
Improving Heuristics through Search
P@trik Haslum�

Abstract. We investigate two methods of using limited search
to improve admissible heuristics for planning, similar to pattern
databases and pattern searches. We also develop a new algorithm for
searching AND/OR graphs.

1 Introduction

In past work [5, 6] we have investigated a method of automatically
deriving admissible heuristics for variations of classical planning.
The main result is a family of heuristics, ��, where � represents
a trade-off between accuracy and efficiency. For small �, �� can
be computed quickly by a dynamic programming method, but the
heuristic is often too weak, causing the planner to spend too much
time in search. In this paper we investigate a different approach, in
which we redirect some of the search effort from the search for a
solution to improving cost estimates, by computing parts of �� for
higher values of �.

2 Background

This section briefly summarizes our general approach. We refer to
[5, 6] for details. For simplicity, we focus on sequential planning but
with minor modifications the methods work for temporal planning as
well. We assume the standard propositional STRIPS model of plan-
ning. A cost is associated to each action (������� � �), and the cost
of a plan, which we seek to minimize, is the sum of the costs of the
actions that are part of it. Our baseline planner, HSP��, is based on
regression and the �� heuristic, and uses IDA* to search. A search
state, �, is a set of atoms, representing goals. Search starts from the
set of goals () and ends when a set of goals satisfied by the initial
state (
) is reached. The optimal cost of �, �����, is given by the
Bellman equation [2]:

�
���� �

�
� if � �

�����������
����� � Æ��� ���

� (1)

where ���� is the set of states that can be constructed from � by re-
gression, and Æ��� ��� is the cost of the action used to regress from �

to ��. The �� heuristic, obtained from (1) by introducing an admis-
sible approximation, is defined by

�
���� �

��
�

� if � �

�����������
���� � Æ��� ��� if ��� � �

�	
�����������������
(2)

For small � (in practice, � � �), ����� for all sets with ��� � �

can be efficiently computed by different dynamic programming or
shortest path algorithms. The heuristic is stored in a table, and during
search the cost of a state � is given by the maximal cost of any subset

� Linköpings Universitet (pahas@ida.liu.se)

of � that is stored in the table2. This implies that as soon as a cost
value for an atom set �� is stored in the table, it becomes included in
the subsequent evaluation of any set � such that �� � �. We will use
 ��� to denote the estimated cost of � given by the current table .

3 Improving Heuristics through Search

For small values of �, the �� heuristic frequently underestimates
the cost of both sets of more than � atoms (because it considers only
the most costly �-subset) and sets of � or fewer atoms (because it
does so recursively).

3.1 Boosting

Each set of atoms stored in the cost table (table entry) is itself a state
in the search space (although perhaps not in the part of the search
space explored by a search starting from the goal set,). Thus, for
any table entry � we can find the optimal cost of � by performing a
search starting in �. Even if the search is interrupted before a solution
is found, it may still result in an improved lower bound on the cost of
�. We call this boosting the heuristic. To put this idea into practice, a
number of questions have to be settled:
Which table entries to boost? Entries whose cost is already known
to be optimal or infinite (i.e. unreachable) can obviously be ignored.
Entries with a cost greater than �	� are also unlikely to be rele-
vant, although this is not certain since the cost of 	 may be under-
estimated.
In what order? Since entries with a smaller cost may be relevant in
the boosting search for higher cost entries, but not vice versa, entries
are boosted in order of increasing estimated cost.
When to interrupt boosting searches? To search until the optimal cost
for each table entry has been found is generally too expensive to be
practical. Two alternatives are: (1) Interrupt the search for an entry �
when it has been proven that the cost of � is greater than the cost of
the next entry in the list of entries to boost, thus preserving the “boost
in order of increasing cost” principle. The boosting of an entry may
be resumed once it has again become the least costly entry on the
list. (2) Interrupt search after a fixed time (or some other measure of
search effort)3.
When to stop the boosting process? As entries are solved, proven
unreachable or reach some search effort limit without cost improve-
ment, the list of entries to boost will shorten and eventually become
empty, at which point the boosting process comes to a natural end.
A reasonable earlier stopping point is when the estimated cost of the

� The table is implemented as a Trie tree [1] so that enumerating all the sub-
sets of � that are not in the table can be avoided.

� When both conditions are applied, entries for which the search is interrupted
without any improvement in cost are not reinserted into the list of entries to
boost.

next (i.e. least costly) entry in the list is greater than �	�, since the
remaining entries are less likely to be relevant.

Conflict Detection. Boosting improves the cost estimates stored in
the table. To improve estimates of cost for larger atoms sets, such
sets have to be added to the table and boosted. However, adding en-
tries indiscriminately is not cost-effective. As long as a set � is not
solved (i.e. its optimal cost not known), there is no reason to con-
sider supersets of � since further improving the cost estimate for �
also improves on all its supersets. Only when a set � becomes solved
do we consider adding new sets � � ���, for atoms � �� �. As an
additional selection criterion, ����� is added only if the plan found
for � deletes �4. A fixed limit on the size of any set added to the table
can also be imposed, and this often improves performance.

3.2 Approximate Regression

The Bellman equation directly reflects the search space. Analo-
gously, the equation that defines�� reflects a different search space,
which we may call the �-approximate regression space. This is an
AND/OR graph: Sets of � or fewer atoms are OR-nodes, expanded
by regression, while sets of more than � atoms are AND-nodes, ex-
panded by solving each subset of size �. The cost of an OR-node
is minimized over all its children, while the cost of an AND-node is
maximized.

To search in the approximate regression space, we use a modified
IDA* algorithm, which we call IDAO* 5. It differs from IDA* only
in the DFS subroutine:

IDAO_DFS(s, b) {
if final(s) {
solved = true;
return 0;

}
if (|s| > m) { // AND-node
for (each subset s’ of s, |s’| == m) {
c[s’] = IDAO(s’, b); // cost limit = b
if (c[s’] > b) return c[s’];
}
solved = (all subsets solved);
return max c[s’] over all s’;

} else { // OR-node
for (each s’ in R(s)) {
if (delta(s,s’) + H(s’) <= b) {
c[s’] = delta(s,s’) +

IDAO_DFS(s’, b - delta(s,s’));
if (solved) return c[s’];

} else {
c[s’] = delta(s,s’) + H(s’);

}
}
store H(s) = min c[s’] over all s’, if improved;
return min c[s’] over all s’;

}
}

IDAO DFS discovers a lower bound on the cost of every encountered
node (the optimal cost, if the node is solved). By storing the values
of OR-nodes (size � subsets) in the cost table, the search computes
part of the �� heuristic as a side effect6.

� The criterion can be strengthened or weakened by examining all optimal
plans for �, but this is in general to expensive to be worthwhile. Several
other selection criteria are also possible.

� IDAO* is not directly usable as a search algorithm for AND/OR graphs,
because although it finds an optimal solution, it does not keep enough in-
formation for this solution to be extracted. It works for our purposes since
we only need to know the optimal cost.

	 A greater part of�� can be computed by searching all the children of each
AND-node, but this is expensive and the value of the additional heuristic
information is small.

IDAO* frequently encounters the same state (set of goals) more
than once during search, and therefore it can be sped up (significant-
ly) by storing solved nodes (both AND and OR) and short-cutting the
search when it reaches a node that has already been solved. Unlike
the lower bounds stored in the cost table, which are valid also for
greater-�-approximate searches and in the original search space, the
information in the “solved table” is valid only for the current �-
approximate search.

4 Results, Conclusions and Related Work

Boosting and approximate regression can be incorporated into our
basic planning algorithm in many ways. We have experimented with
four variants: HSP�
 and HSP�� use approximate search and boosting,
respectively, to improve the heuristic before searching for a plan,
while HSP�� and HSP� interleave different heuristic improvement ef-
forts with iterations of the main search. All four use �� as the base
heuristic. Results indicate that the methods are cost-effective for
some “combinatorially hard” problems, i.e. problems that are hard
because of their structure and not only because of sheer size.

The idea of using search to derive or improve heuristics is not
new: Pattern databases [3, 4] are constructed by search in a relaxed
problem space, and solution cost in this space is used as a lower
bound on cost in the original search space. Approximate regression
can be viewed as such a relaxation. Pattern searches [7] discover the
cost of “parts” of a search state, which are then used as lower bounds
on the cost of any state containing those parts, similar to boosting.

The IDAO* algorithm is very similar (though not identical) to an
iterative application of the Test subroutine of the SCOUT minimax
search algorithm [8]. Although the idea of using Test in this iterative
fashion, or enhancing it with memory, has, to our knowledge, not
been applied before, there is a large body of work on depth-bounded
(as opposed to cost-bounded) minimax search, e.g. [9], which could
be used in an iterative deepening scheme instead of IDAO*. An alter-
native to our current use of approximate regression is to use a (depth-
bounded) approximate search to improve the estimated cost of each
state encountered in the main search.

Acknowledgements

Héctor Geffner deserves as much credit for this work as I do (all
faults are mine though).

References
[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, Data Structures and Algo-

rithms, Addison-Wesley, 1987.
[2] R.E. Bellman, Dynamic Programming, Princeton University Press, 1957.
[3] J.C. Culberson and J. Schaeffer, ‘Searching with pattern databases’, in

Canadian Conference on AI, (1996).
[4] S. Edelkamp, ‘Planning with pattern databases’, in Proc. 6th European

Conference on Planning, (2001).
[5] P. Haslum and H. Geffner, ‘Admissible heuristics for optimal planning’,

in Proc. 5th International Conference on Artificial Intelligence Planning
and Scheduling. AAAI Press, (2000).

[6] P. Haslum and H. Geffner, ‘Heuristic planning with time and resources’,
in Proc. 6th European Conference on Planning (ECP’01), pp. 121 – 132,
(2001).

[7] A. Junghanns and J. Schaeffer, ‘Sokoban: Enhancing general single-
agent search methods using domain knowledge’, Artificial Intelligence,
129(1-2), 219 – 251, (2001).

[8] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem
Solving, Addison-Wesley, 1984.

[9] A. Plaat, J. Schaeffer, W. Pijls, and de Bruin A., ‘Best-first fixed-depth
minimax algorithms’, Artificial Intelligence, 87(1-2), 255 – 293, (1996).

2

