
Iterative Bounding LAO*
Håkan Warnquist1,2 and Jonas Kvarnström2 and Patrick Doherty2

Abstract. Iterative Bounding LAO* is a new algorithm for ε-
optimal probabilistic planning problems where an absorbing goal
state should be reached at a minimum expected cost from a given ini-
tial state. The algorithm is based on the LAO* algorithm for finding
optimal solutions in cyclic AND/OR graphs. The new algorithm uses
two heuristics, one upper bound and one lower bound of the optimal
cost. The search is guided by the lower bound as in LAO*, while the
upper bound is used to prune search branches. The algorithm has a
new mechanism for expanding search nodes, and while maintaining
the error bounds, it may use weighted heuristics to reduce the size of
the explored search space. In empirical tests on benchmark problems,
Iterative Bounding LAO* expands fewer search nodes compared to
state of the art RTDP variants that also use two-sided bounds.

1 INTRODUCTION

In this paper, we study probabilistic planning problems formulated
as stochastic shortest path problems. In these problems an absorb-
ing goal state should be reached from a single initial state with a
minimal expected cost. Each action has positive cost and may have
a finite number of probabilistic outcomes. Some examples of such
problems are robot control with noisy actuators and troubleshooting
of technical equipment where an unknown fault should be isolated
and repaired.

A stochastic shortest path problem can be modeled as a general
search problem in AND/OR graphs and solved with algorithms such
as LAO* [6] or Real-Time Dynamic Programming (RTDP) [1]. The
output of these algorithms is a policy that maps states to actions.

We present a new algorithm for solving stochastic shortest path
problems. This algorithm, Iterative Bounding LAO*, is based on
LAO* and uses two heuristics, one upper bound and one lower bound
of the minimal expected cost. The lower bound is used to guide
search as in LAO* while the upper bound is used to prune search
branches. Iterative Bounding LAO* is an online ε-optimal probabilis-
tic planning algorithm that can output policies with proven bounds at
any time. These bounds are reduced iteratively over time. The algo-
rithm has a new mechanism for expanding search nodes, and while
maintaining the error bound, it may use weighted heuristics to reduce
the search space.

Two-sided bounds have been used in other algorithms based on
RTDP, such as BRTDP [8], FRTDP [12], and VPI-RTDP [11]. In
empirical tests on benchmark problems Iterative Bounding LAO* is
shown to be competitive with these state-of-the-art RTDP variants
and expands fewer nodes.

1 Affiliated with Scania CV AB.
2 Dept. of Computer and Information Science,Linköping University, email:

{g-hakwa,jonkv,patdo}@ida.liu.se

2 PROBLEM FORMULATION
As stated in the introduction, the probabilistic planning problems
considered in this paper have an absorbing goal state that should be
reached at a minimum expected cost from a given initial state. Such
a problem corresponds to a stochastic shortest path problem that is
described by a set of states S, a finite set of actions A, a cost func-
tion q : A × S 7→ R+, a transition function P : A × S2 7→ [0, 1],
an initial state s0 and a set of absorbing goal states Sg . When a is
performed in a state s, another state s′ is reached with the probabil-
ity P (s′|a, s). The set of successor states succ(s, a) consists of all
states s′ where P (s′|a, s) > 0. Since the goal states are absorbing,
for all actions a and goal states s, q(a, s) = 0 and P (s|a, s) = 1.
For all other states q(a, s) > 0. A policy π is a function that maps
states to actions. For any action a, let Ta be an operator on functions
f : S 7→ R such that for any state s,

Taf(s) = q(a, s) +
∑

s′∈succ(s,a)

P (s′|a, s)f(s′).

Definition 1 (Value function). Given a policy π and a state s, the
value function Vπ(s) returns the expected cost of reaching a goal
state from s:

Vπ(s) =

{
0 if s is a goal state,
Tπ(s)Vπ(s) otherwise.

Definition 2 (Optimal policy). An optimal policy π∗ is a policy such
that for all states s,

π∗(s) = arg min
a

TaVπ∗(s)

Finding π∗(s) for a given state s is equivalent to solving the Bell-
man optimality equation:

Vπ∗(s) =

{
0 if s is a goal state,
min
a
TaVπ∗(s) otherwise.

(1)

Definition 3 (ε-optimal policy). Given an ε > 0, a policy π is ε-
optimal if Vπ(s0) ≤ (1 + ε)Vπ∗(s0).

The problem is to find an ε-optimal policy for a given value of ε.

3 RELATED WORK
Real time dynamic programming (RTDP) [1] is an efficient algo-
rithm for solving stochastic shortest path problems in an on-line set-
ting where good anytime properties are important. RTDP solves (1)
for the subset of the state space that is reachable from the initial state
by performing a series of asynchronous value iteration back-ups. In
such a back-up, an estimate of Vπ∗ is computed from previous esti-
mates of Vπ∗ by evaluating (1). If every state is backed up infinitely
many times, the estimates will converge to Vπ∗ regardless of which
value they are initialized with. The states that are backed up are cho-
sen through random depth-first trials starting from the initial state. A

drawback of this method is that due to the random exploration of the
state space many states will be backed up even if their values have
already converged.

In BRTDP [8], FRTDP [12], and VPI-RTDP [11], all of which are
extensions to RTDP, an upper bound of the optimal value function is
used to help decide if a state has converged or not. In both BRTDP
and FRTDP states with high difference in lower and upper bounds
are given priority in the RTDP trials. In BRTDP the trials are random
while in FRTDP they are deterministic. The algorithm VPI-RTDP
uses a slightly different approach. Here, successor states are chosen
based on an estimate of the expected improvement in decision quality
when updating the state’s value.

LAO* [6] is another algorithm that can solve the stochastic short-
est path problem. This algorithm does not use deep trials like RTDP.
Instead it uses a heuristic to expand states in a best-first manner. It is
similar to the AND/OR graph search algorithm AO* [9] and the de-
terministic search algorithm A*. The main drawback of LAO* is its
relatively expensive dynamic programming step between expansions
which is explained in further detail below. Therefore, an improved
variant of LAO*, ILAO*, is proposed in [6] where states are backed
up at most once.

4 ALGORITHM

Iterative Bounding LAO* is derived from LAO* [6]. We will there-
fore begin with an overview of the standard LAO* algorithm.

4.1 Overview of LAO*

LAO* extends AO* [9], a search algorithm for acyclic AND/OR
graphs, to find solutions in cyclic graphs and may use many of the
enhancements developed for A* such as weighted heuristics.

LAO* searches an AND/OR graph, which can be represented as a
directed hypergraph. We can create such a graph G for our problem
as follows. Let the nodes in the graph be states and let s0 belong to
G. For every action a applicable in a state s ∈ G\Sg , let the states in
succ(s, a) also belong toG and add one outgoing hyperedge leading
from s to the states in succ(s, a). This results in a graph where all
leaves are goal states.

A solution to a search graph G is a subgraph Gπ ⊆ G satisfying
the following constraints. First, the initial state s0 is part of Gπ . Sec-
ond, only states that are leaves in G can be leaves in Gπ . Third, for
any non-leaf s in Gπ , there is exactly one outgoing hyperedge corre-
sponding to a chosen action a to be performed in that state, and all
possible successor states succ(s, a) of that action belong to Gπ .

Given a solution graph Gπ , we can directly generate a policy π
where for all s ∈ Gπ \ Sg , π(s) is defined by the single outgoing
hyperedge from s. Such a policy is complete, in the sense that it spec-
ifies an action for every non-goal state that is reachable by following
the policy within G.

Let G′ be an arbitrary subgraph of G containing the initial state
s0. Further, let G′π be a solution to this subgraph where each non-
leaf s ∈ G′ has an outgoing edge labeled with an action

π(s) = arg min
a∈A

Taf(s). (2)

If all leaves in G′π are goal states, then G′π must also be a solution to
G and therefore corresponds to a complete policy π for G. Since the
subgraph is arbitrary, there may also be leaves that are not goal states.
In this case, G′π can be said to correspond to a partial policy π for
G, which can lead to non-goal states for which no action is specified.

LAO* can expand such a partial policy by specifying actions for non-
goal leaves, thereby incrementally expanding G′ until its solution is
also a solution to G without necessarily exploring all of G.

A state s in a solutionG′π is evaluated with the evaluation function

f(s) =

{
h(s) if s is a leaf state in G′,
Tπ(s)f(s) otherwise,

(3)

where h(s) is a heuristic estimate of the optimal expected cost such
that 0 ≤ h(s) ≤ Vπ∗(s). If π is a complete policy then f(s) =
Vπ(s) since in each leaf, h(s) = Vπ(s) = 0. It is possible that a
complete policy have states from which a goal state is unreachable.
However, the expected cost of such a policy is infinite.

The LAO* algorithm is shown in Figure 1. LAO* is initialized
with an explicit search graph G′ ⊆ G consisting only of the ini-
tial state s0. The set fringe(G′π) consists of all non-goal leaf states
in a solution G′π reachable from s0 The intention is to ensure even-
tually that fringe(G′π) = ∅, i.e. that there is an action to perform
for every non-goal state. Until this is the case, one or more states s
in fringe(G′π) are expanded and, for each action a, the successors
succ(s, a) are added to G′.

After the expansion step, (3) is evaluated for all ancestors of the
newly expanded states. This may be done using either policy iteration
or value iteration, but it is shown in [6] that LAO* is faster with value
iteration. During value iteration, for each state s an action satisfying
(2) is marked and a new value for f(s) is calculated from the previous
f -values of all other states. Each such update is called a back-up
and this is done until the f -values converge over all states. When
fringe(G′π) = ∅, LAO* performs value iteration on all states in G′π
until either the f -values converge or some non-goal state appears
among the leaf states ofG′π in which case LAO* goes back to step 2.
When all leaves in G′π are goal states and the f -values have properly
converged, fringe(G′π) = ∅ and π = π∗.

1. G′ ← {s0}
2. while fringe(G′π) 6= ∅ do

(a) Expand one or more states in fringe(G′π) and add any
successor states to G′.

(b) Perform value iteration on all ancestor states of the
newly expanded states.

3. Perform value iteration on all states in G′π .
if fringe(G′π) 6= ∅ then go to step 2.

4. return π

Figure 1: LAO*.

4.2 Iterative Bounding LAO*
The new algorithm is based on LAO*. It maintains two-sided bounds
on the optimal solution cost and uses these to prune search branches
when the error bound on the optimal solution cost is below a certain
threshold. To perform well in an on-line setting this threshold is dy-
namically changed, starting off with a high value that is successively
reduced as better solutions are found. The most recent bounds on the
optimal solution cost are always available and the user may use this
information to decide when to stop the search.

The Iterative Bounding LAO* algorithm is shown in Figure 2.
Throughout this algorithm, whenever a state s is visited for the first
time a lower bound fl and an upper bound fu are calculated such
that fl(s) ≤ Vπ∗(s) ≤ fu(s). The computation of these bounds is
described in Section 4.3.

In step 1, an initial search graph G′ is created, consisting only of
the initial state s0. The outer loop in step 2 continues indefinitely
until stopped by the user. In step 2a the error threshold ε̄ is initialized
to be a factor α < 1 times the current error bound ε̂(s0) in the initial
state. The computation of the error bound is described in Section 4.4.

The inner loop in step 2b is similar to the LAO* algorithm where
fringe states are expanded until a partial policy is found such that the
initial state is solved within the current required bound, i.e. ε̂(s0) ≤
ε̄. The set fringe(G′πl) consists of all leaf states in G′πl , the partial
solution graph of the lower bound policy, that have ε̂(s) > ε̄ and
consequently are not yet solved within the current error bound. If
fringe(G′πl) 6= ∅, we select a subset Sexpand of fringe(G′πl) that is
expanded as described in Section 4.5. When a state is expanded, all
successors to that state are inserted in G′ and the lower and upper
bounds for the successor states are calculated.

After the expansions, all ancestors of the newly expanded states,
ancestors(Sexpand), are backed up. During back-ups, the bounds,
fl and fu, and the lower and upper bound policies πl and πu are
updated. Instead of performing value iteration until convergence as in
LAO*, only a single back-up is performed over the set of all ancestors
of the newly expanded states, ancestors(Sexpand). If fringe(G′πl)
is empty, the states in G′πl are backed up until either the estimated
error of the initial state ε̂(s0) ≤ ε̄ or G′πl changes so that unsolved
nodes appear among the leaves. States are never backed up twice
in the same iteration. To speed up convergence, states far from the
initial state are backed up first. The policy that is returned is the upper
bound policy πu where Vπu(s0) ≤ (1 + ε̂(s0))Vπ∗ .

1. G′ ← {s0}
2. while ¬timeout do

(a) ε̄← α · ε̂(s0)

(b) while ε̂(s0) > ε̄ ∧ ¬timeout do

i. if fringe(G′π) 6= ∅ then
Sexpand ← subset of fringe(G′π)
for each s ∈ Sexpand do expand(s)
Sbackup ← ancestors(Sexpand)

else
Sbackup ← G′π

ii. for each s ∈ Sbackup do backup(s)

3. return πu

Figure 2: Iterative Bounding LAO*.

4.3 Evaluation functions
IBLAO* maintains lower and upper bounds of the optimal expected
cost for each state s in the explicit graph G′. The current values of
these bounds are denoted by fl(s) and fu(s), respectively. The lower
and upper bound policies πl and πu corresponding to these evalua-
tion functions are defined as follows:

πl(s) = arg min
a∈A

Tafl(s), πu(s) = arg min
a∈A

Tafu(s).

Every time a new unvisited state is added to G′, its bounds are
initialized using two heuristic functions: fl(s) = hl(s) and fu(s) =
hu(s). These heuristics are assumed given as part of the problem and
must satisfy hl(s) ≤ Vπ∗(s) and hu(s) ≥ Vπ∗(s) for all states s.

When a state is backed up, new bounds f ′l (s) and f ′u(s) are calcu-
lated from the previous f -values as follows:

f ′l (s) = max
(
fl(s), Tπl(s)fl(s)

)
(4)

f ′u(s) = min
(
fu(s), Tπu(s)fu(s)

)
(5)

The bounds guarantee that there exists a policy π such that fl(s) ≤
Vπ(s) ≤ fu(s). However, this does not tell us how such a policy can
be found.

Theorem 1. If the upper bound heuristic hu is uniformly improvable,
i.e. for all states s

hu(s) ≥ min
a∈A

Tahu(s), (6)

then the value function of the upper bound policy Vπu is bounded by
fl and fu, so that for all states s fl(s) ≤ Vπu(s) ≤ fu(s).

Proof. Since fl(s) ≤ Vπ∗(s), we also have that fl(s) ≤ Vπu(s).
Assume that

fu(s) ≥ min
a∈A

Tafu(s). (7)

Then after applying (5) on a state s′, f ′u(s′) = Tπu(s′)fu(s′) ≥
mina Taf

′
u(s′) and for all other states s, f ′u(s) ≥ mina Tafu(s) ≥

mina Taf
′
u(s). Since fu is initialized with hu, the condition (6) im-

plies that (7) holds. Let f0, f1, . . . be functions such that

fi(s) =

{
Vπ∗(s) if i = 0 or s is a goal state,
Tπu(s)fi−1(s) otherwise.

This corresponds to the value function of a policy where actions are
chosen according to πu until i steps into the future when actions are
chosen according to π∗. As i → ∞, fi(s) → Vπu(s). If i > 0 and
fi−1(s) ≤ fu(s), then using (7) fi(s) ≤ Tπu(s)fu(s) ≤ fu(s).
Because f0(s) = Vπ∗(s) ≤ fu(s), it follows that fi(s) ≤ fu(s) for
all i.

Theorem 1 guarantees that the cost of the upper bound policy is
always less than or equal to fu(s) for all s. No such guarantee exists
for the lower bound policy. Also, since we have bounds on Vπu , the
final value iteration step of LAO* is not needed.

4.4 Error bound

A state is considered solved if the error of the expected cost of the
upper bound policy relative to the expected cost of the optimal policy
is smaller than the error bound ε̄:

ε(s) =
|Vπu(s)− Vπ∗(s)|

Vπ∗(s)
. (8)

The optimal expected cost is not known, but using Theorem 1, we
can bound the relative error with an estimate ε̂:

ε̂(s) =
fu(s)− fl(s)

fl(s)
≥ Vπu(s)− Vπ∗(s)

Vπ∗(s)
= ε(s).

When all successor states of a state s are considered solved, s will
also be considered solved after being backed up.

Theorem 2. Let s be a state and let ε̂(s′) ≤ ε̄ for all s′ ∈
succ(s, πl(s)). Then backing up swill ensure that ε̂(s) < ε̄.

Proof. By (4) and (5), we have that f ′l (s) ≥ Tπl(s)fl(s) and
f ′u(s) ≤ Tπu(s)fu(s) ≤ Tπl(s)fu(s) for all states s. Since ε̂(s′) ≤ ε̄
for all s′ ∈ succ(s, πl(s)), fu(s′) ≤ (1 + ε̄)fl(s

′) and thereby
f ′u(s) ≤ (1 + ε̄)Tπl(s)fl(s)− ε̄q(πl(s), s). Finally,

ε̂(s) =
f ′u(s)− f ′l (s)

f ′l (s)
≤ ε̄

Tπl(s)fl(s)− q(πl(s), s)
Tπl(s)fl(s)

< ε̄.

When fringe(G′πl) = ∅, the estimated error in all leaves of G′πl
is less than or equal to ε̄. In this case, if the error bound has not
converged so that ε̂(s0) ≤ ε̄, repeated back-ups of all the states in
G′πl will either cause fringe(G′πl) 6= ∅ or, by Theorem 2, cause
ε̂(s0) ≤ ε̄.

When ε̂(s0) ≤ ε̄ the inner loop is exited and the error bound ε̄ is
reduced by a factor α where 0 < α < 1. The algorithm restarts at
step 2b and expands states previously considered solved on the fringe
of G′πl .

4.5 Expanding the fringe
Since Iterative Bounding LAO* does not use trials like many RTDP-
based algorithms, the fringe may become very large. In each inner
iteration, the algorithm therefore only selects a subset Sexpand of the
states in fringe(G′πl) for expansion.

Ideally, the algorithm should select those states whose expansions
would have the largest impact on the estimated error of the initial
state. Omitting such states may lead to unnecessarily many back-
ups, while including other states leads to unnecessary work during
expansion. A possible measure of this impact is the product of the
estimated error in a state and the likelihood that the state will be
reached from s0 in the solution graph G′πl .

Since calculating exact state likelihoods is computationally expen-
sive, we use an approximation p̂(s). The calculation of this approxi-
mation is interleaved with the calculation of the fringe itself as shown
in Figure 3, and does not increase the computational complexity of
finding the fringe. We then select those states that have an impact
over average:

ε̂(s)p̂(s) ≥
∑

s′∈G′πl

ε̂(s′)p̂(s′)

/
|G′πl | (9)

Initially p̂(s) = 0 for all states s 6= s0 and p̂(s0) = 1
queue ← {s0}
fringe ← ∅
while queue 6= ∅ do
s← removefirst(queue)
for s′ ∈ succ(s, πl(s)) do
p̂(s′)← p̂(s′) + p̂(s)P (s′|s, πl(s))
if ε̂(s′) > ε̄ then

if s′ has successors then
if s′ /∈ queue then add s′ to queue

else
add s′ to fringe

end for
end while

Figure 3: Algorithm for calculating the set fringe(G′πl) and the like-
lihoods p̂(s) for all states s ∈ fringe(G′πl).

4.6 Weighted heuristics
Just as with A* and LAO*, weighting the heuristic allows Iterative
Bounding LAO* to make a trade-off between solution quality and the
size of the explored search space. A separate evaluation function fw
is used for the weighted heuristic. For unexpanded states s, fw(s) =
whl(s), where the weight w > 1. Using this evaluation function, a
third policy πw is defined where

πw(s) = arg min
a∈A

Tafw(s)

When a state s is backed up, fw is updated as f ′w(s) = Tπw(s)fw(s).
During search, instead of expanding states in G′πl , states are ex-

panded from the solution graph of the weighted policy G′πw . When

the weight is high, policies with many fringe states close to the goal
where the heuristic estimates are smaller will be chosen before less
explored policies. This reduces the size of the search space, but may
cause optimal solutions to be missed. As with LAO*, in the worst
case, the algorithm may converge towards a solution that is subopti-
mal by a factor w, and for all states s,

fw(s) ≤ wVπ∗(s). (10)

The error bounds in states are estimated with the weighted esti-
mated error ε̂w, where

ε̂w(s) =
fu(s)− fw(s)

fw(s)
.

Theorem 3. If

ε̂w(s) ≤ ε̄+ 1

w
− 1 (11)

holds, then the relative error ε(s) ≤ ε̄.

Proof. Using Theorem 1 and (10),

ε̂w(s) =
fu(s)− fw(s)

fw(s)
≥ Vπu
wVπ∗

− 1.

Then using (11) and (8),

ε(s) + 1

w
− 1 ≤ ε̄+ 1

w
− 1.

Theorem 3 makes it possible to choose a weight w ≤ ε̄ + 1 such
that when a solution is found in Gπw the relative error is still less
than or equal to ε̄. There is some freedom in how the weight w may
be assigned. Ifw = ε̄+1, a state swill not be considered solved until
ε̂w(s) = 0, forcing the algorithm to expand every state in Gπw . We
use w =

√
ε̄+ 1, which ensures that search branches can be pruned

when ε̂w(s) ≤
√
ε̄+ 1.

When the error bound ε̄ is decreased after the inner loop of It-
erative Bounding LAO* has completed, the value of the weight is
updated as w =

√
ε̄+ 1. In the next iteration, the explicit search

graph G′ cannot be reused directly because (10) only holds for the
previous value of w.

In each state s we store the value w(s), which is the value of w
used by the algorithm the previous time s was visited. Let Gw =
{s ∈ G′ : w(s) = w}wherew is the current weight. Any other state
s′ /∈ Gw will be considered unexpanded. However, the information
in G′ is kept. Therefore, if a state s ∈ fringe(G′πw) that is to be
expanded in Gw already is expanded in G′, the old values of fl(s)
and fu(s) are reused and the new value of the weighted evaluation
function f ′w(s) is computed as follows:

f ′w(s) = max
(w

w(s)
fw(s), fl(s)

)
.

5 EVALUATION

The new algorithm is evaluated against three other algorithms that
use two-sided bounds: FRTDP, BRTDP, and VPI-RTDP, described in
Section 3. We have also compared with ILAO* which is a more effi-
cient version of LAO*. We have altered ILAO* so that it also updates
the upper bound during back-ups. The main contributors to the total
computation time are the number of back-ups and state expansions.
The cost of performing a back-up is dependent on the branching fac-
tor of the problem while the cost of expanding states also depends

on the difficulty of computing the next state. We evaluated the algo-
rithms using two benchmark problems which have been chosen for
their difference in expansion costs.

The first benchmark problem is the racetrack domain which is a
common benchmark problem for stochastic shortest path problems.
This domain has been used for empirical evaluations of many algo-
rithms similar to Iterative Bounding LAO* [6, 8, 12, 11]. Character-
istic for this problem is that the branching factor is low and that new
states can be generated quickly.

The second problem is troubleshooting of a printer which we be-
lieve is a suitable domain for probabilistic planning algorithms us-
ing two-sided bounds. A fault in a printer with an unknown fault
should be repaired at a minimal expected cost. Probabilistic depen-
dencies between observations and component faults are modeled
with a Bayesian network. This is a realistic example problem where
meaningful lower and upper bounds can be computed. Characteristic
for this problem is a high branching factor and that expansions are
expensive since they involve inference in a Bayesian network.

5.1 Racetrack
The racetrack domain was first presented in [1]. The task is to drive
a vehicle from a starting position across a goal line. The states are
integer vectors s = (x, y, ẋ, ẏ) describing the vehicle’s position and
velocity in two dimensions. Actions are integer accelerations a =
(ẍ, ÿ) where |ẍ| ≤ 1 and |ÿ| ≤ 1. The states are fully observable,
and uncertainty is introduced when actions are performed. If a wall is
hit, the vehicle is moved back to the starting position. New states are
easily computed involving only a simple check if the path between
two points is blocked.

We have used two racetrack maps, large-b and block80, that have
been published in [1] and [11] respectively. The problems are spec-
ified identically as in [12] where in large-b actions may fail causing
the vehicle to skid and have zero acceleration and in block80 a per-
turbing gust of wind may accelerate the vehicle in a random direc-
tion. The probability with which an action fails is 0.1. For non-goal
states s, the lower bound heuristic used is

hl = hmin(s) = min
a∈A

(
q(a, s) + min

s′∈succ(a,s)
hmin(s′)

)
,

and for goal states it is zero. This is the optimal cost if action out-
comes could be chosen freely. This heuristic has been used for this
problem in [2, 12]. The upper bound heuristic is a constant, 1000,
for all non-goal states. This is a gross overestimate of the optimal
expected cost. This heuristic is in general not uniformly improvable.
By introducing a special "plan more" action with a cost of 1000 that
takes the vehicle directly to the goal, Theorem 1 will be applicable.

For each algorithm in the experiment, values of the upper and
lower bounds in the initial state are available at any time. When these
values have converged such that their relative difference is less than
a threshold ε the algorithm is halted and the time in seconds and the
total number of expansions and back-ups are registered. Also, the ac-
tual cost of the current upper bound policy Vπu is evaluated. A time
limit is set to 300 seconds.

Two version of Iterative Bounding LAO* are tested, weighted
(wIBLAO*) and unweighted (IBLAO*). Both uses α = 0.5 and
for wIBLAO* w(ε̄) =

√
1 + ε̄. BRTDP uses τ = 50, FRTDP uses

ε = 0.001, D0 = 10, and kD = 1.1, VPI-RTDP uses α = 0.001
and β = 0.95. These are the same values used in the empirical eval-
uations in [8, 12, 11].

The results are shown in Table 1. The best results in each cate-
gory are in bold. Iterative Bounding LAO* requires more back-ups

than the other algorithms but fewer states are expanded. This is an
expected result because Iterative Bounding LAO* backs up all an-
cestor states to the expanded states while the RTDP algorithms only
back up the states on the trajectory of the last trial. ILAO* must ex-
pand all states in a solution and for block80 almost the entire state
space is reachable under the optimal policy. Therefore it is not able
to complete within the time limit. Iterative Bounding LAO* would
have this problem too if it expanded all states on the fringe instead
of using (9). The weighted version of Iterative Bounding LAO* is
more restrictive with expansions but requires more back-ups because
of the necessary weight adjustments.

5.2 Troubleshooting
In the troubleshooting problem [7], a fault in a printer should be
discovered and repaired. The actions have different costs and each
action may either repair a component or make an observation. The
health of the components is not known. A state is therefore a proba-
bility distribution over possible component faults, a so called belief
state.

The printer system is modeled with a Bayesian network with two
types of variables: components and observations. The network mod-
els probabilistic dependencies between these variables. A component
variable describes the health of the component and an observation
variable describes something that can be observed. The Bayesian net-
work used for this problem is publicly available in repositories such
as the Bayesian Network Repository [5] by the name win95pts.

When an action a that makes an observation is performed, evi-
dence is added to a variable in the Bayesian network. For value the
variable may have, a new belief state s′ is computed given the previ-
ous belief state s. The likelihood of that evidence is P (s′|a, s). When
an action that repairs a component is performed, evidence is removed
from all descendants of that component variable. A new belief state
is computed by moving probability mass from situations where the
component is faulty to situations where it is non-faulty. A motivation
for this can be found in [10]. After each repair, there is a manda-
tory check whether the printer is working properly. State expansions
require inference in the Bayesian network to be made. This makes
the expansion step for this problem much more time consuming than
for the racetrack domain. The inference algorithm used is Variable
Elimination [4].

This problem is similar to a POMDP [3] but it is not as difficult.
The reason for this is that each repair actions can only be performed
once and each observation can only be performed a limited num-
ber of times because only repair actions may remove evidence. This
property makes the reachable belief state space discrete and finite
and the problem is therefore suitably solved with algorithms such as
LAO* and RTDP.

A natural lower bound for this problem is the solution to a relax-
ation where all components are fully observable. Then

hl(s) =
∑
c

P (c|s)qrc

where P (c|s) is the probability that the component c is faulty in the
state s and qrc is the cost of repairing c.

In [7] an upper bound heuristic for this problem is presented. This
heuristic is derived from a stationary policy that is guaranteed to re-
pair the printer. Some components are observable, meaning that it
is possible to observe the health of those components directly. The
components are ordered from 1 to n: c1, c2, . . . , cn. The observable
components are observed in this order and if a component is faulty
it is repaired. The components that cannot be observed are repaired

Table 1: Comparison of algorithms on the problems large-b, block80,
and win95pts.

large-b ε Vπu expansions backups time
wIBLAO* 1.0 34.70 502 13118 0.08

0.1 23.95 2606 108064 0.53
0.01 23.31 3743 203323 1.00

0.001 23.26 4353 286681 1.39
IBLAO* 1.0 39.34 2294 32272 0.22

0.1 24.86 3381 56766 0.45
0.01 23.45 3995 86356 0.53

0.001 23.27 4706 120142 0.78
ILAO* 1.0 28.00 6102 67127 0.25

0.1 23.28 9133 342745 0.74
0.01 23.25 9884 811285 1.49

0.001 23.25 9909 902720 1.64
BRTDP 1.0 28.24 4170 19552 0.16

0.1 23.48 5527 33800 0.23
0.01 23.27 6416 48270 0.28

0.001 23.25 6800 58586 0.33
FRTDP 1.0 28.35 4527 31842 0.20

0.1 23.61 5354 53242 0.30
0.01 23.27 6565 76546 0.38

0.001 23.25 7246 96844 0.47
VPI-RTDP 1.0 27.67 4301 25750 0.19

0.1 23.63 5357 57528 0.31
0.01 23.29 6053 98088 0.44

0.001 23.25 6768 160680 0.66
block80 ε Vπu expansions backups time

wIBLAO* 1.0 14.10 2217 17768 0.47
0.1 9.81 10898 157913 3.38
0.01 9.61 18642 321675 6.51

0.001 9.59 24594 481827 9.30
IBLAO* 1.0 15.57 5275 62998 1.55

0.1 10.04 12576 227177 4.55
0.01 9.61 17232 318582 6.31

0.001 9.59 25614 475370 9.42
ILAO* 1.0 - - - -
BRTDP 1.0 12.28 10574 46468 1.44

0.1 9.66 21270 110288 2.95
0.01 9.59 33423 193632 4.88

0.001 9.59 41830 270170 6.55
FRTDP 1.0 11.91 9740 59916 1.38

0.1 9.65 26985 175120 3.75
0.01 9.59 41795 295436 5.88

0.001 9.59 56126 447364 8.08
VPI-RTDP 1.0 12.51 9950 44584 1.38

0.1 9.69 20490 107640 2.91
0.01 9.59 32553 192490 4.77

0.001 9.59 41058 272936 6.36
win95pts ε Vπu expansions backups time

wIBLAO* 1.0 15.33 60 294 5.22
0.1 13.22 673 6243 55.2
0.01 12.84 891 10517 76.2

0.001 12.84 945 11895 80.4
IBLAO* 1.0 15.33 55 234 4.30

0.1 13.18 806 4877 67.2
0.01 12.84 1163 7434 96.6

0.001 12.84 1235 8013 101
ILAO* 1.0 13.22 288 2402 11.7

0.1 12.84 3899 45077 139
0.01 12.84 5950 74327 206

0.001 12.84 6182 78255 208
BRTDP 1.0 14.96 240 586 13.4

0.1 12.84 1975 5992 108
0.01 12.84 3081 10034 158

0.001 12.84 3222 10552 164
FRTDP 1.0 16.02 244 692 14.7

0.1 13.39 2421 10016 141
0.01 12.84 2585 11026 150

0.001 12.84 2722 11566 154
VPI-RTDP 1.0 13.80 171 416 10.5

0.1 12.84 2009 6096 111
0.01 12.84 3097 9998 158

0.001 12.84 3286 10764 166

immediately when it is their turn in the sequence. The expected cost
of this policy can be computed analytically without expanding any
states. The upper bound is the expected cost

hu(s) =

n∑
i=1

((
1−

i−1∑
j=1

P (cj |s)
)
qoi + P (ci|s)(qri + qop)

)
(12)

where qoi is the cost of observing component ci, qri is the cost of re-
pairing ci and qop is the cost of determining if any more faults remain.
Please refer to [7] for more details on how (12) is derived and how
the components are ordered.

The algorithms are run with the same settings as in the previous
experiment and the results are shown in Table 1. Expansion costs
clearly dominate the computation time. Like before, Iterative Bound-
ing LAO* expands considerably fewer states than the other algo-
rithms, and is therefore faster for all tested error bounds.

6 CONCLUSION
Iterative Bounding LAO* is an algorithm for ε-optimal probabilis-
tic planning for stochastic shortest path problems. The algorithm
uses two-sided bounds on the optimal expected cost which are itera-
tively narrowed. The way in which the algorithm weights the lower
bound heuristic reduces the size of the search space. Compared to
the other algorithms in the empirical evaluations Iterative Bounding
LAO* expands significantly fewer states. This is shown to be ben-
eficial on problems where state expansions are expensive such as a
troubleshooting and repair problem for printers.

ACKNOWLEDGEMENTS
This work is supported in part by Scania CV AB, the Vinnova
program Vehicle Information and Communication Technology V-
ICT, the Center for Industrial Information Technology CENIIT,
the Swedish Research Council Linnaeus Center CADICS, and the
Swedish Foundation for Strategic Research (SSF) Strategic Research
Center MOVIII.

REFERENCES
[1] A.G. Barto, S.J. Bradtke, and S.P. Singh, ‘Learning to act using real-

time dynamic programming’, Art. Int., 72(1-2), 81–138, (1995).
[2] B. Bonet and H. Geffner, ‘Labeled RTDP: Improving the convergence

of real-time dynamic programming’, in Proc. of ICAPS’03, (2003).
[3] A. Cassandra, L. Kaelbling, and M. Littman, ‘Planning and acting in

partially observable stochastic domains’, Art. Int., 99–134, (1998).
[4] R. Dechter, ‘Bucket elimination: A unifying framework for several

probabilistic inference’, in Proc. of UAI’96. Morgan Kaufmann, (1996).
[5] G. Elidan. Bayesian Network Repository. http://compbio.cs.huji.ac.il/

Repository/, 2001.
[6] E.A. Hansen and S. Zilberstein, ‘LAO* : A heuristic search algorithm

that finds solutions with loops’, Art. Int., 129(1-2), 35–62, (2001).
[7] D. Heckerman, J.S. Breese, and Koos Rommelse, ‘Decision-theoretic

troubleshooting’, Communications of the ACM, 38(3), 49–57, (1995).
[8] H.B. McMahan, M. Likhachev, and G.J. Gordon, ‘Bounded real-time

dynamic programming: RTDP with monotone upper bounds and per-
formance guarantees’, in Proc. of ICML’05, (2005).

[9] N.J. Nilsson, Principles of Artificial Intelligence, Morgan Kaufmann,
San Francisco, CA, 1980.

[10] A. Pernestål, Probabilistic Fault Diagnosis with Automotive Applica-
tions, Ph.D. dissertation, Linköping University, 2009.

[11] S. Sanner, R. Goetschalckx, K. Driessens, and G. Shani, ‘Bayesian real-
time dynamic programming’, in Proc. of IJCAI’09, (2009).

[12] T.Smith and R.Simmons, ‘Focused real-time dynamic programming for
MDPs: Squeezing more out of a heuristic’, in Proc. of AAAI’06, (2006).

