
CAKE: A Computer Aided Knowledge Engineering
Technique

Patrick Doherty1 and Witold Łukaszewicz
Andrzej Szałas2

1 Introduction

Logic engineering often involves the development of modeling tools
and inference mechanisms (both standard and non-standard) which
are targeted for use in practical applications where expressiveness
in representation must be traded off for efficiency in use. Some rep-
resentative examples of such applications would be the structuring
and querying of knowledge on the semantic web, or the represen-
tation and querying of epistemic states used with softbots, robots
or smart devices. In these application areas, declarative representa-
tions of knowledge enhance the functionality of such systems and
also provide a basis for insuring the pragmatic properties of modu-
larity and incremental composition. In addition, the mechanisms de-
veloped should be tractable, but at the same time, expressive enough
to represent such aspects as default reasoning, or approximate or in-
complete representations of the environments in which the entities in
question are embedded or used, be they virtual or actual.

Equally important are the tools used to do the modeling. Although
difficult to evaluate formally, such modeling tools should provide
straightforward methods which insure the modularity and incremen-
tal composition of the knowledge structures being designed in addi-
tion to guaranteeing formal semantics and transparency of usage.

The applications we are involved in require an efficient represen-
tation and query mechanism for the knowledge structures and epis-
temic states used by robots or softbots, in particular for applications
where planning in the context of incomplete states and approximate
knowledge is a necessity. We have focused on a generalization of
deductive databases and query languages which involves the use of
rough knowledge databases (databases where approximate relations
and properties are the rule rather than the exception) and where
queries can be non-monotonically contextualized to locally close
only parts of the database since a closed-world assumption is not
feasible. This approach provides us with a reasonably efficient query
mechanism and a reasonably expressive query language for query-
ing approximate epistemic states. In such knowledge structures, both
positive and negative knowledge must be stored explicitly to ensure
an open-world assumption.

In the approach we are pursuing, we view a (generalized) database
as a loosely coupled confederation of granular agents, where each
agent is responsible for managing all or part of a relation or prop-
erty. In fact, several agents may contribute locally to the definition
of a relation. In addition, each relation is viewed as a partial or ap-

1 Department of Computer Science, Link¨oping University, S-581 83
Linköping, Sweden

2 College of Economics and Computer Science, TWP, Wyzwolenia 30, 10-
106 Olsztyn, Poland

proximate object represented in terms of positive and negative infor-
mation. Granular agents may be composed and abstractions of these
compositions (called modules) can be constructed where the module
is viewed externally as the manager of a specific relation, hiding the
complexity of generating its extension. Modules may be defined re-
cursively in terms of other modules or as combinations of modules
and explicit types of granular agents.

Querying such confederations of active knowledge can be done
in a number of ways using a number of querying techniques. For
instance, certain granular agents may manage and compute default
rules, while others may adjudicate between several default agents
when there is conflict. Other agents may manage a local context
which locally closes or minimizes, maximizes or fixes several dif-
ferent relations.

These mechanisms are intended to be used in environments where
knowledge or information is distributed, often times locally incon-
sistent, and where granular agents can compose and decompose dy-
namically in order to represent knowledge structures and query them
in a flexible and tractable manner. In order to construct such knowl-
edge structures and granular agent confederations in a principled and
straightforward manner, we propose a diagrammatic technique for
building representations and doing inference which insures formal
correctness. The diagrammatic technique and its semantics will be
the focus of this article.

We call the method CAKE, an acronym which stands forcomputer
aided knowledge engineering and which encompasses the techniques
and functionalities already described informally in addition to oth-
ers reported elsewhere. CAKE provides us with a means for con-
structing and visualizing the complex dependencies between gran-
ular agents. It can be naturally viewed as an extension of well-
known entity-relationship diagrams designed for representing rela-
tions in relational databases. It also provides tools to represent a com-
plex querying mechanism for generalized deductive databases, which
is expressive enough to model numerous knowledge representation
paradigms, including defaults and many circumscription policies.

CAKE enjoys two important properties. Firstly, it has a simple
well-defined semantics. Secondly, it is tractable: any reasoning pro-
cess that can be represented using CAKE is computable in polyno-
mial time. This makes our formalism attractive from the standpoint
of practical applications.

This article is organized as follows. We start with a brief pre-
sentation of the basic concepts associated with the CAKE method
and illustrate our formalism with a few examples concerning default
logic.3 Section 3 provides a semantics and computational mechanism

3 We assume that the reader is familiar with standard default logic, see [3, 4].
We choose these examples to demonstrate continuity with previous work

for CAKE. In section 4, we show how CAKE’s computational mech-
anism works in practice. Finally, section 5 contains concluding re-
marks.

2 Introduction to CAKE

CAKE is heavily influenced by the notion of arough relation. Such
a relationR is understood as a triple of relationshR+; R�; R�i,
whereR+ represents those tuples of objects of the considered do-
main that are known to satisfyR, R� represents those tuples of ob-
jects that are known to satisfy the complement ofR andR� rep-
resents the remaining tuples. In what followsR+; R� andR� are
called thepositive, negative andboundary part (region) of relation
R, respectively. In applications, many of the relations used can be
induced via supervised learning techniques and stored as rough rela-
tions in a database.

The CAKE method is based on the use of three types of dia-
grams representing granular agents, adjudicating agents and knowl-
edge modules, respectively.

The basic concept of the CAKE method is that of agranular agent.
Such an agent is to be thought of as an abstract object storing infor-
mation about a rough relation. Each agent is responsible for deliv-
ering a single relation, though a relation can be distributed among
many agents.

An agent can store its own facts, as well as rules defining a relation
or imposing some constraints on it. The rules define a computational
mechanism which allows the agent to compute the relation. Such a
mechanism is called anagent method. It should be emphasized that
an agent method may refer to information stored by other agents. In
fact, there can be considerable dependencies among agents. In order
to make the references to relations unambiguous, we use notation
A:R to indicate that relationR comes from agentA.

Each granular agent is graphically represented by a diagram. Be-
low, we show two diagrams corresponding to two granular agents.

A : P (x) B : R(x)

a

b - A:P+(x)

A:P�(x)

The left diagram represents a granular agentA responsible for a
unary relationP . This is denoted at the top part of the diagram by
thelabel “A : P (x)”. The rest of the diagram is horizontally divided
into three parts, referred to (from top to bottom) as acontext part,
a negative part and apositive part of the diagram, respectively.4 In
the case of agent A, the positive (resp. negative) part of the diagram
contains individual constants that are known to satisfy the relationP
(resp. the complement ofP). Accordingly, the information stored by
agentA consists of two facts:P+(a) andP�(b).

The right diagram represents a granular agentB responsible for
a unary relationR. The negative and positive parts of the diagram
represent methods the agent uses. The methodA:P+, placed in the
negative part of the diagram, is interpreted as the following rule: “for

and obviously not for their novelty!
4 Due to lack of space, only a fragment of the CAKE method will be presented

here. In particular, the context part of a diagram will not be used in the
examples considered in this paper. This part contains rules allowing one
to deal with local closed-world assumption policies which are often very
useful in practical applications, in particular planning in the context of an
open-world assumption (see [2]).

any objectx, if x is in the positive part of the diagram of agentA,
infer thatx is in the negative part of the diagram of agentB”. Sim-
ilarly, the second method represents the rule: “for any objectx, if x
is in the negative part of the diagram of agentA, infer thatx is in the
positive part of the diagram of agentB”. Given these methods, agent
B can inferR�(a) andR+(b).

Notice that there is an arrow fromA toB. This represents the fact
that agentB uses information stored by agentA. There is a depen-
dency between agentA andB.5

An important concept used in the CAKE method is that of aknowl-
edge module. Such a module may be viewed as a complex agent con-
sisting of a group of granular agents.6 One of the main roles of a
module is to deal with contradictions. The next example will help us
illustrate this.

Example 2.1 Consider the default theory7

T = h fQ(n); R(n)g;
R(x) : :P (x)

:P (x)
;
Q(x) : P (x)

P (x)
g i:

This is the “Nixon diamond” theory withR, P , Q, n standing for
“Republican”, “Pacifist”, “Quaker” and “Nixon”, respectively.

Figure 1 represents the diagram corresponding toT .

n

A1 :Q(x)

n

A2 :R(x)

A2:R
+^:A3:P

+

A4 :P (x)

A3:P
�

A3 :P (x)

M : P (x)

6 6 6

A3:P
+

A5 :P (x)

A1:Q
+^:A3:P

�A3:P
+

A3:P
�

Figure 1. Diagram corresponding to the theory of Example 2.1.

The agents,A1, A2 andA3 at the bottom of the diagram are granu-
lar agents representing information extracted from the axioms of the
theory. Sincen is in the positive part of the diagrams of bothA1 and
A2, the facts stored by these agents areQ+(n) andR+(n), respec-
tively. Both the negative and positive part of the diagram of agentA3

is empty, because no specific information concerning the relationP

5 Observe that relationP associated with agentA is denoted byA:P in the
diagram of agentB. This is because many agents may be responsible for a
single relation.

6 CAKE also permits modules containing other modules, but this possibility
will not be considered in the article.

7 Recall thatA(�x):B(�y)
C(�z)

denotes a default rule, where formulasA(�x),B(�y)

andC(�z) are called aprerequisite, a justification and aconsequent of the
rule, respectively. The intended meaning of the rule is “ifA(�x) holds and
B(�y) is consistent with the current knowledge then by default assume that
C(�z) holds, too”.

can be extracted from the axioms ofT . The agentsA4 andA5 man-
age the defaults of the theory. They are responsible for the relation
P which occurs in the consequent of both of the defaults. There are
three methods associated with each of these agents. Two of them,
namelyA3:P

� andA3:P
+, allow agentsA4 andA5 to use knowl-

edge of agentA3 while computing the relationP . Using them, the
agents can infer that, for any objectx, x lies in the negative (resp.
positive) parts of their diagrams, provided thatx lies in the negative
(resp. positive) part of the diagram ofA3.

The remaining methods, namelyA2:R
+ ^:A3:P

+ andA1Q
+ ^

:A3:P
�, represent defaults in the theory. Observe that method

A2:R
+ ^ :A3:P

+, used by agentA4, is placed in the negative part
of its diagram. Accordingly, it has the following meaning: “for any
objectx, if x is in the positive part of the diagram ofA2 and it is
not the case thatx is in the positive part of the diagram ofA3, in-
fer thatx is in the negative part of the diagram ofA4. Similarly, the
meaning of methodA1Q

+ ^ :A3:P
�, used by agentA5, is the fol-

lowing: “for any objectx, if x is in the positive part of the diagram
of A1 and it is not the case thatx is in the negative part of the di-
agram ofA3, infer thatx is in the positive part of the diagram of
A5. Since bothA4 andA5 make inferences concerning the relation
P , they have been grouped into a single knowledge module, labeled
M : P (x). It is the module, not an individual agent, that is responsi-
ble for default inferences aboutP , although the individual agents in
the module contribute to its semantics.

Suppose the query we (or an agent) are interested in isP (n). The
answers of agentsA4 andA5, obtained by their default methods,
are clearlyFalse andTrue, respectively. This conflict is resolved by
moduleM by means of CAKE’s standard voting mechanism which
is implicitly used by default if no explicit voting method is provided.
It is based on the principle that whenever a query is answeredTrue
and False within a knowledge module, the answer output by the
module isUnknown.8

Although the standard voting mechanism used by CAKE is very
natural from an information ordering perspective, it is often reason-
able to use other voting policies. The CAKE method allows the user
to define her/his own voting policy. This is technically done by in-
troducing a special agent, called anadjudicating agent, as part of a
module where the agent is responsible for managing the voting pro-
cess when required by the module.9

Example 2.2 Consider a well-known default theoryT given by

W = fA(j) ^ FTS(j)g

D =

�
FTS(x) : :E(x)

:E(x)
;
A(x) : E(x)

E(x)

�

whereA,FTS,E andj stand for “Adult”, “FullTimeStudent”, “Em-
ployed” and “John”, respectively.

¿From the syntactic point of view, the theoryT is identical with
that from Example 2.1. Accordingly, if we representedT by a dia-
gram analogous to that previously used, the answer to the queryE(j)

8 More precisely, the standard voting mechanism of CAKE is the following.
Suppose that a module is asked a query. (1) If at least one agent contained in
a module answersTrue to the query and none of the agents answersFalse,
the final answer to the query isTrue. (2) If at least one agent contained
in a module answersFalse to the query and none of the agents answers
True, the final answer to the query isFalse. (3) Otherwise, the answer to
the query isUnknown.

9 That is, the answer determined by this agent is the answer returned by the
module.

would beUnknown. Obviously, this answer is intuitively problem-
atic. Given that John is both a full time student and an adult, the an-
swer to the query should beFalse if a concept specificity criterium
is used to adjudicate conflict in a hierarchy. To achieve this effect, we
have to replace the implicit default voting policy with another. This
policy will give a higher priority to the first default of the theory. The
appropriate diagram corresponding toT is presented in Figure 2.

M : E(x)

A4 : E(x)

A2:FTS+^A3:E
	

A3:E
�

A5 : E(x)

A3:E
�

A1:A
+^A3:E

�A3:E
+

A3:E
+

A6 : E(x)

A4:E
�

A4:E
+

A4:E
�^A5:E

�

A4:E
�^A5:E

+

z }| {

1 i

jj

A1 : A(x) A3 : E(x)A2 :FTS(x)

> }6

Figure 2. Diagram corresponding to the theory of Example 2.2.

Agent A6 is an adjudicating agent.10 The methodsA4:E
� and

A4:E
+, employed by the agent, allow it to use the knowledge of

agentA4 while computing the relationE. If A4 has no information
about whether a given objects satisfies the relationE or not, then
the knowledge of agentA5 is taken into consideration (the methods
A4:E

� ^A5:E
� andA4:E

� ^A5:E
+).

3 The Semantics and Computational Method

3.1 Preliminary Notions

The formal semantics of CAKE diagrams involves the use ofsimul-
taneous fixpoints which are defined by allowing many relations as
arguments to standard fixpoint operators. This is required because of
the many dependencies between the definitions of different relations.
The syntax for fixpoint operators is:

lfp R1(x1); : : : ; Rk(xk):A(R1(x1); : : : ; Rk(xk))

where A(R1(x1); : : : ; Rk(xk)) is stratified11 w.r.t. all relations
R1(x1); : : : ; Rk(xk). EachRi is called thei-th coordinate of the
fixpoint and also denoted byA=i.

Fixpoint formulas have a very nice computational characteri-
zation, which allows one to compute simultaneous fixpoints over

10 The symbolA4:E
� is an abbreviation for:A4:E+ ^ :A4:E

�.
11 The definition of stratification is more or less standard here. The meaning

is that recursion does not go through an odd number of negations. For a
definition of stratification see e.g. [1].

databases in time polynomial in the size of the database. Namely,
given an extensional databaseB, we have the following definition of
the least fixpoint,

hR1(x1); : : : ; Rk(xk)i =
_
i2!

Ai(False; : : : ;False)

where bracketsh; i are used to denote a vector of relations,!
stands for the set of natural numbers,A0(False; : : : ;False) =
hFalse; : : : ;False| {z }

k�times

i and

Ai+1(False; : : : ;False) =
hAi=1(False; : : : ;False); : : : ; Ai=k(False; : : : ;False)i.

We will also use the following convention. Assume we have a for-
mula in negation normal form, i.e. negations are only before relation
symbols12. Then any positive occurrence of any relation symbol, say
R, refers toR+ and any negative occurrence:R of R refers toR�.
We also use the convention where all references to boundary regions
of relations are eliminated from formulas. The following table de-
scribes the equivalences used to do this.

Occurrence in a diagramActual Meaning
R� :R�

:R� R�

R	 :R+

:R	 R+

R� :R+ ^ :R�

:R� R+ _ R�

(1)

3.2 Associating Rules with Diagrams

In this section, we always assume that the rules associated with dia-
grams are universally quantified over free variables.

3.2.1 Associating Rules with Granular Agents and
Adjudicating Agents

Assume we are given a granular or an adjudicating agent diagram
labeled withN : R(�x) and containingA1(�z1); : : : ; Ak(�zk) in its
positive part andB1(�y1); : : : ; Bl(�yl) in its negative part. Then we
associate the following rules with the diagram:

[9�u:(N:A1(�z1) _ : : : _N:Ak(�zk))] ! N:R+(�x) (2)

[9�v:(N:B1(�y1) _ : : : _N:Bl(�yl))] ! N:R�(�x);

where:

� �x � (�y1 [: : : [�yl) and�x � (�z1 [: : : [�zk)
� �v = [(�y1 [: : : [�yl)� �x] and�u = [(�z1 [: : : [�zk)� �x].

Now the definition of the boundary region of the relation defined
byN is the following

N:R�(�x) � (:N:R+(�x) ^ :N:R�(�x)):

3.2.2 Associating Rules with Knowledge Modules

Assume we are given a knowledge module diagram labeled by

M : R1(�x1); : : : ; Rk(�xk):

For1 � i � k, letMi be the set of all subcomponents ofM respon-
sible for delivering the relationRi and assumeMi does not contain

12 Any formula is easily transformed to this form.

an adjudicating agent forRi. Then we associate the following set of
rules with the diagram, for any1 � i � k:

[
_

N2Mi

N:Ri
�(�xi) ^ :

_
N2Mi

N:Ri
+(�xi)] !M:Ri

�(�x) (3)

[
_

N2Mi

N:Ri
+(�xi) ^ :

_
N2Mi

N:Ri
�(�xi)] !M:Ri

+(�x):

In the case whereM contains an adjudicating agentA responsible
for delivering the relationRi, we then attach the following rules to
the diagram instead of rules (3):

A:R+
i (�xi) !M:R+

i (�xi) (4)

A:R�i (�xi) !M:R�i (�xi):

The definition of the boundary region of the relation defined byM
is obtained in the manner used with agent diagrams, i.e. it is given by
the following equivalence:

M:R�(�x) � (:M:R+(�x) ^ :M:R�(�x)):

3.3 Obtaining Explicit Definitions of Relations

In order to provide a semantics for relations, we require that the di-
agrams used are stratified13. Let S; : : : ; T be all relations appearing
in the heads of rules attached to granular agents, adjudicating agents
and knowledge modules, and letB be the conjunction of the rules.
Then the following simultaneous fixpoint formula defines relations
S; : : : ; T :

lfp S; : : : ; T:B: (5)

The boundary regions of the relations are then obtained using the
suitable definitions as specified in the previous section.

Observe that one can obtain inconsistent information in the sense
that both the positive and negative part of a relation may contain the
same tuple. A nice feature of the approach is that inconsistencies can
be checked in time polynomial in the size of the underlying database.

3.4 Computing the Relations

Observe that the definitions of relations obtained in section 3.3 are
expressed by means of fixpoint formulas. Using standard techniques
for calculating fixpoints, one can easily provide a tractable method
for computing the relations. One can even use the method sketched
in section 3.1. In addition, if the database domain is linearly ordered
then any PTIME query can be modeled by agent diagrams, since re-
cursion within the diagrams is allowed. These results follow easily
from standard database theory and may be found in [1].

4 Examples

We now show how the computational method for CAKE, described
above, works for the examples considered in section 2.

13 Let P be a set of rules. By thedependency graph of P we mean a graph
with vertices labelled by predicates ofP and containing two types of
edges: (1) there is apositive edge hQ;Ri in the graph iff there is a rule
in P in which Q appears positively in the rule’s body andR appears in
the rule’s head; (2) there is anegative edge hQ;Ri in the graph iff there
is a rule inP in whichQ appears negatively in the rule’s body andR ap-
pears in the rule’s head. The set of rulesP is stratified if no cycle in its
dependency graph contains a negative edge.

Example 4.1 The following is a continuation of Example 2.1. The
following set of rules is automatically generated and associated with
the diagram of the theory in the example.

A1:Q
+(n)

A2:R
+(n)

[A3:P
�(x) _ [A2:R

+(x) ^ :A3:P
+(x)]] ! A4:P

�(x)

A3:P
+(x) ! A4:P

+(x)

A3:P
� ! A5:P

�(x)

[A3:P
+(x) _ [A1:Q

+(x) ^ :A3:P
�(x)]] ! A5:P

+(x)

[A4:P
�(x) _A5:P

�(x)] ^ :[A4:P
+(x) _ A5:P

+(x)] !

M:P�(x)

[A4:P
+(x) _A5:P

+(x)] ^ :[A4:P
�(x) _A5:P

�(x)] !

M:P+(x):

The last two rules represent the standard voting mechanism used by
moduleM .

The relationsA1:Q
+, A2:R

+, A4:P
�, A4:P

+, A5:P
�, A5:P

+,
M:P� andM:P+, occurring in the heads of the above rules, are
defined by the fixpoint formula given by

lfp A1:Q
+; A2:R

+; A4:P
�; A4:P

+; A5:P
�; A5:P

+; (6)

M:P�;M:P+:R

whereR denotes the conjunction of the rules.
Applying the fixpoint computation procedure, we can compute the

relations characterized by the simultaneous fixpoint formula (6):

fg

fA1:Q
+(n); A2:R

+(n)g

fA1:Q
+(n); A2:R

+(n); A4:P
�(n); A5:P

+(n)g:

Recall that the query of interest wasP (n). As we have already ob-
served, agentA4 answersFalse and agentA5 answersTrue to the
query. However, since it is the default module that is responsible for
default inferences aboutP , and sincen satisfies neither theM:P+-
coordinate of (6) nor theM:P�-coordinate of (6), we will conclude
that the answer to the queryP (n) is Unknown.

Example 4.2 The following is a continuation of Example 2.2. The
following set of rules is automatically generated and associated with
the diagram of the theory in the example:

A1:A
+(j)

A2:FTS
+(j)

[A3:E
�(x) _ [A2:FTS

+(x) ^ :A3:E
+(x)]] ! A4:E

�(x)

A3:E
+(x) ! A4:E

+(x)

A3:E
�(x)! A5:E

�(x)

[A3:E
+(x) _ [A1:A

+(x) ^ :A3:E
�(x)]] ! A5:E

+(x)

[A4:E
�(x) _ [:A4:E

+(x) ^ :A4:E
�(x) ^A5:E

�(x)]] !

A6:E
�(x)

[A4:E
+(x) _ [:A4:E

+(x) ^ :A4:E
�(x) ^A5:E

+(x)]] !

A6:E
+(x)

A6:E
+(x) !M:E+(x)

A6:E
�(x)!M:E�(x):

The relations occurring in the heads of the above rules are specified
by the fixpoint formula given by

lfp X:R (7)

whereX is the tupleA1:A
+, A2:FTS

+, A4:E
+, A4:E

�, A5:E
+,

A5:E
�, A6:E

+, A6:E
�, M:E+, M:E� andR is the conjunction

of all the rules.
Applying the fixpoint computation procedure, we can compute the

relations defined by the simultaneous fixpoint formula (7):

fg

fA1:A
+(j); A2:FTS

+(j)g

fA1:A
+(j); A2:FTS

+(j); A4:E
�(j); A5:E

+(j)g

fA1:A
+(j); A2:FTS

+(j); A4:E
�(j); A5:E

+(j); A6:E
�(j)g

fA1:A
+(j); A2:FTS

+(j); A4:E
�(j); A5:E

+(j);

A6:E
�(j);M:E�(j)g:

Recall that the query under consideration was:E(j). Sincej sat-
isfies theM:E�-coordinate of (7), we will conclude that the answer
to the query is true.

5 Conclusions

We presented a technique and associated tool for incrementally build-
ing knowledge structures compositionally by viewing the knowledge
structures as confederations of granular and other agent types with
dependencies between them. The query mechanism uses this struc-
ture when doing inference. Syntactically, the knowledge structures
can be viewed as rough relational databases and the rule types as
combinations of intensional rules with queries, although the struc-
ture used by the knowledge engineer is graphical in nature and has a
formal semantics. The queries can be quite complex and local min-
imization policies applied to the rough database can be associated
with individual queries, although this functionality was not discussed
in the paper. The method allows one to deal with complex knowl-
edge representation formalisms such as default reasoning and (a rich
fragment of) circumscription. The CAKE method has a well-defined
semantics and has the following important properties:

� The underlying semantics and computation mechanism ensures
that any reasoning expressed by the CAKE diagrams is com-
putable in deterministic polynomial time.

� An open world assumption on the knowledge structures (rough
database) can be used, but due to the context part of diagrams
one can close theworld locally. This solution makes diagrams
attractive from the point of view of applications in robotics and
autonomous systems, where the local closed world assumption is
a necessary functionality.

ACKNOWLEDGEMENTS

This work has been supported in part by the WITAS UAV project
grant under the Wallenberg Foundation, Sweden. The latter two au-
thors have also been supported by KBN grant 8 T11C 00919.

REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu,Foundations of Databases, Addison-

Wesley Pub. Co., 1996.
[2] P. Doherty, J. Kachniarz, and A. Szałas, ‘Using contextually closed

queries for local closed-world reasoning in rough knowledge databases’,
in Rough-Neuro Computing: Techniques for Computing with Words, eds.,
L. Polkowski and A. Skowron. Springer-Verlag, (2002).

[3] W. Łukaszewicz,Non-Monotonic Reasoning - Formalization of Com-
monsense Reasoning, Ellis Horwood Series in Artificial Intelligence, El-
lis Horwood, 1990.

[4] R. Reiter, ‘A logic for default reasoning’,Artificial Intelligence J., 13,
81–132, (1980).

