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Abstract We present an algorithm for planning with time and resources�
based on heuristic search� The algorithm minimizes makespan using an
admissible heuristic derived automatically from the problem instance�
Estimators for resource consumption are derived in the same way� The
goals are twofold� to show the �exibility of the heuristic search approach
to planning and to develop a planner that combines expressivity and per	
formance� Two main issues are the de
nition of regression in a temporal
setting and the de
nition of the heuristic estimating completion time�
A number of experiments are presented for assessing the performance of
the resulting planner�

� Introduction

Recently� heuristic state space search has been shown to be a good framework for
developing di�erent kinds of planning algorithms� It has been most successful in
non�optimal sequential planning� e�g� hsp ��	 and ff �
�	� but has been applied
also to optimal and parallel planning �
�	�

We continue this thread of research by developing a domain�independent
planning algorithm for domains with metric time and certain kinds of resources�
The algorithm relies on regression search guided by a heuristic that estimates
completion time and which is derived automatically from the problem representa�
tion� The algorithm minimizes the overall execution time of the plan� commonly
known as the makespan�

A few e�ective domain�independent planners exhibit common features
 tgp
���	 and TPSys ��	 handle actions with duration and optimize makespan� but
not resources� ripp �
�	 and grt�r ���	 handle resources� and are in this respect
more expressive than our planner� Sapa ��	 deals with both time and resources�
but non�optimally�

Among planners that exceed our planner in expressivity� e�g� Zeno ���	� Ix�
TeT ��	 and HSTS �
�	� none have reported signi�cant domain�independent per�
formance �Jonsson et al� �
�	 describe the need for sophisticated engineering of
domain dependent search control for the HSTS planner�� Many highly expressive
planners� e�g� O�Plan ���	� ASPEN ��	 or TALplanner �
�	� are �knowledge in�



tensive�� relying on user�provided problem decompositions� evaluation functions
or search constraints��

� Action Model and Assumptions

The action model we use is propositional STRIPS with extensions for time and
resources� As in graphplan ��	 and many other planners� the action set is
enriched with a no�op for each atom p which has p as its only precondition and
e�ect� Apart from having a variable duration� a no�op is viewed and treated like
a regular action�

��� Time

When planning with time each action a has a duration� dur�a� � �� We take
the time domain to be R� � In most planning domains we could use the positive
integers� but we have chosen the reals to highlight the fact that the algorithm
does not depend on the existence of a least indivisible time unit� Like Smith and
Weld ���	� we make the following assumptions
 For an action a executed over an
interval �t� t� dur�a�	

�i� the preconditions pre�a� must hold at t� and preconditions not deleted by a
must hold throughout �t� t� dur�a�	 and

�ii� the e�ects add�a� and del�a� take place at some point in the interior of the
interval and can be used only at the end point t� dur�a��

Two actions� a and b� are compatible i� they can be safely executed in over�
lapping time intervals� The above assumptions lead to the following condition
for compatibility
 a and b are compatible i� for each atom p � pre�a� � add�a��
p �� del�b� and vice versa �i�e� p � pre�b� � add�b� implies p �� del�a���

��� Resources

The planner handles two types of resources
 renewable and consumable� Renew�
able resources are needed during the execution of an action but are not consumed
�e�g� a machine�� Consumable resources� on the other hand� are consumed or pro�
duced �e�g� fuel�� All resources are treated as real valued quantities� the division
into unary� discrete and continuous is determined by the way the resource is
used� Formally� a planning problem is extended with sets RP and CP of renew�
able and consumable resource names� For each resource name r � RP � CP �
avail�r� is the amount initially available and for each action a� use�a� r� is the
amount used or consumed by a�

� The distinction is sometimes hard to make� For instance� parcPlan ��
� domain de
	
nitions appear to di�er from plain STRIPS only in that negative e�ects of actions are
modeled indirectly� by providing a set of constraints� instead of explicitly as �deletes��
parcPlan has shown good performance in certain resource constrained domains� but
domain de
nitions are not available for comparison�



� Planning with Time

We describe �rst the algorithm for planning with time� not considering resources�
In this case� a plan is a set of action instances with starting times such that no
incompatible actions overlap in time� action preconditions hold over the required
intervals and goals are achieved on completion� The cost of a plan is the total
execution time� or makespan� We describe each component of the search scheme

the search space� the branching rule� the heuristic� and the search algorithm�

��� Search Space

Regression in the classical setting is a search in the space of �plan tails�� i�e�
partial plans that achieve the goals provided that the preconditions of the partial
plans are met� A regression state� i�e� a set of atoms� summarizes the plan tail�
if s is the state obtained by regressing the goal through the plan tail P � and P

is a plan that achieves s from the initial state� then the concatenation of P and
P � is a valid plan� A similar decomposition is exploited in the forward search for
plans�
In a temporal setting� a set of atoms is no longer su�cient to summarize

a plan tail or plan head� For example� the set s of all atoms made true by
a plan head P at time t holds no information about the actions in P that
have started but not �nished before t� Then� if a plan tail P � maps s to a goal
state� the combination of P and P � is not necessarily a valid plan� To make the
decomposition valid� search states have to be extended with the actions under
execution and their completion times� Thus� in a temporal setting states become
pairs s � �E�F �� where E is a set of atoms and F � f�a�� ���� � � � � �an� �n�g is a
set of actions ai with time increments �i�
An alternative representation for plans will be useful
 instead of a set of

time�stamped action instances� a plan is represented by a sequence h�A�� ����
� � � � �Am� �m�i of action sets Ai and positive time increments �i� Actions in
A� begin executing at time t� � � and actions in Ai� i � 
 � � �m� at time
ti �
P

��j�i �j �i�e� �i is the time to wait between the beginning of actions Ai

and the beginning of actions Ai����

State Representation A search state s � �E�F � is a pair consisting of a
set of atoms E and a set of actions with corresponding time increments F �
f�a�� ���� � � � � �an� �n�g� � � �i � dur�ai�� A plan P achieves s � �E�F � at time
t if P makes all the atoms in E true at t and schedules the actions ai at time
t � �i� The initial search state is s� � �GP � ��� where GP is the goal set of the
planning problem� Final states are all s � �E� �� such that E � IP �

Branching Rule A successor to a state s � �E�F � is constructed by selecting
for each atom p � E an establisher �i�e� a regular action or no�op a with p �
add�a��� subject to the constraints that the selected actions are compatible with



each other and with each action b � F � and that at least one selected action is
not a no�op� Let SE be the set of selected establishers and let

Fnew � f�a� dur�a�� j a � SEg�

The new state s� � �E�� F �� is de�ned as the atoms E� that must be true and
the actions F � that must be executing before the last action in F �Fnew begins�
This will happen in a time increment �adv


�adv � minf� j �a� �� � F � Fnew and a is not a no�opg

where no�op actions are excluded from consideration since they have variable
duration �the meaning of the action no�op�p� in s is that p has persisted in the
last time slice�� Setting the duration of no�ops in Fnew equal to �adv� the state
s� � �E�� F �� that succeeds s � �E�F � becomes

E� � fpre�a� j �a� �adv� � F � Fnewg

F � � f�a� � � �adv� j �a� �� � F � Fnew� � � �advg

The cost of the transition from s to s� is c�s� s�� � �adv and the fragment of the
plan tail that corresponds to the transition is

P �s� s�� � �A� �adv� � whereA � fa j �a� �adv� � F � Fnewg

The accumulated cost �plan tail� along a state�path is obtained by adding up
�concatenating� the transition costs �plan fragments� along the path� The accu�
mulated cost of a state is the minimum cost along all the paths leading to s�
The evaluation function used in the search algorithm adds up this cost and the
heuristic cost de�ned below�

Properties The branching rule is sound in the sense that it generates only
valid plans� but it does not generate all valid plans� This is actually a desirable
feature�� The rule is optimality preserving in the sense that it generates some

optimal plan� This� along with soundness� is all that is needed for optimality
�provided an admissible search algorithm and heuristic are used��

��� Heuristic

As in previous work �
�	� we derive an admissible heuristic by introducing ap�
proximations in the recursive formulation of the optimal cost function�

� The plans generated are such that a regular action is executing during any given time
interval and no	ops begin only at the times that some regular action starts� This is
due to the way the temporal increments �adv are de
ned� Completeness could be
achieved by working on the rational time line and setting �adv to the gcd of all
actions durations� but as mentioned above this is not needed for optimality�



For any state s � �E�F �� the optimal cost is H��s� � t i� t is the least time
t such that there is a plan P that achieves s at t� The optimal cost function� H��
is the solution to the Bellman equation ��	


H��s� �

�
� if s is �nal
mins��R�s� c�s� s

�� �H��s��
�
�

where R�s� is the regression set of s� i�e� the set of states that can be constructed
from s by the branching rule�

Approximations� Since equation �
� cannot be solved in practice� we derive
a lower bound on H� by considering some inequalities� First� since a plan that
achieves the state s � �E�F �� for F � f�ai� �i�g� at time t must achieve the
preconditions of the actions ai at time t � �i and these must remain true until
t� we have

H��E�F � � max
�ak��k��F

H��
�

�ai��i��F� �i��k

pre�ai�� �� � �k ���

H��E�F � � H��E �
�

�ai��i��F

pre�ai�� ��� ���

Second� since achieving a set of atoms E implies achieving each subset E� of E
we also have

H��E� �� � max
E��E�jE�j�m

H��E�� �� ���

where m is any positive integer�

Temporal Heuristic Hm
T
� We de�ne a lower bound Hm

T on the optimal func�
tion H� by transforming the above inequalities into equalities� A family of ad�
missible temporal heuristics Hm

T for arbitrary m � 
� �� � � � is then de�ned by
the equations

Hm
T �E� ���� if E � IP ���

Hm
T �E� ��� min

s��R�s��E����
c�s � �E� ��� s�� �Hm

T �s
�� if jEj � m ���

Hm
T �E� ��� max

E��E�jE�j�m
Hm
T �E

�� �� if jEj � m ���

Hm
T �E�F � �max� max

�ak��k��F
Hm
T �

�
�ai��i��F��i��k

pre�ai�� �� � �k �

Hm
T �E �

�
�ai��i��F

pre�ai�� ��	 ���

The relaxation is a result of the last two equations� the �rst two are also satis�ed
by the optimal cost function� Unfolding the right�hand side of equation ��� using
���� the �rst two equations de�ne the function Hm

T �E�F � completely for F � �



and jEj � m� From an implementation point of view� this means that for a �xed
m� Hm

T �E� �� can be solved and precomputed for all sets of atoms with jEj � m�
and equations ��� and ��� used at run time to compute the heuristic value of
arbitrary states� The precomputation is a simple variation of a shortest�path
problem and its complexity is a low order polynomial in jAjm� where jAj is the
number of atoms�
For a �xed m� equation ��� can be simpli�ed because only a limited set of

states can appear in the regression set� For example� for m � 
� the state s in
��� must have the form s � �fpg� �� and the regression set R�s� contain only
states s� � �pre�a�� �� for actions a such that p � add�a�� As a result� for m � 
�
��� becomes

H�
T �fpg� �� � min

a�p�add�a�
dur�a� �H�

T �pre�a�� �� ���

The corresponding equations for H�
T are in �

	�

��� Search Algorithm

Any admissible search algorithm� e�g� a�� ida� or DFS branch�and�bound �
�	�
can be used with the search scheme described above to �nd optimal solutions�
The planner uses ida� with some standard enhancements �cycle checking

and a transposition table� and an optimality preserving pruning rule explained
below� The heuristic used is H�

T � precomputed for sets of at most two atoms as
described above�

Incremental Branching In the implementation of the branching scheme� the
establishers in SE are not selected all at once� Instead� this set is constructed
incrementally� one action at a time� After each action is added to the set� the
cost of the resulting �partial� state is estimated so that dead�ends �states whose
cost exceeds the bound� are detected early� A similar idea is used in graphplan�
In a temporal setting� things are a bit more complicated because no�ops have a
duration ��adv� that is not �xed until the set of establishers is complete� Still� a
lower bound on this duration can be derived from the regular actions selected
so far and in the state being regressed�

Selecting the Atom to Regress The order in which atoms are regressed
makes no di�erence for completeness� but does a�ect the size of the resulting
search tree� We regress the atoms in order of decreasing �di�culty�
 the di�culty
of an atom p is given by the estimate H�

T �fpg� ���

Right�Shift Pruning Rule In a temporal plan there are almost always some
actions that can be shifted forward or backward in time without changing the
plan�s structure or makespan �i�e� there is some �slack��� A right�shifted plan is
one in which such movable actions are scheduled as late as possible�



As mentioned above� it is not necessary to consider all valid plans in order
to guarantee optimality� In the implemented planner� non�right�shifted plans are
excluded by the following rule
 If s� is a successor to s � �E�F �� an action a

compatible with all actions in F may not be used to establish an atom in s�

when all the atoms in E� that a adds have been obtained from s by no�ops� The
reason is that a could have been used to support the same atoms in E� and thus
could have been shifted to the right �delayed��

� Planning with Resources

Next� we show how the planning algorithm deals with renewable and consumable
resources�

��� Renewable Resources

Renewable resources limit the set of actions that can be executed concurrently
and therefore need to enter the planning algorithm only in the branching rule�
When regressing a state s � �E�F �� we must have that

X
�ai��i��F�Fnew

use�ai� r� � avail�r� �
��

for every renewable resource r � RP �

Heuristic The Hm
T heuristics remain admissible in the presence of renewable

resources� but in order to get better lower bounds we exclude from the regression
set any set of actions that violates a resource constraint� For unary resources
�capacity 
� this heuristic is informative� but for multi�capacity resources it
tends to be weak�

��� Consumable Resources

To ensure that resources are not over�consumed� a state s must contain the
remaining amount of each consumable resource r� For the initial state� this is
rem�s�� r� � avail�r�� and for a state s� resulting from s

rem�s�� r� � rem�s� r� �
X

�ai�ti��Fnew

use�ai� r� �

�

for each r � CP �



Heuristic The heuristics Hm
T remain admissible in the presence of consumable

resources� but become less useful since they predict completion time but not con�
�icts due to overconsumption� If� however� consumable resources are restricted
to be monotonically decreasing �i�e� consumed but not produced�� then a state s
can be pruned if the amount of any resource r needed to achieve s from the initial
situation exceeds rem�s� r�� the amount remaining in s� The amount needed is
estimated by a function needm�s� r� de�ned in a way analogous to the function
Hm
T �s� that estimates time� The planner implements need

��s� r��
Because resource consumption is treated separately from time� this solution is

weak when the time and resources needed to achieve a goal interact in complex
ways� The Hm

T estimator considers only the fastest way of achieving the goal
regardless of resource cost� while the needm estimator considers the cheapest
way to achieve the goal regardless of time �and other resources�� To overcome
this problem� the estimates of time and resources would have to be integrated�
as in for example ���	� Integrated estimates could also be used to optimize some
combination of time and resources� as opposed to time alone�

��� Maintenance Actions

In planning� it is normally assumed that no explicit action is needed to main�
tain the truth of a fact once it has been established� but in many cases this
assumption is not true� We refer to no�ops that consume resources as main�

tenance actions� Incorporating maintenance actions in the branching scheme
outlined above is straightforward
 For each atom p and each resource r� a quan�
tity use�maintain�p�� r� can be provided as part of the domain de�nition and
is set to � by default� Since the duration of a no�op is variable� we interpret
use�maintain�p�� r� as the rate of consumption� For the rest� maintenance ac�
tions are treated as regular actions� and no other changes are needed in the
planning algorithm�	

� Experimental Results

We have implemented the algorithm for planning with time and resources de�
scribed above� including maintenance actions but with the restriction that con�
sumable resources are monotonically decreasing� in a planner called tp�


� The
planner uses ida� with some standard enhancements and the H�

T heuristic� The
resource consumption estimators consider only single atoms�

� This treatment of maintenance actions is not completely general� Recall that the
branching rule does not generate all valid plans� in the presence of maintenance
actions it may happen that some of the plans that are not generated demand less
resources than the plans that are� When this happens� the algorithm may produce
non	optimal plans or even fail to 
nd a plan when one exists� This is a subtle issue
that we will address in the future�

�
tp� is implemented in C� Planner� problems� problem generators and experiment
scripts are available at http���www�ida�liu�se��pahas�hsps�� Experiments were
run on a Sun Ultra ���
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�a� Runtime distributions for tp� and
optimal non	temporal parallel plan	
ners on standard planning problems�
A point hx� yi on the curve indicates
that y percent of the problems were
solved in x seconds or less� Note that
the time axis is logarithmic�

�b� Runtime distributions for tp��
tgp and Sapa on problems from
the simple temporal logistics domain�
Sapa�s solution makespan tends to be
around ���� � ���� times optimal�

Figure��

��� Non�Temporal Planning

First� we compare tp� to three optimal parallel planners� ipp� blackbox and
stan� on standard planning problems without time or resources� The test set
comprises �� random problems from the ��operator blocksworld domain� ranging
in size from 
� to 
� blocks� and �� random logistics problems with � � � deliver�
ies� Blocksworld problems were generated using Slaney  Thiebaux�s bwstates
program ���	�
Figure 
�a� presents the results in the form of runtime distributions� Clearly

tp� is not competitive with non�temporal planners� which is expected consider�
ing the overhead involved in handling time� Performance in the logistics domain�
however� is very poor �e�g� tp� solves less than ��! of the problems within 
���
seconds� while all other planners solve ��! within only 
�� seconds�� indicating
that other causes are involved �most likely the branching rule� see below��

��� Temporal Planning

To test tp� in a temporal planning domain� we make a small extension to the
logistics domain�� in which trucks are allowed to drive between cities as well as
within and actions are assigned durations as follows


� The goal in the logistics domain is to transport a number of packages between lo	
cations in di�erent cities� Trucks are used for transports within a city and airplanes
for transports between cities� The standard domain is available e�g� as part of the
AIPS ���� Competition set ����



Actions Duration Actions Duration
Load�Unload � Drive truck �between cities� ��
Drive truck �within city� � Fly airplane �

This is a simple example of a domain where makespan�minimal plans tend to be
di�erent from minimal�step parallel plans�
For comparison� we ran also tgp and Sapa� The test set comprised �� random

problems with � � � deliveries� Results are in �gure 
�b�� We ran two versions of
tgp� one using plain graphplan�like memoization and the other minimal con�
�ict set memoization and �intelligent backtracking� �
�	� tp� shows a behaviour
similar to the plain version of tgp� though somewhat slower� As the top curve
shows� the intelligent backtracking mechanism is very e�ective in this domain
�this was indicated also in �
�	��

��� Planning with Time and Resources

Finally� for a test domain involving both time and non�trivial resource con�
straints we have used a scheduling problem� called multi�mode resource con�
strained project scheduling �MRCPS� ���	� The problem is to schedule a set of
tasks and to select for each task a mode of execution so as to minimize project
makespan� subject to precedence constraints among the tasks and global resource
constraints� For each task� each mode has di�erent duration and resource require�
ments� Resources include renewable and �monotonically decreasing� consumable�
Typically� modes represent di�erent trade�o�s between time and resource use�
or between use of di�erent resources� This makes �nding optimal schedules very
hard� even though the planning aspect of the problem is quite simple�
The test comprised sets of problems with 
�� 
� and 
� tasks and approx�

imately ��� instances in each �sets J��� J�� and J�� from ��
	�� A specialized
scheduling algorithm solves all problems in the set� the hardest in just below ���
seconds ���	� tp� solves ��!� �
! and �
!� respectively� within the same time
limit�

� Conclusions

We have developed an optimal� heuristic search planner that handles concurrent
actions� time and resources� and minimizes makespan� The two main issues we
have addressed are the formulation of an admissible heuristic estimating com�
pletion time and a branching scheme for actions with durations� In addition�
the planner incorporates an admissible estimator for consumable resources that
allows more of the search space to be avoided� Similar ideas can be used to
optimize a combination of time and resources as opposed to time alone�
The planner achieves a tradeo� between performance and expressivity� While

it is not competitive with either the best parallel planners or specialized sched�
ulers� it accommodates problems that do not �t into either class� An approach

� We did not run Sapa ourselves� Results were provided by Minh B� Do� and were
obtained using a di�erent� but approximately equivalent� computer�



for improving performance that we plan to explore in the future is the combi�
nation of the lower bounds provided by the admissible heuristics Hm

T with a
di�erent branching scheme� See ��	 for details�
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