
Stream-Based Middleware Support for Embedded Reasoning∗

Fredrik Heintz, Jonas Kvarnström and Patrick Doherty
Dept. of Computer and Information Science
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Abstract

For autonomous systems such as unmanned aerial vehicles to
successfully perform complex missions, a great deal of em-
bedded reasoning is required at varying levels of abstraction.
In order to make use of diverse reasoning modules in such
systems, issues of integration such as sensor data flow and
information flow between such modules has to be taken into
account. The DyKnow framework is a tool with a formal
basis that pragmatically deals with many of the architectural
issues which arise in such systems. This includes a system-
atic stream-based method for handling the sense-reasoning
gap, caused by the wide difference in abstraction levels be-
tween the noisy data generally available from sensors and the
symbolic, semantically meaningful information required by
many high-level reasoning modules. DyKnow has proven to
be quite robust and widely applicable to different aspects of
hybrid software architectures for robotics.
In this paper, we describe the DyKnow framework and show
how it is integrated and used in unmanned aerial vehicle sys-
tems developed in our group. In particular, we focus on issues
pertaining to the sense-reasoning gap and the symbol ground-
ing problem and the use of DyKnow as a means of generat-
ing semantic structures representing situational awareness for
such systems. We also discuss the use of DyKnow in the con-
text of automated planning, in particular execution monitor-
ing.

Introduction
For autonomous systems such as unmanned aerial vehicles
(UAVs) to successfully perform complex missions, a great
deal of embedded reasoning is required. In order for this
reasoning to be grounded in the environment, it must be
firmly based on information gathered through the available
sensors. However, there is a wide gap in abstraction lev-
els between the noisy numerical data directly generated by
most sensors and the crisp symbolic information that many
reasoning functionalities assume to be available. We call this
the sense-reasoning gap.

Bridging this gap is a prerequisite for essential deliber-
ative reasoning functionalities such as planning, execution
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monitoring, and diagnosis to be able to reason about the cur-
rent development of dynamic and incompletely known envi-
ronments using representations grounded through sensing.
For example, when monitoring the execution of a plan, it is
necessary to continually collect information from the envi-
ronment to reason about whether the plan has the intended
effects.

However, creating a suitable bridge is a very challenging
problem. It requires constructing suitable representations of
information incrementally extracted from the environment.
This information must continuously be processed to gen-
erate information at increasing levels of abstraction while
maintaining the necessary correlation between the generated
information and the environment itself. The construction
typically requires a combination of a wide variety of meth-
ods, including standard functionalities such as signal and
image processing, state estimation, and information fusion
as well as application-specific approaches.

These and other forms of reasoning about information and
knowledge have traditionally taken place in tightly coupled
architectures on single computers. The current trend to-
wards more heterogeneous, loosely coupled, and distributed
systems necessitates new methods for connecting sensors,
databases, components responsible for fusing and refining
information, and components that reason about the sys-
tem and the environment. It also becomes less practical to
statically predefine exactly how the information processing
should be configured. Instead it is necessary to dynamically
tailor the processing based on the current task and require-
ments. When the task or the requirements change the config-
uration of the processing should change accordingly. It also
becomes harder to predict the computational load. Since al-
ways considering the worst case would waste too much re-
sources, the system must adapt the processing at run-time to
manage the fluctuating load.

To allow the sense-reasoning gap to be efficiently bridged
on a distributed robotic platform these issues must be taken
into consideration. An important problem is therefore how
to configure the manner in which information and knowl-
edge is processed and reasoned about in a context-dependent
manner to achieve high-level goals while globally optimiz-
ing the use of resources and the quality of the results.

To address these issues we have developed the stream-
based knowledge processing middleware framework Dy-



Know (Heintz & Doherty 2004; Heintz 2009) which is a
central component of our UAV architecture (Doherty et al.
2004; Doherty 2004).

Desired Properties
A wide range of functionality could conceivably be provided
by middleware for embedded reasoning, and no single def-
inition will be suitable for all systems. As a starting point,
we present the requirements that have guided our work in
distributed UAV architectures. These requirements are not
binary in the sense that a system either satisfies them or not.
Instead, a system will satisfy each requirement to some de-
gree. Later, we will argue that DyKnow provides a signifi-
cant degree of support for each of the requirements.

Support integration of existing reasoning functionality.
The most fundamental property of middleware is that it sup-
ports interoperability. In the case of knowledge processing
middleware, the main goal is to facilitate the integration of
a wide variety of existing reasoning engines and sensors,
bridging the gap between the distinct types of information
required by and produced by such entities.

Support distributed sources and processing. Knowledge
processing middleware should permit the integration of in-
formation from distributed sources and the distribution of
processing across multiple computers. For UAVs, sources
may include color and thermal cameras, GPS sensors, and
laser range scanners as well as higher level geographical
information systems and declarative specifications of ob-
jects and their normal behaviors. Knowledge processing
middleware should be sufficiently flexible to allow the in-
tegration of such sources into a coherent processing system
while minimizing restrictions on connection topologies and
the type of information being processed.

Support quantitative and qualitative processing on many
levels of abstraction. In many applications there is a nat-
ural information abstraction hierarchy starting with quanti-
tative signals from sensors, through image processing and
anchoring, to representations of objects with both qualitative
and quantitative attributes, to high level events and situations
where objects have complex spatial and temporal relations.
Some of this information is quantitative, while some is qual-
itative. It should be possible to process information having
arbitrary forms at arbitrary levels of abstraction, incremen-
tally transforming it to forms suitable for various types of
low-level and high-level reasoning.

Support bottom-up data processing and top-down model-
based processing. While each process can be dependent on
“lower level” processes for its input, it should also be possi-
ble for its output to guide processing in a top-down fashion.
For example, if a vehicle is detected on a particular road seg-
ment, a vehicle model could be used to predict possible fu-
ture locations, thereby directing or constraining processing
on lower levels.

Support management of uncertainty. Uncertainty exists
not only at the quantitative sensor data level but also in the
symbolic identity of objects and in temporal and spatial as-
pects of events and situations. Therefore, middleware should
not be constrained to the use of a single approach to handling
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Figure 1: A prototypical knowledge process

uncertainty but should enable the combination and integra-
tion of different approaches in a way appropriate to each
application.

Support flexible configuration and reconfiguration. When
an agent’s resources are insufficient, either due to lack of
processing power or due to sensory limitations, various
forms of trade-offs may be required. For example, update
frequencies may be lowered, maximum permitted process-
ing delays may be increased, resource-hungry algorithms
may be dynamically replaced with more efficient but less ac-
curate ones, or the agent may focus its attention on only the
most important aspects of its current task. Reconfiguration
may also be necessary when the current context changes.

Provide a declarative specification of the information be-
ing generated and the information processing functionalities
available. An agent should be able to reason about trade-offs
and reconfiguration without outside help, which requires in-
trospective capabilities. Specifically, it must be possible to
determine what information is currently being generated as
well as the potential effects of a reconfiguration. The declar-
ative specification should provide sufficient detail to allow
the agent to make rational trade-off decisions.

DyKnow
DyKnow is a fully implemented stream-based knowledge
processing middleware framework providing both concep-
tual and practical support for structuring a knowledge pro-
cessing system as a set of streams and computations on
streams. Input can be provided by a wide range of dis-
tributed information sources on many levels of abstraction,
while output consists of streams representing for example
objects, attributes, relations, and events.

Knowledge processing for a physical agent is fundamen-
tally incremental in nature. Each part and functionality in
the system, from sensing up to deliberation, needs to receive
relevant information about the environment with minimal
delay and send processed information to interested parties
as quickly as possible. Rather than using polling, explicit
requests, or similar techniques, we have therefore chosen to
model and implement the required flow of data, information,
and knowledge in terms of streams, while computations are
modeled as active and sustained knowledge processes rang-
ing in complexity from simple adaptation of raw sensor data
to complex reactive and deliberative processes.

Streams lend themselves easily to a publish/subscribe
architecture. Information generated by a knowledge pro-
cess is published using one or more stream generators,
each of which has a (possibly structured) label serving as a



Chronicle 

Recognition
Symbolic reasoning

A B C
[0, 20] [5, 10]

[0, 10]
RecognitionRecognition

Qualitative Spatial 

Reasoning

Qualitative spatial relations

(close, behind, same_road, !)

Temporal Logic 
Geographical Geographical 

A B C

D E

[0, 10]

[10, 10]
[10, 20]

Reasoning Temporal Logic 

Progression

Geographical 
Information 

System
Car objects

Vision objects
Sensor

Anchoring

Image 

Processing

Camera state

Color camera

Thermal camera

Sensor
processing

Sensor

Helicopter State 

Estimation

Camera State 

Estimation

Helicopter

state

Camera state

GPS Pan-tilt unitIMU
Data flow

Process

GPS Pan-tilt unitIMU
Data flow

Figure 2: An overview of how the incremental processing required for a traffic surveillance task could be organized.

global identifier within a knowledge processing application.
Knowledge processes interested in a particular stream of in-
formation can subscribe to it using the label of the associated
stream generator, which creates a new stream without the
need for explicit knowledge of which process hosts the gen-
erator. Information produced by a process is immediately
provided to the stream generator, which asynchronously de-
livers it to all subscribers, leaving the knowledge process
free to continue its work. Using an asynchronous pub-
lish/subscribe pattern of communication decouples knowl-
edge processes in time, space, and synchronization (Eugster
et al. 2003), providing a solid foundation for distributed
knowledge processing applications.

Each stream is associated with a policy, a set of require-
ments on its contents. Such requirements may include the
fact that elements must arrive ordered by valid time, that
each value must constitute a significant change relative to
the previous value, that updates should be sent with a spe-
cific sample frequency, or that there is a maximum permitted
delay. Policies can also give advice on how these require-
ments should be satisfied, for example by indicating how to
handle missing or excessively delayed values. For introspec-
tion purposes, policies are declaratively specified.

To summarize, a knowledge processing application in Dy-
Know consists of a set of knowledge processes connected
by streams satisfying policies. An abstract view of a knowl-
edge process is shown in Figure 1. Each knowledge process
is an instantiation of a source or computational unit pro-
viding stream generators that generate streams. A source
makes external information available in the form of streams
while a computational unit refines and processes streams.
A formal language called KPL is used to write declarative
specifications of DyKnow applications (see (Heintz 2009;
Heintz, Kvarnström, & Doherty 2010) for details). The Dy-
Know service, which implements the DyKnow framework,
takes a set of KPL declarations and sets up the required pro-

cessing and communication infrastructure. Due to the use of
CORBA (Object Management Group 2008) for communi-
cation, knowledge processes are location-agnostic, provid-
ing support for distributed architectures running on multiple
networked computers.

Fig. 2 provides an overview of how part of the incremental
processing required for a traffic surveillance task could be
organized as a set of distinct DyKnow knowledge processes.

At the lowest level, a helicopter state estimation compo-
nent uses data from an inertial measurement unit (IMU) and
a global positioning system (GPS) to determine the current
position and attitude of the UAV. A camera state estimation
component uses this information, together with the current
state of the pan-tilt unit on which the cameras are mounted,
to generate information about the current camera state. The
image processing component uses the camera state to deter-
mine where the camera is currently pointing. Video streams
from the color and thermal cameras can then be analyzed
in order to generate vision percepts representing hypothe-
ses about moving and stationary physical entities, including
their approximate positions and velocities.

Symbolic formalisms such as chronicle recognition
(Ghallab 1996) require a consistent assignment of symbols,
or identities, to the physical objects being reasoned about
and the sensor data received about those objects. Image
analysis may provide a partial solution, with vision percepts
having symbolic identities that persist over short intervals
of time. However, changing visual conditions or objects
temporarily being out of view lead to problems that image
analysis cannot (and should not) handle. This is the task
of the anchoring system to be described in the next sec-
tion, which uses progression of formulas in a metric tempo-
ral logic to evaluate potential hypotheses about the observed
objects. The anchoring system also assists in object classi-
fication and in the extraction of higher level attributes of an
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object. For example, a geographic information system can
be used to determine whether an object is currently on a road
or in a crossing. Such attributes can in turn be used to de-
rive relations between objects, including qualitative spatial
relations such as beside(car1, car2) and close(car1, car2).
Concrete events corresponding to changes in such attributes
and predicates finally provide sufficient information for the
chronicle recognition system to determine when higher-level
events such as reckless overtakes occur.

Support for Anchoring
Most reasoning systems assume perfect knowledge about
the identity of objects. For example, a planner assumes that
all objects in its planning domain are distinct and unique.
An important problem, especially when bridging the sense-
reasoning gap, is therefore to detect objects in streams of
sensor data and to reason about their identities. The prob-
lem of how to create and maintain a consistent correla-
tion between symbolic representations of objects and sen-
sor data that is being continually collected about these ob-
jects is called the anchoring problem (Coradeschi & Saf-
fiotti 2003), which is a special case of the symbol grounding
problem (Harnad 1990). A concrete example is to detect and
track cars in a traffic monitoring application using a UAV
equipped with color and thermal cameras.

Tracking an object, such as a car, through a series of im-
ages is a classical problem. There are many effective solu-
tions for the case where the object is easily distinguishable
and can be tracked without interruptions. However, we must
also consider the case where an object is temporarily hidden
by obstacles (or tunnels in the case of traffic), and where
many similar objects may be present in the world. In this
case, pure image-based tracking is not a complete solution,
since it usually only considers the information available in
the image itself. A more robust approach would need to
actively reason about available knowledge of the world at
higher abstraction levels, such as the normative character-
istics of specific classes of physical objects. In the case of
traffic, this would include the layout of the road network and
the typical size, speed, and driving behavior of cars. It has
been argued that anchoring can be seen as an extension to

classical tracking approaches which handles missing data in
a principled manner (Fritsch et al. 2003).

Existing approaches to anchoring work under the limiting
assumption that each individual piece of sensor data, such as
a blob found in a single frame from a video camera, should
be anchored to a symbol in a single step. We believe that
much can be gained in terms of accuracy as well as speed
of recognition by taking advantage of the fact that one gen-
erally has access to a timed sequence, or stream, of sensor
data related to a particular object.

We have therefore extended DyKnow with a stream-based
hierarchical anchoring framework for incrementally anchor-
ing symbols to streams of sensor data (Heintz, Kvarnström,
& Doherty 2009). The anchoring process constructs and
maintains a set of object linkage structures representing the
best possible hypotheses at any time. The anchoring hy-
potheses are continually monitored and refined as more and
more information becomes available. Symbols can be asso-
ciated with an object at any level of classification, permitting
symbolic reasoning on different levels of abstraction.

An example hierarchy for the traffic monitoring scenario
can be seen in Fig. 3. A world object represents a physi-
cal object in the world. Its attributes are based on informa-
tion from one or more linked percepts and include the abso-
lute coordinates of the object in the physical world. World
objects could either be on-road objects moving along roads
or off-road objects not following roads. An on-road object
has attributes representing the road segment or crossing the
object occupies, making more qualitative forms of reason-
ing possible, and an improved position estimation which is
snapped to the road. Finally, an on-road object could be a
car, a motorcycle, or a truck. Each level in the hierarchy
adds more abstract and qualitative information while still
maintaining a copy of the attributes of the object it was de-
rived from. Thus, an on-road object contains both the origi-
nal position from the world object and the position projected
onto the road network.

Hypotheses about object types and identities must be able
to evolve over time. For example, while it might be deter-
mined quickly that a world object is an on-road object, more
time may be required to determine that it is in fact a car.
Also, what initially appeared to be a car might later turn out
to be better classified as a truck. To support incremental ad-
dition of information and incremental revision of hypothe-
ses, a single physical object is not represented as an indivis-
ible object structure but as an object linkage structure.

An object linkage structure consists of a set of objects
which are linked together (note that percepts are also consid-
ered to be objects). Each object has a type and is associated
with a symbol, and represents information about a particu-
lar physical object at a given level of abstraction. A symbol
is anchored if its object is part of an object linkage struc-
ture that is grounded in at least one percept. An example
is shown in Fig. 4, representing the hypothesis that vision
percept vp8, world object wo5, on-road object oo3, and car
object co2 all correspond to the same physical object.

Whenever a new object of a given type is generated, it
must be determined whether it also belongs to a particular
subtype in the hierarchy. For example, a new vision per-
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cept originating in image processing may be classified as
corresponding to a world object. In this case, it must also
be linked to a world object structure, thereby generating an
object linkage structure. However, it is essential for an-
choring that sensor data can be anchored even to symbols
/ objects for which no percepts have arrived for a period
of time. Thus, objects and their symbols are not imme-
diately removed when their associated percepts disappear,
and any new object at one level might correspond to either
a new object or an existing object at the next level. To re-
duce the computational cost, objects which are not likely
to be found again are removed. Currently we discard ob-
jects which have not been observed or anchored for a certain
application-dependent time.

Three conditions are used to determine when to add and
remove links between objects belonging to types A and B.
These conditions are written in an expressive temporal logic,
similar to the well known Metric Temporal Logic (Koymans
1990), and incrementally evaluated by DyKnow using pro-
gression over a timed state sequence.1

The unary establish condition expresses when an object
of type A, which may be a percept or a higher level object,
should be linked to a new object of type B. When a new ob-
ject of type A is created, the anchoring system immediately
begins evaluating this condition. If and when the condition
becomes true, a link to a new object of type B is created.
Concrete examples will be given below. This corresponds
to the Find functionality suggested by Coradeschi and Saf-
fiotti (Coradeschi & Saffiotti 2003), which takes a symbolic
description of an object and tries to anchor it in sensor data.

The binary reestablish condition expresses the condition
for an object of type A to be linked to a known object of
type B, as in the case where a new world object corresponds
to an existing on-road object that had temporarily been hid-
den by a bridge. When a new object of type A is created,
the anchoring system immediately begins to evaluate the re-
establish condition for every known object of type B that is
not linked to an object of type A. If and when one of these
conditions becomes true, a link is created between the asso-
ciated objects. This corresponds to the Reacquire function-
ality (Coradeschi & Saffiotti 2003).

While two objects are linked, the attributes of the more
specific object are computed using a DyKnow computa-
tional unit from the attributes of the less specific object, pos-
sibly together with information from other sources.

Finally, since observations are uncertain and classification

1Progression incrementally evaluates formulas in a state se-
quence. The result of progressing a formula through the first state
in a sequence is a new formula that holds in the remainder of the
state sequence iff the original formula holds in the complete state
sequence. If progression returns true (false), the entire formula
must be true (false), regardless of future states.

is imperfect, any link created between two objects is con-
sidered a hypothesis and is continually validated through a
maintain condition. Such conditions can compare the ob-
served behavior of an object with behavior that is normative
for its type, and possibly with behavior predicted in other
ways. For example, one might state that an on-road object
should remain continually on the road, maybe with occa-
sional shorter periods being observed off the road due to
sensor error.

If a maintain condition is violated, the corresponding link
is removed. However, all objects involved remain, enabling
re-classification and re-identification at a later time. The
state of an object having no incoming links will be predicted
based on a general model of how objects of this type nor-
mally behave. This corresponds to the Track functionality
(Coradeschi & Saffiotti 2003).

Example 1 Assume that the image processing system is
currently tracking a potential car represented by the vision
percept vp1 and that no other objects have been created.
Since there is a vision percept but no known world objects it
is enough to evaluate the establish condition on vp1.
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If the establish condition is eventually satisfied, a new
world object wo1 is created which is associated with vp1. As
long as wo1 is associated with vp1 its state will be computed
from the state of the vision percept vp1. It is also possible
to estimate a model of the behavior of wo1 using the col-
lected information. This model can later be used to predict
the behavior of wo1 if it is no longer tracked. The maintain
condition is monitored to continually verify the hypothesis
that wo1 is a world object.
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Further, assume that after a while wo1 has been hypoth-
esized as being an on-road object represented by oo1 and
an object linkage structure has been created containing all
three objects. For example, one could assume that an object
is an on-road object after it has been observed on a road for
at least 30 seconds.
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Assume the image processing system loses track of the po-
tential car after a while. Then vp1 is removed together with
the link to wo1. Even though the link is removed the world
object wo1 remains as well as the on-road object oo1 and
its link to wo1. While wo1 is not linked to any vision per-
cept its state will be predicted using either a general model
of physical objects or an individually adapted model of this
particular object. Since wo1 is linked to an on-road object
it is also possible to use this hypothesis to further restrict
the predicted movements of the object as it can be assumed
to only move along roads. This greatly reduces the possible
positions of the object and makes it much easier to reestab-
lish a link to it.
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Assume further that the image processing system later
recognizes a new potential car represented by the vision per-
cept vp2. Since there exists a known world object, wo1, the
knowledge process has to evaluate whether vp2 is a new
world object, the known world object wo1, or not a world
object at all. This is done by evaluating the establish con-
dition on vp2 and the reestablish condition between vp2 and
wo1.
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Assume that after a while the establish condition is pro-
gressed to false and the (in this case unique) reestablish con-
dition is progressed to true. Then a new link is created from
vp2 to wo1 and the attributes of wo1 can be computed from
the attributes of vp2. This also means that oo1 is once again
anchored. To verify the new hypothesis a maintain condition
between wo1 and vp2 is monitored.
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Support for Planning
One approach to solving complex problems is to use a task
planner to generate a plan that will achieve the goal. To
integrate task planners into an embedded reasoning system
there are a number of issues to consider.
Initial state. For a planner to be able to generate a plan
which is relevant in the current situation it must have an ac-
curate and up-to-date domain model. In a static environment
it is possible to write a domain model once and for all since
the world does not change. In a dynamic environment, such
as a disaster area, we do not have the luxury of predefined
static domain models. Instead, the UAV must itself generate
information about the current state of the environment and
encode this in a domain model.
Execution. Executing an action in a plan generally requires
sophisticated feedback about the environment on different
levels of abstraction. For example, a UAV following a three-
dimensional trajectory must continually estimate its position
by fusing data from several sensors, such as GPS and IMU.
If it loses its GPS signal due to malfunction or jamming,
vision-based landing may be needed, which requires pro-
cessing video streams from cameras in order to estimate al-
titude and position relative to the landing site.
Monitoring. Classical task planners are built on the funda-
mental assumption that the only agent causing changes in
the environment is the planner itself, or rather, the system
or systems that will eventually execute the plan that it gen-
erates. Furthermore, they assume that all information pro-
vided to the planner as part of the initial state and the oper-
ator specifications is accurate. This may in some cases be a
reasonable approximation of reality, but it is not always the
case. Other agents might manipulate the environment of a
system in ways that may prevent the successful execution of
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Figure 5: Task planning and execution monitoring overview

a plan. Sometimes actions can fail to have the effects that
were modeled in a planning domain specification, regard-
less of the effort spent modeling all possible contingencies.
Consequently, robust performance in a noisy environment
requires some form of supervision, where the execution of a
plan is constantly monitored in order to detect any discrep-
ancies and recover from potential or actual failures.

We have developed a temporal logic-based task planning
and execution monitoring framework which handles these
issues and integrated it into our fully deployed rotor-based
unmanned aircraft system (Doherty, Kvarnström, & Heintz
2009). In the spirit of cognitive robotics, we make specific
use of Temporal Action Logic (TAL) (Doherty & Kvarn-
ström 2008), a logic for reasoning about action and change.
This logic has already been used as the semantic basis for
a task planner called TALplanner (Doherty & Kvarnström
2001; Kvarnström 2005), which is used to generate mission
plans that are carried out by an execution subsystem.

Knowledge gathered during plan execution can be used
by DyKnow to incrementally create state structures. These
state structures correspond to partial logical models in TAL,
representing the actual development of the system and its
environment over time. By specifying the desired behavior
of the system and its environment using TAL formulas, vio-
lations of these formulas can be detected in a timely manner
in an execution monitor subsystem, using a progression al-
gorithm for prompt failure detection.

Figure 5 shows the relevant part of the UAV system ar-
chitecture associated with task planning, execution of task
plans and execution monitoring.

At the top of the center column is the plan executor which
given a mission request calls the knowledge processing mid-
dleware DyKnow to acquire essential information about the
current contextual state of the world or the UAV’s own inter-
nal states. Together with a domain specification and a goal
specification related to the current mission, this information
is fed to TALplanner, which outputs a plan that will achieve



the designated goals, under the assumption that all actions
succeed and no failures occur. Such a plan can also be au-
tomatically annotated with global and/or operator-specific
conditions to be monitored during execution of the plan by
an execution monitor in order to relax the assumption that
no failures can occur. Such conditions are expressed as tem-
poral logical formulas and evaluated on-line using formula
progression techniques. The execution monitor notifies the
command executor when actions do not achieve their desired
results and one can then move into a plan repair phase.
Example 2 Suppose that a UAV supports a maximum con-
tinuous power usage of M , but can exceed this by a factor
of f for up to τ units of time, if this is followed by normal
power usage for a period of length at least τ ′. The following
formula can be used to detect violations of this specification:
�∀uav.(power(uav) > M →

power < f ·M U[0,τ ] �[0,τ ′] power(uav) ≤ M) �

The plan executor translates operators in the high-level
plan returned by TALplanner into lower level command se-
quences which are given to the command executor. The
command executor is responsible for controlling the UAV,
either by directly calling the functionality exposed by its
lowest level Flight Command Language (FCL) interface or
by using Task Procedures, which are a type of reactive pro-
cedures, through the Task Procedure Execution Module.

During plan execution, the command executor adds for-
mulas to be monitored to the execution monitor. DyKnow
continuously sends information about the development of
the world in terms of state sequences to the monitor, which
uses a progression algorithm to partially evaluate monitor
formulas. The state sequences are generated from poten-
tially asynchronous streams by a stream synchronization
mechanism that uses the declarative policies of the input
streams to determine when states should be created. If a vi-
olation is detected, this is immediately signaled as an event
to the command executor, which can suspend the execution
of the current plan, invoke an emergency brake command if
required, optionally execute an initial recovery action, and
finally signal new status to the plan executor. The plan ex-
ecutor is then responsible for completing the recovery pro-
cedure.

The fully integrated system is implemented on our UAVs.
Plans are generated in the millisecond to seconds range us-
ing TALplanner and empirical testing shows that this ap-
proach is promising in terms of integrating high-level delib-
erative capability with lower-level reactive and control func-
tionality.

The pervasive use of logic throughout the higher level de-
liberative layers of the system architecture provides a solid
shared declarative semantics that facilitates the transfer of
knowledge between different modules. Given a plan speci-
fied in TAL, for example, it is possible to automatically ex-
tract certain necessary conditions that should be monitored
during execution.

Discussion
In the beginning of the paper we introduced a number of
requirements for middleware for embedded reasoning. In

this section we argue that DyKnow provides a significant
degree of support for each of those requirements.

Support integration of existing reasoning functionality.
Streams provide a powerful yet very general representation
of information varying over time, and any reasoning func-
tionalities whose inputs can be modeled as streams can eas-
ily be integrated using DyKnow. As two concrete exam-
ples, we have shown how progression of temporal logical
formulas (Doherty, Kvarnström, & Heintz 2009) and chron-
icle recognition (Heintz, Rudol, & Doherty 2007) can be in-
tegrated using DyKnow.

Support distributed sources and processing. DyKnow sat-
isfies this requirement through the use of the general con-
cepts of streams and knowledge processes. Since the im-
plementation is CORBA-based it provides good support for
distributed applications. DyKnow explicitly represents both
the time when information is valid and when it is available.
Therefore it has excellent support for integrating informa-
tion over time even with varying delays. DyKnow also pro-
vides a very useful stream synchronization mechanism that
uses the declarative policies to determine how to synchro-
nize a set of asynchronous streams and derive a stream of
states. This functionality is for example used to create syn-
chronized state sequences over which temporal logical for-
mulas can be evaluated.

Support processing on many levels of abstraction. Gen-
eral support is provided in DyKnow through streams, where
information can be sent at any abstraction level from raw
sampled sensor data and upwards. The use of knowledge
processes also provides general support for arbitrary forms
of processing. At the same time, DyKnow is explicitly de-
signed to be extensible to provide support for information
structures and knowledge processing that is more specific
than arbitrary streams. DyKnow provides direct support
for specific forms of high-level information structures, such
as object linkage structures, and specific forms of knowl-
edge processing, including formula progression and chron-
icle recognition. This provides initial support for knowl-
edge processing at higher levels than plain streams of data.
In (Heintz & Doherty 2006) we argue that this support is
enough to provide an appropriate framework for supporting
all the functional abstraction levels in the JDL Data Fusion
Model.

Support quantitative and qualitative processing. Streams
provide support for arbitrarily complex data structures, from
real values to images to object structures to qualitative rela-
tions. The structured content of samples also allows quanti-
tative and qualitative information to be part of the same sam-
ple. DyKnow also has explicit support for combining qual-
itative and quantitative processing in the form of chronicle
recognition, progression of metric temporal logical formu-
las, and object linkage structures. Both chronicles and tem-
poral logical formulas support expressing conditions com-
bining quantitative time and qualitative features.

Support bottom-up data processing and top-down model-
based processing. Streams are directed but can be connected
freely, giving the application programmer the possibility
to do both top-down and bottom-up processing. Though
this article has mostly used bottom-up processing, chronicle



recognition is a typical example of top-down model-based
processing where the recognition engine may control the
data being produced depending on the general event pattern
it is attempting to detect.

Support management of uncertainty. In principle, Dy-
Know supports any approach to representing and managing
uncertainty that can be handled by processes connected by
streams. It is for example easy to add a probability or cer-
tainty factor to each sample in a stream. This information
can then be used by knowledge processes subscribing to this
stream. Additionally, DyKnow has explicit support for un-
certainty in object identities and in the temporal uncertainty
of complex events that can be expressed both in quantitative
and qualitative terms. The use of a metric temporal logic
also provides several ways to express temporal uncertainty.

Support flexible configuration and reconfiguration. Flex-
ible configuration is provided by the declarative specifica-
tion language KPL, which allows an application designer to
describe the different processes in a knowledge processing
application and how they are connected with streams satis-
fying specific policies. The DyKnow implementation uses
the specification to instantiate and connect the required pro-
cesses.

Provide a declarative specification of the information be-
ing generated and the information processing functional-
ities available. This requirement is satisfied through the
formal language KPL for declarative specifications of Dy-
Know knowledge processing applications, as already de-
scribed. The specification explicitly declares the properties
of the streams by policies and how they connect the different
knowledge processes.

Conclusion

Embedded reasoning is reasoning which is part of a larger
system and whose purpose is to support or improve the sys-
tem in some way. This has for example the consequence
that the reasoning must be integrated in and interact with the
larger system. Middleware for embedded reasoning is soft-
ware which supports and simplifies this integration and in-
teraction. In this paper we have given a high-level overview
of the stream-based middleware DyKnow and how it can
support this type of embedded reasoning. More specifically
we discussed general requirements on middleware and how
DyKnow can be used to integrate embedded reasoning in the
form of anchoring and planning in an autonomous system.

Our conclusion is that middleware for embedded rea-
soning should support declarative specifications for flexi-
ble configuration and dynamic reconfiguration of distributed
context dependent processing at many different levels of ab-
straction and that DyKnow provides suitable support for in-
tegrating several types of embedded reasoning. The con-
clusion is based on the integration of for example planning,
execution monitoring, and chronicle recognition in sophisti-
cated autonomous UAV applications. However, this is only
the first step towards developing robust and general middle-
ware support for embedded reasoning.
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