
Link�oping Electronic Articles in
Computer and Information Science

Vol� �������	 nr ��

Link�oping University Electronic Press
Link
oping� Sweden

http���www�ep�liu�se�ea�cis����������

On the Design of Software

Individuals

Erik Sandewall



Published on August ��� ���� by
Link�oping University Electronic Press

�	� 	� Link�oping� Sweden

Link�oping Electronic Articles in

Computer and Information Science

ISSN �
����	
�
Series editor
 Erik Sandewall

c����� Erik Sandewall
Typeset by the author using LATEX

Formatted using �etendu style

Recommended citation�

�Author�� �Title�� Link�oping Electronic Articles in
Computer and Information Science� Vol� �������
 nr ���
http���www�ep�liu�se�ea�cis����������� August ��� �����

This URL will also contain a link to the author�s home page�

The publishers will keep this article on�line on the Internet
�or its possible replacement network in the future�

for a period of �� years from the date of publication�
barring exceptional circumstances as described separately�

The on�line availability of the article implies
a permanent permission for anyone to read the article on�line�

to print out single copies of it� and to use it unchanged
for any non�commercial research and educational purpose�

including making copies for classroom use�
This permission can not be revoked by subsequent

transfers of copyright� All other uses of the article are
conditional on the consent of the copyright owner�

The publication of the article on the date stated above
included also the production of a limited number of copies

on paper� which were archived in Swedish university libraries
like all other written works published in Sweden�

The publisher has taken technical and administrative measures
to assure that the on�line version of the article will be
permanently accessible using the URL stated above�

unchanged� and permanently equal to the archived printed copies
at least until the expiration of the publication period�

For additional information about the Link�oping University
Electronic Press and its procedures for publication and for

assurance of document integrity� please refer to
its WWW home page
 http���www�ep�liu�se�

or by conventional mail to the address stated above�



Abstract

In this article we address the question of design principles for

software individuals� and approach it as a software design issue�

We use the term �software individuals� to designate aggregates

of programs and data that have the following properties�

� They exist in a population of similar� but not identical in�

dividuals�

� Individuals are able to interact with their surrounding envi�

ronment� with each other� and�or with people� While doing

so they may modify their internal state�

� Each individual contains the safeguards that may be re�

quired in order to select which in	uences to accomodate

and which ones to ignore�

� The aggregate of programs and data that de
ne an individ�

ual� and that in particular de
ne its behavior� is a part of

its internal state and can therefore be modi
ed as the result

of the interactions where the individual is involved�

� Individuals or small groups of individuals are able to create

new individuals that inherit the features of their parent�s��

� The program�data aggregate that de
nes an individual is

symbolic in character� The ability for knowledge represen�

tation is designed into individuals from the start�

Author�s address

Department of Computer and Information Science

Link�oping University

Link�oping� Sweden

E�mail� erisa�ida�liu�se

Webpage� http���www�ida�liu�se��erisa�



�

� Introduction

We use the term �software individuals� to designate aggregates of programs
and data that have the following properties�

� They exist in a population of similar� but not identical individuals�

� Individuals are able to interact with their surrounding environment�
with each other� and�or with people� While doing so they may modify
their internal state�

� Each individual contains the safeguards that may be required in order
to select which in�uences on its state are to be received and accomo�
dated� and which ones are to be ignored�

� The aggregate of programs and data that de	ne an individual� and
that in particular de	ne its behavior� is a part of its internal state
and can therefore be modi	ed as the result of the interactions where
the individual is involved�

� Individuals or groups of individuals are able to create new individuals
that inherit the features of their parent
s��

� The program�data aggregate that de	nes an individual is symbolic
in character� The choice of knowledge representation is designed into
individuals from the start�

The last item distinguishes software individuals from the software that is
evolved by genetic programming� where knowledge representation emerges
from mutation and selection to the extent that it occurs at all�

In this article we address the question of design principles for software in�
dividuals� and approach it as a software design issue� This problem is an
unconventional one from the point of view of ordinary software engineering�
The emphasis on software self�modi	cation runs counter to conventional
software design principles� where the inherent ability of the von Neumann
machine to modify its own programs is strongly restricted in particular
through the design of common programming languages� In our approach�
program self�modi	cation is viewed as an important possibility� and not as
an abberration�

Our proposed Software Individual Architecture is characterized by the fol�
lowing principles�

� The use of a Software Individual Kernel 
SIK� which is a minimal
individual having the basic properties of replication� self�modi	cation�
interaction� and ability to administrate and to extend its own state�

� The use of a Knowledge Object Repository that is accessible by� but
external to software individuals� and that can be shared by several in�
dividuals in a population� This repository is also the basis for several
of the user services that are built using the architecture�

� Each Software Individual Kernel is set up as a directory structure

directory and all its sub�directories� in the 	le system of a particular
computer host� A population may �live� within one host� or in a
network of several hosts� Each individual is self�contained in this
structure and each carries with itself 
i�e�� contains� a full set of the
required programs and data de	ning it�



�

� An individual can acquire additional features� besides those present in
its Kernel� by adopting additional program and data modules� which
either are sent to it by other individuals� or by importing them from
the Repository� A number of previously developed knowledge man�
agement services have been ported so that they can be acquired by
the new Software Individual Kernel�

� We have iterated the design of the Software Individual Kernel so as
to achieve maximal simplicity and generality�

The purpose of the present paper is threefold�

� It describes the design of the actual Software Individual Kernel� and
discusses how the design and use of this kind of software di�ers from
the design of conventional software�

� It also describes the chosen methodology� the process that led up to
the current design� and our criteria for a successful design�

� It furthermore discusses the relevance of Software Individuals as the
basis for implementing machine intelligence systems�

We believe that the second� methodology item is essential� The validity of
a software design as a research result always needs to be motivated
 it does
not come by just describing the design as such� Criteria and methodology
for software systems research are rarely discussed and made precise� which
is why at least we try to be clear about those points in our own work� This
has as a consequence that some parts of the present article are discursive in
nature� The reader who is only interested in the software design as such is
advised to proceed directly to section ��

� The need for individuals

If you think of a machine intelligence as a system that is able to acquire
knowledge� to communicate� and to learn� then it follows at once that the
system must be able to persist for a considerable period of time� Rather
than going straight from the design table to a demo or into production� the
system will have to be worked with and allowed to acquire information from
the real world or from interaction with others�

A researcher or designer that develops such a system is likely to try many
alternative solutions to various aspects of the design� If it is built by a team�
and not by a single person� then di�erent team members are going to make
changes concurrently to di�erent parts of the design at hand� Contemporary
software engineering systems for version management are intended for such
situations� but in the particular case of developing machine intelligence sys�
tems another approach is possible� namely� that the designer or design team
maintains a population of similar software individuals� causing changes in
these individuals or causing them to acquire their own modi	cations and
extensions�

From a machine intelligence point of view� this is a very natural thing to
do� if we are developing a system that is going to act as an individual when
it does its knowledge acquisition and while it is in use� then why not treat



�

it as an individual already during the early design stage� and then onwards�
From a software engineering point of view� the idea can be formulated as
follows� instead of having a centralized version management system that
keeps track of various con	gurations that can be obtained from existing
modules and their various versions� why not decentralize this function in
such a way that each active con	guration 
aka software individual� is aware
of its own composition and is able to take responsibility for changes to it�

We are presently pursuing an exploratory research e�ort in order to try out
some ideas and designs along the lines of what has just been described� Our
approach is one of meticulous programming� which means that we focus on
a small �program� � the kernel system for software individuals � and work
intensively on it in order to obtain a design that is as clean� simple� and
powerful as possible� The relevance of the results is checked in concurrent
activities where existing� relatively large application software is modi	ed so
that it can operate on top of the meticulously designed kernel�

This project is still ongoing and the results that have been obtained so far
are su�ciently de	nite to be reported� In brief� it has been possible to
write a software kernel with about ��� lines of Lisp code that satis	es the
criteria that we set up
 these are criteria that try to capture the fundamental
requirements for a proposed basis for software individuals� The program size
is crucial here� if individuals are going to self�modify 
by the initiative of
themselves� their peers� or human operators� then the design must be as
simple and coherent as possible�

We shall use the term Software Individuals Architecture� or SIA for the
overall structure of software individuals� and the term Software Individ�
ual Kernel� or SIK for the small system that is the starting�point of every
individual that is designed according to the architecture�

� Reproduction and education strategies

Reproduction is a necessity in biological systems since organisms may be
eaten by other organisms� and since they deteriorate physically with old
age and need to be replaced� Neither of these reasons applies a priori for
software� except that a long sequence of updates leads to deterioration in
many software systems� However� the use of multiple individuals in the
design and development process anyway raises the question how the di�erent
members of a population are to be generated� Should one always start with
the same initial system� or should one make additional copies of existing
systems at their current state of development� or is there another method�

Genetic programming uses the method of randomized mutation and evolu�
tionary selection� but in our case we need a method that can be controlled
more directly� We propose to use a reproduction cycle that consists of the
following steps�

�� Obtaining a copy of a Kernel Individual 
KI�

�� Programmed Acquisition of structures in the KI� in order to build a
fully developed individual

�� Self�Test

�� Evaluation for acceptance in the community






�� Reproduction� generating additional copies of the KI

This method of software reproduction will be referred to as the autonomous
software acquisition method� since each new individual acquires its own
software autonomously from other individuals in its environment� Each
individual has originally been obtained by starting with a Kernel Individual
that has the basic facilities� and then it proceeds to do software acquisition
autonomously� It is also able to initiate new individuals that are not copies
of itself at present� but which are only copies of its own kernel�

Each new kernel individual is therefore generated with an acquisition pro�
gram� that is� a script for what additional structures it is to acquire at the
beginning of its existence� Acquisition may consist of obtaining plain copies
of structures in other individuals 
the initiator� or others�� or it may involve
sending questions to other individuals� asking them to prepare presentations
of some aspects of themselves� or again it may consist of taking this infor�
mation from other individuals and modifying it before it is incorporated
into the overall structure of the acquiring agent�

Structure acquisition per se is an inherently unreliable process� since it is
di�cult to guarantee that the contributions from other individuals will be
compatible with what is already in the receiving one� One possible way of
making it reliable is by using additional software support� The autonomous
acquisition paradigm therefore includes a Self�Test step� where the new
individual makes various checks on its own functioning� At the end of the
self�test the individual reports to the community where it was created that
it aspires to become a member there� This naturally allows the community
to also evaluate the individual in order to assess its quali	cations� before
it is adopted� After this� the new individual is able to both participate in
continued interactions with other members of the community� and to initiate
its own descendants�

The autonomous software acquisition paradigm can be used both under
human operator control� and as a fully autonomous reproduction process�
A human operator may control it more or less tightly� e�g� by deciding on
the creation of new individuals� or on aspects of the structure acquisition
script for each of them� In such cases some of the autonomy is lost� but the
remaining autonomy supports the operator for example through the self�test
and evaluation facilities� which can be done automatically under program
control�

Alternatively� the acquisition process may be entirely autonomous to the
community� if the initiator decides on the creation of the new kernel in�
dividual and its acquisition program� possibly after interaction with other
individuals� and the community is equipped to make the evaluation and
acceptance decision based on overall criteria�

The autonomous software acquisition paradigm does not provide any coun�
terpart of the bisexual reproduction scheme that dominates in plants and
animals� Adopting such a scheme is not a goal in itself� and we see no par�
ticular advantage with it for the kind of symbolic�oriented individual that
is considered here� The use of a single initiator means that each individual
has a well�de	ned structure for its kernel� which facilitates the structure
acquisition process�



�

� Methodology� grooming of a set of software

individuals

The design of the software individual kernel 
the SIK� is very important
for the autonomous software acquisition paradigm� The SIK must have all
the functionality that is needed for reproduction and for the acquisition
of structures� At the same time� it should not contain any unnecessary
facilities� since subsequent changes in the design of the SIK are by de	nition
going to be much more di�cult than changes in those structures that can
be acquired by a new SIK� For the same reason the design of the SIK should
be as simple and transparent as possible�

We have therefore chosen a research methodology where we initially perform
manually those functions in the reproduction process that shall eventually
be done automatically� We started with an initial implementation of a SIK
along the lines just described above� where in particular each individual
was able to initiate new individuals� We also set up several populations�
each consisting of several individuals� and used them for further extension
of the facilities� Di�erent populations were placed on di�erent computers�
although each particular population has all its member individuals on the
same computer� We then started modifying the kernel in order to incor�
porate additional important features
 we also started building a library of
structures that a SIK could incorporate�

In this way we intentionally created a situation where software updates in
one individual had to be communicated to the other existing individuals�
and we tried to arrange things so that this transfer of software impulses
could be automated instead of us having to make the same modi	cations
on several individuals� Just making a su�cient number of copies of a newly
changed individual and replacing the other individuals with them was ruled
out as cheating� the exercise required 
in principle� at least� that the newly
changed individual communicated its changes to the others�

In fact� the option of cheating by copying soon became irrelevant anyway�
since individuals started to di�er in a number of interesting ways� Each
population needed one designated individual that kept track of the others�
Also� di�erent populations were set up to use di�erent operating systems

Unix� Win�X� etc� and di�erent Lisp interpreters 
Allegro Common Lisp�
Xlisp� that are not entirely compatible� Sometimes� di�erent individuals in
the same populations have used di�erent Lisps�

Ideally the individuals should have the ability right from the start to com�
municate their updates to each other� In practice this was not the case�
so we did spend some time making the same updates manually in several
individuals� However� the obvious meaninglessness of this provided a strong
incentive to 	nd a solution that eliminated the chore�

The development of the SIK was not done in vacuo
 from time to time in
this process we have also programmed the new individuals to incorporate
additional structures that were taken from earlier software developments�
This was done in order to insure that the SIK design is indeed capable of
incorporating structures and of transmitting the information which of them
to incorporate� and how to do it� The modules that are being incorporated
in this way are for document preparation support� journal management�
simulation of vehicle movements� and dialogue�oriented reasoning�



�

One other aspect of this methodology is worth mentioning� each population
of software individuals has its own history �le� that is� a text 	le where we
have made careful notes of all changes that were made to the population�
and to the individuals in it� This practice serves several purposes� it allows
us to go back and check what has happened� and to keep track of the
rationale for various design choices� It also provides a body of experience
for the future when we look again at what the development process is like
for software individuals and how it should be supported� Finally� the mere
fact that one has to take notes as one works with a population of software
individuals gives greater assurance that every change is well considered and
not made in a haphazard manner�

The concept of careful control of software changes is a standard one in
industrialized software development� but it is not a standard technique in
the context of exploratory software development like in the present project�
The experience with this technique has been very positive�

� The design of the Software Individual

Kernel

The present section will describe the speci	c design for the Software In�
dividual Kernel and the accompanying architecture� The Annex at the
end of the article describes some of the background 
structure of incre�
mental programming systems
 terminology being used in this text� that
may be useful for detailed reading� or for reference in case of ambiguity�
Additional details about the Software Individuals approach� its implemen�
tation� and examples of its use can be found via the author�s webpage�
http���www�ida�liu�se��erisa�� The design described here has been
obtained using the methodology for exploratory software development that
was described in the previous section�

��� The individual

Each individual consists of a set of processes� a set of materiel �les� a set
of resource �les� and a set of pipes for communication between processes�
All of these are primarily represented as structures of directories and 	les�
although processes and pipes also have a dynamic aspect�

��� Processes

The use of several processes allows the individual to dedicate one process�
the progenitor� to the task of importing external structures� Therefore the
kernel individual 
the SIK� contains only the progenitor process� and all
other processes are obtained as a result of extension�

Additional processes in the same individual may be used for productive
purposes� performing what the individual is supposed to do as a service�
Yet other processes may serve internal needs� such as for optimization of the
individual�s behavior� for learning from experience� or for checking incoming
information and proposed updates and thereby to protect the integrity of
the software individual� It seems quite natural to separate these functions



�

as distinct processes� so that they can be acquired� evolved� and operated
relatively independently of each other�

We use the term process in a slightly di�erent sense than what is usual in
computing systems� For us� a process is primarily a substructure of the
individual � a tree consisting of a particular directory and its subdirecto�
ries� The process directory is in fact a non�immediate subdirectory of the
directory representing the individual�

A process also has a dynamic aspect in terms of computations� which are
organized as a sequence of runs in the sense that is de	ned in the Annex�
Each run is obtained by executing a program 
in our technical sense� during
a limited period of time� and it has the e�ect of changing the stored state of
the process from an initial state at the beginning of the run� to an ending
state at the end of the run� At most one run can be executing at any
point in time� in a given process� The stored state of the process remains
unchanged during intervals of time where no run is executing� except in
those exceptional situations where a process directly changes the stored
state of a neighboring process�

Runs are in one of several possible modes� where each mode is character�
ized by what programs are loaded into the run and what listener is used�
For example� the commander run�mode is de	ned as a read�execute�print
loop where successive requests of a particular kind 
kernel commands� are
obtained from the user and executed in the process� The server runmode
is de	ned to receive kernel commands from one or more pipes that connect
processes in the same individual� executing them in the order of arrival�
The cgi runmode executes one request that is sent to it from a web browser�
and so on�

The stored state of a process is organized as a set of buckets each of which
contains assignments to state variables 
global variables in the Lisp system��
to properties on the property�lists of symbols� and to other similar slots in
the hosting Lisp system� Buckets are organized like 	les in Interlisp� which
means that each bucket has a table of contents that speci	es which state
variables and properties are assigned a value in the bucket� During a run
it is possible 
using appropriate requests� to load a bucket 
meaning to do
a Lisp �load� operation on the bucket 	le�� to change the values of state
variables and properties that are de	ned in the bucket� and to re�generate
the bucket 	le based on the current values of the variables and properties
in its table of contents�

Therefore� the static structure of a process consists of a set of named buckets�
a set of named runmode de	nitions�� and sets of incoming and outgoing
pipes for the process� Runs in the process are initiated by a user� by other
processes in the same individual� or by a separate scheduler� Runs are
terminated by their own decision� or by an intervention by a user�

��� Motivation for the two�level process structure

To summarize� the evolution of a SIK process proceeds on two levels� There
is the system level where the process performs a sequence of runs� each of
which transforms a stored state for the process to the next stored state� On

�To be precise� runmodes are a special kind of buckets that are associated with

a few extra� autogenerated �les



�

the more detailed dynamic level each run is a computational process that is
overseen by the operating system in the conventional way�

The philosophical reason for this division is that it provides checkpoints
where it is practical to do self�modi	cation of the programs� or more pre�
cisely� of the aggregate of programs and data that together constitute the
process� In addition there are a number of convenience reasons� The very
concept of a software individual requires that it should be able to persist
over a considerable period of time� amounting at least to months and hope�
fully to years� Conventional desktop computers and operating systems are
not designed with such longevity in mind� Other systems 
such as those
being used in telecommunication systems� have the robustness that would
be required� but they might not be appropriate for the present purpose for
other reasons�

The structure of the process computations as a sequence of runs allows us
to work with an assortment of di�erent runmodes� such as the commander
runmode where a user can issue a sequence of commands interactively� and
a server runmode� This is also a way of obtaining modularity� since if
we were to dispense with the two�level structure and work with one single
computational process that persists for the entire lifetime of the individual�
then that process would have to implement all the runmodes within itself�
which would likely be a less modular design�

��	 Resources and materiel

Besides the processes� an individual also contains resource �les and materiel
�les� which can be used during process runs in all the processes of the
individual�

Between runs� the state of a process consists only of its stored state� that is�
its bucket 	les� Within a run� however� there is also the dynamic state of the
computation� which is preserved and modi	ed between successive executions
of requests by the listener� In the normal way� the dynamic state consists of
associations from function names to function de	nitions� and similarly for
constant variables� properties� etc�

A materiel �le is a program that changes the dynamic state of the run where
it is loading� It is not supposed to have any other e�ects� Each runmode
has its own selection of materiel 	les that are loaded in the initial� loading
phase of every run in that runmode� together with buckets that are also
used in the loading process�

A resource �le is a program that changes the stored state of its own process
when it is loaded during the execution phase 
rarely the initial loading
phase� of a run� In special circumstances it may also change the stored
state of neighbor processes within the same individual� A resource 	le is
therefore used as an installation program� each facility that is available for
being incorporated into individuals is typically represented by one resource
	le that �installs� the facility and one 
or more� materiel 	les that are loaded
by runs once the facility has been installed�

The structure provided by resource and materiel 	les is a key element in
the autonomous acquisition paradigm� since it endows individuals with a
simple and clean mechanism for extending their own contents�



�

��� Kernel commands

The SIK implementation de	nes a range of kernel commands for operations
relating to the use of buckets� pipes� materiel and resource 	les� as well as
the import and export of the latter two structures� The implementation
of commands is based on the architecture of the SIK since commands are
able to change most aspects of the architectural structure� At the same
time� commands are used in several ways within the architecture� they can
be entered by the user in the commander runmode� they can be sent along
pipes� they can be used in resource 	les� and so on� The kernel command
facility is therefore an integrating part of the SIA architecture�

Technically speaking� commands constitute an alternate set of functions
that only work with their own listeners�

De	nitions for most of the commands in the SIK kernel are found in the
materiel driver 	le� Other� optional materiel 	les may add further command
de	nitions�

��
 Advising

Although many extensions of functionality can be obtained by adding more
kernel commands to the reportoire at hand� there are also many facilities
that require amendments to existing commands� In order to achieve good
modularity it is very important to have a way of serving this need without
having to explicitly modify the de	nition of the original command in the
materiel 	le where it happens to be located� We obtain this by using a
technique that was developed in Interlisp a long time ago� namely advising
�Tei���� However� advising in Interlisp could be applied to virtually any
point in the de	nition of any Lisp function� which e�ectively restricted it
to an operation performed by human users � a kind of high�level editing
operation� In our case� we restrict it to advise given to kernel commands�
Thus if one materiel 	le contains a de	nition of a kernel command C� then
another materiel 	le may contain an invocation stating that whenever the
command C is executed� a particular additional operation is to be performed
before� or after the main operation� In fact� the materiel 	le containing the
advise can even be loaded before the 	le containing the main de	nition�

��� Initial con�guration and bootstrap of an individual

We are now ready to summarize the structure of the Software Individu�
als Kernel 
SIK� which is the initial con	guration of a new individual� It
consists of the following parts�

� One process� the progenitor� containing two runmodes� the comman�
der and the acquisition runmodes� and four buckets� one for each of
the runmodes� and two auxiliary buckets used by the reproduction
process

� Four materiel 	les� namely�

� The bucket loader� containing a few function assignments that
are needed in order to load a bucket 	le


� The driver� containing basic function and command assignments
that can be used in most of the runmodes




��

� The environment speci�c de�nitions� which accomodate the dif�
ferences between di�erent operating systems and Lisp systems


� The commander de�nitions which de	nes and activates the lis�
tener that is used in the commander runmode�

� One resource 	le� namely the acquisition program for the new indi�
viduial�

When a new individual is created� a new structure is set up where these
components are direct copies of the same components in the initiating in�
dividual� with a few small but important exceptions� First� some of the
properties in the commander bucket are assigned new values that repre�
sent the new individual� its name� its location in the 	le structure� and
its ancestry� These values are speci	c to the individual� and are inherited
by all other processes when later they are spawned in the new individual�
Secondly� the acquisition program is not necessarily an exact copy of the
initiator�s original acquisition program� since the initiator and the initiation
process may choose to put a modi	ed or alternative acquisition program in
the new individual�

Once set up� the new kernel individual proceeds to start a run in the spe�
cialized acquisition runmode in its progenitor process� where it loads and
executes the acquisition program� This is in fact the only use of the ac�
quisition runmode� Being a resource� the acquisition program can extend
the contents of the progenitor process� and spawn additional processes and
add content to them� It can also fetch materiel and resource 	les from a
senior individual or from the knowledge object repository 
KOR� serving
the population� and add them to the structure of the present individual�

There are several ways for a process to add content to the stored state of
another process�

� It may send messages to the new process through a pipe� As a general
rule� when a process A spawns another process B� it always creates
a pipe from A to B� Process A may send update commands through
that pipe� although it must also make sure that process B has a run
in server runmode where it honors the arriving requests�

� The spawner may request a run in exec runmode in the spawnee�
The exec runmode is similar to a cgi�script invocation in that each
run only executes one command� and then it is done� Such invocation
of exec runs are of course subject to the restriction that there can be
only one run at a time in each process�

� Finally� the spawner process may directly modify the 	le structures
and 	le contents of the spawnee� This �chirurgical� approach is often
the easiest one to implement� but it may also be the most brittle one�

All three methods are being used and evaluated at present�

� Implementation experience

The present e�ort is one of explorative software development� we start with
an initial goal formulation and an initial software design that only partly



��

satis	es the goal� The design is modi	ed in order to achieve the goal more
fully� During that process� and as we gain some experience of using the
system being developed� it is also natural to revise the goal statement from
time to time� The process terminates successfully at the point where the
design at hand fully satis	es the goal at hand�

The methodology section above explained why this method was considered
appropriate for the present purpose� and what steps we have taken in order
to have a steady course in the work�

The e�ort has been structured into three major steps� namely� one initial
step and two concurrent later steps�

�� Basic kernel design step� design a crisp software individuals kernel
that has the capacity of replication� self�modi	cation� communication
between individuals� awareness of and administration of its own state�
and acquisition of additional facilities in a systematic way�

�� Machine intelligence step� explorative use of the SIK that was
developed in the initial step� for an attempt to set up� educate and
maintain a population of software individuals that are able to receive
software updates on a high conceptual level and to communicate them
to peers� as well as to optimize their performance and to learn from
experience�

�� Application step� use the results from the initial step for some
practical applications� In that context� experiment with also using
the individuals that were developed in the machine intelligence step
for those applications�

At this point� step � has been concluded and steps � and � are in process
for a number of applications including a dialogue�oriented reasoning system�
The present article will only report on the outcome of step �� Like in any
software undertaking� one must be prepared to go back to step � and iterate
based on the experiences of the latter steps� However the present design of
step � quali	es for itself according to the criteria that are speci	ed in the
next section�


�� The basic kernel design step

The goals in the basic kernel design step have a software engineering �avor�
as follows�

� The closure requirement has been the most important one� namely�
that the characteristic properties of the SIK should support each other
completely� For example� it is not su�cient that the SIK as designed
by the programmer has the capacity of acquiring additional facilities�
but that capacity must also be there in other processes that have
been spawned within the individual� and in other individuals when
they are initiated� The inter�process communicationmechanism using
pipes must be able to transmit acquisition information� Modi	cations
of the reproduction mechanism must be transmitted to o�spring� and
so on�



��

� The SIK design should be crisp� in the sense that it contains no un�
necessary code� no duplication of designs 
never two separate features
or constructs where one would be su�cient�� and designs that are as
general and powerful as possible while retaining the basic simplicity�
We consider it worthwhile to redesign the software repeatedly in or�
der to achieve this goal� and we would not be satis	ed with the 	rst
implementation only because it worked�

� Minimization of the need for operator intervention in the processes
of reproduction and structure acquisition� and in particular of the
need for repetitive operator intervention where similar interventions
are made several times in succession�

� Platform di�erences 
operating system and Lisp system� should be as
isolated as possible� ideally to only one 	le that can be exchanged ac�
cording to platform� and which was referred to above as the platform
speci	c de	nitions�

� To the greatest possible extent� extensions to the system should be
de	ned and implemented as separate modules that can be acquired
by an individual in a modular fashion�

� On the other hand� in those cases where improvements must a�ect
the kernel itself� incremental improvements should only lead to small
and local changes in the program�

The present Software Individual Kernel has evolved as the result of a number
of modi	cations to the original design� and it comes very close to satisfying
these requirements
 a few minor modi	cations remain to be done� but are
postponed until experience has been gained from steps � and �� Many of
the iterations in its development were due to the closure requirement
 many
others were due to the crispness requirement� The accomodation of platform
di�erences was introduced at a fairly late stage in the process� and did not
o�er any particular di�culties�

The total size of the SIK is about ��� lines of code in the printouts of the
	les with normal spatiousness and full legibility� This count includes both
programs and OS�related 	les 
e�g� �bat 	les that are used for starting runs��
but it does not include empty lines� comment lines� and lines only containing
right parentheses� We are convinced that even with the remaining additions
the count will stay well below ��� lines of code� This size of a program is
of course easy to understand and to manage�


�� Self�modi�cation and documentation

Before it has started its acquisition process� a newly generated kernel in�
dividual consists of fourteen 	les using eight directories� Both of these
numbers increase when the individual acquires additional structures� In
order to understand how the implementation works� one must understand
both the mechanics of the directory structure and the contents of the 	les
contained in it� When the individual begins to operate� 	rst by executing its
acquisition program� and later on by incorporating additional information�
then both the directory structure and the contents of the 	les change in a
number of ways� Bucket 	les change when a process adds information to
a bucket and regenerates the bucket 	le� The generation of new runmodes



��

causes the generation of additional 	les 
�bat 	les in the Windows imple�
mentation� that are instrumental for invoking runs in the new mode� Newly
added or modi	ed materiel 	les may contain advise requests that amend the
functionality of procedures and commands whose original de	nitions are in
earlier materiel 	les�

It would therefore be quite a bit misleading to talk about the implemen�
tation as a program in the ordinary sense of that word� That is also why
we have recycled the term �program� for our purpose� Of course the SIK
structure is a program in the more general sense that it de	nes the be�
havior of the computer hosting it� but a very di�erent kind of program�
Self�modi	cation� which is the most characteristic feature of the SIK� is
also an inherent property of the von Neumann machine� but it is a property
that later generations of programming language designers have successfully
locked in so that it shall not be available to users�

Self�modi	cation is available everywhere in a certain sense� anyway� since it
is easy to write programs that change the contents of 	les in the operating
system� including 	les that contain programs� Software installation software
does exactly this� This is usually considered to be of negligible interest from
a scienti	c point of view� however� and even textbooks on compilers and
other aspects of program development tools treat it marginally if at all�

We are therefore treading relatively unknown territory when we address the
question of how self�modifying software such as the SIK is to be documented�
It is entirely clear that comments in the program listings are of margnial
value here� In order to understand how the implementation works� one must
begin with an explanation of the upper one of the two levels for processes�
the structure of directories and 	les� and how it may change as the result
of various operations by the user or otherwise� After this� one can proceed
to looking at the contents of the program and data 	les� and understand
how they cause the changes and also how they are a�ected by the changes
as the system modi	es itself� Exploring how such a system documentation
shall best be organized is yet another aspect of our project�

� Discussion of related work

��� Agents

The concept of software individuals is in general terms related to the very
popular concept of software �agents�� Unfortunately� however� the word
�agent� has become so widely used that it is no longer very speci	c� One
may argue that the SIA �individual� is a kind of agent
 one may also argue
that the SIA �process� is a kind of agent
 but individuals and processes have
very distinct functions in the SIA and they are not merely agents inside
agents� Because of the lack of precision in the term �agent� we choose not
to use it at all�

��� Incremental programming languages
 e�g� Lisp

The view of programming languages and systems has changed considerably
in the arti	cial intelligence community� AI was widely perceived to have
its own software base at least until the early �����s� with the dominance



�


of Lisp and other quasi�functional programming languages� the attempts to
commercialize specialized Lisp machines� conference sections on �program�
ming languages for AI�� and so on� All of this now seems very remote as AI
software is commonly written in C�� or Java� Lisp� although still in use
in many quarters is barely mentioned� Prolog� which challenged Lisp as a
programming language for AI is in a similar situation�

One may debate whether the language deserved this fate� whether its widespread
reputation for ine�ciency is correct� and whether this development was un�
avoidable� In the context of the present article� we just observe that the
kind of design that has been described here would be very much more dif�
	cult to achieve in a conventional programming language� It employs three
important features of Lisp� its interpretation�oriented character� its stan�
dardization of a textual representation for data structures so that these can
be printed onto 	les and later read back� and 	nally the representation of
programs as data structures�

It is therefore not surprising that the account of related work must be virtu�
ally empty� this type of research is simply not in vogue today� Fashions do
change� however� and we believe that work on core software principles for
machine intelligence will sooner or later attract the attention of the research
community again�

In the historical perspective� one may also ask whether similar work was not
done during earlier stages in history� In fact we have not found any related
attempts� One cue to the possible reasons is that the architecture described
here relies on a using the directory structure dynamically� even a moderately
sized software individual contains several tens of directories 
�folders� in
Windows jargon� on di�erent levels� and more are added as modules are
acquired� However� the use of large numbers of 	les and directories for
organizing information is a relatively recent practice� which is illustrated by
the fact that even the o�cial de	nition of Common Lisp does not specify
any function for creating a new directory� More generally� we believe that
the approach described here would not realistically have emerged from the
point of view of the A�I� programming practices of earlier decades�

We therefore think of this project as an e�ort where we return to some of the
roots of arti	cial intelligence research� combining a half�lost tradition with
contemporary opportunities� After all� the design of a long�lived software
individual with the ability to modify itself and to reproduce� ought to be at
the very core of machine intelligence research�

There is also another perspective on the present work� where it can be seen
as a novel and unorthodox approach to software engineering� That� however�
is the topic of another article�

	 Acknowledgement

The research reported here is done in the WITAS project which is supported
by the Wallenberg Foundation�



��


 Annex� Technical details and implementa�

tion aspects

This annex is to explain the basic programming technology that is used
for the SIA in some detail and for the purpose of reference� In the SIA
architecture each software individual is an aggregate of procedures and data

it is not only a program� Each individual contains its own copies of the
programs that de	ne its behavior� The program consists of many data�
driven procedures� that is� procedures that are attached as properties to
data objects�

The individual operates in interpretivemode� This is more or less a necessity
if self�modi	cation is going to be achieved�

In concrete implementation terms� each software individual is a directory
structure from a certain root directory and down� including all its sub�
directories� Di�erent individuals are disjoint directory structures� Some 	les
in the individual�s directory structure contain data 
as Lisp S�expressions
or in an XML�like format�
 others contain Lisp function de	nitions
 others
again contain expressions in specialized embedded languages whose inter�
preter is also a part of the agent�

Since agents are relatively similar� and in some cases their directory struc�
tures and associated 	lenames are isomorphic� it follows that 	les with the
same name often occur in corresponding positions of the structure of many
of the individuals� The usual search�path concept in operating systems is
therefore not very useful here� it is rarely meaningful to ask for the location�
in the directory structure� of a 	le with a given name� since there will be
one answer for each individual in the system� We therefore consistently use
the convention that if one entity 
typically� a 	le� in an individual refers to
another entity� then it does so by specifying the entire path for the latter in
the directory system�

This has the consequence again that moving an individual to another place
in the directory system is not entirely trivial � there is always going to be
a number of places in the individual�s programs and data that depend on
location� and that need to be modi	ed when the individual is moved� The
same holds of course if an individual or a kernel part of it is copied� which is
what happens during reproduction� or if a copy of a part of one individual
is acquired by another individual� which typically is what happens during
�education� where elder individuals contribute knowledge to junior ones�
The need for such updates can be reduced by relative�naming constructs�
but the experience has been that they can not be eliminated entirely� In
particular� the remaining need for absolute naming occurs in the very kernel
of the system� which is at the focus of our design interest�

We also need to de	ne how we use a few technical terms that work di�erently
in an interpretive language� such as Lisp� compared to a compiling�oriented
language� Precision with respect to terms such as �program� and �de	�
nition� becomes particularly important when we deal with self�modifying
software�

The term function is used to include both �functions� and �procedures� in
other languages� A function assignment assigns a function de�nition to a
function name� and is expressed as a piece of text�

When we talk about a program� we shall mean one text 	le that contains a



��

sequence of assignments� including both function assignments� assignments
of values to constants� and assignments of properties for objects 
e�g� on
property�lists�� Such a program is not in itself said to be �run�
 it is merely
loaded which means that the function de	nitions and the associations from
function name to function de	nition are re�represented as data structures
in the current Lisp session� � Programs can be correctly referred to as 	les�
since they are a particular kind of 	les� Notice in particular that the SIK
is not in itself a program� with this terminology� it is a software system
containing a number of programs�

A request 
our term� is a textual expression combining a function name and
a sequence of arguments expected by it� Function assignments are requests�
in particular� using a function�de	nition�assigning function� The contents
of a program 	le 
� program� is in fact always a sequence of requests�

A listener is a function that receives successive requests� usually as typed
in by the user� and that executes the corresponding function de	nitions
using current bindings in the session at hand� The Lisp system contains a
standard listener 
the so�called read�eval�print loop�� but it is possible to
replace it by another listener using a request�

The following is the normal execution structure when the SIK software is
used� One run is initiated by giving a program to the Lisp system
 the latter
starts up and loads the program� Some of the requests in that program ask
to load other programs� often recursively but not to any great depth� As a
result� the session is 	lled with bindings from function names to function
de�nitions� as well as with similar bindings for constants etc�

In many cases� the last request in the last 	le to be loaded replaces the
standard listener with another one which has been de	ned earlier on in
the loading process� In any case� the current listener obtains control when
the program loading process is completed� and the subsequent computation
depends on the input from users� pipes� or other sources as determined by
the listener� The combination of the loading process and the subsequent
listener�controlled computation is referred to as the run� and also as the
execution of the top�level program where the loading process started�

Notice� in particular� the distinction that is made here between loading and
executing a program� Notice also that requests occur and assignments are
made even when the program is loaded� In fact� the Lisp system will allow
almost any computation to be invoked from a program 	le that is being
loaded� The SIA architecture does impose some restrictions as to what
is allowed at load�time� in order to facilitate the realization of replication
and self�modi	cation� but even so the loading process retains a considerable
degree of �exibility� The operation of advising� which is explained in section
���� is one example of an operation that usually takes place when programs
are loaded�

References

�Tei��� Warren Teitelman� Toward a programming laboratory� In Interna�
tional Joint Conference on Arti�cial Intelligence� pages � �a� �����


