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Abstract

Detecting and isolating multiple faults is a computatibn&xpensive task. It
typically consists of computing a set of tests and then cdamguhe diagnoses
based on the test results. This paper describes FlexDxpafrgarable diagnosis
framework which reduces the computational burden whilaingtg the isolation
performance by only running a subset of all tests that is@efft to find new
conflicts. Tests in FlexDx are thresholded residuals useddicate conflicts in
the monitored system. Special attention is given to theessatroduced by a
reconfigurable diagnosis framework. For example, testadded and removed
dynamically, tests are partially performed on historicag@nd synchronous and
asynchronous processing are combined. To handle thess iB&XxDx has been
implemented using DyKnow, a stream-based knowledge psowgsniddleware
framework. Concrete methods for each component in the Fldsddmework are
presented. The complete approach is exemplified on a dynsystem which
clearly illustrates the complexity of the problem and thenpatational gain of
the proposed approacéh.
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1. Introduction

Reliable real-time multiple fault diagnosis of dynamicast®ms in the pres-
ence of noise is of fundamental importance in many appboati The diagno-
sis problem typically consists of detecting and isolatiaglfy components given
available sensor and actuator signals. Important chadkelage real time issues,
complexity issues when dealing with multiple faults, howhndle process dy-
namics, and noisy measurements. The main objective of thik is to describe
FlexDx a diagnosis framework that performs multiple fastilation for dynamic
noisy systems using adaptive and reconfiguration techaitpulewer the compu-
tational burden of the diagnostic system.

1.1. Problem background

In consistency-based diagnosis, sensor and actuatorsigreacompared to
a formal description of the process, a model, to detect isistencies indicating
faults. Inconsistency detection can for example be basddaath propagation of
observations, like solutions based on the well known Geém&egnostic Engine
(GDE) [1, 2]. However, such solutions have limitations witkggnosing dynam-
ical systems in real-time [3, 4]. On the other hand, in the®atic control and
signal processing communities there exists a large volumesearch directed at
detecting faults in noisy dynamic systems, see e.g. thej&o, 7, 8]. These ap-
proaches are not based on local propagation, but typicaléyset of pre-compiled
tests, or residual generators, that are used together vVathtasolation module [5]
to reach a diagnosis decision. A key topic in these appraalchs been to study
residual generator design for dynamical systems in noigy@mments. However,
efficient handling of multiple faults has not been a cenwpld in these works, as
in the more Al-based literature [1, 9].

In several works, for example [3, 10, 11, 12], itis noted thatfault isolation
techniques from the Al literature can be used together viighpre-compilation
techniques from the automatic control community. Thesesolagions makes
it possible to combine the techniques from the automati¢drobnommunity to
handle noise and system dynamics, with the fault isolagahiiques from the
Al-community to handle multiple fault isolation. Howevehle to the inherent
computational complexity of the multiple fault isolationoplem, there are still
open problems that need to be addressed.

The computational complexity of a diagnostic system basepre-compiled
tests mainly originates from two sources: complexity offihecess model and the



number of behavioral modes considered. A high resolutigralegity of distin-
guishing between faults, especially when multiple fautes @nsidered, requires
a large number of diagnostic tests [13]. This also followsrfahe well known
fact that the number of required minimal conflicts, whichresponds to triggered
tests in a residual based approach, to solve a multiple dadinosis task grows
exponentially in the number of faults in the system [14]. Althe more com-
plex the process model is, the more computationally experthie execution of
the diagnostic tests is. For example, if the model consist®n-linear dynamic
equations, a typical test involves a non-linear observachvimay be computa-
tionally expensive. Finally, since dynamical systems amesalered here, tests
must be recomputed sufficiently often to capture fault dyisarand to get a fast
and accurate fault detection and isolation.

1.2. Solution outline

Our basic idea to mitigate the computational burden is tdogixihhe fact that
all pre-compiled tests are not needed at all times. For elgraply a subset of the
available tests are needed to detect a fault. The remaiegtg tan, in case of an
alarm, then be used to further isolate the faulty componetrihiey are not needed
when the system is in fault free operation. As will be showabstantial reduction
in the computational burden can be achieved by exploitirggdhservation.

This approach is similar to works coping with the complexitynultiple fault
diagnosis from the Al-community. There the complexity ssuelated to hav-
ing many tests have been avoided by applying propagatidmigaes directly on
the process model. The propagation is initiated with theenlesi measurements
and then only explore the part of the model that might be isistent. Here we
propose a similar technique, using pre-compiled testedakof local propagation.

The proposed approach, a reconfigurable diagnosis frarkesatied FlexDx,
chooses which tests to run at a particular instant basedeonuirent set of di-
agnoses. If a test is violated, i.e. an alarm is generated, &dm updated set of
diagnoses is computed and the set of active tests is recoadiglt is shown how
such an approach requires controlled ways of initializimg dynamic diagnostic
tests and algorithms how to select the new tests to be stalted a set of diagnos-
tic tests has generated an alarm. To facilitate a thorouglysis of the approach,
linear process models are used in the paper but the frameawaort based on
this model assumption, but can be extended to non-lineaelmddon-linear test
techniques are used, e.g. [15, 16, 17].



1.3. Paper Outline

The reconfigurable diagnosis framework is introduced irti8e@ and related
work to the different components in the framework is disedsslo illustrate the
properties of the approach, linear dynamical process rs@telused and the the-
oretical diagnosis background for such systems is predemt8ection 3. Meth-
ods for how to determine, in a specific situation, which testsuld be run are
treated in Section 4. An appropriate initialization progegdfor dynamic tests
is described in Section 5. The complete approach is exeegpldn a dynamic
system in Section 6, which, in spite of its relatively smatkes clearly illustrates
the complexity of the problem and the computational gainhef proposed ap-
proach. The diagnosis framework is implemented using DyKm@ostream-based
knowledge processing middleware framework [18], whichrisfty described in
Section 7. Finally the paper is concluded with a summary ©tiGe 8.

2. FlexDx: A Reconfigurable Diagnosis Framework

The main idea of this work is to reduce the overall computetid®ourden of a
diagnostic system by utilizing the observation that altdese not needed at all
times. For example, when starting a fault free system, tisare need to run tests
that are designed with the sole purpose of distinguishimgdeen faults. In such a
case, only tests that are able to detect faults are needésh mhay be significantly
fewer compared to the complete set of tests. When a test tsiggealarm and a
fault is detected, appropriate tests are started to refendiignosis.

FlexDx uses a consistency-based approach to diagnosis @dtermining if
a supervised system is working correctly [1, 19, 20]. If altfaaidetected, the
diagnosis is incrementally refined by adding and removirsgsten an iterative
manner according to the following procedure:

1. Initiate the set of diagnoses.

Based on the set of diagnoses, compute the set of tests &foenped.
Compute the initial state of the selected tests.

Run the tests until an alarm is triggered.

Compute the new set of diagnoses based on the test relseitgjd to step 2.

aprowbd

FlexDx represents all diagnoses with the minimal diagnostegh has been
shown useful when dealing with multiple fault diagnosis][1®%hen FlexDx is
started, there are no conflicts and the only minimal diagnisghe no-fault mode
NF, i.e. the set of minimal diagnosésis set to{NF} in step 1. Step 2 uses a



function that given a set of diagnosPsreturns the set of tesis to be performed
to monitor whether a fault has occurred or to further explbie possible diag-
noses. Step 3 initiates each of the test$'inA test includes a residual generator
given in state-space form. To properly initialize such adesl generator, it is
necessary to estimate its initial condition. In step 4, #s< are performed until
at least one is violated and a test result is generated inotine 6¢f a set of con-
flicts [19, 20]. Step 5 computes the new set of diagnd3egiven the previous
set of diagnoses and the generated set of conflicts. Thisatepe performed by
algorithms handling multiple fault diagnoses [1, 9].

Step 4 and 5 are standard steps used in diagnostic systemgilandt be
described in further detail. Step 2 and 3 are new steps, ddedelynamically
changing the test sét, the details are given in Section 4 and 5 respectively.

To implement an instance of the FlexDx framework, a numbessfes have
to be managed besides implementing the algorithms for éaphasid integrating
them in a system. Each test is implemented by a residual gemecomputing the
residual given the measurements of the system, and a memébchecks if the
residual has triggered a violation of the test. When a paikfdult is detected,
FlexDx computes the last known fault free timeand the new set of residual
generators to be started at time To implement this, three issues have to be
handled. First, the FlexDx instance must be reconfigureepiace the set of
residual generators and their monitors. Second, the catipatof the residuals
must begin at time; which will be in the past. Third, at the same time as FlexDx
is performing tests on historic data, system observatiah&®ep coming at their
normal rate. How these issues are solved is described iro8étt

A key step in the reconfiguration procedure outlined abovkdasselection of
which tests to run in a specific situation. Selection of testglated to the selec-
tion of new measurement points. For example, in the Geneegridstic Engine
[1] a solution is proposed where measurement points aretedlén a sequen-
tial way such that, on average, the actual fault can be swlasing a minimum
number of measurements. This is done by dynamically rartkiegpossible mea-
surement points according to the expected informationioétafrom the mea-
surement. A related approach is found in [21, 22] where tastsranked and
selected according to some information criterion. The ae@agh adopted here for
test selection is fundamentally different and the objects/to find a subset of
tests, out of a predefined set of possible tests, such thaingithese tests pro-
vides all information available in the model and observatgiventhe current set
of diagnoses.

Several works [23, 5, 24] have considered test selectioadbieving different
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objectives but contrary to this work no focus has been onirmrkeconfiguration.
Another related approach is presented in [25] although tbéets and diagnosis
techniques are different. Recently, works on on-line regoméition of the diag-
nostic system have appeared. For a related work, see forptedenazera and
Trave-Massugs [26], where Kalman-filters are reconfigured based on disign
decisions.

3. Theoretical Background

The diagnostic systems considered in this paper includé @ peecompiled
tests. Each test consists of a residu@) that is thresholded such that it triggers
an alarm if|r(¢)| > 1. Note that the threshold can be set to one without loss of
generality. It is assumed that the residuals are normabged that a given false
alarm probabilitypra is obtained, i.e.

P(|r(t)] > 1INF) = pea (1)
The residuals are designed using a model of the process tadpeoded.

3.1. The Model

The model class considered here is linear differentiadladgic models. Al-
though the presentation in this paper relies on resultsrieal systems, the basic
idea is equally applicable to non-linear model descrigion

There are several ways to formulate differential-algebrabdels. Here, a
polynomial approach is adopted, but any model descripsgossible, e.g. stan-
dard state-space or descriptor models. The model is givéneogxpression

H(q)z + L(g)w + F(q)f = V(q)v 2)

wherez(t) € R™, w(t) € R™, f(t) € R™, andv(t) € R™. The matrices
H(q), L(q), F(q), andV (¢) are polynomial matrices in the time-shift operagor
The vectorz contains all unknown signals, which include internal systtates
and unknown inputs. The vectar contains all known signals such as control
signals and measured signals, the ve¢toontains the fault signals, and the vec-
tor v is white, possibly multidimensional, zero mean, unit caMace Gaussian
distributed noise.

To guarantee that the model is well formed, it is assumedthiggpolynomial
matrix [H (z) L(z)] has full column rank for some € C. This assumption as-
sures, according to [27], that for any noise realizatigt) and any fault signal
f(t) there exists a solution to the model equations (2).
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3.2. Residual Generation

Residuals are used both to detect and isolate faults. Thictasbe formu-
lated in a hypothesis testing setting. For this, fetlenote both the fault signal
and the corresponding behavioral mode [28] of a single faudt 7 be the set of
all single faults in model (2).

A pair of hypotheses associated with a residual can theralbedsas

Hy: fi=0forall f; € C
Hy : f; # 0forsomef; € C

whereC' C F is the subset of faults the residual is designed to detecis Th
means that the residual is not supposed to detect all faudtg,the faults inC'.

By generating a set of such residuals, each sensitive toreliffesubsets”’ of
faults, fault isolation is possible. This isolation prooeelis briefly described in
Section 3.3.

In the literature there exists several different ways tonfalty introduce resid-
uals [5, 7]. In this paper an adapted version of the innowafilber defined in
[29] is used. For this, it will be convenient to consider tlemnal model under
a specific hypothesis. The nominal model under hypothHgisbove is given
by (2) withV(¢) = 0 and f; = 0 for all f; € C. With this notion, a nominal
residual generator is a linear time-invariant filtee= R(q)w where for all obser-
vationsw, consistent with the nominal model (2) under hypothdgjs it holds
thatlim; .., r(¢) = 0.

Now, consider again the stochastic model (2) where it isrdlest a residual
generated with a nominal residual generator will be suligeatnoise component
from the process noise A nominal residual generator und#j, is then said to
be a residual generator for the stochastic model (2) if theencomponent in the
residual- is white Gaussian noise.

It can be shown [30] that all residual generaté¥g;), as defined above, for
the stochastic model (2) can be written as

where the matrix operat@y(q) satisfies the conditio@(q) H (¢) = 0. This means
that the residual is computed by= ((¢)L(¢)w and the internal form of the
residual is given by

r=Q(q)L(qw =—-Q(q)F(q)f + Q(q)V(q)v 3)



Thus, the fault sensitivity is given by

r=-Q(@F(q)f (4)
and the statistical properties of the residual undgby
r=Q(q)V(gv (5)

A complete design procedure is presented by Nikhoukhah fi@9%tate-space
models and by Frisk [30] for models in the form (2). The objextere is not
to describe a full design procedure, but it is worth mentigrthat a design algo-
rithm can be made fully automatic, that the main computaticteps involve a
null-space computation and a spectral factorization, hatithe resulting residual
generator is a basic dynamic linear filter.

3.3. Computing the Diagnoses

The fault sensitivity of the residualin (3) is given by (4). Herey; is sensitive
to the faults with non-zero transfer functions. L@&tbe the set of faults that a
residualr is sensitive to. Then, if residualtriggers an alarm, at least one of the
faults inC must have occurred and the conflicts generated [20].

Now we can relate the test results to a diagnosis. Let a sahglesfaults
b C F represent a system behavioral mode with the meaningfthat0 for all
fi € bandf; = Oforall f; ¢ b. The set of faults will with some abuse of notation
sometimes be referred to as a behavioral mode. This is alaocordance with
the notation used in for example [1, 20]. The set of all systbetmavioral modes
is then represented with the power seffof

In short, the behavioral modeis a diagnosis if it can explain all generated
conflicts, i.e. ifb has a non-empty intersection with each generated conféet, s
[20] for details. A diagnosi$ is considered aminimal diagnosis if no proper
subset ob is a diagnosis [1, 20]. Algorithms to compute all minimal ghases
for a given set of conflicts, which is equivalent to the soaxlininimal hitting set
problem, can be found in for example [1, 20]. The followingeple illustrates
the main principle.

Example 1. Let an X in position(i, j) in the table below indicate that residual
r; IS sensitive to faul;

i fo fs
™ X X
) X X
T3 X X



If residualsr; and r, trigger alarms, then conflict&; = {fs, f3} and Cy =
{f1, f3} are generated. Fof’;, for instance, this means that bothand f; cannot
be 0. Now, for a set of faults to be a diagnosis it must then explaithn bhese
conflicts. Itis straightforward to verify that the minimabdjnoses in this case are

by = {fs} andby, = {f1, fo}. o

4. Test Selection

There are many possible ways to select the set of fEgitzven a setD of
minimal diagnoses. The method used by FlexDx relies on hasnciples in
consistency-based diagnosis based only on the deterinipisperties of (2).

A fundamental task in consistency-based diagnosis is tgpatenthe set of
consistent modes given a model, a set of possible behavim@és, and observa-
tions [1]. The design goal of the test selection algorithtoiperform tests such
that the set of consistent modes is equal to the set of diagrmsmputed by the
diagnostic system.

4.1. Consistent Behavioral Modes

The deterministic behavior in a behavioral mddis described by (2) when
v=0,f; #0forall f; € b,andf; = 0 for all f; ¢ b. A set of observations
consistent withb is consequently given by

O) = {wBz3f (Vj: f; ¢b— f; =0)A (6)
H(q)z + L(q)w + F(q)f = 0}

This means that a modeis consistent with the deterministic part of model (2)
and an observation if w € O(b). Note thatf; € b is required to be nonzero in
modeb, but this is not required in the definition 6f(b). In noisy environments, it
will be impossible to distinguish infinitely small faulfs # 0 from the case when
fi = 0. To capture this property in the deterministic analysi®ivee include also
the case wherf, = 0in O(b).

The design goal can now be formulated in terms of the G¢t$ as follows.
The set of diagnoses should, given an observatiphe equal tofb € Blw €
O(b)} where B denotes the set of all behavioral modes. As mentioned in Sec-
tion 2, we will use minimal diagnoses to represent all diagso This is possible
since (6) implies tha©(b') C O(b) if & C b. Hence, ift’ is consistent it follows
thatb is consistent and therefore it is sufficient to check if theimal consistent
modes remain consistent when new observations are pracesse



4.2. Tests for Checking Model Consistency

Next, we will describe how tests can be used to detectd O(b). LetT be
the set of all available tests and tet= Q);(¢) L(q)w be the residual corresponding
to testt;.

A residual generator checks the consistency of a part ofdhgptete model.
To determine which part, only the deterministic model netedse considered. It
can be shown that residugl checks the consistency 6f(q)w = 0 whereé;(q)
is a polynomial in the time-shift operatgi{27]. By defining the set of consistent
observations for tests in a similar way as for models, we defin

O(t;) = {wl|&(q)w = 0} (7)

Now, we can characterize all test sé@tsthat are capable of detecting any
inconsistency between an observatioand the assumption that € O(b). For
this purpose, only tests with the property thaO(b) C O(t;) can be used. For
such a test, an alarm implies that¢ O(t;) which further implies thaty ¢ O(b).
This means that a test sEtis capable of detecting any inconsistencyw& O(b)
if and only if

o) = M o) (8)

Vte{tiET‘O(b)gO(ti)}
A trivial solution to (8) iST = {t} whereO(t) = O(b).

4.3. The Set of All Available Tests

If 7 is not capable of checking the consistencybpthen no subset of tests
will be capable of doing this either. Hence, this approacts pequirements on
the entire set of testg. By applying the approach to a model consisting of the
considered set of tests, a diagnostic system with the saagaais capability as
the considered set of tests will be the result. In this paperyill use two different
types of test set$ fulfilling (8) for all modesb € B. These are introduced by the
following example.

Example 2. Consider the model

r(t+1) = axi(t) +wi(t) + fi(t)
1'2(

(

t) = x1(t) + fa(t)
wa(t) = 3i(t) + fa(t) )

ws(t) = w(t) + fa(t)



wherez; are unknownsy; known variables a known parameter, and; the
faults. There ar@* modes and the set of observations consistent with each mode
is

o) = {uw] |10+

O({f1}) = {w] — wa(t) + ws(t) = 0}
O({f2}) = O{fa}) = O fa, fu}) =
= {w|wy(t) + awy(t) — wa(t + 1) = 0}
O({fs}) = {wlwy(t) + aws(t) — ws(t + 1) = 0}
O(b) = R? for the remaining modes.

The behavioral models for the 10 last mode® not contain any redundancy and
the observations are therefore not restricted, (&b) = R3. In contrast to (6),
the sets of consistent observations are here expressec isame form as for
tests, that is with linear differential equations in the knovamiables only. Any
set described as in (6) can be written in this form [31]. o

The first type of test sef; will include one test for each distinct behavioral
model containing redundancy. For the examfleconsists of four tests such
thatO(t,) = O(0), O(t2) = O({f1}), O(ts) = O({fo}) = O({ fs}), andO(ts) =
O({fs}). To check the consistency af € O(f), two linear residuals are needed,
which is the degree of redundancy of the model. These twaluats can be
combined in a positive definite quadratic form to obtain alectest quantity.
When stochastic properties are considered, the quadraticisochosen such that
the test quantity conforms to)&-distribution.

Tests for models with a high degree of redundancy can be emphd the
second type of test s&% includes only the tests for the behavioral models with
degree of redundancy 1. For the example,= {t,,13,t4} and by noting that
O(0) = O(t;) N O(t;) for anyi # j wherei, j € {2,3,4}, any two tests can be
used to check the consistencywfc O(0). In [13] it has been shown under some
general conditions thak, fulfills (8) for all modesb € B.

4.4. Test Selection Methods

We will exemplify methods that given a set of minimal diage®® select a
test sefl” C T such that (8) is fulfilled for alb € D. An optional requirement that
might be desirable is to select such a testisetith minimum cardinality. The
reason for not requiring minimum cardinality is that the garational complexity
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of computing a minimum cardinality solution is generallyehinigher than to find
any solution.

A straightforward method is to use the first type of tests aatrequire
minimum cardinality solutions. Since this type of test sefludes a trivial test
O(t;) = O(b) for all modesh with model redundancy, it follows that a strategy is
to start the tests corresponding to the minimal diagnosés in

Example 3. Consider Example 2 and assume that the set of minimal diagnose
is D = {0}. Then it is sufficient to perform test, i.e. T = {t;}. If the set

of minimal diagnoses ar® = {{f.},{fs},{fs}}, thents is used to check the
consistency of botlif,} and { f;} and the total set of tests 6 = {t¢3,¢,}. For

this example, this strategy produces the minimum cardinablutions, but this is
not true in general.

A second method is to use the second type of tests and for éxasquire
a minimum cardinality solution. The discussion of the methall be given in
Section 6 where this method has been applied to a larger dgamp

4.5. Relaxing the Design Goal

The design goal to perform tests such that the set of consistedes is equal
to the set of diagnoses is an ambitious goal that may requamyrtests. Three
different principles for relaxing the approach will be dissed next.

First, the test selection methods are not limited to takes#teof all mini-
mal diagnoses as input. If the number of minimal diagnosésrg®, a focusing
strategy [32] can be incorporated to reduce the number ghdisis and thereby
also the number of selected tests. Minimal cardinality acesgs or most proba-
ble diagnosis given some a priori probabilities are exampfgossible focusing
strategies.

The second type of relaxation reduces the total number tf ie§". It may
require a large number of tests to fulfill (8) for all modes B and sometimes
it is not interesting to consider unlikely modes includinégpege number faulty
components. By considering a subset of moes 1, the goal can be modified
as follows. Tests should be performed such that among thesnods’ exactly
the consistent ones are diagnoses. This meangthaselected such that (8) is
fulfilled for all behavioral modes i#’. When running the diagnostic system, the
test selectiof” C 7 has to fulfill (8) for all minimal diagnoses i’

A third option is to use a given set of test$, that is not required to fulfill (8)
for any modes. The goal can then be formulated as followserGitae current
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minimal diagnoses, perform the tests/ircC 7’ such that the diagnoses computed
with the selected subset of tests would be equal to the dssgncomputed using
all tests. This means that, given a set of minimal diagndsethe test selection
T C T has to fulfill

N on= N o (10

Vte{t;€T'|O(b)CO(t:)} Vte{t;€T|O(b)CO(t:)}

for eachb € D.

The three relaxations can be used individually or mixed. Axample of
how the three relaxations can be combined, we can considdesits in a given
set7’, include only the fault free mode, the single fault modesl tire double
fault modes inB3’, and use the minimal cardinality focusing strategy. Thérery
a set of minimal diagnose®, the test selectiofi’ C 7' has to fulfill (10) for
all minimal cardinality diagnosésthat belong ta3’. Which relaxation, or which
combination of relaxations, that are appropriate for a bjgepplication must be
determined case by case.

5. Initialization

When a new test selection has been made, the new tests haviniietized.
Since information about faults sometimes are only visibl¢hie residuals for a
short time-period after a fault occurrence, we would likeea/test to start before
the currently considered fault occurred, otherwise vdkiaiformation could be
missed. It is also important that the state of the new test greiperly initialized,
such that the fault sensitivity is appropriate already ftbmstart, and the residuals
can deliver test results immediately. Therefore, theah#ation following a new
test selection consists of:

1. Estimate the time of the fault from the alarming test(s).
2. Estimate the initial condition for each new test.

Both these steps require the use of historical data, whictefibe have to be
stored. The fault time estimation will use the historicaideials from the trig-

gered test, while the initial condition estimation usesnieasured data from the
process before the fault occurred. In case not enough iustatata is available,

it is reasonable to use all available data. In such a casemayeexpect some
degradation in detection performance compared to rundingsss at all times.
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5.1. Estimating the Fault Time

There are many possibilities to estimate the fault time.fS8eexample [33, 8]
for standard approaches based on likelihood ratios. Hevendow-based test has
been chosen. It should be noted, however, that for the grnaandwork, what is
important is not really to find the exact fault time, but rathefind a time-point
before the fault has occurred. The estimated time-poirtogidenoted by;.

Given a number of residuals from an alarming tegt), ..., r(n), let us com-
pute the sum of the squared residuals over a sliding windew, i

V4
S(t):%Zrz(Hj), t=0,....n—1/ (11)

J=1

If the residual generator is designed such that under tHehgpbthesis no fault
has occurred(r(;))7_, are white and Gaussian with varianeg thenS(t) ~
x?(¢) in the fault free case. Henc&(t) can be used to test whether this null hy-
pothesis has been rejected at different time-points by plsigt-test. The length
¢ of the sliding window is selected according to the expectedtfresponses. A
slowly increasing fault response requires a long time-wmavhile short time-
windows are preferable for impulses.

Since it is preferable to get an estimated time-point thauo before the
actual fault time, rather than after, the threshold of YReest should be chosen
such that the null hypothesis is fairly easily rejected. €sematet; is then set
to the time-point of the last non-rejected test. Also, inesrdot to risk a too late
estimate, the time-point at the beginning of the slidingdeiv is used.

5.2. Estimating the Initial Condition

Having foundt,, the next step is to initialize the state of the new residual
generator. The method used here considers a time-windoangbles ofw(t; —
k+1),...,w(ty) as input to find a good initial state(t ;) of the filter at the last
time point of the window.

Consider the following residual generator:

z(t+1) = Az(t) + Bw(t)

r(t) = Ce(t) + Dw(t) (12)

Assume thato(t) = wy(t) + Nov(t) wherewy(t) is the noise-free data (inputs
and outputs) from the process model ar(d) is Gaussian noise. In fault free
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operation, there is a state sequengg), such that the outputt) = 0if v(¢) = 0,

0 = Cxo(t) + Duw(t) (13)
Givenw(t), t =ty —k+1,...,tr, we would now like to estimate(t),
which, using (13) anav(t) = wy(t) + Nv(t), can be expressed as
xo(tf) = Ak_ll‘g(tf — ]{5 —|— 1) —|— FwWO (14)
= A" ag(ty — b+ 1) + E,(W — DyV)
where
F,=[A"2B A*3B ... AB B 0]
[wo(t; — k+1) w(ty —k+1)
Wy = : W= :
L wolty) w(ty)
- N 0 ... 0
oty =k+1) 0N ... 0
V= : Dv=1. . . .
| o) 0 0 ... N
In a similar manner, the second line of (13) gives
0= Ryxo(t; — k+1) + Ry(W — DyV) (15)
where
o D 0 0
CA CB D 0
cAMt CcA¥2B . D

The value oft will be greater or equal to the number of states in (12) andesin
the residual generator is observable, it follows tRathas full column rank. Let
Ng, be a matrix whose rows form a basis of the left null spacé2gfso that
Ng, R, = 0. By multiplying (15) from the left with the full rank matrix

[(Rf %;‘135}

T
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we get

zo(ty —k+1) = —(RIR,)'RIR,(W — DyV) (16)
0= Ng, Ru(W — DyV) (17)

which is equivalent to (15). Elimination af,(t; — k£ + 1) in (14) implies that
zo(ty) = (A" (R Ro) 'Ry Ry + Fu)(W — DyV) (18)

Now, to get an estimate af;(¢;), first E[V'|I¥] can be computed using (17), and
thenE[x(t¢)|W] can be computed from this result and (18).
Assuming that the distribution d&f is known, say}” ~ N (0, %y ), (17) gives

E[V|W] =%y DERINY (Ng, RyDy Yy DLRINE )™ N, R,2W (19)
and this together with (18) gives the estimate

To(ty) = Elro(ty)|W]

— (—ASNRIR,)RTR, + F)W - Dy - B (20

5.3. Determining the Length of the Time-window

The choice oft is made in advance, based on the computed standard devia-
tion o,(t),t > t, of the initial residuals givery(¢;). Figure 1 exemplifies how
the standard deviation of an initialized residual may varge thick line in the
bottom indicates the stationary standard deviation thastandard deviation of
the initialized residual will converge to. The four curvdmae show the standard
deviations obtained for indicated valuestofThe largerk is, the more accurate
initial state estimatiort,(¢,) and the closer the standard deviatiofit) comes to
the stationary case. Hendecan be chosen via a trade-off between minimizing
the additional overhead that the computations in Secti@rrépresent and min-
imizing the maximum probability of false alarms during tinéial time steps as
follows.

Let 5, be the maximum acceptable residual standard deviationhndoore-
sponds to a maximum acceptable probability of false alarorgsg the initial
time steps. Further, givenkalet K be the matrix such thaf,(¢;) is equal toX W
according to (19) and (20). Note thatimplicitly defines the matrices. Since
W =W, + DV, the initial covariance of the estimated stagét ) is given by

Yo (tf) = KDyXy DLKT
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Figure 1: An example of how the standard deviation of a redidaries directly after initiation for

different values of k. The line represents the standardadievi of the residual in the stationary
case.

and the standard deviation oft ;) by

o.(t) = \/C%s,(t)CT + DNX,NT DT (21)

fort =t;.

Figure 1 shows that the maximum standard deviadig) for ¢ > ¢, is typ-
ically not obtained at = ¢, and therefore both the state covariance and residual
standard deviation have to be computedtfor ¢, based on

Yeo(t+1) = AS;, (H)AT + BN, NT BT
and (21). The: is selected as the smalléssuch that
o.(t) <o, (22)

forallt > t;.

6. Example

To illustrate the FlexDx framework, let us consider the dated example
system shown in Figure 2, where a DC-servo is connected to aéglthrough a
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Figure 2: lllustration of the example process; a DC-servaneated to an inertia with a spring.

rotational (damped) spring. The system dynamics can beideddy:
Jlﬁl(t) = ku(t) - 06191(t> — Ms(t>

M,(t) = aa(01(t) — 05(t)) + au(61(t) — Oo(t))
Jgeg(t) = —@4é2<t) + Ms(t)

whereu(t) is an input signal controlling the torque from the motor fwatscaling
coefficientk = 1.1), 0;(t) and ,(¢t) are the angles of the motor axis and the
flywheel, respectively, and/,(t) is the torque of the spring. The moments of
inertia in the motor is/; = 1 and for the flywheel/; = 0.5. The parameters
a1 = 1 anday = 0.1 determine the viscous friction at the motor and flywheel
respectively, whilen, = 0.05 is the spring constant ang; = 0.1 the viscous
damping coefficient of the spring.

As outputs, the motor axis angle and velocity, and the anfgtheoflywheel
are measured. We will design the diagnostic system for sssipte single faults
fi(t), ..., fé(t); one for each equation. The augmented system model becomes

J161(1) = k(u(t) + fi(t)) — aabs(t) — M ()
t) = az(01(t) — 02(t)) + a3(01(t) — (1)) + fa(t)

() =
M,(t)

Q(t) = —04492( )+ M(t) + f3(2)
y(t) = 01(t) + fa(t) + 0 (t)
ya(t) = 01(1) + f(t) + va(1)
ys(t) = b2(t) + fe(t) + vs(t)

Here,v;(t), fori = 1,2, 3, are measurement noise terms.
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Table 1: The fault sensitivity of the residuals.

o e fs o s Jo
T X X X
To X X X X
T3 X X X X
T4 X X X X
rs | X X X X
re | X X X X
r7 | X X X X
rg | X X X X
rg | X X X X
T10 X X X X
11 X X X X
T12 X X X X
T13 X X X X

Since the diagnosis framework will work on sampled data,ntioelel is dis-
cretized before designing the tests using a zero-orderdsddmption. The noise
is implemented as i.i.d. Gaussian noise with variarte’. By using the second
type of tests described in Section 4.3 for the discretizetiesy, a set of 13 tests
were needed. Their fault sensitivity is shown in Table 1. Tdise alarm proba-
bility is set to10~? and the maximum false alarm probability during test initiat
1.1-1073. To achieve this performance, the number of samples needautfat-
ing the 13 tests are, according to the method proposed im8ex8, 38, 86, 65,
92, 23,40, 52, 69, 41, 42, 113, 82, and 108 respectively. @s$ts will in the fol-
lowing simulations be combined with the second test selagtiethod described
in Section 4.4,

6.1. Test Reconfiguration

To show how the diagnostic system is reconfigured during latfamsient, we
will describe what happens when the fagiftoccurs at = 100 in a simulated
scenario. The course of events is described in Table 2.

Each row in the table gives the most important propertiesefiteration in the
FlexDx procedure given in Section 2. In one such iteratiba,get of active tests
are executed on observations collected from tim® ¢,. The column Minimal
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Table 2: Diagnosis events

ty t, Minimal Diagnoses Active Tests
1(0 102.6 NF 1,2,5
2198.9 102.7 1,3,5,6 1,3,10,13
31989 102.2 1,3,25,26,45,46 1,2,6,7,8,11,12
41989 102.3 1,23,25,26,35,36,45 1,2,6,7,9,10,11
51989 102.6 1,23,26,35,36,45 1,2,7,9,10,11
6198.9 105.2 1,23,26,36,45 1,2,7,10,11
71100.6 — 1,23, 26, 36,245,345,456 1,2,7,10

Diagnoses shows a simplified representation of the mininagirbses during the
corresponding phase. For example 25 represents the {ifedé }. Each iteration
ends when one or several of the active tests trigger an alBinese are shown in
bold type.

Let us take a closer look at the steps of the FlexDx proced8tep 1 initi-
ates the set of minimal diagnoses/fo= {NF}, which is shown in row 1. The
degree of redundancy of the behavioral model for NF is 3, aedefore 3 tests
are needed to check if € O(NF) is consistent. Step 2 computes the first, in
lexicographical ordering, minimum cardinality solutiom (8), which is the test
setT = {1,2,5} given in row 1. Step 3 initiates the tedfsand test 5 triggers an
alarm attime, = 102.6. From the fault sensitivity of residua} given in Table 1,

C ={f1, fs, [5, fo} becomes a conflict which is the output of step 4. The new set
of minimal diagnoses, computed in step 5, is shown in therseoow. Returning

to step 2, the degree of redundancy for each of the behaviwrdéls correspond-
ing to minimal diagnoses & and therefore at least two tests are needed to check
the consistency of each of them. The minimum cardinality $es computed in
step 2 isT" = {1, 3,10, 13}. This set is shown in row 2. Tests 1 and 3 check the
consistency of f1}, 1 and 10 the consistency §f;}, 3 and 13 the consistency of
{fs}, and 10 and 13 the consistency{gf}. In step 3, the last fault free time is
estimated tad; = 98.9 by using the alarming residual. The initial states of the
residuals used in the tesisare estimated using observations sampled in a time
interval ending at;. Proceeding in this way, FlexDx finds in row 4 thaf, } is

the only consistent single fault and then the multiple falidignoses are further
refined. In row 7 the last fault free time is estimated to be.@@ie to slow fault
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response in test 11. A correct estimation can be obtainedrbggd the length of
the time-window and the threshold of the fault time estiméid).

One straightforward option to further decrease the contiou@ load is to
modify the approach to focus on single faults, as indicate&ection 4.5. In
such a case, the first two iterations in Table 2 are the sanoe $ive minimal
diagnosis only include single faults. However, after thggering of test 13, also
multiple faults appear in the minimal diagnoses. If onlygdinfault diagnoses are
considered, only the diagnosgg } and{ f;} are left. Then, by disregarding the
multiple faults diagnoses, it is concluded that t&sts {1, 2, 8} should be started
instead of the sét’' = {1,2,6,7,8, 11, 12} which is needed when also considering
the multiple fault diagnoses. The next test to trigger i$ 8&and then the only
single fault diagnosis i§f; } and we have finalized the isolation procedure. From
this it is clear that the number of tests needed can be furéaericed by focusing
on single faults. If the situation arises that no singletfdidgnoses are left, focus
is then shifted to double faults, and so on.

6.2. Reduction of the Computational Burden

Let us consider a second simulated scenario, where thensyststarted in
the fault-free mode. At = 100, f; is set to0.2, and att = 200, f5 is set to
0.1. The residuals computed by the diagnostic system are showigure 3. It
is noteworthy that the residuals have not been computedlftime-points and
thereby the expected cost reduction has been achieveddifficalt to quantify
the reduction in computational cost. In this case, whereealbual generators are
linear filters, one possibility is to evaluate the compuwitadil cost by examining
the number of multiplication and addition operations usedampute the residu-
als. Using that approach in this simulation, by comparirggdbmputational cost
for a diagnostic system running all tests at all times witla ¢bmputational cost
with the proposed system without using focusing, a 98% realuof the compu-
tational cost is obtained for the simulated scenario. Thisler is in itself not an
indication of expected computational gain in a typical ailon. The reduction
strongly depends on for example failure rates, degree afn@aihcy, complexity
of the system model, and fault isolation requirements. T®yedoint is that not all
tests are run at all times, and during fault free operatigically only a few tests
are needed which typically results in a significant redurctiothe computational
load.

The largest number of tests is performed during the fautsiteons which last
only a short period of time. Although the computational |laBtreases with the
approach, during fault transients, i.e. when faults arklaied, the number of tests
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Figure 3: Residuals computed by FlexDx.

to run may still be too large with a too high computationakdo&ince the FlexDx

framework includes the possibility to store observatiotaia and run the tests
in an asynchronous way, it is straightforward to seriallze test computations.
Thereby, the need for high computational power can be tradadst increased
memory usage and increased time for detection and isolation

7. DyKnow

To implement an instance of the FlexDx framework, a numbesefes have to
be managed besides implementing the described algorithchmtegrating them
in a system. When a potential fault is detected, FlexDx cosgptite last known
fault free timet; and the new set of residual generators to be monitoredregarti
at timet;. To implement this, three issues have to be solved. FirstFtaxDx
instance must be reconfigured to replace the set of residuedrgtors and their
monitors. Second, the computation of the residuals mushlagimet; in the
past. Third, at the same time as FlexDx is computing ressdaatl performing

22



tests on the historic data, system observations will keepirng at their normal
rate.

To manage these issues, FlexDx is implemented using DyKaostream-
based knowledge processing middleware framework for ggiog asynchronous
streams of information [18]. Even though FlexDx could haeerbimplemented
with a dedicated solution with less overhead there are a epumbbenefits of
using DyKnow. First, it provides solutions to the mentiorissues within an
existing framework. Second, DyKnow provides a distributgdastructure which
allows sensors and other components to be hosted on maesedificomputers in
a network. This can be used both to collect data from distithsensors and to
distribute computations in the case were no computer is galhenough.

DyKnow provides both a conceptual framework and an impldatem in-
frastructure for integrating a wide variety of componentsl amanaging the in-
formation that needs to flow between them. It allows a systemdrementally
process low-level sensor data and generate a coherent Vi environment at
increasing levels of abstraction. Due to the need for ineral refinement of in-
formation at different levels of abstraction, we model comagions and processes
within the knowledge processing framework as active andaswesdknowledge
processesThe complexity of such processes may vary greatly, ranfgorg sim-
ple adaptation of raw sensor data to controllers to diagredgorithms.

The system being diagnosed by FlexDx is assumed to be symmiso At
the same time the diagnosis procedure is asynchronousjrjgrbpck and forth
in time trying to figure out which fault has occurred. Thisuiggs knowledge
processes to be decoupled and asynchronous to a certagedégbDyKnow, this
is achieved by allowing a knowledge process to declare afsgtteam genera-
tors, each of which has bel and can besubscribedo by an arbitrary number
of processes. A subscription can be viewed as a continucry,quhich creates
a distinct asynchronoustreamonto which new data is pushed as it is generated.
Each stream is described by a declarapedicy which defines both which gen-
erator it comes from and the constraints on the stream. Tdwsstraints can for
example specify the maximum delay, how to approximate mgsgalues or that
the stream should contain samples added with a regular sayrg@riod. Each
stream created by a stream generator can have differeneéniegoand a stream
generator only has to process data if it produces any stre@hes contents of a
stream may be seen by the receiver as data, information,covikdge.

A stream-based system pushing information easily lendHl tts“on-availabi-
lity” processing, i.e. processing data as soon as it is @kl This minimizes the
processing delays, compared to a query-based system wbkirg pntroduces
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Figure 4: An overview of the components of the FlexDx implaitagion. The boxes are knowl-
edge processes and the arrows are streams.

unnecessary delays in processing and the risk of missirenpally essential up-
dates as well as wastes resources. This is a highly desméatéen a diagnostic
system where faults should be detected as soon as possible.

For the purpose of modeling, DyKnow provides four distirygtes of knowl-
edge processes: primitive processes, refinement pro¢cessdiguration process-
es, and mediation processes. To introduce these procassds describe how
the three issues introduced by FlexDx are solved, we willausencrete FlexDx
instance as an example. An overview of the processes arahsrs shown in
Figure 4.

Primitive processes serve as an interface to the outsidiEl waonnecting to
sensors, databases, or other information sources thaeistives have no ex-
plicit support for stream-based knowledge processing.hSuocesses have no
stream inputs but provide a non-empty set of stream gensrdtogeneral, they
tend to be quite simple, mainly adapting data in a multitutlexternal repre-
sentations to the stream-based framework. For examplelexDk the stream
of observations of the system being diagnosed is provideal foymitive process
System.
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The second process type to be considered igg¢firement procesavhich
takes a set of streams as input and provides one or more sgreaenators pro-
ducing refined, abstracted, or otherwise processed valmeElexDx there are
four refinement processes, as seen in Figure 4.

e ResidualGenerator — Computes the residual for a particular test from system
observations. The residual is initialized as describeceictisn 5.

e ResidualMonitor — Monitors a residual and checks whether it has triggered
a test. This can either be a simple threshold check or a mab®elte test
which checks properties of the residual over time, such d@shiés been
above or below the threshold for more than five consecutiugsss. If a
test has been triggered the process computes the last kaolvfirée time,
which is the output of the process.

e Diagnoses — Computes the new set of diagnoses each time a test has been
triggered.

e TestSet— Computes the new set of residual generators to be monitdred w
the set of diagnoses changes.

The third type of process, theonfiguration procesdakes a set of streams as
input but produces no new streams. Instead, it enables dgrraconfiguration
by adding or removing streams and processes. In FlexDx ageomafion process
is required to handle the first issue, to be able to reconfitheeset of residuals
and tests that are computed.

e CreateTests — Updates the set of residual generators and monitors as the
set of tests changes. Each test consists of two refinemecggses, one to
compute the residual and one to monitor the test on the ralsidio order
to manage the second issue, that residuals are computadgstdrthe last
known fault free time. The input to aresidual is a stream Wwhiegins at this
time-point. This is part of the policy the configuration pess uses to set
up the new residual generator process. Creating streanmaliyarbnsisting
of historic data is a DyKnow feature.

Finally, amediation procesgenerates streams by selecting or collecting in-
formation from other streams. Here, one or more of the inpatsbe a stream
of labels identifying stream generators to which the méaligprocess may sub-
scribe. This allows a different type of dynamic reconfigianain the case where
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not all potential inputs to a process are known in advanceh@rgvzone does not
want to simultaneously subscribe to all potential inpute thuprocessing costs.
FlexDx uses a mediation process to collect the detectedictsnfl

e ConflictSetMediator — Subscribes to the output of each of the tests and aggre-
gates these to a single stream. When tests are added or rethevadrent
set of subscriptions is updated accordingly. The outpuhif process is
a stream of pairs, each pair containing the identifier of st that was
triggered and the last known fault free time for the corresidog residual.

Without any specific termination condition FlexDx will rurs éong as the
system produces output and there are tests that have novimdated yet. It is
possible to stop earlier, for example when there is a uniguasistent single fault.

To give a concrete example of a run of the system, considesxample from
Section 6 as described in Table 2. When the system is staesd, 1, 2, and 5
are created byreateTests. These are computing the residuals and performing
tests from time 0 to 102.6, when test 5 is triggered. Thenefiaement process
for test 5 computes the last known fault free time to 98.9ngshis information
Diagnosis computes the set of minimal diagnosis{tb 3, 5,6} and TestSet the
new set of tests t¢1, 3, 10, 13}. The old tests 2 and 5 are removed and the new
tests are added byreateTests. All of the tests are computed from time 98.9 until
time 102.7 when test 13 is triggered, which means that theycamputed from
historic data until time 102.6. In this manner the set ofséstupdated one more
time before concluding that, is the only consistent single fault.

The FlexDx algorithms are implemented in Matlab and integtahrough
code generation into DyKnow which is implemented in C++ ust@RBA as
a communication infrastructure.

8. Conclusions

FlexDx, an implemented reconfigurable diagnosis frameuspoposed. It
reduces the computational burden of performing multiplétfdiagnosis by only
running the tests that are currently needed. This involvesthod for dynami-
cally starting new tests. An important contribution is a lnoet to select tests such
that the computational burden is reduced while maintaitiregisolation perfor-
mance of the diagnostic system. Key components in the apipiara test selection
and test initialization. To illustrate that the generahfi@vork can be instantiated,
specific algorithms for diagnosing linear dynamical systérave been developed
for each component.
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Implementing a reconfigurable diagnosis framework such lasC¥ intro-
duces a number of interesting issues. First, FlexDx mus¢benfigured to com-
pute the new set of tests each time the set changes. Secesd,dbmputations
must begin at the last known fault free time, which will behe past. Third, at the
same time as FlexDx is performing tests on historic datdgaysbservations will
keep coming at their normal rate. To handle these issue®kleximplemented
using DyKnow, a stream-based knowledge processing midatefvamework.

In the given example, the proposed approach has shown &cggmireduction
of the computational burden for a relatively small dynarhgéyastem. For systems
with a high degree of redundancy, i.e. systems for whichetlegists many pos-
sible tests, the reduction can be expected to be even hi@ystems with low
failure rate are also a class of systems where the approadbecaxpected to be
advantageous, since then typically only a small subseteofdsts are required to
run continuously, rendering a significant reduction in catagional burden.
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