicles. The only source in the system is shown as a circle.

on the DyKnow-instance providing the export proxy to the stream referred
to by to_semantic_label on the DyKnow-instance with the unit number
of unit. A semantic label is the name given to each stream when they are
created.

To actually export the stream, the export proxy must create a subscription
to the stream it will export. The export proxy then calls a callback function
every time a new sample enters the stream. In this case the purpose of the
callback is to call the push method (described below) of the import proxy
on the receiving unit.

stop_exporting(semantic_label, unit) This method stops the exportation of
a stream. This is as simple as canceling the subscription made to the stream
that was being exported.

The ImportProxy service provides the following method:

push(unit, semantic_label, sample) This method is called when a DyKnow-
instance with the unit number of unit wants to export a sample to a stream
labeled semantic_label.

4.2 Implementing the scenario

To implement the scenario described in Section 2.2 it is necessary to use all the
main features of DyKnow: Streams, computational units and chronicles.

The source of all the samples is a pair of logfiles. One for each simulated UAV.

4.2 Implementing the scenario 17

mSymbol car (" car ") ;
mSymbol car_pair (" car_pair ") ;
mSymbolSeq car_pair_args (car) ;
mComputedFstreamPolicy car_pair_pol (dor_service_name ,

car_to_car_pair_cu ,
car_pair_args ,
f s t r eam_cons t ra in t s) ;

c r e a t e_de s c r i p to r (symbol_manager . in () ,
car_pair ,
mPolicy (car_pair_pol) ,
CarPairWrapper : : type () ,
symbol_already_exist_pol icy ,
except ion_pol icy ,
verbose) ;

Listing 4.1. The code used to setup the car_pair stream.

4.2.1 Fluent streams

These are the different fluent streams used in the traffic monitoring application:

wo This stream contains all the samples polled from the source.

import_wo The stream where all samples imported from the other agent are made
available.

merged_wo This stream contains all the samples merged by the wo_merger CU.

oro This stream contains all the world object samples determined to be on a road.

car This stream contains all the on road objects determined to be cars.

car_pair This stream contains all the different combinations of car pairs.

car_relations This stream contains all car pairs that have been given attributes
(by the preceding CU) such as left_of, if the first car in the pair is left of
the other, and vice versa for right_of.

To illustrate how one may add a new stream in DyKnow, the code responsible
for setting up the car_pair stream is given in Listing 4.1.

4.2.2 Sources

The only source of samples in this application is wo_src. This source reads samples
from a prepared logfile. It is polled every 100 milliseconds by the wo stream.

18 Implementation

4.2.3 Computational Units

This section describes all the different computational units developed to implement
the scenario. In Figure 4.1 we can see how they are connected.

wo_merger The purpose of this computational unit is to merge any two streams
of WorldObjects. Presently, it is connected to the two streams wo and
import_wo. This is where one would implement a potential fusion algo-
rithm in the system. For now, the CU simply interleaves the two streams to
combine them, or if the CU is told that two WorldObjects are equivalent,
renames one of them.

wo_to_oro Originally intended to reason about whether a world object is on a
road and if so, convert them, this CU now trusts the on_road_system flag
of the world object samples. The assumed image-processing system which
generates the samples is thereby trusted to see if a world object is on a road.
If so, the sample is passed onto the oro stream as an oro object.

oro_to_car This computational unit reasons whether a given road object is in
fact a car. It does this by listening to the oro and chronicles streams. It
searches for a specific recognized chronicle showing that a road object has
been on a road for a given period of time. When this happens, the CU wraps
the sample in a car structure and adds it to the car stream.

car_to_car_pair One of the more complicated computational units. It is respon-
sible for preparing pairs of car samples which other CUs may reason more
about later.

The CU does this by keeping a list of all the latest samples from each car
received in its internal memory. Every time a new sample arrives the previous
one from the same car is removed (this assumes that samples of the same
car object are received in the correct order, which can be specified with an
order constraint as described in Section 3.3.3), after which a list of all pair
combinations of this new car sample and all others stored are sent as outputs.

If a stored sample is stored for too long, it is automatically thrown away.
This is to prevent meaningless comparisons by other CUs.

car_pair_to_car_relations This computational unit calculates the relation be-
tween the two cars in each sample. It calculates if the first car is behind,
in_front, left_of or right_of the other. This information is then used by
the overtake chronicle (described below) to recognize if one car has over-
taken another.

4.2.4 Chronicles

The been_on_road_long_enough chronicle is intended to detect if an on_road_object
has been seen moving on a road long enough to be classified as a car. If so the
oro_to_car CU should convert the oro object into a car object.

4.3 Enabling multi-agent behavior with JADE 19

chronicle overtake [? car1 , ? car2]
{

event (c a r _ r e l a t i o n s . behind [? car1 , ? car2] : (false , true) , t1)
event (c a r _ r e l a t i o n s . l e f t _ o f [? car1 , ? car2] : (false , true) , t2)
event (c a r _ r e l a t i o n s . in_front [? car1 , ? car2] : (false , true) , t3)

t1 < t2 < t3
}

Listing 4.2. A simplified chronicle responsible for recognizing overtakes.

The overtake chronicle can be implemented as shown in Listing 4.2, while the
full code necessary to compile this chronicle with all the necessary attributes and
variable domains is given in Listing B.2.

4.3 Enabling multi-agent behavior with JADE
In order to test the DyKnow application as well as evaluating the possibilities of
integrating support for operator-control in DyKnow, an agent and a operator has
been written using JADE.

JADE (Java Agent DEvelopment Framework) is a Java middleware aiming to
simplify the development of multi-agent systems [1]. Agents developed with JADE
all run on the JADE Agent Platform which complies with the FIPA2 specification
and agent-to-agent interaction are done through the FIPA-ACL language.

A running JADE platform contains at least the Main Container in which the
AMS (Agent Management System), DF (Directory Facilitator) and (optionally)
RMA (Remote Monitoring Agent) agents reside.

• The AMS is the authoritative agent in its platform. It is the only agent
capable of creating or killing agents. It may also remove agent containers
and shutdown the agent platform.

• The DF has a yellow pages service which it uses to advertise the services of
the agents in the platform to other agents in the same or other platforms.

• The RMA GUI allows an administrator to remotely or locally view all the
platforms and their containers and agents. It is also possible to launch, stop
and send messages to agents. Agents may also be moved to other platforms
and containers seamlessly.

In order for an agent to be able to perform several tasks concurrently JADE
agents may have a set of user-defined behaviors. These behaviors are then per-

2Foundation for Intelligent Physical Agents. An IEEE Computer Society standards organiza-
tion that promotes agent-based technology and the interoperability of its standards with other
technologies[2].

20 Implementation

formed by a scheduler contained in each agent. An example behavior may be to
listen to incoming messages from other agents and then react to them.

4.3.1 DyKnow agents

In this agent environment, each DyKnow-instance is wrapped by a JADE-agent
called DyKnowAgent.

When the agent starts up, its first task is to launch all the required DyKnow
executables, such as the DOR, the CRE and the symbol manager. During the start-
up phase all these processes are monitored until they are successfully launched.
At that time an agent behavior (described below) changes the state of the agent
and notifies the operator.

JADE/DyKnow communication

Communication with the DyKnow-instance is done through a network socket which
is connected during the entire run-time of the agent. It is through this socket
that the DyKnow-agent may communicate with and control its ImportProxy and
ExportProxy. The interface between the DyKnow-instance and the DyKnow-agent
is named the JADE/DyKnow interface in Figure 4.2.

Another solution to enable communication between JADE and DyKnow is to
use a Java CORBA implementation such as JacORB3 to reference the two objects
directly, but using network sockets was deemed as simpler and faster to implement.

Behaviors

The DyKnow-agent has two defined behaviors: One to listen to incoming requests,
the MessageRequestReceiverBehavior and another to monitor and change its state,
the StateChangeBehavior.

The MessageRequestReceiverBehavior listens to requests from the operator to
either shut down the agent, to run its setup routine or to start or stop exporting
streams to other agents. The request messages are composed in a custom FIPA-
ACL ontology.

The StateChangeBehavior monitors the agent’s state and notifies the operator-
agent when it changes. The operator is notified when the DyKnow-agent has
finished running its initial loading routines and later also when its setup task has
been completed.

GUI

Each agent has a simple GUI attached to them. From it, it is possible to send raw
string commands through the network socket (for debugging purposes) and also
to run the agents setup routine.

4.3 Enabling multi-agent behavior with JADE 21

Figure 4.2. An architectural overview of the implementation described in this chapter.
Shown are the various interfaces and communication pathways.

22 Implementation

Figure 4.3. A screen shot of a running session of the DyKnow operator. In this partic-
ular run three DyKnow-agents have been launched. Two of them have started running
while the third just finished its initialization. One of the running agents (dyknow1) has
also been told to export all samples in its wo2 stream to the import_wo stream of dyknow0.

4.3.2 Operator agent

The operator has the ability to start and stop agents, as well as the ability to call
their import and export proxies directly to begin a stream export.

Apart from its own initialization the operator is also responsible for setting
up the crucial CORBA Naming Service process. It is through the naming service
that DyKnow-instances can browse and subscribe to the CORBA services of other
instances.

Like the agents it cares for, the operator agent has a behavior defined for
listening to incoming messages, MessageReceiveBehavior. This behavior listens
for status updates from the running agents.

Agents may be launched by the user by clicking the “Launch new DyKnow-
agent” button in the operator GUI (see Figure 4.3). From this GUI it is also
possible to terminate the execution of an agent and to run their setup routines
(from the similarly labeled buttons).

There is currently no support for viewing the contents of the streams in the
individual agent.

If a user were to exit the operator it will automatically send messages to any
active agents telling them to shut down, ensuring that no processes are left running.

3Availabe from http://www.jacorb.org

4.4 Summary 23

4.4 Summary
This chapter has described the implementation of a DyKnow application imple-
menting the scenario described in Chapter 2. The application consisted of a num-
ber of streams, computational units, sources and chronicles which brought the
abstraction level of the world object samples up to cars and the relationship be-
tween pairs of cars. A chronicle was finally able to determine if one car had
overtaken another.

To allow information sharing between the two DyKnow instances representing
the UAVs of the scenario, a pair of export and import proxies were created. Using
these it was possible for one instance to subscribe to the observations of the other.

JADE was used to write a simple wrapper agent around DyKnow and also a
separate operator agent. Using the operator it was easy to start and stop DyKnow-
agents and to tell one to export a specific stream of information to the other. Com-
munication between the JADE agents and the DyKnow-instance was facilitated
using a simple network socket. That said, a CORBA connection would probably
have been safer and more preferable to use as it enables tighter integration without
the extra layer of command parsing forced by the network socket.

Chapter 5

Framework evaluation

This chapter discusses the results of the evaluation performed. The evaluation was
performed by implementing the scenario as described in Chapter 4. Many of the
results and answers below will therefore refer back to the implementation.

5.1 Metrics

The chosen metrics include judging the quality and functionality of the software
in general terms as well as with regards to the specific scenario.

The quality model used in the first part of the evaluation is from the inter-
national standard ISO 9126, described in Section 5.1.1. This model was selected
because it defines a number of formal and standardized evaluation characteristics.

The results of the quality evaluation is described in Section 5.2 and mainly
concerns the external quality (as defined by the model) of DyKnow. The view-
point in the evaluation is that of an application developer using DyKnow.

Later in this section the questions that were raised regarding the specific use of
DyKnow are listed. Unlike the general software metrics, these will not be graded.
Instead they will be subject to more in-depth discussion.

5.1.1 The ISO 9126-1 quality model

ISO 9126 is an international standard for the evaluation of software [6]. The
standard is divided into four parts which addresses, respectively, the following
subjects: Quality model, external metrics, internal metrics and quality in use
metrics. This evaluation will only use the quality model.

ISO 9126-1 defines a quality model in terms of internal quality, external quality
and quality in use. Internal quality is evaluated using internal attributes of the
software, for example design modularity and compliance with coding standards.
External quality is evaluated when the software is executed, typically during formal
testing activities. This evaluation will focus on the external quality since DyKnow
is distributed as a set of libraries and executables, not as source code.

25

26 Framework evaluation

The rest of this section is a direct quote from ISO 9126-1 [6] describing all the
quality characeristics.

Functionality – The capability of the software product to provide functions
which meet stated and implied needs when the software is used under spec-
ified conditions.

Suitability The capability of the software product to provide an appropri-
ate set of functions for specified tasks and user objectives.

Accuracy The capability of the software product to provide the right or
agreed results or effects with the needed degree of precision.

Interoperability The capability of the software product to interact with
one or more specified systems.

Security The capability of the software product to protect information and
data so that unauthorized persons or systems cannot read or modify
them and authorized persons or systems are not denied access to them.

Functionality Compliance The capability of the software product to ad-
here to standards, conventions or regulations in laws and similar pre-
scriptions relating to functionality.

Reliability – The capability of the software product to maintain a specified level
of performance when used under specified conditions.

Maturity The capability of the software product to avoid failure as a result
of faults in the software.

Fault Tolerance The capability of the software product to maintain a spec-
ified level of performance in cases of software faults or of infringement
of its specified interface.

Recoverability The capability of the software product to re-establish a
specified level of performance and recover the data directly affected in
the case of a failure.

Reliability Compliance The capability of the software product to adhere
to standards, conventions or regulations relating to reliability.

Usability – The capability of the software product to be understood, learned,
used and attractive to the user, when used under specified conditions.

Understandability The capability of the software product to enable the
user to understand whether the software is suitable, and how it can be
used for particular tasks and conditions of use.

Learnability The capability of the software product to enable the user to
learn its application.

Operability The capability of the software product to enable the user to
operate and control it.

5.1 Metrics 27

Attractiveness The capability of the software product to be attractive to
the user.

Usability Compliance The capability of the software product to adhere to
standards, conventions, style guides or regulations relating to usability.

Efficiency – The capability of the software product to provide appropriate per-
formance, relative to the amount of resources used, under stated conditions.

Time Behaviour The capability of the software product to provide ap-
propriate response and processing times and throughput rates when
performing its function, under stated conditions.

Resource Utilisation The capability of the software product to use ap-
propriate amounts and types of resources when the software performs
its function under stated conditions.

Efficiency Compliance The capability of the software product to adhere
to standards or conventions relating to efficiency.

Maintainability – The capability of the software product to be modified. Modifi-
cations may include corrections, improvements, or adaptation of the software
to changes in environment, and in requirements and functional specifications.

Analysability The capability of the software product to be diagnosed for
deficiencies or causes of failures in the software, or for the parts to be
modified to be identified.

Changeability The capability of the software product to enable a specified
modification to be implemented.

Stability The capability of the software product to avoid unexpected effects
from modifications of the software.

Testability The capability of the software product to enable modified soft-
ware to be validated.

Maintainability Compliance The capability of the software product to
adhere to standards or conventions relating to maintainability.

Portability – The capability of the software product to be transferred from one
environment to another.

Adaptability The capability of the software product to be adapted for dif-
ferent specified environments without applying actions or means other
than those provided for this purpose for the software considered.

Installability The capability of the software product to be installed in a
specified environment.

Co-existence The capability of the software product to co-exist with other
independent software in a common environment sharing common re-
sources.

28 Framework evaluation

Replaceability The capability of the software product to be used in place
of another specified software product for the same purpose in the same
environment.

Portability Compliance The capability of the software product to adhere
to standards or conventions relating to portability.

5.1.2 DyKnow-specific evaluation metrics
Listed below are the questions that were raised with regards to DyKnow in the
beginning of this thesis project.

1. How easy is it to ...

(a) ... implement a chosen information fusion strategy?
(b) ... use different types of information sources in DyKnow?
(c) ... integrate DyKnow into an existing environment?
(d) ... implement the scenario-specific chronicles in DyKnow?
(e) ... include some kind of operator control in the system?

2. How can temporary loss of input or communication channels be handled?

3. How much work was needed to extend the single-UAV scenario to the multi-
UAV scenario?

5.2 ISO 9126-1 evaluation results

5.2.1 Functionality
Suitability High

The scenario requires the continuous reading of input samples and detec-
tion of different events. DyKnow, with its concept of sources, streams and
chronicles fits these requirements nicely. A programmer is able to focus on
writing code for the scenario-specific data structures and how to process
them. While DyKnow manages the actual distribution of data around the
system.

Accuracy High
DyKnow performed well in all tests.

Interoperability High
DyKnow is implemented using CORBA, which provides an excellent plat-
form for integrating components distributed in a network and implemented
using different programming languages. Any application may interact with
DyKnow as long as they have access to the definitions of the appropriate
interfaces. The publish and subscribe communication used by DyKnow is
implemented using a notification channel which can also be accessed by any
application.

5.2 ISO 9126-1 evaluation results 29

Security Low
The interfaces and the notification channel that DyKnow uses are available
to anyone, without any kind of authentication. Although good for interop-
erability, it makes the system inherently insecure.

Functionality Compliance Not Applicable
No requirements has been set regarding any business rules or other standards.

5.2.2 Reliability

Maturity Medium
Under normal system load the failure rate of DyKnow is very low. No sudden
crashes or errors have been noted.

Fault tolerance Medium
In the event that either the DOR, symbol manager, or the alarm server fail,
the system will no longer be able to continue processing. No recovery is possi-
ble without performing a restart. If the time server fails the system will only
temporarily stop processing until the time server is restarted. Should the
CREshutdown, it is possible to restart it, but previously registered chroni-
cles must be re-registered. Finally, the failure of the CORBA naming service
does not affect the running of DyKnow after the different servers have al-
ready retrieved references to each other. Recovery of the naming service
requires that each server re-registers itself with it.

Recoverability Medium
As discussed in the previous item.

Reliability Compliance Not applicable
DyKnow is not subject to any standards or regulations regarding reliability.

5.2.3 Usability

Understandability Medium
The internals of DyKnow are hidden from application developers. While
the high level functionality of the framework are fairly straight forward and
described in a number of articles, detailed documentation regarding actual
usage is missing.

Learnability Low
Due to an almost complete lack of documentation, it is hard to get started
with DyKnow as a programmer. This also makes it harder to learn how to
use the full functionality of the framework. However, a couple of examples
were provided which made getting started much easier.

Operability Medium
A DyKnow application is divided into a number of different executables in-
cluding the DOR, the symbol manager and the chronicle recognition engine.

30 Framework evaluation

All of these programs must be started prior to the DyKnow client applica-
tion. For this purpose, a shell script is used to simplify the process.

Attractiveness Not applicable
DyKnow is a software framework, not an end user application.

Usability Compliance Not applicable
DyKnow is not subject to any standards or regulations regarding usability.

5.2.4 Efficiency

The space and time efficiency is discussed in detail in Chapter 6.

5.2.5 Maintainability

This evaluation is performed in the view of an application developer using a binary
DyKnow distribution. As such it is not applicable to comment on the maintain-
ability of DyKnow itself.

5.2.6 Portability

Adaptability Low
DyKnow is not distributed with the source code, this severely limits the
adaptability without the help of the original programmers.

Installability Medium
DyKnow relies on a number of different third party libraries and programs, all
of which are freely available. Under the assumption that these prerequisites
are installed, the installation of DyKnow itself only requires the extraction
of an archive.

Co-existence High
DyKnow does not require exclusive access to any specific system resources.

Replacability Low
DyKnow is a complex and specialized system, replacing it in an application
would be non-trivial.

Portability compliance Not applicable
DyKnow is not subject to any requirements regarding conformance to porta-
bility standards. At the same time, it is built upon the TAO+ACE CORBA
middleware and is therefore portable to any platform that is supported by
that middleware.

5.3 DyKnow-specific evaluation metrics discussion 31

5.3 DyKnow-specific evaluation metrics discussion

5.3.1 How easy is it to implement a chosen fusion strategy?

A fusion algorithm is best implemented in a CU because of the fact that they can
be implemented as normal C++ classes, with a defined interface. A very simple
algorithm may be to interleave two input streams.

The strategy used in the implementation discussed in Chapter 4 is also very
simple. When one agent detects that is no longer receiving observations of a car,
it begins to translate the car IDs of the samples imported from the other agent
into the same ones used by its own samples. This is only possible because the two
agents use the same coordinate system and because the receiving agent somehow
knows which imported car IDs matches its own. A real attempt at information
fusion is obviously much more complex.

An implementation must not, however, be too taxing on the computer. As
shown in Chapter 6, when the processor nears 100% utilization the different
threads in the application may be starved and performance and correctness will
suffer greatly as a result.

Another thing to take into account is the speed of the fusion algorithm. If each
sample is read from the different streams every 100 milliseconds the CU should
not take any longer, on average, to process the sample or the rest of the system
might suffer a delay.

5.3.2 How easy is it to use different types of information
sources in DyKnow?

As described in Section 3.3.2 DyKnow makes no assumptions regarding what kind
of information sources are used. All DyKnow needs is a function object capable
of returning a pointer to a sample.

typedef boost : : funct ion <I d l : : Dyknow : : Sample∗
(const I d l : : Time&, const std : : s t r i n g&)>

GetSample

This function object is then wrapped by a SensorInterfaceWrapper which is
then registered in the DOR.

Later, when setting up the policy for the stream which will read from this
source, it is possible to set a number of constraints to adapt the stream to the
particular nature of the source. These constraints are described in Section 3.3.3.

A value in a sample may be of a number of different types, including integers,
strings, booleans and entity frames. Sequences and aggregations of all types are
also possible. When creating a sample in DyKnow it is necessary to set a parameter
called vtime, the time point at which the sample is deemed valid. A CU can then
filter away old samples if necessary.

If an application needs more complex types then objects called “entity frames”
can be used. Entity frames are basically aggregations of different values. Defining
them is easy. An example object is given below:

32 Framework evaluation

WorldObject WORLD_OBJECT
long id −1
Vec pos I d l : : Vec ()
Vec ve l I d l : : Vec ()
double l ength 0
double width 0
bool on_roadsystem true

It is also possible for an entity frame to contain another, like in the following
example:

Car CAR
long id −1
long on_road_object −1
EntityFrame OnRoadObject I d l : : Dyknow : : EntityFrame ()

Linking objects in this way lowers the amount of attributes that needs to be
duplicated. In the example shown above it is possible to get the Car object’s
position by getting the reference to the OnRoadObject, which in turn offers a
reference to the WorldObject that contains the position value.

The universality of streams, sources and entity frames should allow for almost
any kind of input to be used in a DyKnow application.

5.3.3 How easy is it to integrate DyKnow into an existing
environment?

Integrating any software into an existing environment may be summarized in three
(not so small) steps: Define inputs, define outputs and resolve synchronization
issues.

Defining application specific inputs was discussed in the previous section. Let
us instead move quickly on to outputs. Remember that there are no specific
outputs in DyKnow, although you can easily subscribe to and read from all the
different streams from any DyKnow and CORBA-aware application.

The export proxy described in Chapter 4 is an example of an object subscribing
to a stream. Instead of talking to the import proxy the export proxy might as
well have stored all samples in a text file, or sent them to another program or
subsystem entirely.

As mentioned about the implementation of the export proxy in Chapter 4,
subscribing to a stream only requires that you write a suitable callback function
and pass it to a subscription proxy that monitors the stream you wish to get
samples from.

Defining inputs and outputs is however not always enough. To integrate well
with the rest of the system the DyKnow application needs to be properly synchro-
nized with the other parts. For example, the software responsible for generating
data sent to DyKnow may need to know when DyKnow is ready to receive that
data. Unfortunately, there is no global state exposed by DyKnow, no “I am ready”
signal is broadcast. DyKnow is by design an asynchronous framework. It is how-

5.3 DyKnow-specific evaluation metrics discussion 33

ever simple enough for a DyKnow application programmer to add this kind of
signal when all CUs and streams are properly configured.

5.3.4 How easy is it to implement the scenario-specific chron-
icles in DyKnow?

As mentioned in Section 3.3.5 a chronicle requires the definition of attributes and
domains as well as the actual chronicle.

The example used below to illustrate what is required to define a chronicle is
the overtake chronicle used in the scenario implementation.

The domains specified in the overtake chronicle is the set of possible CarRelation
objects, the set of possible Car objects and the set of boolean values (unknown,
true and false). The definitions look like the following:

domain CarRelat ions = ~{}
domain Car = ~{}
domain Boolean = {unknown, true , fa l se }

The CarRelations and Car domains are both set to the universal set (or rather,
the complement of the empty set) to allow any possible value to be recognized.
The peculiar unknown value in the Boolean domain is used as an initial value, until
an attribute can be said to be either false or true.

The chronicle attributes car_relations.{left_of, right_of, in_front,
behind} all map straight onto the values of the same name in the car_relations
stream. They all share the same basic structure, shown below:

attribute c a r _ r e l a t i o n s . r i ght_of [? car1 , ? car2]
{

? car1 in Car
? car2 in Car
? value in Boolean

}

The full chronicle is shown in Listing B.1.
As seen, the chronicles themselves are quite simple, the real issue is to prepare

the streams that the chronicles monitor. In the case of the overtake chronicle,
the stream of cars must be converted into a stream of all pairs of cars. These pairs
in turn needs to be given the proper attributes. Only when we have this proper
car_relations stream may instances of the chronicle be recognized.

Chronicles can however become more complex when the values of the attributes
they monitor oscillate. If we were using the naïve implementation of the overtake
chronicle:

34 Framework evaluation

chronicle overtake [? car1 , ? car2]
{

event (c a r _ r e l a t i o n s . behind [? car1 , ? car2] : (false , true) , t1)
event (c a r _ r e l a t i o n s . l e f t _ o f [? car1 , ? car2] : (false , true) , t2)
event (c a r _ r e l a t i o n s . in_front [? car1 , ? car2] : (false , true) , t3)

t1 < t2 < t3
}

What happens when a car is behind another, then left of, then behind again
before completing an overtake? The answer is that the chronicle recognition system
recognizes all possible sequences of events, resulting in “duplicate” chronicles.
Therefore it is necessary to provide checks against these sort of events. The revised
chronicle looks like this:

chronicle overtake [? car1 , ? car2]
{

event (c a r _ r e l a t i o n s . behind [? car1 , ? car2] : (false , true) , t1)
noevent (c a r _ r e l a t i o n s . behind [? car1 , ? car2] : (true , fa l se) ,

(t1 +1, t2 −1))

event (c a r _ r e l a t i o n s . l e f t _ o f [? car1 , ? car2] : (false , true) , t2)
noevent (c a r _ r e l a t i o n s . behind [? car1 , ? car2] : (false , true) ,

(t2 +1, t3 −1))

event (c a r _ r e l a t i o n s . in_front [? car1 , ? car2] : (false , true) , t3)
noevent (c a r _ r e l a t i o n s . l e f t _ o f [? car1 , ? car2] : (false , true) ,

(t3 +1, t3 +50))
noevent (c a r _ r e l a t i o n s . in_front [? car1 , ? car2] : (true , fa l se) ,

(t3 +1, t3 +50))

t1 < t2 < t3
}

The added noevent declarations prevent most duplications. Note that this
chronicle assumes that the different attributes cannot be true at the same time.

Having compiled the chronicle, all that is left to run the chronicle in a DyKnow
application is to register it with the CRE. This can be done with this single line
of code:

cre−>r e g i s t e r _ c h r o n i c l e (" overtake ") ;

The CRE will automatically look for the file “overtake.xrs” in the chronicles
directory.

In the default settings, the DyKnow CRE outputs all the events it has recog-
nized into a file called “pe_received” in the working directory. Viewing this file
allows you to see which events the chronicle recognition system has been given.
When a chronicle is either recognized or rejected they are placed in the files “chron-
icles_recognized” and “chronicles_rejected” respectively. Using these files you are

5.3 DyKnow-specific evaluation metrics discussion 35

able to perform basic debugging of your chronicles. It is also possible to read rec-
ognized chronicles from the chronicles stream inside DyKnow as well as a ACE
real-time event channel.

The chronicle recognition system CRS distributed with DyKnow provides a
compiler (ccrs), a tool to view the contents of compiled chronicles (lcrs) and
GUI application (xcrs) that can be used to test chronicles. The GUI application
is able to load chronicles and events, and display what happens internally in the
recognition engine.

To summarize, writing a simple chronicle is easy, though you might need to
put some more work into them to avoid duplication and to accommodate for some
border cases. Much of the work necessary is done outside the chronicle, including
tweaking the necessary streams.

5.3.5 How easy is to include some kind of operator control
in the system?

The implementation of an operator to control a single or multiple DyKnow in-
stances was discussed in Chapter 4.

To summarize, the implementation of an operator is made easier by the fact
that DyKnow uses CORBA, allowing implementation in a number of different pro-
gramming languages and platforms. Implementing an operator may be made even
simpler by using a framework defined specifically for multi-agent communication,
such as JADE.

One thing that was not implemented or discussed in Chapter 4 was the ability
of a human operator to control the processing inside a CU. For example, one
might want to manually tell DyKnow which WorldObjects are to be considered
OnRoadObjects or which OnRoadObjects are actually just false positives. This
can be done by adding a new stream as input to the CU. The stream will not
contain sensor values or anything of the like. Instead it will be used as a command
channel. The command samples can then be generated anywhere and added to
the stream as necessary.

A typical interface for this kind of functionality is a video stream of the vision of
the UAV, overlaid with the objects identified by DyKnow. The operator may then
select the different objects and create commands to send to DyKnow. Actually
implementing this kinds of interfaces might be tricky. Getting the values from
DyKnow is as easy as subscribing to the relevant streams but depending on the
implementation, getting coordinates that are compatible with those of the video
stream might require a series of transformations.

5.3.6 How can temporary loss of input or communication
channels be handled?

What if there simply is no new samples in a stream? If any of the CUs subscribing
to the stream also listens to another stream, then the last available sample is used.
If however, the CU subscribes only to the stream no longer producing samples,

36 Framework evaluation

it will simply never be called. A computational unit never processes without
receiving any new samples.

In the event that there is a CU that for some reason needs to be called often
despite the fact that it has run out of samples to process, it should be possible
to set a value approximation constraint on the connected stream. Using a value
approximation constraint it is possible to control what happens when new samples
are requested but no new samples exist.

Unfortunately, the value approximation constraint was missing from the version
of DyKnow used in this report, instead it was possible to to connect a simple source
constantly providing only small integers. This will cause the CU to execute every
time it receives a new integer, even though it may just ignore it.

What happens if the link to a CORBA object is suddenly lost? For exam-
ple, what happens if the export proxy in the scenario implementation loses its
connection with the import proxy object on the other agent? In that case any
method called on the import proxy object will fail, causing a CORBA excep-
tion to be thrown. Depending on the situation the exception thrown is likely to
be either COMM_FAILURE, TRANSIENT or OBJECT_NOT_EXIST. You can then handle
these exceptions in ways appropriate for the particular application. The current
implementation of the export proxy simply aborts the export and remove any ref-
erences to the receiving import proxy. Another solution would be to look up the
import proxy of the receiver on every new push, instead of storing the reference.
This should cause only a minor hit to the performance, depending on how often
new samples are made available. It is also possible to call the _non_existent()
method on a CORBA object to see if it is a dangling reference before you try to
call any other methods on it.

5.3.7 How much work was needed to extend the single-UAV
scenario to the multi-UAV scenario?

The streams, sources and computational units that make up the scenario didn’t
need to be changed at all when a new instance was introduced. In fact, each
instance run the exact same binaries, with a program switch to determine which
unit number was assigned to which. This setting affect mainly which file the logged
samples are read from.

What was necessary to get these instances to share information was the in-
troduction of the import and export proxies. These proxies are described in Sec-
tion 4.1.1. With the successful implementation of the proxy objects what was left
was to somehow merge the exported stream with the local streams. This was done
by introducing the wo_merger computational unit described in Section 4.2.3. This
CU merges the two streams into a single stream which is then used by the rest of
the system exactly like if all samples were collected locally. To launch yet another
instance, only minor accommodations would have to be made.

A lot of work was however done creating a flexible operator to control the
different DyKnow instances. This was primarily to test how easy it was to integrate
DyKnow with another program. This was discussed earlier in Section 5.3.5. If this
integration was not a goal, it might have sufficed with a couple of small scripts to

5.4 Summary 37

launch or terminate agents and send them commands.

5.4 Summary
This chapter has described both a general evaluation of DyKnow using the ISO
9126-1 evaluation model and a number of DyKnow-specific evaluation questions.

The DyKnow-specific questions are not given concrete answers. Instead, enough
information as possible has been presented for the reader to make his or her own
decision.

5.4.1 ISO 9126-1 evaluation summary
An evaluation of DyKnow was done using the quality model for external quality
from the ISO 9126 standard. The results may be summarized as follows:

• The functionality section scored high in all attributes with the exception of
security which scored low because of the lack of access control or authenti-
cation.

• The reliability section got a medium overall score.

• The usability section scored medium to low, mainly because of the lack of
detailed documentation regarding the low level usage of DyKnow.

• The scores regarding portability varied greatly. Adaptability and replacabil-
ity scored low while installability was judged as medium and co-existence as
high.

Left out from the evaluation was the efficiency characteristic which are de-
scribed thoroughly in Chapter 6. The maintainability characteristic was also
disregarded because of the chosen viewpoint of the evaluation. The different sub-
characteristics concerning compliance was dropped from the evaluation since there
were no requirements specified regarding any sort of compliance.

The results show that one of the areas that could be improved is the usability of
DyKnow. In particular, more thorough documentation regarding its usage would
help. One other area that scored low was security. Security is arguably outside
the scope of DyKnow and might be better implemented separately as necessary in
each individual application.

It is important to note that DyKnow as it is now is a research prototype and
therefore characteristics such as usability and security have not been explicit goals
during development.

Overall, DyKnow performs well in the tasks that it is supposed to do.

Chapter 6

Performance evaluation

The purpose of this chapter is to evaluate the performance of DyKnow using a set
of different test cases. The goal is to see how DyKnow performs under load and
see what affects the run-time performance.

The chapter starts by defining the different test cases in Section 6.1 and goes
on to discuss the test results in Section 6.2.

6.1 Metrics and test cases

The metrics chosen to study in this performance evaluation and its test cases are
the following:

1. The CPU usage of the application.

2. The memory usage of the application.

3. The time it takes for a sample to arrive at the last CU (computational unit)
from the source. (This is also called the “sample delay time” throughout
this chapter)

4. The time between samples arriving at the last CU.

The test cases were divided in three where the number of CUs, samples and
chronicles were varied.

1. In the first test case, the number of samples was varied, the number of CUs
was set to 10 and the number of chronicles was set to 0.

2. In the second test case, the number of CUs was varied, the number of samples
was set to 1000 and the number of chronicles was set to 0.

3. In the third test case, the number of chronicles was varied, the number of
CUs was set to 10 and the number of samples was set to 1000.

39

40 Performance evaluation

Figure 6.1. An overview of the architecture of the test application. All computational
units are connected by streams in a series, while the chronicles monitor the first stream.
In each test case the chain of CUs and the number of registered chronicles are varied.

6.1.1 Test setup

Figure 6.1 shows the architecture of the test application. The application was
set to poll its source every one hundred milliseconds. All CUs were configured to
simply pass the sample forward in the chain, no other processing was done.

The computer the test were run on was a Dell Precision M6300 equipped with
a 2.20 GHz Pentium Core 2 Duo-processor and 2 gigabytes of memory running
Red Hat Enterprise Linux Client 5.0. To ensure uniform test results despite the
processors dual-core nature, the DOR-process was forced to use one of the CPU
cores while the other processes (including the CRE) were forced to use the other
using the program taskset.

No other demanding programs were run simultaneously as the tests. The CPU
and memory were measured manually using the simple system monitor provided
by the operating system. The values in the results should therefore individually
be viewed as inexact.

In the test cases where the number of chronicles were varied the time between
each recognized chronicle were set to 400 ms. This low value (in a typical appli-
cation, chronicle instances are probably recognized much left often) was chosen to
show how the system behaves when it is under heavy load.

6.2 Results

In this section the results of the test cases are described, beginning with the CPU
and memory usage and continuing with the sample delay times and time difference
at the last CU.

All the figures shown were generated from data available in the appendix
marked “Tables.” In the different time-measuring figures, the error bars note
the highest and lowest recorded time respectively.

6.2 Results 41

0

5

10

15

20

25

30

35

40

0 2000 4000 6000 8000 10000
Number of samples

CPU Activity (%)

♦♦ ♦
♦ ♦ ♦ ♦

♦
Memory usage (MB)

+++ + + + +

+

Figure 6.2. The memory and CPU requirements of DyKnow when the number of
samples is varied. The number of CUs is fixed at 10. The data used to generate this
figure is given in Table C.1.

6.2.1 Memory consumption and CPU usage

The effect the different test cases had on the memory consumption and CPU usage
of DyKnow are described below.

Varying the number of samples

As seen in Figure 6.2 both the CPU and memory stayed largely constant despite the
increase in the amount of samples processed. This is because the test application
was configured never to permanently store any samples.

Varying the number of CUs

In Figure 6.3 we see that the CPU usage rises sharply with the number of CUs, or
rather, the streams connecting the CUs, as each stream is contained in a separate
thread. The memory requirements rose linearly with the number of computational
units.

It is important to note that when the CPU usage approached 100% the threads
were probably being starved and started to drop small amounts of samples ran-
domly. The number of samples lost were at one time measured to 5 out of 1000
when using 30 CUs and the number only increased slightly when the number of
CUs were increased further.

42 Performance evaluation

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40
Number of computational units

CPU Activity (%)

♦♦
♦

♦

♦

♦

♦
♦ ♦

♦
Memory usage (MB)

++ + + + + + + +

+

Figure 6.3. The memory and CPU requirements of DyKnow when the number of
computational units is varied. The number of samples is fixed at 1000. The data used
to generate this figure is given in Table C.2.

Varying the number of chronicles

We see in Figure 6.4 that while the demand of the CRE rose only slightly with
the number of chronicles, the CPU usage for the DOR went up somewhat faster,
despite the fact that no new streams were explicitly added. This is probably due
to the amount of new samples created (but not stored) by the chronicles.

The demand for memory again rose linearly with the number of chronicles.

6.2.2 Sample delay time

During the same tests as above, data was also gathered to measure the time it
took for a sample to propagate from its creation at the source to the last CU in
the series as well as the time between samples at the last CU.

Note that the logging method used to measure the sample delay time is re-
sponsible for a delay of roughly 100 ms.

Varying the number of samples

Figure 6.5 shows how the total sample delay time differs when the number of
samples is varied. We see that the mean time is almost constant at around 120 ms
(more precise numbers are available in Table C.4). The maximum time however
vary more greatly independently of the number of samples. The high times were

6.2 Results 43

0

20

40

60

80

100

120

140

0 20 40 60 80 100
Number of chronicles

CPU Activity (CRE) (%)

♦♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
CPU Activity (DOR) (%)

+++ + + +
+

+ +

+

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

Memory usage (MB)

♦♦ ♦ ♦ ♦
♦

♦
♦

♦

♦

Figure 6.4. The memory and CPU requirements of DyKnow when the number of chron-
icles are varied. The number of CUs and samples are fixed at 10 and 1000 respectively.
In the top-most plot we see the overall memory consumption and in the lower plot we see
the effect on the two processes. The data that was used to generate this figure is given
in Table C.3.

44 Performance evaluation

100

150

200

250

300

0 2000 4000 6000 8000 10000
Number of samples

Sample delay time (ms)

♦♦♦ ♦♦ ♦♦

♦

Figure 6.5. The number of milliseconds it takes for a sample to traverse 10 CUs when
the number of samples is varied. The data used to generate this figure is given in
Table C.4. Note: The logging method for obtaining these numbers is responsible for a
delay of roughly 100 ms.

0

50

100

150

200

0 2000 4000 6000 8000 10000
Number of samples

Time between samples (ms)

♦♦♦ ♦♦ ♦♦

♦

Figure 6.6. The number of milliseconds between each sample when they reach the last
CU in the sequence when the number of samples is varied. The data used to generate
this figure is given in Table C.5.

6.2 Results 45

0

100

200

300

400

500

0 5 10 15 20 25 30 35 40
Number of CUs

Sample delay time (ms)

♦
♦

♦

♦

♦

♦ ♦

♦

Figure 6.7. The number of milliseconds it takes for a sample to traverse all CUs when
the number of samples is fixed at 1000. The data used to generate this figure is given in
Table C.6. Note: The logging method for obtaining these numbers is responsible for a
delay of roughly 100 ms.

probably caused by temporary load spikes in the computer.

If we instead measure the time between when samples arrive at the last CU
we get the results shown in Figure 6.6 (Table C.5). We see that the mean time
between the samples remain at the 100 ms they were sampled at the source. The
look on the error bars indicate that whenever one sample is delayed, the following
sample catches up proportionally.

Varying the number of CUs

The results gotten when we vary the number of computational units are displayed
in Figure 6.7 and Figure 6.8 respectively. We see that when the number of CUs,
or rather, the number of streams connecting the CUs rise, the total sample delay
time increases linearly until the CPU nears 100% utilization and the delay time
increases drastically. Remember that every stream is implemented in its own
thread which needs processor time. When the CPU utilization nears 100% the
threads are starved which may cause samples to be lost as well as considerably
larger delay times (compare Figures 6.7 and 6.3). The mean time between the
samples arriving at the last CU however remains at about 100 ms.

46 Performance evaluation

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30 35 40
Number of CUs

Time between samples (ms)

♦ ♦♦ ♦ ♦♦ ♦ ♦♦

♦

Figure 6.8. The number of milliseconds between each sample when they reach the last
CU in the sequence when the number of CUs is varied. The number of samples is fixed
at 1000. The data used to generate this figure is given in Table C.7.

100

150

200

250

300

350

0 20 40 60 80 100
Number of chronicles

Sample delay time (ms)

♦♦♦ ♦♦ ♦♦ ♦ ♦

♦

Figure 6.9. The number of milliseconds it takes for a sample to traverse 10 CUs when
the number of samples is fixed at 1000 and the number of chronicles is varied. The data
used to generate this figure is given in Table C.8. Note: The logging method for obtaining
these numbers is responsible for a delay of roughly 100 ms.

6.3 Conclusion 47

0

50

100

150

200

250

0 20 40 60 80 100
Number of chronicles

Time between samples (ms)

♦♦♦ ♦♦ ♦♦ ♦ ♦

♦

Figure 6.10. The number of milliseconds between each sample when they reach the last
CU in the sequence when the number of chronicles is varied. The number of CUs and
samples are fixed at 10 and 1000 respectively. The data used to generate this figure is
given in Table C.9.

Varying the number of chronicles

In Figures 6.9 and 6.10 we see, confirming what one would expect, that the amount
chronicles has no effect on either the delay time or the time between samples
reaching the last CU.

6.3 Conclusion

In conclusion, the number of CUs and streams seem to be the single most signifi-
cant factor in the demand placed on the CPU. It is important to not let the CPU
utilization reach 100% as that will lead to thread starvation and loss of samples
as well as sharp spike in delay times.

Neither the number of samples or chronicles affected the delay times and no
test case showed an increase in the mean time between samples. The number
of samples processed also had no measurable impact on either CPU or memory
usage. Increasing the number of chronicles in the system does increase the load
on the DOR and the amount of memory required.

The fact that DyKnow suffers from loss of data and severe slowdown when
the CPU is heavily utilized may present a problem when DyKnow is not the only
application running on a system.

It is difficult to judge these results without a referring to a set of requirements.

48 Performance evaluation

All that can be said is that the performance of DyKnow presents no problem for
applications of the same size as the one discussed in this report.

Chapter 7

Conclusion

This report has presented an evaluation of the knowledge processing middleware
framework DyKnow.

In order to perform the evaluation, a test application was developed using
DyKnow to implement the car monitoring scenario described in Chapter 2. A
detailed description of this implementation is given in Chapter 4 and describes all
the different fluent streams, computational units and chronicles used. Alongside
of DyKnow, a multi-agent environment was implemented using JADE, the Java
Agent DEvelopment framework. The JADE-agents allowed the DyKnow instances
to communicate more dynamically. Yet another agent was written, an operator,
that allowed a user to give the DyKnow agents commands indirectly.

An evaluation of DyKnow using the quality model found in the international
standard ISO 9126-1 is presented in Chapter 5. The quality model is divided
in a number of software quality characteristics such as “functionality,” “reliabil-
ity” and “usability.” The results of this evaluation highlights the fact that while
the usability of DyKnow was judged as low, (mainly because of a lack of com-
prehensive documentation and programming guides) the suitability, accuracy and
interoperability was judged as high.

Several of the poor results in the ISO 9126-1 evaluation can be attributed to the
fact that DyKnow is a research prototype and that those characteristics therefore
have not been prioritized during development.

Apart from the evaluation using the ISO 9126-1 quality model, Chapter 5 also
discussed a number of questions pertaining to the usage of DyKnow. What was
asked was, among other things, how easy it is to integrate DyKnow into an existing
environment, how one would add a fusion algorithm and how temporary loss of
communication channels can be handled. All of these questions were discussed in
depth to give the reader a chance to make his or her own judgment. The author
believes and hopes it is a positive one.

The performance evaluation in Chapter 6 showed how the performance and
system requirements of DyKnow change when different variables are varied. The
three variables tested are the number of computational units, fluent streams and
chronicles used. The results show that memory requirements of DyKnow was

49

50 Conclusion

dominated by the amount of CUs and chronicles registered and that the CPU
usage was affected the most by the number of CUs and streams and to a lesser
extent the number of chronicles. The results also showed that a reasonably sized
DyKnow application, such as the scenario implementation used in this report,
should run without problems on systems at least half as fast as the one used in
the tests.

Overall this report and the results herein show that DyKnow is well suited
for the task of tracking and reason about the relationships of objects in a traffic
monitoring application using multiple UAVs.

Appendix A

Acronyms

AIICS
Artificial Intelligence & Integrated Computer Systems Division at IDA.

IDA
The Department of Computer and Information Science at Linköping Univer-
sity.

UAV
Unmanned Aerial Vehicle.

CORBA
Common Object Request Broker Architecture, provides an architectural
framework for developing distributed systems. Defined by the OMG.

OMG
Object Management Group, an international industry consortium.

ORB
Object Request Broker, the central component of any CORBA implementa-
tion.

ACE
ADAPTIVE Communication Environment, a framework for concurrent com-
munication software.

JADE
Java Agent DEvelopment Framework.

TAO
The ACE ORB, a real-time CORBA implementation built upon the ACE
framework.

FIPA
The Foundation for Intelligent Physical Agents.

51

52 Acronyms

FIPA-ACL
The FIPA Agent Communication Language.

DOR
Dynamic Object Repository, a soft real-time database used by DyKnow to
store streams.

CRE
Chronicle Recognition Engine, a DyKnow-wrapper around CRS.

CRS
Chronicle Recognition System, developed by France Telecom.

Appendix B

Listings

53

54 Listings

domain CarRelat ions = ~{}
domain Car = ~{}
domain Boolean = {unknown, true , fa l se }

attribute c a r _ r e l a t i o n s . l e f t _ o f [? car1 , ? car2]
{

? car1 in Car
? car2 in Car
? value in Boolean

}

attribute c a r _ r e l a t i o n s . r i ght_of [? car1 , ? car2]
{

? car1 in Car
? car2 in Car
? value in Boolean

}

attribute c a r _ r e l a t i o n s . in_front [? car1 , ? car2]
{

? car1 in Car
? car2 in Car
? value in Boolean

}

attribute c a r _ r e l a t i o n s . behind [? car1 , ? car2]
{

? car1 in Car
? car2 in Car
? value in Boolean

}

chronicle overtake [? car1 , ? car2]
{

event (c a r _ r e l a t i o n s . behind [? car1 , ? car2] : (false , true) , t1)
event (c a r _ r e l a t i o n s . l e f t _ o f [? car1 , ? car2] : (false , true) , t3)
event (c a r _ r e l a t i o n s . in_front [? car1 , ? car2] : (false , true) , t5)

t1 < t3 < t5
}

Listing B.1. The definition of a chronicle capable of detecting if one car overtakes
another car.

55

domain CarRelat ions = ~{}
domain Car = ~{}
domain Boolean = {unknown, true , fa l se }

attribute c a r _ r e l a t i o n s . l e f t _ o f [? car1 , ? car2]
{

? car1 in Car
? car2 in Car
? value in Boolean

}

attribute c a r _ r e l a t i o n s . r i ght_of [? car1 , ? car2]
{

? car1 in Car
? car2 in Car
? value in Boolean

}

attribute c a r _ r e l a t i o n s . in_front [? car1 , ? car2]
{

? car1 in Car
? car2 in Car
? value in Boolean

}

attribute c a r _ r e l a t i o n s . behind [? car1 , ? car2]
{

? car1 in Car
? car2 in Car
? value in Boolean

}

chronicle overtake [? car1 , ? car2]
{

event (c a r _ r e l a t i o n s . behind [? car1 , ? car2] : (false , true) , t1)
noevent (c a r _ r e l a t i o n s . behind [? car1 , ? car2] : (true , fa l se) ,

(t1 +1, t3 −1))
event (c a r _ r e l a t i o n s . l e f t _ o f [? car1 , ? car2] : (false , true) , t3)
noevent (c a r _ r e l a t i o n s . behind [? car1 , ? car2] : (false , true) ,

(t3 +1, t5 −1))
event (c a r _ r e l a t i o n s . in_front [? car1 , ? car2] : (false , true) , t5)
noevent (c a r _ r e l a t i o n s . l e f t _ o f [? car1 , ? car2] : (false , true) ,

(t5 +1, t5 +50))
noevent (c a r _ r e l a t i o n s . in_front [? car1 , ? car2] : (true , fa l se) ,

(t5 +1, t5 +50))
t1 < t3 < t5

}

Listing B.2. The definition of a chronicle capable of detecting if one car overtakes
another car. This version is capable of filtering out most duplicate recognitions.

Appendix C

Tables

Samples # Memory consumed (MB) CPU Activity (%)

100 18 25
200 19 24
500 18 24
1000 18 26
2000 18 25
5000 19 25
10000 19 26

Table C.1. The memory and CPU requirements of DyKnow when the number of samples
is varied. The number of CUs is fixed at 10. Figure 6.2 shows a diagram of the data.

Computational Units # Memory consumed (MB) CPU Activity (%)

1 13 7
2 14 7
5 16 12
10 19 25
15 21 40
20 24 63
25 27 94
30 30 100
35 33 100

Table C.2. The memory and CPU requirements of DyKnow when the number of com-
putational units is varied. The number of samples is fixed at 1000. Figure 6.3 shows a
diagram of the data.

56

57

CPU Activity (%)

of chronicles Memory consumed (MB) CRE DOR

1 20 1 22
2 19 1 23
5 21 1 24
10 22 2 25
20 24 3 30
40 29 4 37
60 34 6 45
80 40 7 53
100 44 9 60

Table C.3. The memory and CPU requirements of DyKnow when the number of chron-
icles is varied. The number of CUs and samples are fixed at 10 and 1000 respectively.
Figure 6.4 shows a diagram of the data.

of samples Lowest (ms) Highest (ms) Mean (ms)

100 119 294 125
200 120 164 124
500 119 138 121
1000 119 165 121
2000 119 269 124
5000 118 182 123
10000 119 182 123

Table C.4. The number of milliseconds it takes for a sample to traverse 10 CUs when
the number of samples is varied. Figure 6.5 shows a diagram of the data. Note: the
logging method for obtaining these numbers is responsible for a delay of roughly 100 ms.

of samples Lowest (ms) Highest (ms) Mean (ms)

100 5.5520 256.9390 99.8171
200 56.8610 143.2760 99.9862
500 82.9100 117.0730 99.9968
1000 55.1580 145.1320 99.9978
2000 7.0820 249.1790 99.9994
5000 37.9040 162.0810 100.0059
10000 38.0980 162.0320 99.9998

Table C.5. The number of milliseconds between each sample when they reach the last
CU in the sequence when the number of samples is varied. Figure 6.6 shows a diagram
of the data.

58 Tables

of CUs Lowest (ms) Highest (ms) Mean (ms)

1 101 282 103
2 102 451 104
5 106 110 107
10 119 165 121
15 136 199 142
20 159 265 166
25 489 698 524
30 4142 30949 18690
35 50246 92723 76016

Table C.6. The number of milliseconds it takes for a sample to traverse all CUs when
the number of samples is fixed at 1000. Figure 6.7 shows a diagram of the data. Note:
the logging method for obtaining these numbers is responsible for a delay of roughly 100
ms.

of CUs Lowest (ms) Highest (ms) Mean (ms)

1 1.0080 280.5580 99.9983
2 1.4420 447.9100 99.9984
5 97.7510 102.8250 99.9980
10 55.1580 145.1320 99.9978
15 39.9520 159.1300 99.9971
20 5.3900 200.9800 99.9676
25 3.6300 299.1090 100.0311
30 8.0400 1014.7740 123.8165
35 4.7540 558.5860 118.5290

Table C.7. The number of milliseconds between each sample when they reach the last
CU in the sequence when the number of CUs is varied. The number of samples is fixed
at 1000. Figure 6.8 shows a diagram of the data.

of chronicles Lowest (ms) Highest (ms) Mean (ms)

1 122 181 128
2 122 199 129
5 122 190 130
10 121 157 128
20 122 169 130
40 122 197 133
60 122 191 136
80 123 195 137
100 122 176 136

Table C.8. The number of milliseconds it takes for a sample to traverse 10 CUs when
the number of samples is fixed at 1000 and the number of chronicles is varied. Figure 6.9
shows a diagram of the data. Note: the logging method for obtaining these numbers is
responsible for a delay of roughly 100ms.

59

of chronicles Lowest (ms) Highest (ms) Mean (ms)

1 40.8690 156.2380 99.9951
2 27.8670 173.8600 99.9983
5 33.9400 166.4560 99.9954
10 67.0450 132.8700 99.9926
20 54.7370 145.1800 99.9947
40 30.1490 173.0620 100.0247
60 33.7490 160.0640 100.0478
80 41.4360 165.1670 100.0586
100 60.2040 145.7030 99.9645

Table C.9. The number of milliseconds between each sample when they reach the last
CU in the sequence when the number of chronicles is varied. The number of CUs and
samples are fixed at 10 and 1000 respectively. Figure 6.10 shows a diagram of the data.

Bibliography

[1] JADE - Java Agent DEvelopmend Framework. "http://jade.tilab.com",
2007.

[2] Welcome to FIPA! "http://www.fipa.org", 2008.

[3] A. S. Andreou and M. Tziakouris. A quality framework for developing and
evaluating original software components. Information and Software Technol-
ogy, 49(2):122–141, 2007.

[4] E. P. Blasch and S. Plano. JDL Level 5 Fusion Model "User Refinement"
Issues and Applications in Group Tracking. volume 4729, pages 270–279,
2002.

[5] Bloch and Hunter, et al. Fusion: General Concepts and Characteristics.
International Journal of Intelligent Systems, 16:1107–1134, 2001.

[6] Tim Chamillard. Tailoring the 9126 Quality Model. "http://www.cs.uccs.
edu/~chamillard/cs536/Papers/9126Handout.pdf", 2005.

[7] Fredrik Heintz, Tommy Persson, David Landén and Patrick Doherty. Report
on extending DyKnow for Multi-Node Distributed Networks - A Prototype
Implementation. 2008.

[8] Fredrik Heintz. DyKnow: A Stream-Based Knowledge Processing Middleware
Framework. Linköping Studies in Science and Technology Dissertation 1240.
Linköpings universitet. 2009.

[9] Fredrik Heintz and Patrick Doherty. DyKnow: A Framework for Processing
Dynamic Knowledge and Object Structures in Autonomous Systems. In Pro-
ceedings of the International Workshop on Monitoring, Security, and Rescue
Techniques in Multiagent Systems (MSRAS), 2004.

[10] Fredrik Heintz and Patrick Doherty. Distributing and Merging Information
using DyKnow. 2008.

[11] Michi Henning and Steve Vinoski. Advanced CORBA programming with
C++. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999.

60

http://jade.tilab.com
http://www.fipa.org
http://www.cs.uccs.edu/~chamillard/cs536/Papers/9126Handout.pdf
http://www.cs.uccs.edu/~chamillard/cs536/Papers/9126Handout.pdf

Bibliography 61

[12] Douglas C. Schmidt. Overview of ACE. "http://www.cs.wustl.edu/
~schmidt/ACE-overview.html", 2006.

[13] Alan N. Steinberg, Christopher L. Bowman, and Franklin E. White. Revisions
to the JDL data fusion model. Proceedings of SPIE - The International Society
for Optical Engineering, 3719:430–441, 1999.

[14] Michael Wooldridge. Introduction to MultiAgent Systems. John Wiley &
Sons, June 2002.

http://www.cs.wustl.edu/~schmidt/ACE-overview.html
http://www.cs.wustl.edu/~schmidt/ACE-overview.html

	Preface
	Front Page
	Title Page
	Library Page
	Abstract
	Acknowledgments

	Introduction
	Background
	Goal
	Multi-agent systems
	Information and data fusion
	Limitations
	Influences
	Outline
	Scenario
	Requirements
	Specification

	DyKnow
	Concepts
	Architecture
	CORBA
	The Dynamic Object Repository
	The Symbol Manager
	The Chronicle Recognition Engine
	The Time and Alarm servers
	Using DyKnow
	System requirements
	Defining sources
	Defining streams
	Defining computational units
	Defining chronicles
	Defining entity frames

	Summary
	Implementation
	Extending DyKnow for information sharing
	Import and export proxies
	Implementing the scenario
	Fluent streams
	Sources
	Computational Units
	Chronicles
	Enabling multi-agent behavior with JADE
	DyKnow agents
	Operator agent

	Summary
	Framework evaluation
	Metrics
	The ISO 9126-1 quality model
	DyKnow-specific evaluation metrics
	ISO 9126-1 evaluation results
	Functionality
	Reliability
	Usability
	Efficiency
	Maintainability
	Portability
	DyKnow-specific evaluation metrics discussion
	How easy is it to implement a chosen fusion strategy?
	How easy is it to use different types of information sources in DyKnow?
	How easy is it to integrate DyKnow into an existing environment?
	How easy is it to implement the scenario-specific chronicles in DyKnow?
	How easy is to include some kind of operator control in the system?
	How can temporary loss of input or communication channels be handled?
	How much work was needed to extend the single-UAV scenario to the multi-UAV scenario?
	Summary
	ISO 9126-1 evaluation summary
	Performance evaluation
	Metrics and test cases
	Test setup
	Results
	Memory consumption and CPU usage
	Sample delay time

	Conclusion

	Conclusion
	Acronyms
	Listings

	Tables
	Bibliography

