

Linköping University Electronic Press

Booklet of Abstracts

On the Complexity of Finding Spanner Paths

Mikael Nilsson

Part of: Booklet of Abstracts, The 29th European Workshop on Computational Geometry
(EuroCG), March 17-20, Braunschweig, Germany, ed Sandor P. Fekete, pp. 77-80, 2013

Available at: Linköping University Electronic Press
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-93332

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

On the Complexity of Finding Spanner Paths

Mikael Nilsson∗

Abstract

We study the complexity of determining if a spanner
path exists between two given nodes in a given Eu-
clidean graph. This problem that we call the t-path
problem is proven to be NP-complete for non-constant
spanner stretches (e.g. (2n)3/2). An algorithm to
solve the problem is given. It improves on the naive
O(2n) complexity to give O(20.822n).

We also study the same problem for a type of
one-dimensional graphs that we call Integer Graphs.
A more efficient algorithm can be devised for these
graphs resulting in a complexity of O(2c(logn)2), where
c is a constant depending only on the spanner stretch.

1 Introduction

Andersson et al. [1] present an algorithm for building
approximate distance oracles for graphs with dense
clusters. The algorithm assumes that the Euclidean
input graph is partitioned into so-called islands that
are all spanners. Nodes connecting islands are called
airports. The gain from using the oracle is the reduc-
tion in size that can be achieved compared to the naive
n2 lookup table. The size used by the constructed or-
acle is O(M2 + n log n) where n is the total number
of nodes and M is the number of airports.

If we want to construct an oracle for a given graph,
we first have to put it in the required input format.
While doing this we want to minimize the number
of airports to keep the oracle’s size down. This is
a combinatorial optimization problem that has been
discussed by Nilsson [5].

If we had knowledge about which nodes could be-
long to the same island the optimization might be-
come easier. Two nodes can belong to the same is-
land if and only if there is a path linking them that is
a spanner path. When applying the spanner concept
to paths we get an approximation requirement on the
path requiring that any distance between nodes along
the path is within the stretch factor times the Eu-
clidean distance between them.

This is a short background of how we get from An-
dersson et al. [1] to studying spanner paths.

2 Definitions

We start with some definitions that are needed later.

∗Linköping University, Sweden, mikael.a.nilsson@liu.se

A Euclidean graph is a t-spanner if the distance
between any pair of nodes via edges in the graph is
at most t times the Euclidean distance between them.
Hence the factor t, also called the stretch, determines
the quality by which the graph approximates the real
distances.

Given a Euclidean graph, a t-path (short for span-
ner path with stretch t) between two nodes is a path
between them that respects the spanner requirement.
This means that any distance between nodes along
the path must be within a factor t of their Euclidean
distance. Do not confuse the definition used in this
article with that of a t-path used in the context of
Restricted Shortest Path problems (see Hassin [2]).

The t-path problem consists of deciding if there is a
t-path between two given nodes in a Euclidean graph.

Let G be a directed graph containing the special
nodes s and e. Furthermore, let C be a list of node
pairs. The problem Path with Forbidden Pairs, ab-
breviated PwFP, consists of finding out whether there
exists a path in G from s to e that at most contains
one node from each pair in C. The problem was first
formulated and examined by Gabow et al. [3].

It has been proven that this problem is NP-
complete and that various versions of it are still NP-
complete (see for instance Garey and Johnson [4]).
The version we are interested in is the version where
the graph is undirected and all forbidden pairs are
disjoint; this problem is still NP-complete (see Nils-
son [5]).

An Integer Graph with n nodes is a one-dimensional
Euclidean graph, where all nodes are placed at inte-
ger positions on the real line. The leftmost node is
placed at 0 and the remaining nodes are placed at
1, 2, 3, . . . , n − 1. The t-path problem in the integer
graph consists of finding a t-path from node 0 to node
n-1. Figure 1 shows an example of an integer graph.

121 2 3 4 6 7 8 9 110 105

Figure 1: Example of an integer graph.

Our integer graph algorithm uses a data structure
we call an image. An image is centered at a node. It
contains all intervals of nodes that may be visited in
future stages given the path used to reach the center
of the image. An image centered at node 0 consists of
a single interval containing all nodes. When a path is

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

29th European Workshop on Computational Geometry, 2013

built, the interval will be continually subdivided into
smaller intervals due to the spanner constraint.

A partial order is imposed on the set of images by
the image quality concept. The image quality of one
image is better than that of another if the intervals of
the first image cover all intervals of the second image.
If none of the images are better than the other, the
images are incomparable. Figure 2 shows an example.

121 2 3 4 6 7 8 9 110 105

... n-1...400 ... 420 4970

484 500...

Figure 2: Two comparable images. The dashed in-
tervals can be visited in later stages without breaking
the spanner requirement.

3 A simple algorithm

First we present a simple algorithm for the t-path
problem. The algorithm is recursive and in each iter-
ation it uses Dijkstra’s algorithm to find the shortest
path between the start and end node of the t-path.

If this path is not a t-path there are at least two
nodes along the path that conflict with the spanner
condition. Since they are on a shortest path there can
never be a shorter path between these two problem
nodes. Hence they can never both be on the t-path.
The algorithm proceeds by removing one of them and
recursively tries to solve the problem on the result-
ing smaller graph. If this does not succeed, it puts
the node back, removes the other problem node and
recurses in the same way.

When analyzed, this algorithm is found to run in
time O(2n) (the recurrence equation is tn = O(n2) +
2tn−1, where tn denotes the time to run the algorithm
on n nodes and O(n2) comes from finding the short-
est path and testing the spanner requirement). It is
possible to improve this to O(20.822n); the calcula-
tions cannot fit here though (see Nilsson [5]). The
idea is that since the order in which nodes are re-
moved is not taken into consideration, several recur-
sions check the same graph. Especially, as the size
of the graphs shrinks the number of times they are
checked increases. By building a lookup table of small
graphs the recursion can be halted earlier.

4 NP-Completeness of the t-path Problem

We start by observing that the t-path problem is in
NP. Given a path from a start node s to an end

node e we can check in O(n2) polynomial time if
this path is a t-path. This is done by comparing
distances along the path, incrementally calculated in
O(n) steps, to the corresponding Euclidean distances
for all pairs of nodes on the path (a total of O(n2)
comparisons). The NP-completeness then follows by
reducing a known NP-complete problem to the t-path
problem. The problem chosen for this reduction is
the PwFP problem. We specifically choose the ver-
sion where the graph is undirected and the forbidden
pairs are disjoint. We first give the general reduction
scheme and then follow this by an example. It might
help to look at the example pictures while following
the reduction steps.

Given an instance of the PwFP problem, we start
by creating a Euclidean graph. The graph is inscribed
in a square that is subdivided into a grid of smaller
squares. The number of squares depends on the num-
ber of nodes and forbidden pairs. We now add the
nodes from the original problem. Each small square
will contain one node if the node is not part of any
pair and two nodes if they constitute a forbidden pair
(remember that pairs are disjoint). The nodes can be
added in any order. In a one node square the node is
put in the center of its square. In a two node square
the nodes are put around the square center with a
very small distance between them (to be determined).
If we set the smaller square side to 1 this gives us an
outer square with sides measuring ≤

√
n. We now add

edges that connect the same nodes as in the original
problem. Edges are assigned lengths corresponding to
the Euclidean distance between the connected nodes.

We now estimate the longest path distance between
two nodes in this new graph. A rough upper bound
can be calculated assuming that all edges are of max-
imum length. Because of the size of the outer square
we know that any edge is shorter than

√
2n. This

means that the longest path is bounded by
√

2n3/2.
The shortest Euclidean distance between two nodes
in different squares is at least 1/2. This means that
the highest possible stretch in the graph is below√

2n3/2/(1/2) = 2
√

2n3/2 = (2n)3/2 (here we do not
count paths visiting two nodes in the same square as
these will be prohibited). We denote this stretch by
T . If a stretch of T is allowed there can be no viola-
tions of the spanner constraint along paths as long as
only one node in each square is visited.

We now estimate the shortest path between two
nodes in the same square. Since they are not con-
nected it is a path having at least two edges. Since
each edge is at least 1/2 this path measures at least
1. By now setting the distance between the forbidden
pair nodes to be T−1 − ε we can prevent these nodes
from both being part of the t-path with stretch T .
This is because the distance along a path (≥ 1) di-
vided by the real distance becomes≥ 1/(T−1−ε) > T .

If we now regard this newly created graph as an

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

instance of the t-path problem with stretch T we will
see that we can find a solution to this problem if and
only if there is a solution to the original PwFP prob-
lem instance. We have then shown that any PwFP
problem instance can be reduced to a t-path problem
instance which together with the facts that PwFP is
NP-complete and t-path is in NP means that the t-
path problem is also NP-complete.

Suppose there is a solution to the PwFP instance.
This means there is a path which goes from s to e
without visiting more than one node from each pair.
If we consider the corresponding path in the reduction
graph, we see that it is a path that never breaks the
spanner condition (since the stretch allowed is large
enough to allow any paths that do not contain two
nodes from the same square). Hence we have a t-path.
If on the other hand we have a t-path between s and e
in the reduction graph this must correspond to a path
which never visits two nodes in the same square since
that would break the spanner condition (the distance
between them was set short enough that including
them both violates the condition). This means that
we have a path which goes from s to e without visit-
ing a forbidden pair, hence there is a solution to the
PwFP problem instance. We see that the reduction
presented works and conclude that the t-path problem
is NP-complete for stretch T .

1

13

18

643

16

11

15

10

17 19

12

9

8

14

5

7

2

(1,4)

(3,8)

(5,10)

Forbidden Pairs:

(13,19)

(16,6)

(14,18)

Figure 3: Example of a PwFP problem instance.

Figure 3 and 4 shows an example PwFP instance
and an example reduction graph created for it. In
the example, a path between node 1 and node 19 is
sought. The edges in figure 3 has no edge distances.
Distances are present but not shown in figure 4. The
edges are drawn so it is possible to see that they still
connect the same nodes.

We have shown that for stretches larger than

(2n)3/2 the t-path problem is NP-complete. By in-
creasing the dimension of the constructed graph (fit-
ting it in a hypercube) it is possible to shrink the
required stretch to 2

√
kn1+1/k where the integer k

stands for the dimension of the constructed graph.

1

13

18

643

16

11

15

10

17 19

12

9

8

14

5

7

2

1

4

3

8
2

6

16
97

10

5

11

1512
13

19

17

18

14

(1,4)

(3,8)

(5,10)

Forbidden Pairs:

(13,19)

(16,6)

(14,18)

Figure 4: Resulting example reduction graph.

5 The t-path Problem for Integer Graphs

Since nodes in integer graphs are positioned on integer
positions the minimum node distance is 1. This to-
gether with the fact that the graph is one-dimensional
rule out a reduction like the one we just saw. Can the
t-path problem be solved efficiently in integer graphs?

It can be solved efficiently for stretch 1 and n2/2.
Stretch 1 follows since then the path may never go
left. Stretch n2/2 follows since this allows all paths
(it can be proven that the maximum length path is
≤ n2/2, see Nilsson [5]).

It is tempting to guess that since the problem can
be efficiently solved for stretches greater than n2/2
and stretch 1 this also applies to the whole interval
[1, n2/2]. Although this remains an open problem we
will now examine an algorithm for the integer graph t-
path problem which is more efficient than the general
algorithm given in section 3.

The algorithm starts from node 0 and works itera-
tively towards n− 1. Every time it extends a path to
reach a new node an image, capturing the nodes that
can be visited in the future, is created.

The algorithm keeps the invariant “in iteration k
all images for nodes ≤ k created by paths using only
nodes ≤ k are found”.

Iteration k starts with checking the images of nodes
< k. If any of these, e.g. A, allows for k to be visited a
new image is created for k which is created by shrink-
ing the intervals in A to accommodate this new edge.
When images for k are created they are checked to see
which nodes < k can be reached from k via these new
images. If a node < k is found it is visited and gets
a new image. This can result in recursive behavior
where the path reaches more nodes < k.

29th European Workshop on Computational Geometry, 2013

The algorithm stores for each node only images that
are incomparable. If a comparable image is generated,
only the best image will be kept. Figure 2 shows an
example where the upper image will cause the lower
to be discarded.

Comparing two images can be done in time O(log n)
if each image consists of a list of interval endpoints.
This follows since the maximum number of intervals
in any image is bounded by log k where k is the node
location where the image is created (see Nilsson [5]).

The number of intervals has a direct impact on the
complexity of the algorithm so it must be examined.
Let the stretch of the problem be 1 + t. We get an
upper bound by assuming the worst in each case in
the following discussion. First we check the number
of intervals that the image for a node can contain on
its left side. The distance these intervals occupy is
limited due to the spanner constraint (it is not possi-
ble to go back too far). In node k the image cannot
contain intervals to the left of point p = 2k/(2 + t).
This sets the maximum length of intervals to the left
of node k to kt/(2 + t). How many times can this in-
terval be subdivided into smaller intervals? The cause
for subdivision is that some node or nodes inside the
interval are visited on the path to k.

There exists a pivot point in the original interval. If
the path visits nodes to the left of this there will be no
new left interval created in the subdivision. However
if the path only visits nodes to the right of the pivot
point a new interval to the left will be created in the
subdivision. An example of this can be seen in figure
5 where a node close to the pivot point is chosen for
the path.

121 2 3 4 6 7 8 9 110 105

... n-1...400 ... 420 4970

484 500...

Figure 5: Example of a node close to the pivot node.

In the example figure the stretch is 1.5 allowing the
path to reach as far back as 400 once it has visited
500. The pivot point of the interval [400,500] in an
image centered at node 500 is 480. If a node to the
left of 480 is visited along the path, the interval will
have no left subdivision.

Each time a new interval is created the pivot point
moves to the right until it finally reaches k. Calculat-
ing the number of times the interval can be subdivided

gives
t

2+t log 1
k subdivisions, where t

2+t is the base of

the logarithm. In order to get an upper bound on
the number of possible images we assume that each
of these intervals can be of any length between 1 and
the maximum length. This gives a total number of

images centered at k which is bounded by O(2
(log k)2

log a)
where a = (2 + t)/t. Further details can be found in
Nilsson [5].

We now have an upper bound on the number of im-
ages that come from intervals to the left of k. There
are also intervals to the right of the node being pro-
cessed. These intervals are created by the path visit-
ing nodes to the right of k and then in the end going
to k. Since the path has already passed by k this right
interval will be smaller than the left. However to get
an upper bound we let them have the same cardinal-
ity. This gives the final number of images in a node
during the algorithm’s construction of the t-path to

be bounded by O(2
2(log n)2

log a).
Factoring in the time to build new images (using a

conservative n3 for this) and process all nodes from
1 to n − 1 the algorithm’s runtime is bounded by
O(2c(logn)2) where c is a constant depending only on
the spanner stretch. The constant increases approxi-
mately linearly and has for example the value 5.32 at
stretch 1.5.

The algorithm does not compute the t-path directly
since no information of the path which led to a node
is kept. However by running the algorithm n times
and each time removing a different node it is possible
to see which nodes are part of the t-path which can
then be found by using Dijkstra’s algorithm on the
remaining nodes.

Acknowledgments

Thanks go to Christos Levcopoulos for numerous discus-

sions on the t-path problem and related topics.

References

[1] M. Andersson, J. Gudmundsson and C. Levcopoulos.
Approximate distance oracles for graphs with dense
clusters. Comput. Geom. Theory Appl., 37(3):142-
154, 2007.

[2] R. Hassin. Approximation schemes for the restricted
shortest path problem. Math. Oper. Res., 17(1):36-
42, February 1992.

[3] H.N. Gabow, S.N. Maheshwari and L.J. Osterweil.
On Two Problems in the Generation of Program Test
Paths. IEEE Trans. Softw. Eng., 2(3):227-231, 1976.

[4] M.R. Garey and D.S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman & Co., New York, NY,
USA, 1979.

[5] M. Nilsson. Spanneröar och spannervägar. Institutio-
nen för datavetenskap, Lund, 2009.
http://tinyurl.com/6gbxdnj.

