
Link�oping Electronic Articles in
Computer and Information Science

Vol. 3(1998): nr 015

Link�oping University Electronic Press
Link�oping, Sweden

http://www.ep.liu.se/ea/cis/1998/015/

Revised version

Temporal Action Logics (TAL):
Language Speci�cation and

Tutorial

Patrick Doherty
Joakim Gustafsson

Lars Karlsson
Jonas Kvarnstr�om

Department of Computer and Information Science
Link�oping University
Link�oping, Sweden

Revised version, published on July 15, 1999 by
Link�oping University Electronic Press

581 83 Link�oping, Sweden
Original version was published on October 1, 1998

Link�oping Electronic Articles in

Computer and Information Science

ISSN 1401-9841
Series editor: Erik Sandewall

c1998 Patrick Doherty, Joakim Gustafsson, Lars Karlsson, Jonas
Kvarnstr�om

Typeset by the author using LATEX
Formatted using �etendu style

Recommended citation:

<Author>. <Title>. Link�oping Electronic Articles in
Computer and Information Science, Vol. 3(1998): nr 015.
http://www.ep.liu.se/ea/cis/1998/015/. October 1, 1998.

The URL will also contain links to both the original version and
the present revised version, as well as to the author's home page.

The publishers will keep this article on-line on the Internet
(or its possible replacement network in the future)

for a period of 25 years from the date of publication,
barring exceptional circumstances as described separately.

The on-line availability of the article implies
a permanent permission for anyone to read the article on-line,

to print out single copies of it, and to use it unchanged
for any non-commercial research and educational purpose,

including making copies for classroom use.
This permission can not be revoked by subsequent

transfers of copyright. All other uses of the article are
conditional on the consent of the copyright owner.

The publication of the article on the date stated above
included also the production of a limited number of copies

on paper, which were archived in Swedish university libraries
like all other written works published in Sweden.

The publisher has taken technical and administrative measures
to assure that the on-line version of the article will be
permanently accessible using the URL stated above,

unchanged, and permanently equal to the archived printed copies
at least until the expiration of the publication period.

For additional information about the Link�oping University
Electronic Press and its procedures for publication and for

assurance of document integrity, please refer to
its WWW home page: http://www.ep.liu.se/

or by conventional mail to the address stated above.

Abstract

The purpose of this article is to provide a uniform, lightweight

language speci�cation and tutorial for a class of temporal logics

for reasoning about action and change that has been developed

by our group during the period 1994-1998. The class of log-

ics are collected under the name TAL, an acronym for Temporal

Action Logics. TAL has its origins and inspiration in the work

with Features and Fluents (FF) by Sandewall, but has diverged

from the methodology and approach through the years. We �rst

discuss distinctions and compatibility with FF, move on to the

lightweight language speci�cation, and then present a tutorial in

terms of an excursion through the di�erent parts of a relatively

complex narrative de�ned using TAL. We conclude with an an-

notated list of published work from our group. The article tries

to strike a reasonable balance between detail and readability,

making a number of simpli�cations regarding narrative syntax

and translation to a base logical language. Full details are avail-

able in numerous technical reports and articles which are listed

in the �nal section of this article.

1

1 Introduction

The purpose of this article is to provide a lightweight language speci�ca-
tion and brief tutorial for a class of narrative-based temporal action logics
with acronym TAL standing for Temporal Action Logics. Work with TAL
ensued in the early 90's with the �rst publications in 1994. Work with the
TAL class of logics originated with, and was inspired by, research on the
meta-theory of action and change initiated by Sandewall and described in
the monograph [30]. A concurrent article by Sandewall [31] summarizing
previous work on the meta-theory of reasoning about action and change
and extensions and new results since then may be read as a companion
to this article. Sandewall calls the generalized framework Action Systems
Metatheory (ASM).

TAL currently has the following in common with the ASM framework:

� The distinction between the surface and base languages where the sur-
face language should be viewed as a macro-language which provides
a convenient high-level notation for describing narratives.

� The basis for the de�nitions of preferential entailment used in the
TAL class of logics is primarily that of PMON, one of the de�nitions
of preferential entailment proposed in Sandewall [30], which makes
use of the occlusion predicate.

� The use of �ltered preferential entailment techniques, also originating
in Sandewall [29, 30].

� The solution to the frame problem, incomplete speci�cation of states
and non-determinism is basically the same as in PMON [30].

The TAL framework di�ers from the ASM framework in the following re-
spects:

� Our starting point is the use of two formal languages, a surface
language L(ND) for representing narratives, a base language L(FL)
which is an order-sorted 1st- or 2nd-order classical language with the
standard semantics (see Section 4), and a translation function which
translates narratives described in L(ND) into a theory in L(FL). The
dissimilarity with Features and Fluents [30] is primarily due to the
use of di�erent base languages, the addition of new statement classes
in narratives, and new and powerful extensions to the surface lan-
guage. Sandewall has recently begun using a sorted 1st-order logic in
ASM and has adopted a number of operators originating in L(ND).

� A logic in the TAL class has both a proof and model theory based
on classical 1st or 2nd-order logic.1 Generally, the 2nd-order nature
of the logic is related to the use of a circumscription axiom which
reects the nonmonotonic nature of the formalism, or the use of 2nd-
order axioms used in the de�nition of temporal structures. The proof
theory generated provides the basis for e�cient implementations of
the TAL logics or well-behaved fragments.

� A main part of the methodology used in de�ning or extending existing
logics in TAL is to optimize away, when possible, the 2nd-order nature

1In some cases, the proof theory may be incomplete.

2

of narratives by using reduction algorithms or techniques such as
quanti�er elimination [11, 12]. This can result in the use of logically
equivalent 1st-order theories which are amenable to classical theorem-
proving techniques and optimizations.

� The use of assessment techniques via de�nitions of an underlying se-
mantics, which is a cornerstone of the ASM approach, is de-emphasized,
although not ruled out as unimportant.

� Work with TAL has resulted in broadening the expressibility of narra-
tives, providing preliminary solutions to not only the frame problem,
but also the rami�cation and quali�cation problems in an integrated
manner for an expressive class of narrative descriptions. In addition
progress has been made in the modeling of both concurrent actions
and their interactions, and the use of delayed e�ects of actions.

Although the ASM and TAL approaches are not at all incompatible, they
should be viewed as emphasizing di�erent aspects associated with the larg-
er problem of modeling action and change and using somewhat di�erent
methodologies and formal techniques. As in the past, we expect mutual
migration of results between ASM and TAL in the future.

In broad outline, Sections 3{6 describe the core language de�nitions and
underlying logic used in TAL, while Sections 2, 7 and the appendices provide
a brief tutorial as to how to use the languages and logic for representing
and reasoning about narratives in TAL.

The detailed outline is as follows. In Section 2, we outline the methodology
and reasoning techniques used with TAL. In Section 3, the surface language
L(ND) is described. In Section 4, the base language L(FL) is described.
In Section 5, the translation from the surface language L(ND) to the base
language L(FL) is described. In Section 6, the circumscription policy asso-
ciated with the base language L(FL) is described. In Section 7, we present
a narrative example in TAL described using the surface language L(ND).
Each of the components in a narrative is described in individual subsections
with comments intended to provide intuitions about both the syntax and
syntactic restrictions for statement types, and their informal semantics. In
Section 8, we briey describe annotated references to previous work. In
Appendix 1, the narrative considered in parts in Section 3 is listed in full.
In Appendix 2, the translation into L(FL) of the narrative in Appendix 1
is listed in full. In Appendix 3, a visualization of those facts true in the
preferred models for the narrative are displayed as a timeline which has
been generated using the VITAL research tool.

2 Reasoning about Narratives in TAL

The TAL methodology uses two languages for representing and reasoning
about narratives. The surface language L(ND) (Narrative Description Lan-
guage) provides a convenient high-level notation for describing narratives.
A narrative consists of a collection of labeled statements which partition the
narrative into common sets of statements. Currently, a narrative consists
of two parts, the narrative background speci�cation and the narrative spec-
i�cation. Each part contains di�erent component speci�cations, the sum of
which describe both the static and dynamic aspects of a narrative.

3

The narrative background speci�cation (NBS) consists of the following com-
ponents:

� Narrative Type Speci�cation { The NTS describes type descriptions
for features, feature value domains, and type descriptions for actions.

� Action Type Speci�cation { The ATS provides generic de�nitions of
actions.

� Domain Constraint Speci�cation { The DCS provides statements in-
tended to represent static knowledge about logical dependencies be-
tween uents generally true in every state.

� Dependency Constraint Speci�cation { The DeCS provides state-
ments intended to represent knowledge about directional dependen-
cies between uents true in states or across states.

The narrative speci�cation (NS) consists of the following components:

� Observation statements { Observation statements are intended to rep-
resent values of uents at speci�c timepoints.

� Action occurrence statements { Action occurrence statements are in-
tended to represent a particular occurrence of an action during a
particular duration. Both the timing between and the duration of
actions can be incompletely speci�ed.

� Schedule statements { A class of intermediary statements called sched-
ule statements are generated from action type speci�cations during
the translation process. Two alternative syntactic structures are used
which depend on whether the logic in question treats actions as 1st-
class citizens or not.

Neither the language L(ND) nor the statement labels have any formal se-
mantics, although the labels are used in the speci�cation of the circumscrip-
tion policy applied to the base theory.

Given a narrative �, described using L(ND), a translation function is used
to translate each statement in � into a 1st-order w� in L(FL), an order-
sorted classical 1st- or 2nd-order logic. The 1st-order theory associated
with � is augmented with a number of additional 1st-order (and sometimes
2nd-order) formulas representing unique-names and domain closure axioms,
unique-value axioms, axioms for the temporal base structure, etc., all of a
technical nature. In addition one or more circumscription axioms are added
to provide solutions to the frame, rami�cation and quali�cation problems.
Filtered circumscription is often used which circumscribes only some of the
partitions of a narrative. In the logics we currently use, the 2nd-order cir-
cumscriptive theory expressing � in the base language L(FL) is reducible
to a logically equivalent 1st-order theory using quanti�er elimination tech-
niques from Doherty et al. [11, 12] or variations of predicate completion
techniques from Doherty [4, 6].

Specialized inference algorithms or standard proof theoretical techniques
(or both) are then used to reason about the narrative. An on-line research
tool called VITAL [26] is available on the WWW. The tool automates the
process of translating and reducing narrative descriptions in L(ND) to 1st-
order theories in L(FL) and includes a query mechanism and visualization
of preferred models in the form of annotated time-lines.

4

3 The Surface Language L(ND)

The surface language L(ND) (Narrative Description Language) is a high
level description language used to represent narrative descriptions.2 The
language has no formal semantics, but does have a formal syntax. It pro-
vides a convenient set of constructs and macro-operators which contribute
to simplifying the representation of narrative descriptions and enhancing
their readability. All formal reasoning is done after translating a narrative
description described in L(ND) into a theory in L(FL).

3.1 Temporal Expressions

Assume that the base language L(FL) uses the temporal base structure
hT ; c1; : : : ; o1; : : : ok; r1; : : : rli (see Section 4). Temporal expressions are de-
�ned inductively using the variables, constants and operators associated
with the temporal base structure. In the following, we use � and � 0 as
meta-variables for temporal expressions.

3.2 Feature Expressions

The narrative type speci�cation provides a description of feature names,
feature value domains and feature value sorts and sub-sorts. Elements in
the value domains may be used as constants in feature expressions and it
is assumed that additional non-designated constants and variables of the
proper sorts are available for use in narrative descriptions.

Feature expressions are de�ned inductively in a manner similar to the def-
inition of typed function terms in an order-sorted classical logic. In the
following, we use f and f 0 as meta-variables for feature expressions.

3.3 Value Expressions

Value expressions are used as arguments in composite feature expressions
and on the right hand side of the isvalue macro-operator "=̂". The following
value expressions are used:

� Variables and designated and non-designated constants associated
with the feature value domains described in the narrative type spec-
i�cation.

� value(�; f) { denotes the value of the feature expression f at time � .

In the following, we use v and v0 as meta-variables for value expressions.

3.4 Atomic Expressions

The following atomic expressions are used in the construction of narrative
statements:

2In previous papers we used L(SD) to denote this language.

5

� [�]f =̂ v { A temporal isvalue expression states that the feature f has
the value v at time � .

� X([�]f =̂ v) or X([�]f) { An occlusion expression states that the
feature f is occluded at time � .

� f = f 0 { A feature equality expression states that two feature expres-
sions refer to the same feature.

� v = v0 { A value equality expression states that two value expressions
refer to the same value.

� �
 � 0 { A temporal equality or relational expression (where
 is "="
or one of the relation symbols de�ned in the temporal base structure)
states that two temporal expressions refer to the same timepoint or
have a particular relational correspondence.

� [�; � 0]A(!) { An action occurrence expression states that action A,
with arguments !, occurs during the interval [�; � 0].

3.5 Narrative Statements

Narrative statements are de�ned inductively in a manner similar to the
de�nition of well-formed formulas in order-sorted classical logic using the
standard connectives, quanti�ers and notational conventions. The exception
is that atomic expressions are used instead of atomic formulas as the basis
for the inductive de�nition.

Narrative statements are always labeled in a narrative description. Nor-
mally, a set of syntactic restrictions are associated with each labeled class
of statements (See Section 7.6). The labeling is also used to partition the
corresponding w�s in L(FL) into appropriate classes required for the spec-
i�cation of a �ltered circumscription policy (See Section 6).

In the following, we use �, � and as meta-variables for narrative state-
ments or sub-statements. We will also continue to use the term \narrative
statement" for those statements which include the operators and abbrevia-
tions discussed in the next section.

3.6 Additional Macro-Operators and Abbreviations

The surface language L(ND) has a rich collection of macro-operators and
abbreviations. In this section, we briey describe several of the more widely
used abbreviations and refer the reader to Doherty et al. [6, 23, 16] for the
details.

3.6.1 Temporal Intervals and Composite Isvalue Expres-

sions

� Temporal isvalue expressions are generalized to allow boolean opera-
tors inside the temporal scope and the temporal scope is generalized
to allow closed, open, or semi-open temporal intervals.

{ For example, [�](f =̂ v
 f 0 =̂ v0) is an abbreviation for the
expression [�]f =̂ v
 [�]f 0 =̂ v0, where
 2 f^;_;!;$g.

6

{ For example, [�; � 0](f =̂ v
 f 0 =̂ v0) is an abbreviation for the
expression 8t: � � t � � 0 ! [t](f =̂ v
 f 0 =̂ v0).

� Features with boolean value sorts may abbreviate the use of "=̂".

{ For example, [�](f
:f 0) is an abbreviation for the expression
[�](f =̂ true
 f 0 =̂ false):

Note that the abbreviations de�ned above do not necessarily apply in the
scopes of the X , R and I operators de�ned next.

3.6.2 Special Primitive and Macro-Operators

The following operators are used in the consequents of action type and
dependency constraint statements:

� The occlusion operator X is a primitive operator used to specify at
what timepoints uents are exempt from the persistence or inertia
assumption associated with the frame problems. For example,

{ X((�; � 0]�) { is an abbreviation for 8t: � < t � � 0 ! X([t]�)

{ X([�]�) { is translated into a conjunction Occlude(�; f1)^ : : :^
Occlude(�; fn) in L(FL), where each fi occurs on the left hand
side of an isvalue expression fi =̂ vi in �.

� The reassignment operator R is a macro-operator used to specify
explicit reassignment of a feature value to a uent at a particular
timepoint. For example,

{ R((�; � 0]�) { is an abbreviation for X((�; � 0]�) ^ [� 0]�.

{ R([�]�) { is an abbreviation for X([�]�) ^ [�]�.

� The durational reassignment operator I is a macro-operator normally
used in conjunction with durational uents and reassigns the default
feature value of the durational uent temporarily to a new value dur-
ing a speci�ed duration. For example,

{ I((�; � 0]�) { is an abbreviation for X((�; � 0]�) ^ (�; � 0]�.

{ I([�]�) { is an abbreviation for X([�]�) ^ [�]�.

The following macro-operators are generally found in the antecedents of
dependency constraints and are useful for expressing trigger conditions for
such constraints:

� CT ([�]�) { is an abbreviation for ([� � 1]:� ^ [�]�).

� CF ([�]�) { is an abbreviation for ([� � 1]� ^ [�]:�).

� C([�]�) { is an abbreviation for (CT ([�]�) _ CF ([�]�)).

The following macro-operators determine the type of feature and the per-
sistence policy employed:

� Per(�; f) { is an abbreviation for 8v: (C([�]f =̂ v) ! X([�]f)).

� Dur(�; f; v) { is an abbreviation for [�]:f =̂ v ! X([�]f).

7

The distinction between feature types originates in Karlsson and Gustafs-
son [23], and has proven to be a very useful concept. Originally, the macro-
operators were translated into speci�c predicates Per and Dur in L(FL).
Sandewall [31] observes that this is not always required and we use his
translation above. For more details regarding alternative translations, see
Section 6.1.

The following macro-operators are also sometimes used:

� [�]�� [� 0]� { is an abbreviation for
[CT ([�]�) ! X([� 0]�)] ^ [[�]� ! [� 0]�]

� [�; � 0]f := v { is an abbreviation for R((�; � 0]f =̂ v).

Note that both the syntactic restrictions placed on narrative statements and
the de�nitions for abbreviations and macro-operators may vary somewhat
relative to the choice of temporal base structure used in a particular logic.
For example, the abbreviation for CT ([�]�) would be de�ned as

([� � 1]:� ^ [�]�)

for integer time, whereas it would be de�ned as

(8t: � = t + 1 ! [t]:�) ^ [�]�

for natural time (0 and the positive integers). In the latter case, one must
deal with the boundary condition associated with the initial point 0 on the
timeline.

4 The Base Logic and Language L(FL)

L(FL) (Fluent Logic Language) is an order-sorted 1st-order language. The
base logic associated with L(FL) is an order-sorted 1st-order predicate logic
with equality using a standard semantics. An order-sorted logic is simply a
generalization of a many-sorted logic where sorts may be sub-sorts of others.
On occasion, we use 2nd-order logic in a restricted manner, primarily for
formulating circumscription axioms. The translation of a narrative descrip-
tion from L(ND) to L(FL) always results in a �nite set of 1st-order w�s.
A set of foundational axioms is associated with each narrative theory and
may contain 2nd-order formulas related to the axiomatization of temporal
base structures such as the natural numbers or integers. Due to the use of
2nd-order logics, we often use L(FL) to refer to both the logic and language
whether it is 1st- or 2nd-order.

For any TAL logic, the following predicates, or subsets of these predicates,
are included in the language signature:

� Holds(t; f; v), where t, f , and v are of sort time, uent, and uentval,
respectively.

� Occlude(t; f), where t and f are of sort time and uent, respectively.

� Occurs(t; t0; a), where t, t0, and a are of sort time, time, and action,
respectively.

� Observe(t; f; v), where t, f , and v are of sort time, uent, and uentval,
respectively.

8

� Dur(t; f; v), where t, f , and v are of sort time, uent, and uentval,
respectively.

� Per(t; f), where t and f are of sort time and uent, respectively.

For any TAL logic, the following function is included in the language signa-
ture:

� val(t; f), where t and f are of sort time and uent, respectively. The
type description for val is (time; uent) ! uentval.

For each particular class of narratives considered, the following functions
and sorts are used:

� For each domain di declared in a narrative type speci�cation, a new
sort si is included in the language signature together with a desig-
nated function symbol of arity 0 (i.e. a constant symbol) for each
object in the domain with type description () ! si. Additional non-
designated constant symbols of sort si are included in the signature
when appropriate. All sorts si are sub-sorts of uentval.

� For each feature fi declared in a narrative type speci�cation, a func-
tion symbol of the proper arity and its associated type description
are included in the language signature.

� It is assumed that each logic speci�es a temporal base structure
hT ; c1; : : : ; o1; : : : ok; r1; : : : rli consisting of a temporal domain T , 0
or more constants c1 : : : , a �nite set of operators o1; : : : ok, and a �nite
set of relations r1; : : : rl. Given a temporal base structure, a new sort
and additional constant and function symbols of that sort, denoting
the objects in the structure, are added to the language signature.

The number and type of arguments to predicates and functions in the sig-
nature may vary from logic to logic. As a general policy, we prefer the
use of macro-operators and abbreviations in L(ND) to the use of additional
predicates in L(FL). For example, we already mentioned the use of macros
for Dur and Per as an alternative to predicates.

5 Translating from L(ND) to L(FL)

Translating narrative statements in L(ND) to formulas in L(FL) is a straight-
forward, but tedious process. In this section, we will consider the basic idea
and refer the reader to previous references described in Section 8 which
provide the necessary technical de�nitions and algorithms. In the following,
we assume the existence of a translation function Trans() which takes an
expression in L(ND) and returns one in L(FL). The following translations
are the most important:

� Trans([�]f =̂ v) = Holds(�; f; v).

� Trans([�]:�) = :Trans([�]�).

� Trans([�]�
�) = Trans([�]�)
Trans([�]�),where
 2 f^;_;!;$g.

� Trans([�]Qx[�]) = Qx:Trans([�]�), where Q 2 f8; 9g.

9

� Trans(X([�]f =̂ v)) = Occlude(�; f).

� Trans(X([�]:�)) = Trans(X([�]�))

� Trans(X([�]�
 �)) = Trans(X([�]�)) ^ Trans(X([�]�)), where
 2
f^;_;!;$g.

� Trans(X([�]Qx[�])) = 8x: Trans(X([�]�)), where Q 2 f8; 9g.

� Trans(value(�; f)) = val(�; f).

� Trans([�; � 0]A(w)) = Occurs(�; � 0; A(w)), where [�; � 0]A(w) is an ac-
tion occurrence statement in L(ND).

6 The Circumscription Policy

In this section, we assume familiarity with circumscription [28], and refer
the reader to Lukaszewicz [27] for details. In the following, we use

� � { to denote the collection of narrative statements contained in a
narrative in L(ND) and �per, �obs, �occ, �scd, �domc, �depc, to
denote the set of persistence, observation, action occurrence, sched-
ule, domain constraint, and dependency constraint statements in �,
respectively.

� � { to denote the collection of narrative formulas in L(FL) corre-
sponding to the translation of the collection of narrative statements
in � and �obs, �occ, �scd, �domc, �depc, to denote the corresponding
sets of observation, action occurrence, schedule, domain constraint,
and dependency constraint formulas in �, respectively.

� �fnd { to denote the set of foundational axioms in L(FL) which con-
tain unique names axioms, unique values axioms, possibly domain
closure axioms, etc. �fnd is always conjoined with the narrative the-
ory �.

� �time { to denote the set of axioms representing the particular tem-
poral base structure being used. �time is always conjoined with the
narrative theory �.

� �per { to denote the set of persistence axioms characterizing the be-
havior of persistent and durational uents. �per is always conjoined
with the narrative theory �.

Given a narrative � in L(ND), the corresponding theory � in L(FL) is

� ^ �fnd ^ �time ^ �per ;

where

� = �obs ^ �occ ^ �domc ^ �depc ^ �scd:

Given the corresponding theory in L(FL), we apply a �ltered circumscrip-
tion policy which results in the following circumscribed theory �0,

�0 ^ �fnd ^ �time ^ �per ;

10

where

�0 = �obs ^ �domc ^ Circ(�occ;Occurs) ^ Circ(�depc ^ �scd;Occlude):

For this particular policy, we assume actions are 1st-class citizens in the
object language.3 The policy circumscribes the predicate Occlude rela-
tive to the set of schedule and dependency constraint formulas and leaves
all other predicates �xed. It is easily shown that the 2nd-order formula
Circ(�depc ^ �scd;Occlude) is reducible to a logically equivalent 1st-order
formula, since the predicate Occlude only occurs positively in �depc ^ �scd.
In addition, Occurs only occurs positively in �occ. It is also easily shown
that Circ(�occ;Occurs) is also reducible to a logically equivalent 1st-order
formula. In fact, simple applications of predicate completion generally suf-
�ce.

Consequently, provided the temporal axiomatization �time is �rst-order,
the theory �0 is too, which makes it amenable to existing theorem-proving
techniques and optimizations for 1st-order logic. In the case that �time

is 2nd-order, one can still apply specialized theorem proving techniques
such as constraint logic programming techniques which provide sound, but
incomplete proof techniques.

6.1 Intuitions

The intuition behind the choice of circumscription policy is relatively straight-
forward. �scd provides a speci�cation of the su�cient conditions for when
the uents which comprise the e�ects of actions should be exempted from
a background persistence or inertia assumption and what their new values
should be. In a similar manner, �depc provides a speci�cation of the suf-
�cient conditions for when uents can potentially change value and what
their new values should be. Note that, due to nondeterminism, the actual
value a uent takes may be constrained by other parts of the narrative and
not just the direct action e�ects and dependency constraints.

Given the su�cient conditions for occlusion (exemption from a persistence
assumption), the circumscription of Occlude over �scd^�depc constrains the
su�cient conditions to be the necessary conditions. Given that we now have
a de�nition for potential change and constraints for determining the values
of uents permitted to change value, the �ltering condition �per serves to
�lter away all spurious change (i.e. change not speci�ed via Occlude). The
�ltering condition used is based on the type of feature, that is, whether it is
a persistent or durational feature.4 Recall the de�nition of macro-operators
Per and Dur in Section 3.6.2.

� Per(�; f) { is an abbreviation for 8v: (C([�]f =̂ v) ! X([�]f)).

� Dur(�; f; v) { is an abbreviation for [�]:f =̂ v ! X([�]f).

3In the case where actions are not 1st-class citizens, the Occurs predicate is not
used and neither �occ nor Circ(�occ;Occurs) is required in � and �0, respectively
(See Section 7.5.1).

4In older versions of TAL, we have used one �ltering axiom call the nochange

axiom where all features behaved as persistent uents.

11

Normally, for each feature f(!) in a narrative, we associate a corresponding
set of persistence statements in �per with one of the two following forms:5

� Q(t; !): �! Per(t; f(!)) or

� Q(t; !): �! Dur(t; f(!); v),

where Q(t; !): � is an expression which conditionalizes at what timepoints
and with what arguments the feature f(!) will behave as a persistent or a
durational uent.

In the simple case, a feature is either durational with a single default value at
all timepoints and arguments or persistent at all timepoints and arguments,
but not both. For example, if f is declared as a persistent feature then the
following persistence statement is used:

8t; !: True! Per(t; f(!));

whose translation in L(FL) after simpli�cation is6

8t; w; v: (Holds(t� 1; f(w); v)�Holds(t; f(w); v)) ! Occlude(t; f(w)):

If f(!) is declared as a durational feature with default value v then the
following persistence statement is used:

8t; !: True! Dur(t; f(!); v);

whose translation in L(FL) is

8t; w: :Holds(t; f(w); v) ! Occlude(t; f(w)):

For each persistence statement in L(ND), the corresponding formula is
added to �per. These formulas constrain potential change in a theory to
those timepoints where uents are explicitly occluded based on speci�c per-
sistence policies per uent. Note that one may even avoid declaring a feature
as either durational or persistent. In that case, it behaves as a dynamic u-
ent which is never subject to any persistence or inertia assumption.

The distinction between persistent and durational uents originates in Karls-
son and Gustafsson [23] and is used in Doherty and Kvarnstr�om [8] to deal
with quali�cations of actions. In those papers, the macros were translated
into formulas using a Per and Dur predicate. In some cases this approach
may still be useful and provides additional expressivity. Sandewall [31] ob-
served that one could do without the explicit predicates and use macros as
we have described here. The only distinction is that we conditionalize the
speci�cation of feature types where a feature can behave as a durational,
persistent or dynamic uent in the same narrative. Durational uents pro-
vide a limited form of default reasoning in TAL. Dynamic uents were �rst
discussed in Doherty [6]. Persistent uents have generally been the rule for
uent behavior in mainstream research.

5In more complicated cases, we allow other forms for persistence statements
when representing persistence policies for uents.

6The symbol \�" denotes exclusive-or.

12

7 A Narrative Example in TAL

In this section, we will represent a relatively complex narrative in the surface
language L(ND). This particular narrative is intended to demonstrate both
the basic structure of a narrative and a subset of the representational power
the language provides for constructing narrative descriptions. We will begin
with an informal natural language description of a narrative whose proper
formal representation would have to assume solutions to the frame, quali�-
cation and rami�cation problems, the use of both boolean and non-boolean
uents, concurrent actions, and domain and dependency constraints. Al-
though the language provides additional expressivity such as context depen-
dent and non-deterministic e�ects of actions, the use of temporal variables
and timing constraints, and interacting concurrent actions, this particular
narrative does not use that expressivity.

The following narrative, which we call the Russian Hijacking Scenario, ap-
pears in Doherty and Kvarnstr�om [8].7 The formal counterpart to the nar-
rative can be translated into a circumscribed theory in the language L(FL),
reduced to its �rst-order equivalent, and queried for inferences which follow
from the narrative theory using the on-line tool VITAL [26]. We encourage
the reader to try our reasoning tool.

The story begins as follows:

A Russian businessman, Vladimir, travels a lot and is concerned about both his

hair and safety. Consequently, when traveling, he places both a comb and a gun

in his pocket. A Bulgarian businessman, Dimiter, is less concerned about his

hair, but when traveling by air, has a tendency to drink large amounts of vodka

before boarding a ight to subdue his fear of ying. A Swedish businessman,

Erik, travels a lot, likes combing his hair, but is generally law abiding. Now, one

rami�cation of putting an object in your pocket is that it will follow with you as

you travel from location to location. Generally, when boarding a plane, the only

preconditions are that you are at the gate and you have a ticket. One possible

quali�cation to the boarding action is if you arrive at the gate in a su�ciently

inebriated condition, as will be the case for Dimiter. A rami�cation that may in

some cases play a dual role as a quali�cation to the boarding action is if you try

to board a plane with a gun in your pocket, which may be the case for Vladimir.

Now, Vladimir, Erik and Dimiter, start from home, stop by the o�ce, go to the

airport, and try to board ight SAS609 to Stockholm. Both Erik and Vladimir

put combs in their pockets at home, Vladimir picks up a gun at the o�ce, while

Dimiter is already drunk at home.

Given the narrative, we would like to answer questions such as \Who will
successfully board the plane?" \What are their �nal locations?" \What is
in their pockets after attempting to board the plane and after the plane has
arrived at its destination?".

In the following sections, we will consider the components of a formal nar-
rative in the surface language L(ND). The full narrative description can be
found in Appendix 1.

7The narrative is an elaboration and concretization of a sketch suggested by
Vladimir Lifschitz in recent on-line discussions in the Electronic Transactions on
Arti�cial Intelligence (ETAI/ENAI).

13

7.1 Narrative Type Speci�cation

We �rst introduce a speci�cation of feature value domains and type descrip-
tions. The type speci�cation in L(ND) 8 is directly translatable into the
order-sorted logic language L(FL).

TYPE SPECIFICATION

domain thing = {gun, comb1, comb2, comb3,

vladimir, dimiter, erik, sas609}

domain location = {home1, home2, home3, office,

airport, run609, run609b, air}

domain pocket = {pocket1, pocket2, pocket3}

domain runway = location [run609, run609b]

domain airplane = thing [sas609]

domain person = thing [vladimir - erik]

domain pthing = thing [gun, comb1 - comb3]

feature loc(thing): location

feature inpocket(person,pthing): boolean

feature drunk(person): boolean

feature onplane(airplane,person): boolean

feature poss_board(person,airplane): boolean

action put(person, pthing, pocket)

action travel(person, location, location)

action fly(airplane, runway, runway)

action board(person, airplane)

This particular narrative has 7 user-de�ned sorts (and a pre-de�ned boolean
sort), the last 4 of which are sub-sorts constructed from the �rst 3 sorts.
For example, the sub-sort pthing,

domain pthing = thing [gun, comb1 - comb3]

is a sub-sort of thing and contains gun, comb1, comb2, and comb3.

There are 5 features, 4 of which are boolean and 1 of which has the non-
boolean sort location. The feature speci�cations describe both the feature
type and the types of the feature arguments. For example, the feature
speci�cation

feature loc(thing): location

speci�es that the non-boolean uent associated with the feature loc returns
a value of sort location.

There are 4 action speci�cations of sort action. For example, the action
speci�cation

action put(person, pthing, pocket)

has 3 arguments and is the action type for the action of a person putting
a thing in his or her pocket. Whether the action types have respective
constant or function terms in the order-sorted vocabulary of L(FL) and

8The type speci�cation syntax used below is taken directly from the VITAL
research tool syntax. The actual L(ND) syntax may vary somewhat.

14

action is introduced as a sort, will be dependent on whether actions are
viewed as �rst-class objects in the particular version of the TAL logic used.

7.1.1 Feature Types

In some of our work, we have noticed that it is useful to classify features
according to the type of persistence assumption associated with a feature's
uent behavior. Currently, features are classi�ed as being dynamic, per-
sistent or durational. A dynamic uent is not subject to any persistence
constraints whatsoever. Both persistent and durational uents are subject
to persistence constraints, but di�er somewhat in values assigned. When a
persistent uent changes value, the assumption is that it retains the new val-
ue until there is reason to change it again. On the other hand, a durational
uent has a speci�c default value. When a durational uent changes value,
the assumption is that it will keep that exceptional value for a speci�ed
interval and when that interval ends, re-acquire its default value. General-
ly, durational uents are used together with the I operator to specify the
exceptional value interval.

Each feature has a persistence policy associated with it, represented in the
form of a feature speci�cation and a set of 0 or more persistence statements
characterizing when and what persistence behavior a feature has. A persis-
tence statement has the label per in L(ND). For each feature speci�ed, a
set of persistence statements is provided and placed in �per which is then
translated to a set of formulas in �per in L(FL).

Durational Feature Speci�cation
For example, the feature poss board is speci�ed as a durational feature with
default value true, where the feature speci�cation is

feature poss_board(person,airplane): boolean

and the persistence policy is speci�ed using one persistence statement

per 8t; w: True! Dur(t; poss board(w); true):

The persistence policy expresses that the feature poss board has a persistent
default value of true, and functions as a durational uent for all timepoints
and arguments speci�ed by the conditionalizer expression Q(t; !): � which
is "8t; !:True". Generally, a default conditionalizer similar to the above is
used, but one may want to limit a uent's durational behavior to selected
parts of the timeline, or for selected arguments and di�erent values. In this
case, one would add additional persistence statements to �per.

Persistent Feature Speci�cation
For example, the feature loc is speci�ed as a persistent feature, where the
feature speci�cation is

feature loc(thing): location

and the persistence policy is speci�ed using one persistence statement

per 8t; w: True! Per(t + 1; loc(w)):

The translation of the macro-operators Per and Dur and additional intu-
itions are provided in Sections 3.6.2 and 6.1.

15

Dynamic Feature Speci�cation
In the default case, a persistence policy for a dynamic feature consists of a
feature speci�cation and an empty set of persistence statements.

Before considering the speci�c narrative describing action occurrences and
observations, we will �rst specify the background knowledge associated with
the particular world domain to which the narrative belongs. This knowledge
consists of the action types, the domain constraints, and the dependency
constraints.

7.2 Action Type Speci�cation

The action type speci�cations provide generic de�nitions of actions. The
following 4 action types are used in the narrative:

acs1 [t1; t2] y(airplane; runway1; runway2);
[t1] loc(airplane) =̂ runway1 !
I((t1; t2) loc(airplane) =̂ air) ^ R([t2] loc(airplane) =̂ runway2)

acs2 [t1; t2] put(person; pthing; pocket);
[t1] loc(person) =̂ value(t1; loc(pthing)) !
R((t1; t2] inpocket(person; pthing))

acs3 [t1; t2] travel(person; loc1; loc2); [t1] loc(person) =̂ loc1 !
R([t2] loc(person) =̂ loc2)

acs4 [t1; t2] board(person; airplane);
[t1] poss board(person; airplane) ^ loc(person) =̂ airport!
R([t2] loc(person) =̂ value(t2; loc(airplane)) ^
onplane(airplane; person))

An action type speci�cation consists of an action type name speci�cation
which includes the number and sort of arguments to the action, and the
action type de�nition which consists of the preconditions, postconditions,
and any durational constraints which may limit the behavior of an instance
of the action type during its particular duration. Let's take a closer look at
the action type speci�cation acs1:

acs1 [t1; t2] y(airplane; runway1; runway2);
[t1] loc(airplane) =̂ runway1 !
I((t1; t2) loc(airplane) =̂ air) ^ R([t2] loc(airplane) =̂ runway2)

An action type speci�cation can be viewed as a schema which will be instan-
tiated and translated into logical formulas in L(FL). The meta-variables,
t1, t2, airplane, runway1, and runway2 of sort time, airplane, and runway,
will be instantiated with temporal or uent terms of the proper sort via
action occurrence statements in the narrative.

The action type name statement of acs1 is

acs1 [t1; t2] y(airplane; runway1; runway2)

In a narrative, action occurrences are simply instantiations of an action type
name statement and the duration in which it occurs.

The action type de�nition of acs1 is
[t1] loc(airplane) =̂ runway1 !
I((t1; t2) loc(airplane) =̂ air) ^ R([t2] loc(airplane) =̂ runway2)

16

where
[t1] loc(airplane) =̂ runway1

is the precondition to the action and
I((t1; t2) loc(airplane) =̂ air) ^ R([t2] loc(airplane) =̂ runway2)

is the postcondition to the action. Note the use of both the I and the R

macro operator in the postcondition which states that the location of the
airplane is in the air throughout the whole duration (t1; t2), of the action
excluding the endpoints t1 and t2, while the location of the airplane at the
end of the action t2 is at runway2.

7.3 Domain Constraint Speci�cation

Domain constraints are intended to represent static knowledge about the
world true in every state. Any constraints placed on features or sets of fea-
tures are solely due to the logical form of the domain constraint statements.
No use of assignment or occlusion macros are permitted (e.g. :=, �, X ,
R, I). Causal or directional dependencies between features are speci�ed
using dependency constraints. The domain constraints used in the current
narrative are:

//A pthing cannot be in two pockets at the same time.
dom1 8t; pthing1; person1; person2 [:(person1 = person2) ^

[t] inpocket(person1; pthing1) ! [t] :inpocket(person2; pthing1)]

//A person cannot be on board two airplanes at the same time.
dom2 8t; person1; airplane1; airplane2 [:(airplane1 = airplane2) ^

[t] onplane(airplane1; person1) ! [t] :onplane(airplane2; person1)]

Any variables or terms used in domain constraints are assumed to be of the
proper sort and are preserved in the translation to L(FL).

7.4 Dependency Constraint Speci�cation

Dependency constraints are intended to represent knowledge about direc-
tional dependencies between features that are more constrained than the
logical dependencies represented via domain constraints. The main syntac-
tic di�erence between domain and dependency constraints is that the use
of reassignment and occlusion operators is allowed (e.g. :=, �, R, I , X).
This, of course makes sense since occlusion together with a �ltered circum-
scription policy is used to enforce directionality of change between features.
Dependency constraints are often used to represent causal dependencies be-
tween uents but can also be used in a more general manner.

The most common structure for a dependency constraint statement is via
the use of the macro � where, assuming that � and � are legal statements
and � and � 0 are temporal terms,

[�]�� [� 0]�

denotes the dependency constraint which states that if � changes value
from false to true from � �1 to � then � will become true at � 0. Recall that
[�]�� [� 0]� has an equivalent expansion as

([� � 1]:� ^ [�]� ! X([� 0]�)) ^ [�]�! [� 0]�:

17

The intuition behind the representation is that an explicit change in value(s)
of features in the trigger of a dependency constraint permit the features in
the consequent � to change value (the 1st conjunct). What those values are
is dependent on the material implication implicit in the constraint (the 2nd
conjunct) and perhaps other constraints in the narrative. This expansion
reects a number of intuitions one generally has about causal dependencies
such as that the material implication is entailed by the causal rule.

Various restrictions are sometimes placed on �, �, and � and � 0 which reect
the temporal structure being used or allowable sequences of quanti�ers. For
example, when using dependency constraints to represent causal dependen-
cies, the additional constraint that � � � 0 might be enforced.

In later versions of TAL, we have often used combinations of the CT , CF ,
C, R, I , and X operators instead of � which provide for larger variation
and subtlety in representing trigger conditions and e�ects for dependency
constraints. For example,

[�]�� [� 0]�

may also be represented as

(CT ([�]�) ! X([� 0]�)) ^ [�]�! [� 0]�;

or when one wants to weaken the trigger condition and the logical impact
of a dependency, the following might be used instead,

[�]� ^ CT ([�]�) ! R([� 0]):

As another example, in some cases we may want to maintain an exception
(e.g. false) to the default value (e.g. true) of a durational feature (e.g.
poss board). This could be represented as

[�]�! I([� 0]poss board =̂ false):

Note that unlike the previous example, the trigger condition for this depen-
dency constraint does not require that � change value from false to true
from � � 1 to � as was the case with the use of �.

As a general rule, some instance of the C operator is used in the antecedent
of a dependency constraint with the use of the I or R operator in the
consequent. This reects the intuition that explicit change causes potential
change. The general exception to this case is when the consequent of a
dependency constraint contains one or several durational features. In this
case, one may do without the explicit trigger, but generally use the I macro
in the consequent. The important point to note is that the axiom writer
has a large degree of freedom as regards speci�cation of trigger conditions
and e�ects.

The following dependency constraints are used in the current narrative:

//A person who has a gun cannot board any airplane.
dep1 8t; person [[t] inpocket(person; gun) !

I([t] 8airplane[:poss board(person; airplane)])]

//A person who is drunk may not be able to board an airplane.
dep2 8t; person [[t] drunk(person) !

X([t] 8airplane[:poss board(person; airplane)])]

//When an airplane moves, persons on board the airplane move.

18

dep3 8t; airplane; person; loc3 [
[t] onplane(airplane; person) ^ CT ([t] loc(airplane) =̂ loc3) !
R([t] loc(person) =̂ value(t; loc(airplane)))]

//When persons move, things in their pockets also move.
dep4 8t; person; pthing; loc3 [

[t] inpocket(person; pthing) ^ CT ([t] loc(person) =̂ loc3) !
R([t] loc(pthing) =̂ value(t; loc(person)))]

In the current narrative, the dependency constraints dep1 and dep2 describe
quali�cations to instances of action type acs4. Note that via the use of the
operators, I and X , subtle variations in the speci�cation of action quali�ca-
tion are made possible. In the case of dep1 for instance, the boarding action
would be de�nitely quali�ed and have no e�ects if the person boarding had
a gun in his pocket at the starting point of the action occurrence. On the
other hand, in the case of dep2, the degree of quali�cation is much weaker,
a drunk person may or may not be able to board. In fact, a later explicit
observation that the person was on board after the occurrence of a boarding
action in which the person was drunk would permit one to infer that the
boarding action was successful after all.

The dependency constraints dep3 and dep4 basically describe the rami�ca-
tions that ensue when certain objects are in a person's pocket who happens
to be in a plane. Provided a person is on a plane, when it changes loca-
tion, all objects in the persons pocket will also change location. Note the
composite trigger for each of the dependencies. Due to the use of the CT

macro-operator, the location of the plane and the person has to explicitly
change value from t� 1 to t, whereas the features onplane and inpocket pro-
vide the context in which the dependencies trigger due to change in feature
value.

7.5 The Narrative Speci�cation

The narrative speci�cation consists of observation statements, labeled using
the obs label, and action occurrence statements, labeled using the occ label.

Observation statements are generally intended to describe the values of fea-
tures at particular timepoints and generally consist of boolean combinations
of atoms using the "=̂" macro. Quanti�ers may be used, but none of the
operators I , R, or X are allowed. Although not present in this narrative,
observation statements can be used to describe additional temporal con-
straints of a global nature such as those used to constrain any temporal
terms describing the intervals in which actions occur. In this narrative,
the temporal terms used are numeric and are implicitly constrained to be
ordered by the background axiomatization of the linear discrete temporal
structure assumed.

Note also that observations may occur at any point in the narrative and not
only in the initial timepoint as in the example.

Action occurrence statements describe the occurrence and duration of ac-
tions in a narrative. Action occurrence statements, together with additional
temporal constraints in observation statements allow for the description of
partially-ordered sets of action occurrences with incompletely speci�ed du-

19

rations.9

obs1 [0] loc(vladimir) =̂ home1 ^ loc(gun) =̂ o�ce ^
loc(comb1) =̂ home1 ^ :drunk(vladimir)

obs2 [0] loc(erik) =̂ home2 ^ loc(comb2) =̂ home2 ^ :drunk(erik)
obs3 [0] loc(dimiter) =̂ home3 ^ loc(comb3) =̂ home3 ^ drunk(dimiter)
obs4 [0] loc(sas609) =̂ run609
occ1 [1; 2] put(vladimir; comb1; pocket1)
occ2 [1; 2] put(erik; comb2; pocket2)
occ3 [2; 4] travel(dimiter; home3; o�ce)
occ4 [3; 5] travel(vladimir; home1; o�ce)
occ5 [4; 6] travel(erik; home2; o�ce)
occ6 [6; 7] put(vladimir; gun; pocket1)
occ7 [5; 7] travel(dimiter; o�ce; airport)
occ8 [7; 9] travel(erik; o�ce; airport)
occ9 [8; 10] travel(vladimir; o�ce; airport)
occ10 [9; 10] board(dimiter; sas609)
occ11 [10; 11] board(vladimir; sas609)
occ12 [11; 12] board(erik; sas609)
occ13 [13; 16] y(sas609; run609; run609b)

7.5.1 Translating Action Occurrence Statements

In some uses of TAL, we introduce actions as 1st-class citizens in the ob-
ject language, providing a sort action and a predicate Occurs with type
time � time � action. In other uses, we can do without this additional
machinery. Due to this choice, there are two ways to translate an action
occurrence statement. In both cases, a set �scd in L(FL) is generated, al-
though the formulas are di�erent. In the former case, a set �occ in L(FL) is
also generated. To reect this there is an intermediate preprocessing phase
during translation which generates a set of labeled schedule statements in
L(ND).

Case 1: Actions are not 1st-Class Citizens

Before translating narrative statements from L(ND) to L(FL), an interme-
diate transformation is applied, where for each action occurrence statement
and its corresponding action type, a schedule statement is generated. For
instance, given the action occurrence statement

occ13 [13; 16] y(sas609; run609; run609b),

and the corresponding action type speci�cation acs1

acs1 [t1; t2] y(airplane; runway1; runway2);
[t1] loc(airplane) =̂ runway1 !
I((t1; t2) loc(airplane) =̂ air) ^ R([t2] loc(airplane) =̂ runway2),

the following schedule statement is generated:

scd13 [13] loc(sas609) =̂ run609!
I((13; 16) loc(sas609) =̂ air) ^ R([16] loc(sas609) =̂ run609b),

9Currently, action occurrence statements are simply action occurrence expres-
sions and we leave open the possibility of conditionalizing action occurrences for
future work.

20

and replaces the occurrence statement occ13 in the narrative description.
The translation of scd13 is then added to �scd.

Case 2: Actions are 1st-Class Citizens

In this case, the occurrence statement occ13 will be translated into an
Occurs formula using the translation rule in Section 5 and placed in �occ.
In addition, the occurrence statement is used to generate a slightly modi�ed
schedule statement:

scd13 8t1; t2; airplane; runway1; runway2:
[t1; t2] y(airplane; runway1; runway2) !
[t1] loc(airplane) =̂ runway1 !
I((t1; t2) loc(airplane) =̂ air) ^ R([t2] loc(airplane) =̂ runway2)

The translation of this version of scd13 is then added to �scd.

7.6 Restrictions on Narrative Syntax

This section is intended to provide a set of guidelines for expressing narrative
statements, some voluntary, others obligatory. Technical details can be
found in the following references [6, 23, 16].

7.6.1 Observation Statements

Observation statements can not contain any operator that translates into
a w� containing the predicate Occlude. This would rule out the use of the
operators I , R, or X . Observation statements are intended to be used for
two purposes.

� Expressing temporal constraints not easily included in the de�nitions
of action types. For instance, one might want to restrict a narrative's
action occurrences to be totally ordered. The total ordering would
be expressed as observations.

� Expressing direct observations about the possible or actual values of
uents at speci�c timepoints.

7.6.2 Action Occurrence Statements

Currently, action occurrence statements are restricted to be action occur-
rence expressions (see Section 3.4). In the future, we can foresee the need
to model conditionalized actions. In this case, the syntax can be extended
in a straightforward manner.

7.6.3 Action Type Statements

To simplify the discussion, assume that action type statements have the
form �! �.10

10More complicated forms are permitted for both action type statements and
dependency constraint statements and the restrictions would be modi�ed accord-
ingly. Details may be found in our other papers.

21

In order to ensure that predicate completion techniques can be applied to
the occlusion predicate in the theory in L(FL) that results from translating
the narrative description in L(ND) the following obligatory restrictions are
placed on action type statements:

� The operators I , R, or X can not be used in the antecedent � of an
action type statement.

� The use of disjunction (either explicit or implicit) in the consequent
� of the action type statement can only be used in the scope of the
I , R, or X operator.

� The use of an existentially quanti�ed variable, quanti�ed outside the
scope of an I , R, or X operator, when used in the scope of the
operator, may only be used in a feature term in the r.h.s. of the value
operator (i.e. =̂). Existentially quanti�ed variables both quanti�ed
and used outside of the scope of the I , R, or X operator have no
restrictions.

� Universally quanti�ed variables have no restrictions.

Generally, the e�ects of actions should always be in the scope of either an
I , R or X operator with no implicit or explicit application of negation to
any of these operators. It is sometimes useful to express part of the e�ect
outside of the scope. Assuming that the duration of an action is [t; t0], the
preconditions to an action are restricted to holding at timepoint t.

7.6.4 Domain Constraint Statements

Domain constraint statements are intended to express logical constraints
between uents true in every state. Domain constraint statements can not
contain any operator that translates into a w� containing the predicate
Occlude. This would rule out the use of the operators I , R, or X . Other
than that, there really aren't any restrictions.

7.6.5 Dependency Constraint Statements

To simplify the discussion, assume that dependency constraint statements
have the form �! �.

In order to ensure that predicate completion techniques can be applied to
the occlusion predicate in the theory in L(FL) that results from translating
the narrative description in L(ND) the following obligatory restrictions are
placed on dependency constraint statements:

� The operators I , R, or X can not be used in the antecedent � of a
dependency constraint.

� The use of disjunction (either implicit or explicit) in the consequent
� of the dependency constraint can only be used in the scope of the
I , R, or X operator.

� The use of an existentially quanti�ed variable, quanti�ed outside the
scope of an I , R, or X operator, when used in the scope of the
operator, may only be used in a feature term in the r.h.s. of the value

22

operator (i.e. =̂). Existentially quanti�ed variables both quanti�ed
and used outside of the scope of the I , R, or X operator have no
restrictions.

� Universally quanti�ed variables have no restrictions.

Generally, the e�ects of dependency constraints should always be in the
scope of either an I , R or X operator with no implicit or explicit application
of negation to any of these operators. It is sometimes useful to express part
of the e�ect outside of the scope. A large degree of freedom is o�ered in
regard to triggering conditions for dependency constraints and we leave the
degree of freedom up to the discretion of the axiom writer.

7.6.6 Temporal Constraint Statements

Temporal constraints can be found in a number of di�erent statements in a
narrative. The only restrictions we place on the use of temporal constraints
is that the temporal terms and operators used directly reect usage in the
temporal base structure in L(FL) to which they are translated.

8 Previous Work

In this section, we provide an annotated list of references pertaining to pre-
vious work done in the context of TAL. Many of the technical details, proofs,
speci�c logics and proposals for solving the frame, rami�cation, quali�ca-
tion, and action modeling problems are contained in this body of work.

� Sandewall { [1988-1998] The inspiration and origins of work with
TAL begin with the body of work initiated by Sandewall and collect-
ed in the Features and Fluents (F&F) monograph [30]. For details
concerning this work and later developments, we refer the reader to
a concurrent article by Sandewall in this special series of papers in
ETAI [31] containing a more exhaustive list of references pertaining
to F&F and ASM.

� Doherty [5] { [1994] Doherty focuses on one of the 8 de�nitions of pref-
erential entailment considered in F&F called PMON. In this paper, he
provides a syntactic characterization of PMON in a many-sorted logic
using pointwise circumscription. He shows that a particular class of
narratives expressed using circumscribed theories can be reduced to
logically equivalent 1st-order theories.

� Doherty [4] { [1994] An extended technical report subsuming the
work in Doherty [5], provides additional characterizations of PMON
in terms of standard predicate circumscription, predicate completion,
and an algorithm used to avoid circumscription altogether which gen-
erates a de�nition of the Occlude predicate via syntactic transforma-
tions on a narrative description. The report also contains an appendix
of all the benchmark narratives considered in Sandewall [30].

� Doherty and Lukaszewicz [14] { [1994] In this paper, we provide syn-
tactic characterizations of 7 out of the 9 de�nitions of preferential
entailment considered in F&F, using circumscription.

23

� Doherty and Peppas [13] { [1995] In this paper, we incorporate the
use of primary and secondary uents to model a particular class of
indirect e�ects. What is perhaps more interesting, is the attempt to
set up a framework for comparing logics such as PMON which use
linear discrete time structures with the situation calculus which uses
branching time.

� Karlsson [18] { [1995] In Karlsson's Licentiate Thesis, he considers
how to formally characterize di�erent modal truth criteria used in
planning algorithms such as TWEAK and NONLIN. The formaliza-
tion is done using PMON as a basis. Additional publications by
Karlsson [19, 21] have extended this work.

� Doherty [6] { [1996] { (PMON+) This technical report contains a
detailed and somewhat pedantic account of both surface and base
languages for the �rst version of TAL. The purpose of the report
was to use it as a basis for implementation of speci�c TAL logics.
The report also contains an appendix of many benchmark narratives
speci�ed in TAL and continually discussed in the literature.

� Doherty, Lukaszewicz and Sza las [11, 12] { [1995,1997] In these pa-
pers, we develop a quanti�er elimination algorithm which generates
logically equivalent 1st-order formulas for a certain class of 2nd-order
formulas. The intent with the work was to study the possibility of
reducing other logics for action and change characterized in terms
of circumscriptive theories, thus making them amenable to classical
theorem proving techniques.

� Gustafsson and Doherty [17] { [1996] In this paper, we extend the
original solution to the frame problem used in TAL with the use
of causal constraints which takes us some of the way toward dealing
with the speci�cation of indirect e�ects of actions. Causal constraints
are now subsumed by later work using dependency constraints. This
paper also considers an example involving delayed e�ects of actions.

� Doherty, Lukaszewicz and Sza las [15] { [1996] In this paper, we con-
sider the relation between the automatic generation of a de�nition for
the Occlude predicate via circumscription reduction with the manual
generation of Explanation Closure axioms considered in Schubert [32].

� Doherty and Gustafsson [7] { [1997] This report contains a rejected
submission to AAAI97 which considers the problem of delayed e�ects
of actions, a problem we believe is much more di�cult than generally
assumed. It is a predecessor to Karlsson et al. [25] in which the rela-
tion between delays and concurrency mentioned in [17] is developed
in more detail.

� Karlsson [21] { [1997] In this paper, Karlsson investigates a number of
weaknesses in situation calculus and provides an alternative semantics
grounded in intuitions derived from work with TAL.

� Bj�areland and Karlsson [3] { [1997] This paper investigates the use
of regression operators as a means of doing inference in TAL related
formalisms. A detailed presentation of this approach and other ap-
proaches using tractable temporal logics can be found in Bj�areland [2].

� Karlsson, Gustafsson and Doherty [25] { [1998] This paper examines
the use of delayed e�ects of actions and various problems of interfer-
ence which arise.

24

� Doherty and Kvarnstr�om [8] { [1997] In this paper, we consider a
straightforward solution to simple forms of quali�cation. The key to
the solution is the use of what we call durational uents, �rst proposed
in Karlsson and Gustafsson [23].

� Karlsson and Gustafsson [24] { [1998] In this journal article, Karlsson
and Gustafsson tackle the problem of modeling concurrent actions and
the variety of interactions that may ensue between actions executing
concurrently. An earlier version of the article is presented in [23].

� Gustafsson [16] { [1998] In his Licentiate Thesis, Gustafsson pro-
vides a detailed study of extensions to TAL involving dependency
constraints, concurrency, and delayed e�ects of actions. The thesis
provides a more detailed investigation of some of the work published
in previous articles.

� Karlsson [22] { [1998] In this paper, Karlsson studies the possibility of
introducing narratives as 1st-class objects in the object language of a
logic whose semantics is related to that of TAL. This provides inter-
esting possibilities in the area of planning where one can reason about
the construction of narratives (i.e. plans) in the object language.

� Doherty, Lukaszewicz and E. Madali�nska-Bugai [10] { [1998] In this
paper, we study the relation between TAL and belief update. We
show that dependency constraints can be used to advantage when
dealing with integrity constraints in the context of belief update.

� Kvarnstr�om and Doherty { [1997-98] We have been working on the
design and implementation of an on-line research tool which imple-
ments a theorem prover for a restricted fragment of the logic in TAL
considered in this article. The project is called VITAL which stands
for Visualization and Implementation of Temporal Action Logics. The
tool is implemented in Java, is delivered as a Marimba Castanet chan-
nel, and can be accessed via the WWW. See
http://anton.ida.liu.se/vital/ for details.

� Doherty and Kvarnstr�om [9] { [1999] In this paper, we present a new
forward chaining planner, TALplanner, based on ideas due to Bacchus
and Kabanza [1], where domain-dependent search control knowledge
represented as temporal formulas in TAL is used to e�ectively control
forward chaining. The planner is implemented and has been tested on
a number of benchmarks with impressive results compared to other
planners tested on the same benchmarks.

Many of our papers and software implementations can be found at11 :

� http://www.ida.liu.se/labs/kplab/

� http://www.ida.liu.se/labs/kplab/projects/dls/

� http://anton.ida.liu.se/vital/

� http://www.ida.liu.se/publications/

� http://www.ida.liu.se/ext/pur/enter/

11An extended version of this paper and a new version of the sur-
face and base languages for TAL can soon be found at the following site:
http://www.ida.liu.se/ext/cgi-bin/epa/cis/.

25

Appendix 1: Narrative in L(ND)

DOMAIN SPECIFICATION

domain thing = {gun, comb1, comb2, comb3,

vladimir, dimiter, erik, sas609}

domain location = {home1, home2, home3, office,

airport, run609, run609b, air}

domain runway = location [run609, run609b]

domain airplane = thing [sas609]

domain person = thing [vladimir - erik]

domain pthing = thing [gun, comb1 - comb3]

domain pocket = {pocket1, pocket2, pocket3}

feature loc(thing): location showname

feature inpocket(person,pthing): boolean

feature poss_board(person,airplane): boolean

feature drunk(person): boolean

feature onplane(airplane,person): boolean

action put(person, pthing, pocket)

action travel(person, location, location)

action fly(airplane, runway, runway)

action board(person, airplane)

PERSISTENCE STATEMENTS

per1 8t; thing [true! Per(t + 1; loc(thing))]
per2 8t; person; pthing [true! Per(t + 1; inpocket(person; pthing))]
per3 8t; person; airplane [

true! Dur(t; poss board(person; airplane); true)]
per4 8t; person [true! Per(t + 1; drunk(person))]
per5 8t; airplane; person [true! Per(t + 1; onplane(airplane; person))]

THE NARRATIVE: OBSERVATIONS, ACTION

OCCURRENCES AND TIMING

obs1 [0] loc(vladimir) =̂ home1 ^ loc(gun) =̂ o�ce ^
loc(comb1) =̂ home1 ^ :drunk(vladimir)

obs2 [0] loc(erik) =̂ home2 ^ loc(comb2) =̂ home2 ^ :drunk(erik)
obs3 [0] loc(dimiter) =̂ home3 ^ loc(comb3) =̂ home3 ^ drunk(dimiter)
obs4 [0] loc(sas609) =̂ run609
occ1 [1; 2] put(vladimir; comb1; pocket1)
occ2 [1; 2] put(erik; comb2; pocket2)
occ3 [2; 4] travel(dimiter; home3; o�ce)
occ4 [3; 5] travel(vladimir; home1; o�ce)
occ5 [4; 6] travel(erik; home2; o�ce)
occ6 [6; 7] put(vladimir; gun; pocket1)
occ7 [5; 7] travel(dimiter; o�ce; airport)
occ8 [7; 9] travel(erik; o�ce; airport)
occ9 [8; 10] travel(vladimir; o�ce; airport)
occ10 [9; 10] board(dimiter; sas609)
occ11 [10; 11] board(vladimir; sas609)
occ12 [11; 12] board(erik; sas609)
occ13 [13; 16] y(sas609; run609; run609b)

ACTION TYPES

acs1 [t1; t2] y(airplane; runway1; runway2);
[t1] loc(airplane) =̂ runway1 !

26

I((t1; t2) loc(airplane) =̂ air) ^ R([t2] loc(airplane) =̂ runway2)

acs2 [t1; t2] put(person; pthing; pocket);
[t1] loc(person) =̂ value(t1; loc(pthing)) !
R((t1; t2] inpocket(person; pthing))

acs3 [t1; t2] travel(person; loc1; loc2); [t1] loc(person) =̂ loc1 !
R([t2] loc(person) =̂ loc2)

acs4 [t1; t2] board(person; airplane);
[t1] poss board(person; airplane) ^ loc(person) =̂ airport!
R([t2] loc(person) =̂ value(t2; loc(airplane)) ^
onplane(airplane; person))

DOMAIN CONSTRAINTS

//A pthing cannot be in two pockets at the same time.
dom1 8t; pthing1; person1; person2 [:(person1 = person2) ^

[t] inpocket(person1; pthing1) ! [t] :inpocket(person2; pthing1)]

//A person cannot be on board two airplanes at the same time.
dom2 8t; person1; airplane1; airplane2 [:(airplane1 = airplane2) ^

[t] onplane(airplane1; person1) ! [t] :onplane(airplane2; person1)]

DEPENDENCY CONSTRAINTS

//A person who has a gun cannot board any airplane.
dep1 8t; person [[t] inpocket(person; gun) !

I([t] 8airplane[:poss board(person; airplane)])]

//A person who is drunk may not be able to board an airplane.
dep2 8t; person [[t] drunk(person) !

X([t] 8airplane[:poss board(person; airplane)])]

//When an airplane moves, persons on board the airplane move.
dep3 8t; airplane; person; loc3 [

[t] onplane(airplane; person) ^ CT ([t] loc(airplane) =̂ loc3) !
R([t] loc(person) =̂ value(t; loc(airplane)))]

//When persons move, things in their pockets also move.
dep4 8t; person; pthing; loc3 [

[t] inpocket(person; pthing) ^ CT ([t] loc(person) =̂ loc3) !
R([t] loc(pthing) =̂ value(t; loc(person)))]

INTERMEDIATE SCHEDULE STATEMENTS

The following intermediate schedule statements are generated from the
action type speci�cations.
scd1 8t1; t2; airplane; runway1; runway2:

[t1; t2] y(airplane; runway1; runway2) !
[t1] loc(airplane) =̂ runway1 !
I((t1; t2) loc(airplane) =̂ air) ^ R([t2] loc(airplane) =̂ runway2)

scd2 8t1; t2; person; pthing; pocket: [t1; t2] put(person; pthing; pocket) !
[t1] loc(person) =̂ value(t1; loc(pthing)) !
R((t1; t2] inpocket(person; pthing))

scd3 8t1; t2; person; loc1; loc2: [t1; t2] travel(person; loc1; loc2) !
[t1] loc(person) =̂ loc1 ! R([t2] loc(person) =̂ loc2)

scd4 8t1; t2; person; airplane: [t1; t2] board(person; airplane) !
[t1] poss board(person; airplane) ^ loc(person) =̂ airport!
R([t2] loc(person) =̂ value(t2; loc(airplane)) ^
onplane(airplane; person))

27

Appendix 2: Narrative in L(FL)

PERSISTENCE STATEMENTS

per1 8t; thing; v [Holds(t; loc(thing); v)�Holds(t + 1; loc(thing); v) !
Occlude(t + 1; loc(thing))]

per2 8t; person; thing; v [Holds(t; inpocket(person; thing); v)�
Holds(t + 1; inpocket(person; thing); v) !
Occlude(t + 1; inpocket(person; thing))]

per3 8t; person; airplane [:Holds(t; poss board(person; airplane); true) !
Occlude(t; poss board(person; airplane))]

per4 8t; person; v [Holds(t; drunk(person); v)�
Holds(t + 1; drunk(person); v) ! Occlude(t + 1; drunk(person))]

per5 8t; airplane; person; v [Holds(t; onplane(airplane; person); v)�
Holds(t + 1; onplane(airplane; person); v) !
Occlude(t + 1; onplane(airplane; person))]

THE NARRATIVE: OBSERVATIONS, ACTION

OCCURRENCES AND TIMING

obs1 Holds(0; loc(vladimir); home1) ^ Holds(0; loc(gun); o�ce) ^
Holds(0; loc(comb1); home1) ^ :Holds(0; drunk(vladimir); true)

obs2 Holds(0; loc(erik); home2) ^ Holds(0; loc(comb2); home2) ^
:Holds(0; drunk(erik); true)

obs3 Holds(0; loc(dimiter); home3) ^ Holds(0; loc(comb3); home3) ^
Holds(0; drunk(dimiter); true)

obs4 Holds(0; loc(sas609); run609)
occ1 Occurs(1; 2; put(vladimir; comb1; pocket1))
occ2 Occurs(1; 2; put(erik; comb2; pocket2))
occ3 Occurs(2; 4; travel(dimiter; home3; o�ce))
occ4 Occurs(3; 5; travel(vladimir; home1; o�ce))
occ5 Occurs(4; 6; travel(erik; home2; o�ce))
occ6 Occurs(6; 7; put(vladimir; gun; pocket1))
occ7 Occurs(5; 7; travel(dimiter; o�ce; airport))
occ8 Occurs(7; 9; travel(erik; o�ce; airport))
occ9 Occurs(8; 10; travel(vladimir; o�ce; airport))
occ10 Occurs(9; 10; board(dimiter; sas609))
occ11 Occurs(10; 11; board(vladimir; sas609))
occ12 Occurs(11; 12; board(erik; sas609))
occ13 Occurs(13; 16; y(sas609; run609; run609b))

SCHEDULE STATEMENTS

scd1 8t1; t2; airplane; runway1; runway2 [
Occurs(t1; t2; y(airplane; runway1; runway2)) !
(Holds(t1; loc(airplane); runway1) ! 8t [t1 < t ^ t < t2 !
Holds(t; loc(airplane); air) ^Occlude(t; loc(airplane))] ^
Holds(t2; loc(airplane); runway2) ^Occlude(t2; loc(airplane)))]

scd2 8t1; t2; person; pthing; pocket [
Occurs(t1; t2; put(person; pthing; pocket)) !
(Holds(t1; loc(person); val(t1; loc(pthing))) !
Holds(t2; inpocket(person; pthing); true) ^
Occlude(t2; inpocket(person; pthing)))]

scd3 8t1; t2; person; loc1; loc2 [Occurs(t1; t2; travel(person; loc1; loc2)) !
(Holds(t1; loc(person); loc1) !
Holds(t2; loc(person); loc2) ^Occlude(t2; loc(person)))]

28

scd4 8t1; t2; person; airplane [Occurs(t1; t2; board(person; airplane)) !
Holds(t1; poss board(person; airplane); true) ^
Holds(t1; loc(person); airport) !
Holds(t2; loc(person); val(t2; loc(airplane))) ^
Holds(t2; onplane(airplane; person); true) ^
Occlude(t2; loc(person)) ^Occlude(t2; onplane(airplane; person))]

DOMAIN CONSTRAINTS

dom1 8t; pthing1; person1; person2 [:(person1 = person2) ^
Holds(t; inpocket(person1; pthing1); true) !
:Holds(t; inpocket(person2; pthing1); true)]

dom2 8t; person1; airplane1; airplane2 [:(airplane1 = airplane2) ^
Holds(t; onplane(airplane1; person1); true) !
:Holds(t; onplane(airplane2; person1))]

DEPENDENCY CONSTRAINTS

dep1 8t; person [Holds(t; inpocket(person; gun); true) !
8airplane [:Holds(t; poss board(person; airplane); true)] ^
8airplane [Occlude(t; poss board(person; airplane))]]

dep2 8t; person [Holds(t; drunk(person); true) !
8airplane [Occlude(t; poss board(person; airplane))]]

dep3 8t; airplane; person; loc3 [Holds(t; onplane(airplane; person); true) ^
Holds(t; loc(airplane); loc3) ^
8u [t = u + 1 ! :Holds(u; loc(airplane); loc3)] !
Holds(t; loc(person); val(t; loc(airplane))) ^Occlude(t; loc(person))]

dep4 8t; person; pthing; loc3 [Holds(t; inpocket(person; pthing); true) ^
Holds(t; loc(person); loc3) ^
8u [t = u + 1 ! :Holds(u; loc(person); loc3)] !
Holds(t; loc(pthing); val(t; loc(person))) ^Occlude(t; loc(pthing))]

29

Appendix 3

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

.
.

.

d
ru

n
k

(d
im

it
e

r)
:

V
a

lu
e

d
ru

n
k

(e
ri

k
):

V
a

lu
e

d
ru

n
k

(v
la

d
im

ir
):

V
a

lu
e

in
p

o
c

k
e

t(
d

im
it

e
r,

 c
o

m
b

1
):

V
a

lu
e

in
p

o
c

k
e

t(
d

im
it

e
r,

 c
o

m
b

2
):

V
a

lu
e

in
p

o
c

k
e

t(
d

im
it

e
r,

 c
o

m
b

3
):

V
a

lu
e

in
p

o
c

k
e

t(
d

im
it

e
r,

 g
u

n
):

V
a

lu
e

in
p

o
c

k
e

t(
e

ri
k

,
c

o
m

b
1

):
V

a
lu

e

in
p

o
c

k
e

t(
e

ri
k

,
c

o
m

b
2

):
V

a
lu

e

in
p

o
c

k
e

t(
e

ri
k

,
c

o
m

b
3

):
V

a
lu

e

in
p

o
c

k
e

t(
e

ri
k

,
g

u
n

):
V

a
lu

e

in
p

o
c

k
e

t(
v

la
d

im
ir

,
c

o
m

b
1

):
V

a
lu

e

in
p

o
c

k
e

t(
v

la
d

im
ir

,
c

o
m

b
2

):
V

a
lu

e

in
p

o
c

k
e

t(
v

la
d

im
ir

,
c

o
m

b
3

):
V

a
lu

e

in
p

o
c

k
e

t(
v

la
d

im
ir

,
g

u
n

):
V

a
lu

e

lo
c

(c
o

m
b

1
):

V
a

lu
e

ho
m

e1
ho

m
e1

ho
m

e1
ho

m
e1

ho
m

e1
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt

lo
c

(c
o

m
b

2
):

V
a

lu
e

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
ru

n
6

0
9

ru
n

6
0

9
a

ir
a

ir
ru

n
6

0
9

b
ru

n
6

0
9

b

lo
c

(c
o

m
b

3
):

V
a

lu
e

ho
m

e3
ho

m
e3

ho
m

e3
ho

m
e3

*
2

*
*

2
*

*
2

*
*

2
*

*
2

*
*

2
*

*
3

*
*

3
*

*
3

*
*

3
*

*
3

*
*

3
*

*
3

*
*

3
*

lo
c

(d
im

it
e

r)
:

V
a

lu
e

ho
m

e3
ho

m
e3

ho
m

e3
ho

m
e3

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
*

2
*

*
2

*
*

2
*

*
2

*
*

2
*

*
2

*
*

2
*

*
2

*

lo
c

(e
ri

k
):

V
a

lu
e

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
ru

n
6

0
9

ru
n

6
0

9
a

ir
a

ir
ru

n
6

0
9

b
ru

n
6

0
9

b

lo
c

(g
u

n
):

V
a

lu
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

lo
c

(s
a

s
6

0
9

):
V

a
lu

e
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
a

ir
a

ir
ru

n
6

0
9

b
ru

n
6

0
9

b

lo
c

(v
la

d
im

ir
):

V
a

lu
e

ho
m

e1
ho

m
e1

ho
m

e1
ho

m
e1

ho
m

e1
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt

o
n

p
la

n
e

(s
a

s
6

0
9

,
d

im
it

e
r)

:
V

a
lu

e

o
n

p
la

n
e

(s
a

s
6

0
9

,
e

ri
k

):
V

a
lu

e

o
n

p
la

n
e

(s
a

s
6

0
9

,
v

la
d

im
ir

):
V

a
lu

e

p
o

s
s

_
b

o
a

rd
(d

im
it

e
r,

 s
a

s
6

0
9

):
V

a
lu

e

p
o

s
s

_
b

o
a

rd
(e

ri
k

,
s

a
s

6
0

9
):

V
a

lu
e

p
o

s
s

_
b

o
a

rd
(v

la
d

im
ir

,
s

a
s

6
0

9
):

V
a

lu
e

p
u

t(
v

la
d

im
ir

,c
o

m
b

1
,p

o
c

k
e

t1
)

p
u

t(
e

ri
k

,c
o

m
b

2
,p

o
c

k
e

t2
)

tr
a

v
e

l(
d

im
it

e
r,

h
o

m
e

3
,o

ff
ic

e
)

tr
a

v
e

l(
v

la
d

im
ir

,h
o

m
e

1
,o

ff
ic

e
)

tr
a

v
e

l(
e

ri
k

,h
o

m
e

2
,o

ff
ic

e
)

p
u

t(
v

la
d

im
ir

,g
u

n
,p

o
c

k
e

t1
)

tr
a

v
e

l(
d

im
it

e
r,

o
ff

ic
e

,a
ir

p
o

rt
)

tr
a

v
e

l(
e

ri
k

,o
ff

ic
e

,a
ir

p
o

rt
)

tr
a

v
e

l(
v

la
d

im
ir

,o
ff

ic
e

,a
ir

p
o

rt
)

b
o

a
rd

(d
im

it
e

r,
s

a
s

6
0

9
)

b
o

a
rd

(v
la

d
im

ir
,s

a
s

6
0

9
)

b
o

a
rd

(e
ri

k
,s

a
s

6
0

9
)

fl
y

(s
a

s
6

0
9

,r
u

n
6

0
9

,r
u

n
6

0
9

b
)

Red and green stand for false and true values for boolean uents, gray
stands for true or false, while black after gray stands for \do not know the
value, but will take the value gray ends up being". \�2�" means 2 possible
values. They are not shown in the diagram due to lack of space. The
diagram is automatically generated using the VITAL tool. You should
have a colored copy of Appendix 3.

30

References

[1] F. Bacchus and F. Kabanza. Using temporal logics to express search
control knowledge for planning. Arti�cial Intelligence, 1998.
Submitted for publication.

[2] M. Bj�areland. Two aspects of automating logics of action and change:
Regression and tractability. Master's thesis, Link�oping University,
1998. Thesis No 674. LiU-Tek-Lic 1998:09.

[3] M. Bj�areland and L. Karlsson. Reasoning by regression: Pre- and
postdiction procedures for logics of action and change with
nondeterminism. In Proceedings of the 15th International Joint
Conference on Art�cial Intelligence (IJCAI'97), Nagoya, Japan,
August 1997. Morgan Kaufmann.

[4] P. Doherty. Notes on PMON circumscription. Technical Report
LITH-IDA-94-43, Dept. of Computer and Information Science,
Link�oping University, Link�oping, Sweden, December 1994.

[5] P. Doherty. Reasoning about action and change using occlusion. In
Proceedings of the 11th European Conference on Arti�cial Intelligence
(ECAI'94), Aug. 8-12, Amsterdam, pages 401{405, 1994.

[6] P. Doherty. PMON+: A uent logic for action and change. formal
speci�cation, version 1.0. Technical Report R-96-33, Dept. of
Computer and Information Science, Link�oping University, 1996. Also
published in Link�oping Electronic Articles in Computer and
Information Science, Vol.2(1997):nr020.
http://www.ep.liu.se/ea/cis/1997/020/.

[7] P. Doherty and J. Gustafsson. Delayed e�ects of actions = direct
e�ects + causal rules. In Link�oping Electronic Articles in Computer
and Information Science. Link�oping University Electronic Press,
1998. Available at: http://www.ep.liu.se/ea/cis/1998/001/.

[8] P. Doherty and J. Kvarnstr�om. Tackling the quali�cation problem
using uent dependency constraints: Preliminary report. In 5th
International Workshop on Temporal Representation and Reasoning
(TIME'98), 1998.

[9] P. Doherty and J. Kvarnstr�om. TALplanner: An empirical
investigation of a temporal logic-based forward chaining planner. In
6th International Workshop on Temporal Representation and
Reasoning (TIME'99), pages 47{54, 1999.

[10] P. Doherty, W. Lukaszewicz, and E. Madali�nska-Bugaj. The PMA
and relativizing change for action update. In Proceedings of the 6th
International Conference on Principles of Knowledge Representation
and Reasoning (KR'98), 1998.

[11] P. Doherty, W. Lukaszewicz, and A. Sza las. Computing
circumscription revisited: Preliminary report. In Proceedings of the
14th International Joint Conference on Arti�cial Intelligence
(IJCAI'95), volume 2, pages 1502{1508, 1995.

[12] P. Doherty, W. Lukaszewicz, and A. Sza las. Computing
circumscription revisited: A reduction algorithm. Journal of
Automated Reasoning, 18:297{336, 1997.

31

[13] P. Doherty and P. Peppas. A comparison between two approaches to
rami�cation: PMON(R) and AR0. In X. Yao, editor, Proceedings of
the 8th Australian Joint Conference on Arti�cial Intelligence, pages
267{274. World Scienti�c, 1995.

[14] P. Doherty and W. Lukaszewicz. Circumscribing features and uents.
In D. Gabbay and H. J. Ohlbach, editors, Proceedings of the 1st
International Conference on Temporal Logic, volume 827 of Lecture
Notes in Arti�cial Intelligence, pages 82{100. Springer, 1994.

[15] P. Doherty, W. Lukaszewicz, and A. Sza las. Explaining explanation
closure. In Proceedings of the 9th International Symposium on
Methodologies for Intelligent Systems (ISMIS'96), 1996.

[16] J. Gustafsson. Extending temporal action logic for rami�cation and
concurrency. Master's thesis, Link�oping University, 1998. Thesis No
719. LiU-Tek-Lic 1998:54.

[17] J. Gustafsson and P. Doherty. Embracing occlusion in specifying the
indirect e�ects of actions. In Proceedings of the 5th International
Conference on Principles of Knowledge Representation and Reasoning
(KR'96), 1996.

[18] L. Karlsson. Speci�cation and synthesis of plans using the features
and uents framework. Master's thesis, Link�oping University, 1995.
Thesis No 469. LiU-Tek-Lic 1995:01.

[19] L. Karlsson. Causal links planning and the systematic approach to
action and change. In Proceedings of the AAAI 96 Workshop on
Reasoning about actions, planning and control: bridging the gap,
Portland, Oregon, August 1996. AAAI Press.

[20] L. Karlsson. Planning, truth criteria and the systematic approach to
action and change. In Proceedings of the 9th International Symposium
on Methodologies for Intelligent Systems (ISMIS'96), Lecture Notes
for Arti�cial Intelligence. Springer Verlag, 1996.

[21] L. Karlsson. Reasoning with incomplete initial information and
nondeterminism in situation calculus. In Proceedings of the 15th
International Joint Conference on Arti�cial Intelligence, (IJCAI'97),
1997.

[22] L. Karlsson. Anything can happen: on narratives and hypothetical
reasoning. In Proceedings of the 6th International Conference on
Principles of Knowledge Representation and Reasoning (KR'98).
Morgan Kaufmann, 1998.

[23] L. Karlsson and J. Gustafsson. Reasoning about actions in a
multi-agent environment. In Link�oping Electronic Articles in
Computer and Information Science, volume 2. Link�oping University
Electronic Press, 1997. Available at:
http://www.ep.liu.se/ea/cis/1997/014/.

[24] L. Karlsson and J. Gustafsson. Reasoning about concurrent
interaction. Journal of Logic and Computation, 1999.

[25] L. Karlsson, J. Gustafsson, and P. Doherty. Delayed e�ects of actions.
In Proceedings of the 13th European Conference on Arti�cial
Intelligence, (ECAI'98), pages 542{546, 1998.

32

[26] J. Kvarnstr�om and P. Doherty. VITAL research tool, 1997. Available
at: http://anton.ida.liu.se/vital/vital.html.

[27] W. Lukaszewicz. Non-Monotonic Reasoning { Formalization of
Commonsense Reasoning. Ellis Horwood Series in Arti�cial
Intelligence. Ellis Horwood, 1990.

[28] J. McCarthy. Circumscription { a form of non-monotonic reasoning.
Arti�cial Intelligence, 13:27{39, 1980.

[29] E. Sandewall. Filter preferential entailment for the logic of action and
change. In Proceedings of the 11th International Joint Conference on
Arti�cial Intelligence, (IJCAI'89), 1989.

[30] E. Sandewall. Features and Fluents: A Systematic Approach to the
Representation of Knowledge about Dynamical Systems. Oxford
University Press, 1994.

[31] E. Sandewall. Cognitive robotics and its metatheory. Link�oping
University E-Press, volume 2, 1998.

[32] L. Schubert. Monotonic solution of the frame problem in situation
calculus. In H. E. Kyburg, R. P. Loui, and G. N. Carlson, editors,
Knowledge Representation and Defeasible Reasoning, pages 23{67.
Kluwer, 1990.

