

Linköping University Post Print

FlexDx: A reconfigurable diagnosis framework

Mattias Krysander, Fredrik Heintz, Jacob Roll and Erik Frisk

N.B.: When citing this work, cite the original article.

Original Publication:

Mattias Krysander, Fredrik Heintz, Jacob Roll and Erik Frisk, FlexDx: A reconfigurable

diagnosis framework, 2010, Engineering applications of artificial intelligence, (23), 8, 1303-

1313.

http://dx.doi.org/10.1016/j.engappai.2010.01.004

Copyright: Elsevier Science B.V., Amsterdam.

http://www.elsevier.com/

Postprint available at: Linköping University Electronic Press

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-59945

http://dx.doi.org/10.1016/j.engappai.2010.01.004
http://www.elsevier.com/
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-59945

FlexDx: A Reconfigurable Diagnosis Framework

Mattias Krysander∗, Fredrik Heintz†, Jacob Roll∗, Erik Frisk∗

∗ Dept. of Electrical Engineering,
Linköping University, SE-581 83 Link̈oping, Sweden

Email: {matkr,roll,frisk}@isy.liu.se
† Dept. of Computer and Information Science,

Linköping University, SE-581 83 Link̈oping, Sweden
Email: frehe@ida.liu.se

Abstract

Detecting and isolating multiple faults is a computationally expensive task. It
typically consists of computing a set of tests and then computing the diagnoses
based on the test results. This paper describes FlexDx, a reconfigurable diagnosis
framework which reduces the computational burden while retaining the isolation
performance by only running a subset of all tests that is sufficient to find new
conflicts. Tests in FlexDx are thresholded residuals used toindicate conflicts in
the monitored system. Special attention is given to the issues introduced by a
reconfigurable diagnosis framework. For example, tests areadded and removed
dynamically, tests are partially performed on historic data, and synchronous and
asynchronous processing are combined. To handle these issues FlexDx has been
implemented using DyKnow, a stream-based knowledge processing middleware
framework. Concrete methods for each component in the FlexDxframework are
presented. The complete approach is exemplified on a dynamicsystem which
clearly illustrates the complexity of the problem and the computational gain of
the proposed approach.1

Keywords: Reconfigurable diagnosis framework, Diagnosing dynamical
systems, Test reconfiguration, Test selection, Test initialization

1This work is partially supported by grants from the Swedish Foundation for Strategic Research
(SSF) Strategic Research Center MOVIII and the Swedish Research Council Linnaeus Center
CADICS.

Preprint submitted to Engineering Applications of Artificial Intelligence December 14, 2010

1. Introduction

Reliable real-time multiple fault diagnosis of dynamical systems in the pres-
ence of noise is of fundamental importance in many applications. The diagno-
sis problem typically consists of detecting and isolating faulty components given
available sensor and actuator signals. Important challenges are real time issues,
complexity issues when dealing with multiple faults, how tohandle process dy-
namics, and noisy measurements. The main objective of this work is to describe
FlexDx a diagnosis framework that performs multiple fault isolation for dynamic
noisy systems using adaptive and reconfiguration techniques to lower the compu-
tational burden of the diagnostic system.

1.1. Problem background

In consistency-based diagnosis, sensor and actuator signals are compared to
a formal description of the process, a model, to detect inconsistencies indicating
faults. Inconsistency detection can for example be based onlocal propagation of
observations, like solutions based on the well known General Diagnostic Engine
(GDE) [1, 2]. However, such solutions have limitations whendiagnosing dynam-
ical systems in real-time [3, 4]. On the other hand, in the automatic control and
signal processing communities there exists a large volume of research directed at
detecting faults in noisy dynamic systems, see e.g. the books [5, 6, 7, 8]. These ap-
proaches are not based on local propagation, but typically on a set of pre-compiled
tests, or residual generators, that are used together with afault isolation module [5]
to reach a diagnosis decision. A key topic in these approaches has been to study
residual generator design for dynamical systems in noisy environments. However,
efficient handling of multiple faults has not been a central topic in these works, as
in the more AI-based literature [1, 9].

In several works, for example [3, 10, 11, 12], it is noted thatthe fault isolation
techniques from the AI literature can be used together with the pre-compilation
techniques from the automatic control community. These observations makes
it possible to combine the techniques from the automatic control community to
handle noise and system dynamics, with the fault isolation techniques from the
AI-community to handle multiple fault isolation. However,due to the inherent
computational complexity of the multiple fault isolation problem, there are still
open problems that need to be addressed.

The computational complexity of a diagnostic system based on pre-compiled
tests mainly originates from two sources: complexity of theprocess model and the

2

number of behavioral modes considered. A high resolution capability of distin-
guishing between faults, especially when multiple faults are considered, requires
a large number of diagnostic tests [13]. This also follows form the well known
fact that the number of required minimal conflicts, which corresponds to triggered
tests in a residual based approach, to solve a multiple faultdiagnosis task grows
exponentially in the number of faults in the system [14]. Also, the more com-
plex the process model is, the more computationally expensive the execution of
the diagnostic tests is. For example, if the model consists of non-linear dynamic
equations, a typical test involves a non-linear observer which may be computa-
tionally expensive. Finally, since dynamical systems are considered here, tests
must be recomputed sufficiently often to capture fault dynamics and to get a fast
and accurate fault detection and isolation.

1.2. Solution outline

Our basic idea to mitigate the computational burden is to exploit the fact that
all pre-compiled tests are not needed at all times. For example, only a subset of the
available tests are needed to detect a fault. The remaining tests can, in case of an
alarm, then be used to further isolate the faulty component but they are not needed
when the system is in fault free operation. As will be shown, substantial reduction
in the computational burden can be achieved by exploiting this observation.

This approach is similar to works coping with the complexityof multiple fault
diagnosis from the AI-community. There the complexity issues related to hav-
ing many tests have been avoided by applying propagation techniques directly on
the process model. The propagation is initiated with the observed measurements
and then only explore the part of the model that might be inconsistent. Here we
propose a similar technique, using pre-compiled tests instead of local propagation.

The proposed approach, a reconfigurable diagnosis framework called FlexDx,
chooses which tests to run at a particular instant based on the current set of di-
agnoses. If a test is violated, i.e. an alarm is generated, then an updated set of
diagnoses is computed and the set of active tests is reconfigured. It is shown how
such an approach requires controlled ways of initializing the dynamic diagnostic
tests and algorithms how to select the new tests to be startedwhen a set of diagnos-
tic tests has generated an alarm. To facilitate a thorough analysis of the approach,
linear process models are used in the paper but the frameworkis not based on
this model assumption, but can be extended to non-linear models if non-linear test
techniques are used, e.g. [15, 16, 17].

3

1.3. Paper Outline

The reconfigurable diagnosis framework is introduced in Section 2 and related
work to the different components in the framework is discussed. To illustrate the
properties of the approach, linear dynamical process models are used and the the-
oretical diagnosis background for such systems is presented in Section 3. Meth-
ods for how to determine, in a specific situation, which testsshould be run are
treated in Section 4. An appropriate initialization procedure for dynamic tests
is described in Section 5. The complete approach is exemplified on a dynamic
system in Section 6, which, in spite of its relatively small size, clearly illustrates
the complexity of the problem and the computational gain of the proposed ap-
proach. The diagnosis framework is implemented using DyKnow, a stream-based
knowledge processing middleware framework [18], which is briefly described in
Section 7. Finally the paper is concluded with a summary in Section 8.

2. FlexDx: A Reconfigurable Diagnosis Framework

The main idea of this work is to reduce the overall computational burden of a
diagnostic system by utilizing the observation that all tests are not needed at all
times. For example, when starting a fault free system, thereis no need to run tests
that are designed with the sole purpose of distinguishing between faults. In such a
case, only tests that are able to detect faults are needed, which may be significantly
fewer compared to the complete set of tests. When a test triggers an alarm and a
fault is detected, appropriate tests are started to refine the diagnosis.

FlexDx uses a consistency-based approach to diagnosis whendetermining if
a supervised system is working correctly [1, 19, 20]. If a fault is detected, the
diagnosis is incrementally refined by adding and removing tests in an iterative
manner according to the following procedure:

1. Initiate the set of diagnoses.
2. Based on the set of diagnoses, compute the set of tests to be performed.
3. Compute the initial state of the selected tests.
4. Run the tests until an alarm is triggered.
5. Compute the new set of diagnoses based on the test results, then go to step 2.

FlexDx represents all diagnoses with the minimal diagnoses, which has been
shown useful when dealing with multiple fault diagnosis [19]. When FlexDx is
started, there are no conflicts and the only minimal diagnosis is the no-fault mode
NF, i.e. the set of minimal diagnosesD is set to{NF} in step 1. Step 2 uses a

4

function that given a set of diagnosesD returns the set of testsT to be performed
to monitor whether a fault has occurred or to further explorethe possible diag-
noses. Step 3 initiates each of the tests inT . A test includes a residual generator
given in state-space form. To properly initialize such a residual generator, it is
necessary to estimate its initial condition. In step 4, the tests are performed until
at least one is violated and a test result is generated in the form of a set of con-
flicts [19, 20]. Step 5 computes the new set of diagnosesD, given the previous
set of diagnoses and the generated set of conflicts. This stepcan be performed by
algorithms handling multiple fault diagnoses [1, 9].

Step 4 and 5 are standard steps used in diagnostic systems andwill not be
described in further detail. Step 2 and 3 are new steps, needed for dynamically
changing the test setT , the details are given in Section 4 and 5 respectively.

To implement an instance of the FlexDx framework, a number ofissues have
to be managed besides implementing the algorithms for each step and integrating
them in a system. Each test is implemented by a residual generator, computing the
residual given the measurements of the system, and a monitorthat checks if the
residual has triggered a violation of the test. When a potential fault is detected,
FlexDx computes the last known fault free timetf and the new set of residual
generators to be started at timetf . To implement this, three issues have to be
handled. First, the FlexDx instance must be reconfigured to replace the set of
residual generators and their monitors. Second, the computation of the residuals
must begin at timetf which will be in the past. Third, at the same time as FlexDx
is performing tests on historic data, system observations will keep coming at their
normal rate. How these issues are solved is described in Section 7.

A key step in the reconfiguration procedure outlined above isthe selection of
which tests to run in a specific situation. Selection of testsis related to the selec-
tion of new measurement points. For example, in the General Diagnostic Engine
[1] a solution is proposed where measurement points are selected in a sequen-
tial way such that, on average, the actual fault can be isolated using a minimum
number of measurements. This is done by dynamically rankingthe possible mea-
surement points according to the expected information obtained from the mea-
surement. A related approach is found in [21, 22] where testsare ranked and
selected according to some information criterion. The approach adopted here for
test selection is fundamentally different and the objective is to find a subset of
tests, out of a predefined set of possible tests, such that running these tests pro-
vides all information available in the model and observationsgiventhe current set
of diagnoses.

Several works [23, 5, 24] have considered test selection forachieving different

5

objectives but contrary to this work no focus has been on on-line reconfiguration.
Another related approach is presented in [25] although the models and diagnosis
techniques are different. Recently, works on on-line reconfiguration of the diag-
nostic system have appeared. For a related work, see for example Benazera and
Travé-Massuỳes [26], where Kalman-filters are reconfigured based on diagnosis
decisions.

3. Theoretical Background

The diagnostic systems considered in this paper include a set of precompiled
tests. Each test consists of a residualr(t) that is thresholded such that it triggers
an alarm if|r(t)| > 1. Note that the threshold can be set to one without loss of
generality. It is assumed that the residuals are normalizedsuch that a given false
alarm probabilitypFA is obtained, i.e.

P (|r(t)| > 1|NF) = pFA (1)

The residuals are designed using a model of the process to be diagnosed.

3.1. The Model
The model class considered here is linear differential-algebraic models. Al-

though the presentation in this paper relies on results for linear systems, the basic
idea is equally applicable to non-linear model descriptions.

There are several ways to formulate differential-algebraic models. Here, a
polynomial approach is adopted, but any model description is possible, e.g. stan-
dard state-space or descriptor models. The model is given bythe expression

H(q)x+ L(q)w + F (q)f = V (q)v (2)

wherex(t) ∈ R
mx , w(t) ∈ R

mw , f(t) ∈ R
mf , andv(t) ∈ R

mv . The matrices
H(q), L(q), F (q), andV (q) are polynomial matrices in the time-shift operatorq.
The vectorx contains all unknown signals, which include internal system states
and unknown inputs. The vectorw contains all known signals such as control
signals and measured signals, the vectorf contains the fault signals, and the vec-
tor v is white, possibly multidimensional, zero mean, unit covariance Gaussian
distributed noise.

To guarantee that the model is well formed, it is assumed thatthe polynomial
matrix [H(z) L(z)] has full column rank for somez ∈ C. This assumption as-
sures, according to [27], that for any noise realizationv(t) and any fault signal
f(t) there exists a solution to the model equations (2).

6

3.2. Residual Generation

Residuals are used both to detect and isolate faults. This task can be formu-
lated in a hypothesis testing setting. For this, letfi denote both the fault signal
and the corresponding behavioral mode [28] of a single fault. LetF be the set of
all single faults in model (2).

A pair of hypotheses associated with a residual can then be stated as

H0 : fi = 0 for all fi ∈ C

H1 : fi 6= 0 for somefi ∈ C

whereC ⊆ F is the subset of faults the residual is designed to detect. This
means that the residual is not supposed to detect all faults,only the faults inC.
By generating a set of such residuals, each sensitive to different subsetsC of
faults, fault isolation is possible. This isolation procedure is briefly described in
Section 3.3.

In the literature there exists several different ways to formally introduce resid-
uals [5, 7]. In this paper an adapted version of the innovation filter defined in
[29] is used. For this, it will be convenient to consider the nominal model under
a specific hypothesis. The nominal model under hypothesisH0 above is given
by (2) with V (q) = 0 andfi = 0 for all fi ∈ C. With this notion, a nominal
residual generator is a linear time-invariant filterr = R(q)w where for all obser-
vationsw, consistent with the nominal model (2) under hypothesisH0, it holds
that limt→∞ r(t) = 0.

Now, consider again the stochastic model (2) where it is clear that a residual
generated with a nominal residual generator will be subjectto a noise component
from the process noisev. A nominal residual generator underH0 is then said to
be a residual generator for the stochastic model (2) if the noise component in the
residualr is white Gaussian noise.

It can be shown [30] that all residual generatorsR(q), as defined above, for
the stochastic model (2) can be written as

R(q) = Q(q)L(q)

where the matrix operatorQ(q) satisfies the conditionQ(q)H(q) = 0. This means
that the residual is computed byr = Q(q)L(q)w and the internal form of the
residual is given by

r = Q(q)L(q)w = −Q(q)F (q)f +Q(q)V (q)v (3)

7

Thus, the fault sensitivity is given by

r = −Q(q)F (q)f (4)

and the statistical properties of the residual underH0 by

r = Q(q)V (q)v (5)

A complete design procedure is presented by Nikhoukhah [29]for state-space
models and by Frisk [30] for models in the form (2). The objective here is not
to describe a full design procedure, but it is worth mentioning that a design algo-
rithm can be made fully automatic, that the main computational steps involve a
null-space computation and a spectral factorization, and that the resulting residual
generator is a basic dynamic linear filter.

3.3. Computing the Diagnoses
The fault sensitivity of the residualr in (3) is given by (4). Here,r is sensitive

to the faults with non-zero transfer functions. LetC be the set of faults that a
residualr is sensitive to. Then, if residualr triggers an alarm, at least one of the
faults inC must have occurred and the conflictC is generated [20].

Now we can relate the test results to a diagnosis. Let a set of single faults
b ⊆ F represent a system behavioral mode with the meaning thatfi 6= 0 for all
fi ∈ b andfj = 0 for all fj /∈ b. The set of faultsbwill with some abuse of notation
sometimes be referred to as a behavioral mode. This is also inaccordance with
the notation used in for example [1, 20]. The set of all systembehavioral modes
is then represented with the power set ofF .

In short, the behavioral modeb is a diagnosis if it can explain all generated
conflicts, i.e. ifb has a non-empty intersection with each generated conflict, see
[20] for details. A diagnosisb is considered aminimal diagnosis if no proper
subset ofb is a diagnosis [1, 20]. Algorithms to compute all minimal diagnoses
for a given set of conflicts, which is equivalent to the so called minimal hitting set
problem, can be found in for example [1, 20]. The following example illustrates
the main principle.

Example 1. Let anX in position(i, j) in the table below indicate that residual
ri is sensitive to faultfj

f1 f2 f3
r1 X X
r2 X X
r3 X X

8

If residualsr1 and r2 trigger alarms, then conflictsC1 = {f2, f3} and C2 =
{f1, f3} are generated. ForC1, for instance, this means that bothf2 andf3 cannot
be 0. Now, for a set of faults to be a diagnosis it must then explain both these
conflicts. It is straightforward to verify that the minimal diagnoses in this case are
b1 = {f3} andb2 = {f1, f2}. ⋄

4. Test Selection

There are many possible ways to select the set of testsT given a setD of
minimal diagnoses. The method used by FlexDx relies on basicprinciples in
consistency-based diagnosis based only on the deterministic properties of (2).

A fundamental task in consistency-based diagnosis is to compute the set of
consistent modes given a model, a set of possible behavioralmodes, and observa-
tions [1]. The design goal of the test selection algorithm isto perform tests such
that the set of consistent modes is equal to the set of diagnoses computed by the
diagnostic system.

4.1. Consistent Behavioral Modes

The deterministic behavior in a behavioral modeb is described by (2) when
v = 0, fi 6= 0 for all fi ∈ b, andfj = 0 for all fj /∈ b. A set of observations
consistent withb is consequently given by

O(b) = {w|∃x∃f (∀j : fj /∈ b → fj = 0)∧
H(q)x+ L(q)w + F (q)f = 0}

(6)

This means that a modeb is consistent with the deterministic part of model (2)
and an observationw if w ∈ O(b). Note thatfi ∈ b is required to be nonzero in
modeb, but this is not required in the definition ofO(b). In noisy environments, it
will be impossible to distinguish infinitely small faultsfi 6= 0 from the case when
fi = 0. To capture this property in the deterministic analysis here we include also
the case whenfi = 0 in O(b).

The design goal can now be formulated in terms of the setsO(b) as follows.
The set of diagnoses should, given an observationw, be equal to{b ∈ B|w ∈
O(b)} whereB denotes the set of all behavioral modes. As mentioned in Sec-
tion 2, we will use minimal diagnoses to represent all diagnoses. This is possible
since (6) implies thatO(b′) ⊆ O(b) if b′ ⊆ b. Hence, ifb′ is consistent it follows
thatb is consistent and therefore it is sufficient to check if the minimal consistent
modes remain consistent when new observations are processed.

9

4.2. Tests for Checking Model Consistency

Next, we will describe how tests can be used to detect ifw /∈ O(b). Let T be
the set of all available tests and letri = Qi(q)L(q)w be the residual corresponding
to testti.

A residual generator checks the consistency of a part of the complete model.
To determine which part, only the deterministic model needsto be considered. It
can be shown that residualri checks the consistency ofξi(q)w = 0 whereξi(q)
is a polynomial in the time-shift operatorq [27]. By defining the set of consistent
observations for tests in a similar way as for models, we define

O(ti) = {w|ξi(q)w = 0} (7)

Now, we can characterize all test setsT that are capable of detecting any
inconsistency between an observationw and the assumption thatw ∈ O(b). For
this purpose, only teststi with the property thatO(b) ⊆ O(ti) can be used. For
such a test, an alarm implies thatw /∈ O(ti) which further implies thatw /∈ O(b).
This means that a test setT is capable of detecting any inconsistency ofw ∈ O(b)
if and only if

O(b) =
⋂

∀t∈{ti∈T |O(b)⊆O(ti)}

O(t) (8)

A trivial solution to (8) isT = {t} whereO(t) = O(b).

4.3. The Set of All Available Tests

If T is not capable of checking the consistency ofb, then no subset of tests
will be capable of doing this either. Hence, this approach puts requirements on
the entire set of testsT . By applying the approach to a model consisting of the
considered set of tests, a diagnostic system with the same diagnosis capability as
the considered set of tests will be the result. In this paper,we will use two different
types of test setsT fulfilling (8) for all modesb ∈ B. These are introduced by the
following example.

Example 2. Consider the model

x1(t+ 1) = αx1(t) + w1(t) + f1(t)
x2(t) = x1(t) + f2(t)
w2(t) = x1(t) + f3(t)
w3(t) = x2(t) + f4(t)

(9)

10

wherexi are unknowns,wi known variables,α a known parameter, andfi the
faults. There are24 modes and the set of observations consistent with each mode
is

O(∅) = {w|

[

w1(t) + αw2(t)− w2(t+ 1)
−w2(t) + w3(t)

]

= 0}

O({f1}) = {w| − w2(t) + w3(t) = 0}

O({f2}) = O({f4}) = O({f2, f4}) =

= {w|w1(t) + αw2(t)− w2(t+ 1) = 0}

O({f3}) = {w|w1(t) + αw3(t)− w3(t+ 1) = 0}

O(b) = R
3 for the remaining modes.

The behavioral models for the 10 last modesb do not contain any redundancy and
the observations are therefore not restricted, i.e.O(b) = R

3. In contrast to (6),
the sets of consistent observations are here expressed in the same form as for
tests, that is with linear differential equations in the knownvariables only. Any
set described as in (6) can be written in this form [31]. ⋄

The first type of test setT1 will include one test for each distinct behavioral
model containing redundancy. For the example,T1 consists of four teststi such
thatO(t1) = O(∅),O(t2) = O({f1}),O(t3) = O({f2}) = O({f4}), andO(t4) =
O({f3}). To check the consistency ofw ∈ O(∅), two linear residuals are needed,
which is the degree of redundancy of the model. These two residuals can be
combined in a positive definite quadratic form to obtain a scalar test quantity.
When stochastic properties are considered, the quadratic form is chosen such that
the test quantity conforms to aχ2-distribution.

Tests for models with a high degree of redundancy can be complex, and the
second type of test setT2 includes only the tests for the behavioral models with
degree of redundancy 1. For the example,T2 = {t2, t3, t4} and by noting that
O(∅) = O(ti) ∩ O(tj) for any i 6= j wherei, j ∈ {2, 3, 4}, any two tests can be
used to check the consistency ofw ∈ O(∅). In [13] it has been shown under some
general conditions thatT2 fulfills (8) for all modesb ∈ B.

4.4. Test Selection Methods

We will exemplify methods that given a set of minimal diagnosesD select a
test setT ⊆ T such that (8) is fulfilled for allb ∈ D. An optional requirement that
might be desirable is to select such a test setT with minimum cardinality. The
reason for not requiring minimum cardinality is that the computational complexity

11

of computing a minimum cardinality solution is generally much higher than to find
any solution.

A straightforward method is to use the first type of tests and not require
minimum cardinality solutions. Since this type of test set includes a trivial test
O(ti) = O(b) for all modesb with model redundancy, it follows that a strategy is
to start the tests corresponding to the minimal diagnoses inD.

Example 3. Consider Example 2 and assume that the set of minimal diagnoses
is D = {∅}. Then it is sufficient to perform testt1, i.e. T = {t1}. If the set
of minimal diagnoses areD = {{f2}, {f3}, {f4}}, thent3 is used to check the
consistency of both{f2} and{f4} and the total set of tests isT = {t3, t4}. For
this example, this strategy produces the minimum cardinality solutions, but this is
not true in general.

A second method is to use the second type of tests and for example require
a minimum cardinality solution. The discussion of the method will be given in
Section 6 where this method has been applied to a larger example.

4.5. Relaxing the Design Goal

The design goal to perform tests such that the set of consistent modes is equal
to the set of diagnoses is an ambitious goal that may require many tests. Three
different principles for relaxing the approach will be discussed next.

First, the test selection methods are not limited to take theset of all mini-
mal diagnoses as input. If the number of minimal diagnoses islarge, a focusing
strategy [32] can be incorporated to reduce the number of diagnosis and thereby
also the number of selected tests. Minimal cardinality diagnosis or most proba-
ble diagnosis given some a priori probabilities are examples of possible focusing
strategies.

The second type of relaxation reduces the total number of tests in T . It may
require a large number of tests to fulfill (8) for all modesb ∈ B and sometimes
it is not interesting to consider unlikely modes including alarge number faulty
components. By considering a subset of modesB′ ⊂ B, the goal can be modified
as follows. Tests should be performed such that among the modes inB′ exactly
the consistent ones are diagnoses. This means thatT is selected such that (8) is
fulfilled for all behavioral modes inB′. When running the diagnostic system, the
test selectionT ⊆ T has to fulfill (8) for all minimal diagnoses inB′.

A third option is to use a given set of testsT ′, that is not required to fulfill (8)
for any modes. The goal can then be formulated as follows. Given the current

12

minimal diagnoses, perform the tests inT ⊆ T ′ such that the diagnoses computed
with the selected subset of tests would be equal to the diagnoses computed using
all tests. This means that, given a set of minimal diagnosesD, the test selection
T ⊆ T ′ has to fulfill

⋂

∀t∈{ti∈T ′|O(b)⊆O(ti)}

O(t) =
⋂

∀t∈{ti∈T |O(b)⊆O(ti)}

O(t) (10)

for eachb ∈ D.
The three relaxations can be used individually or mixed. As an example of

how the three relaxations can be combined, we can consider the tests in a given
setT ′, include only the fault free mode, the single fault modes, and the double
fault modes inB′, and use the minimal cardinality focusing strategy. Then, given
a set of minimal diagnosesD, the test selectionT ⊆ T ′ has to fulfill (10) for
all minimal cardinality diagnosesb that belong toB′. Which relaxation, or which
combination of relaxations, that are appropriate for a specific application must be
determined case by case.

5. Initialization

When a new test selection has been made, the new tests have to beinitialized.
Since information about faults sometimes are only visible in the residuals for a
short time-period after a fault occurrence, we would like a new test to start before
the currently considered fault occurred, otherwise valuable information could be
missed. It is also important that the state of the new test gets properly initialized,
such that the fault sensitivity is appropriate already fromthe start, and the residuals
can deliver test results immediately. Therefore, the initialization following a new
test selection consists of:

1. Estimate the time of the fault from the alarming test(s).
2. Estimate the initial condition for each new test.

Both these steps require the use of historical data, which therefore have to be
stored. The fault time estimation will use the historical residuals from the trig-
gered test, while the initial condition estimation uses themeasured data from the
process before the fault occurred. In case not enough historical data is available,
it is reasonable to use all available data. In such a case, onemay expect some
degradation in detection performance compared to running all tests at all times.

13

5.1. Estimating the Fault Time

There are many possibilities to estimate the fault time. Seefor example [33, 8]
for standard approaches based on likelihood ratios. Here, awindow-based test has
been chosen. It should be noted, however, that for the given framework, what is
important is not really to find the exact fault time, but rather to find a time-point
before the fault has occurred. The estimated time-point will be denoted bytf .

Given a number of residuals from an alarming test,r(1), . . . , r(n), let us com-
pute the sum of the squared residuals over a sliding window, i.e.,

S(t) =
1

σ2

ℓ
∑

j=1

r2(t+ j), t = 0, . . . , n− ℓ (11)

If the residual generator is designed such that under the null hypothesis no fault
has occurred,(r(j))nj=1 are white and Gaussian with varianceσ2, thenS(t) ∼
χ2(ℓ) in the fault free case. Hence,S(t) can be used to test whether this null hy-
pothesis has been rejected at different time-points by a simpleχ2-test. The length
ℓ of the sliding window is selected according to the expected fault responses. A
slowly increasing fault response requires a long time-window while short time-
windows are preferable for impulses.

Since it is preferable to get an estimated time-point that occurs before the
actual fault time, rather than after, the threshold of theχ2-test should be chosen
such that the null hypothesis is fairly easily rejected. Theestimatetf is then set
to the time-point of the last non-rejected test. Also, in order not to risk a too late
estimate, the time-point at the beginning of the sliding window is used.

5.2. Estimating the Initial Condition

Having foundtf , the next step is to initialize the state of the new residual
generator. The method used here considers a time-window of samples ofw(tf −
k + 1), . . . , w(tf) as input to find a good initial statex(tf) of the filter at the last
time point of the window.

Consider the following residual generator:

x(t+ 1) = Ax(t) + Bw(t)
r(t) = Cx(t) +Dw(t)

(12)

Assume thatw(t) = w0(t) + Nv(t) wherew0(t) is the noise-free data (inputs
and outputs) from the process model andv(t) is Gaussian noise. In fault free

14

operation, there is a state sequencex0(t), such that the outputr(t) = 0 if v(t) = 0,

x0(t+ 1) = Ax0(t) + Bw0(t)
0 = Cx0(t) +Dw0(t)

(13)

Givenw(t), t = tf − k + 1, . . . , tf , we would now like to estimatex0(tf),
which, using (13) andw(t) = w0(t) +Nv(t), can be expressed as

x0(tf) = Ak−1x0(tf − k + 1) + FwW0 (14)

= Ak−1x0(tf − k + 1) + Fw(W −DV V)

where

Fw =
[

Ak−2B Ak−3B . . . AB B 0
]

W0 =

w0(tf − k + 1)
...

w0(tf)

W =

w(tf − k + 1)
...

w(tf)

V =

v(tf − k + 1)
...

v(tf)

DV =

N 0 . . . 0
0 N . . . 0
...

...
.. .

...
0 0 . . . N

In a similar manner, the second line of (13) gives

0 = Rxx0(tf − k + 1) +Rw(W −DV V) (15)

where

Rx =

C
CA

...
CAk−1

Rw =

D 0 0 . . .
CB D 0 . . .
CAB CB D . . .
. . .

CAk−2B . . . D

The value ofk will be greater or equal to the number of states in (12) and since
the residual generator is observable, it follows thatRx has full column rank. Let
NRx

be a matrix whose rows form a basis of the left null space ofRx, so that
NRx

Rx = 0. By multiplying (15) from the left with the full rank matrix
[

(RT
xRx)

−1RT
x

NRx

]

15

we get

x0(tf − k + 1) = −(RT
xRx)

−1RT
xRw(W −DV V) (16)

0 = NRx
Rw(W −DV V) (17)

which is equivalent to (15). Elimination ofx0(tf − k + 1) in (14) implies that

x0(tf) = (−Ak−1(RT
xRx)

−1RT
xRw + Fw)(W −DV V) (18)

Now, to get an estimate ofx0(tf), firstE[V |W] can be computed using (17), and
thenE[x0(tf)|W] can be computed from this result and (18).

Assuming that the distribution ofV is known, say,V ∼ N(0,ΣV), (17) gives

E[V |W] =ΣVD
T
VR

T
wN

T
Rx

(

NRx
RwDVΣVD

T
VR

T
wN

T
Rx

)−1
NRx

RwW (19)

and this together with (18) gives the estimate

x̂0(tf) = E[x0(tf)|W]
= (−Ak−1(RT

xRx)
−1RT

xRw + Fw)(W −DV · E[V |W])
(20)

5.3. Determining the Lengthk of the Time-window

The choice ofk is made in advance, based on the computed standard devia-
tion σr(t), t ≥ tf of the initial residuals given̂x0(tf). Figure 1 exemplifies how
the standard deviation of an initialized residual may vary.The thick line in the
bottom indicates the stationary standard deviation that the standard deviation of
the initialized residual will converge to. The four curves above show the standard
deviations obtained for indicated values ofk. The largerk is, the more accurate
initial state estimation̂x0(tf) and the closer the standard deviationσr(t) comes to
the stationary case. Hence,k can be chosen via a trade-off between minimizing
the additional overhead that the computations in Section 5.2 represent and min-
imizing the maximum probability of false alarms during the initial time steps as
follows.

Let σ̄r be the maximum acceptable residual standard deviation which corre-
sponds to a maximum acceptable probability of false alarms during the initial
time steps. Further, given ak letK be the matrix such that̂x0(tf) is equal toKW
according to (19) and (20). Note thatk implicitly defines the matrices. Since
W = W0 +DV V , the initial covariance of the estimated statex̂0(tf) is given by

Σx̂0
(tf) = KDVΣVD

T
VK

T

16

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

Time t [Samples]

σ r(t
)

k = 6

k = 8

k = 10

k = 15

Stationary σ
r

Figure 1: An example of how the standard deviation of a residual varies directly after initiation for
different values of k. The line represents the standard deviation of the residual in the stationary
case.

and the standard deviation ofr(tf) by

σr(t) =
√

CΣx̂0
(t)CT +DNΣvNTDT (21)

for t = tf .
Figure 1 shows that the maximum standard deviationσr(t) for t ≥ tf is typ-

ically not obtained att = tf and therefore both the state covariance and residual
standard deviation have to be computed fort ≥ tf based on

Σx̂0
(t+ 1) = AΣx̂0

(t)AT + BNΣvN
TBT

and (21). Thek is selected as the smallestk such that

σr(t) ≤ σ̄r (22)

for all t ≥ tf .

6. Example

To illustrate the FlexDx framework, let us consider the simulated example
system shown in Figure 2, where a DC-servo is connected to a flywheel through a

17

u

J2

θ2

Ms

θ1

J1

Figure 2: Illustration of the example process; a DC-servo connected to an inertia with a spring.

rotational (damped) spring. The system dynamics can be described by:

J1θ̈1(t) = ku(t)− α1θ̇1(t)−Ms(t)

Ms(t) = α2(θ1(t)− θ2(t)) + α3(θ̇1(t)− θ̇2(t))

J2θ̈2(t) = −α4θ̇2(t) +Ms(t)

whereu(t) is an input signal controlling the torque from the motor (with a scaling
coefficientk = 1.1), θ1(t) and θ2(t) are the angles of the motor axis and the
flywheel, respectively, andMs(t) is the torque of the spring. The moments of
inertia in the motor isJ1 = 1 and for the flywheelJ2 = 0.5. The parameters
α1 = 1 andα4 = 0.1 determine the viscous friction at the motor and flywheel
respectively, whileα2 = 0.05 is the spring constant andα3 = 0.1 the viscous
damping coefficient of the spring.

As outputs, the motor axis angle and velocity, and the angle of the flywheel
are measured. We will design the diagnostic system for six possible single faults
f1(t), . . . , f6(t); one for each equation. The augmented system model becomes

J1θ̈1(t) = k(u(t) + f1(t))− α1θ̇1(t)−Ms(t)

Ms(t) = α2(θ1(t)− θ2(t)) + α3(θ̇1(t)− θ̇2(t)) + f2(t)

J2θ̈2(t) = −α4θ̇2(t) +Ms(t) + f3(t)

y1(t) = θ1(t) + f4(t) + v1(t)

y2(t) = θ̇1(t) + f5(t) + v2(t)

y3(t) = θ2(t) + f6(t) + v3(t)

Here,vi(t), for i = 1, 2, 3, are measurement noise terms.

18

Table 1: The fault sensitivity of the residuals.

f1 f2 f3 f4 f5 f6
r1 X X X
r2 X X X X
r3 X X X X
r4 X X X X
r5 X X X X
r6 X X X X
r7 X X X X
r8 X X X X
r9 X X X X
r10 X X X X
r11 X X X X
r12 X X X X
r13 X X X X

Since the diagnosis framework will work on sampled data, themodel is dis-
cretized before designing the tests using a zero-order holdassumption. The noise
is implemented as i.i.d. Gaussian noise with variance10−3. By using the second
type of tests described in Section 4.3 for the discretized system, a set of 13 tests
were needed. Their fault sensitivity is shown in Table 1. Thefalse alarm proba-
bility is set to10−3 and the maximum false alarm probability during test initiation
1.1 · 10−3. To achieve this performance, the number of samples needed for initiat-
ing the 13 tests are, according to the method proposed in Section 5.3, 38, 86, 65,
92, 23, 40, 52, 69, 41, 42, 113, 82, and 108 respectively. The tests will in the fol-
lowing simulations be combined with the second test selection method described
in Section 4.4.

6.1. Test Reconfiguration

To show how the diagnostic system is reconfigured during a fault transient, we
will describe what happens when the faultf1 occurs att = 100 in a simulated
scenario. The course of events is described in Table 2.

Each row in the table gives the most important properties of one iteration in the
FlexDx procedure given in Section 2. In one such iteration, the set of active tests
are executed on observations collected from timetf to ta. The column Minimal

19

Table 2: Diagnosis events

tf ta Minimal Diagnoses Active Tests
1 0 102.6 NF 1, 2,5
2 98.9 102.7 1, 3, 5, 6 1, 3, 10,13
3 98.9 102.2 1, 3, 25, 26, 45, 46 1, 2, 6, 7,8, 11,12
4 98.9 102.3 1, 23, 25, 26, 35, 36, 45 1, 2,6, 7, 9, 10, 11
5 98.9 102.6 1, 23, 26, 35, 36, 45 1, 2, 7,9, 10, 11
6 98.9 105.2 1, 23, 26, 36, 45 1, 2, 7, 10,11
7 100.6 − 1, 23, 26, 36, 245, 345, 456 1, 2, 7, 10

Diagnoses shows a simplified representation of the minimal diagnoses during the
corresponding phase. For example 25 represents the mode{f2, f5}. Each iteration
ends when one or several of the active tests trigger an alarm.These are shown in
bold type.

Let us take a closer look at the steps of the FlexDx procedure.Step 1 initi-
ates the set of minimal diagnoses toD = {NF}, which is shown in row 1. The
degree of redundancy of the behavioral model for NF is 3, and therefore 3 tests
are needed to check ifw ∈ O(NF) is consistent. Step 2 computes the first, in
lexicographical ordering, minimum cardinality solution to (8), which is the test
setT = {1, 2, 5} given in row 1. Step 3 initiates the testsT and test 5 triggers an
alarm at timeta = 102.6. From the fault sensitivity of residualr5 given in Table 1,
C = {f1, f3, f5, f6} becomes a conflict which is the output of step 4. The new set
of minimal diagnoses, computed in step 5, is shown in the second row. Returning
to step 2, the degree of redundancy for each of the behavioralmodels correspond-
ing to minimal diagnoses is2, and therefore at least two tests are needed to check
the consistency of each of them. The minimum cardinality test set computed in
step 2 isT = {1, 3, 10, 13}. This set is shown in row 2. Tests 1 and 3 check the
consistency of{f1}, 1 and 10 the consistency of{f3}, 3 and 13 the consistency of
{f5}, and 10 and 13 the consistency of{f6}. In step 3, the last fault free time is
estimated totf = 98.9 by using the alarming residualr5. The initial states of the
residuals used in the testsT are estimated using observations sampled in a time
interval ending attf . Proceeding in this way, FlexDx finds in row 4 that{f1} is
the only consistent single fault and then the multiple faultdiagnoses are further
refined. In row 7 the last fault free time is estimated to be 100.6 due to slow fault

20

response in test 11. A correct estimation can be obtained by tuning the length of
the time-window and the threshold of the fault time estimator (11).

One straightforward option to further decrease the computational load is to
modify the approach to focus on single faults, as indicated in Section 4.5. In
such a case, the first two iterations in Table 2 are the same since the minimal
diagnosis only include single faults. However, after the triggering of test 13, also
multiple faults appear in the minimal diagnoses. If only single fault diagnoses are
considered, only the diagnoses{f1} and{f3} are left. Then, by disregarding the
multiple faults diagnoses, it is concluded that testsT = {1, 2, 8} should be started
instead of the setT = {1, 2, 6, 7, 8, 11, 12} which is needed when also considering
the multiple fault diagnoses. The next test to trigger is test 8 and then the only
single fault diagnosis is{f1} and we have finalized the isolation procedure. From
this it is clear that the number of tests needed can be furtherreduced by focusing
on single faults. If the situation arises that no single fault diagnoses are left, focus
is then shifted to double faults, and so on.

6.2. Reduction of the Computational Burden

Let us consider a second simulated scenario, where the system is started in
the fault-free mode. Att = 100, f1 is set to0.2, and att = 200, f5 is set to
0.1. The residuals computed by the diagnostic system are shown in Figure 3. It
is noteworthy that the residuals have not been computed for all time-points and
thereby the expected cost reduction has been achieved. It isdifficult to quantify
the reduction in computational cost. In this case, where allresidual generators are
linear filters, one possibility is to evaluate the computational cost by examining
the number of multiplication and addition operations used to compute the residu-
als. Using that approach in this simulation, by comparing the computational cost
for a diagnostic system running all tests at all times with the computational cost
with the proposed system without using focusing, a 98% reduction of the compu-
tational cost is obtained for the simulated scenario. This number is in itself not an
indication of expected computational gain in a typical application. The reduction
strongly depends on for example failure rates, degree of redundancy, complexity
of the system model, and fault isolation requirements. The key point is that not all
tests are run at all times, and during fault free operation, typically only a few tests
are needed which typically results in a significant reduction in the computational
load.

The largest number of tests is performed during the fault transitions which last
only a short period of time. Although the computational loaddecreases with the
approach, during fault transients, i.e. when faults are isolated, the number of tests

21

0 100 200 300

−2

0

2
r 1

0 100 200 300

−2

0

2

r 2

0 100 200 300

−2

0

2

r 3

0 100 200 300

−2

0

2

r 4

0 100 200 300

−2

0

2

r 5

0 100 200 300

−2

0

2

r 6

0 100 200 300

−2

0

2

r 7

0 100 200 300

−2

0

2

r 8

0 100 200 300

−2

0

2

r 9

0 100 200 300

−2

0

2

r 10

0 100 200 300

−2

0

2

r 11

0 100 200 300

−2

0

2

r 12
0 100 200 300

−2

0

2

r 13

Figure 3: Residuals computed by FlexDx.

to run may still be too large with a too high computational load. Since the FlexDx
framework includes the possibility to store observationaldata and run the tests
in an asynchronous way, it is straightforward to serialize the test computations.
Thereby, the need for high computational power can be tradedagainst increased
memory usage and increased time for detection and isolation.

7. DyKnow

To implement an instance of the FlexDx framework, a number ofissues have to
be managed besides implementing the described algorithms and integrating them
in a system. When a potential fault is detected, FlexDx computes the last known
fault free timetf and the new set of residual generators to be monitored starting
at timetf . To implement this, three issues have to be solved. First, the FlexDx
instance must be reconfigured to replace the set of residual generators and their
monitors. Second, the computation of the residuals must begin at timetf in the
past. Third, at the same time as FlexDx is computing residuals and performing

22

tests on the historic data, system observations will keep coming at their normal
rate.

To manage these issues, FlexDx is implemented using DyKnow,a stream-
based knowledge processing middleware framework for processing asynchronous
streams of information [18]. Even though FlexDx could have been implemented
with a dedicated solution with less overhead there are a number of benefits of
using DyKnow. First, it provides solutions to the mentionedissues within an
existing framework. Second, DyKnow provides a distributedinfrastructure which
allows sensors and other components to be hosted on many different computers in
a network. This can be used both to collect data from distributed sensors and to
distribute computations in the case were no computer is powerful enough.

DyKnow provides both a conceptual framework and an implementation in-
frastructure for integrating a wide variety of components and managing the in-
formation that needs to flow between them. It allows a system to incrementally
process low-level sensor data and generate a coherent view of the environment at
increasing levels of abstraction. Due to the need for incremental refinement of in-
formation at different levels of abstraction, we model computations and processes
within the knowledge processing framework as active and sustainedknowledge
processes. The complexity of such processes may vary greatly, rangingfrom sim-
ple adaptation of raw sensor data to controllers to diagnosis algorithms.

The system being diagnosed by FlexDx is assumed to be synchronous. At
the same time the diagnosis procedure is asynchronous, jumping back and forth
in time trying to figure out which fault has occurred. This requires knowledge
processes to be decoupled and asynchronous to a certain degree. In DyKnow, this
is achieved by allowing a knowledge process to declare a set of stream genera-
tors, each of which has alabel and can besubscribedto by an arbitrary number
of processes. A subscription can be viewed as a continuous query, which creates
a distinct asynchronousstreamonto which new data is pushed as it is generated.
Each stream is described by a declarativepolicy which defines both which gen-
erator it comes from and the constraints on the stream. Theseconstraints can for
example specify the maximum delay, how to approximate missing values or that
the stream should contain samples added with a regular sampling period. Each
stream created by a stream generator can have different properties and a stream
generator only has to process data if it produces any streams. The contents of a
stream may be seen by the receiver as data, information, or knowledge.

A stream-based system pushing information easily lends itself to “on-availabi-
lity” processing, i.e. processing data as soon as it is available. This minimizes the
processing delays, compared to a query-based system where polling introduces

23

Figure 4: An overview of the components of the FlexDx implementation. The boxes are knowl-
edge processes and the arrows are streams.

unnecessary delays in processing and the risk of missing potentially essential up-
dates as well as wastes resources. This is a highly desired feature in a diagnostic
system where faults should be detected as soon as possible.

For the purpose of modeling, DyKnow provides four distinct types of knowl-
edge processes: primitive processes, refinement processes, configuration process-
es, and mediation processes. To introduce these processes and to describe how
the three issues introduced by FlexDx are solved, we will usea concrete FlexDx
instance as an example. An overview of the processes and streams is shown in
Figure 4.

Primitive processes serve as an interface to the outside world, connecting to
sensors, databases, or other information sources that in themselves have no ex-
plicit support for stream-based knowledge processing. Such processes have no
stream inputs but provide a non-empty set of stream generators. In general, they
tend to be quite simple, mainly adapting data in a multitude of external repre-
sentations to the stream-based framework. For example, in FlexDx the stream
of observations of the system being diagnosed is provided bya primitive process
System.

24

The second process type to be considered is therefinement process, which
takes a set of streams as input and provides one or more streamgenerators pro-
ducing refined, abstracted, or otherwise processed values.In FlexDx there are
four refinement processes, as seen in Figure 4:

• ResidualGenerator – Computes the residual for a particular test from system
observations. The residual is initialized as described in Section 5.

• ResidualMonitor – Monitors a residual and checks whether it has triggered
a test. This can either be a simple threshold check or a more elaborate test
which checks properties of the residual over time, such as ifit has been
above or below the threshold for more than five consecutive samples. If a
test has been triggered the process computes the last known fault free time,
which is the output of the process.

• Diagnoses – Computes the new set of diagnoses each time a test has been
triggered.

• TestSet – Computes the new set of residual generators to be monitored when
the set of diagnoses changes.

The third type of process, theconfiguration process, takes a set of streams as
input but produces no new streams. Instead, it enables dynamic reconfiguration
by adding or removing streams and processes. In FlexDx a configuration process
is required to handle the first issue, to be able to reconfigurethe set of residuals
and tests that are computed.

• CreateTests – Updates the set of residual generators and monitors as the
set of tests changes. Each test consists of two refinement processes, one to
compute the residual and one to monitor the test on the residual. In order
to manage the second issue, that residuals are computed starting at the last
known fault free time. The input to a residual is a stream which begins at this
time-point. This is part of the policy the configuration process uses to set
up the new residual generator process. Creating streams partially consisting
of historic data is a DyKnow feature.

Finally, amediation processgenerates streams by selecting or collecting in-
formation from other streams. Here, one or more of the inputscan be a stream
of labels identifying stream generators to which the mediation process may sub-
scribe. This allows a different type of dynamic reconfiguration in the case where

25

not all potential inputs to a process are known in advance or where one does not
want to simultaneously subscribe to all potential inputs due to processing costs.
FlexDx uses a mediation process to collect the detected conflicts.

• ConflictSetMediator – Subscribes to the output of each of the tests and aggre-
gates these to a single stream. When tests are added or removedthe current
set of subscriptions is updated accordingly. The output of this process is
a stream of pairs, each pair containing the identifier of the test that was
triggered and the last known fault free time for the corresponding residual.

Without any specific termination condition FlexDx will run as long as the
system produces output and there are tests that have not beenviolated yet. It is
possible to stop earlier, for example when there is a unique consistent single fault.

To give a concrete example of a run of the system, consider theexample from
Section 6 as described in Table 2. When the system is started, tests 1, 2, and 5
are created byCreateTests. These are computing the residuals and performing
tests from time 0 to 102.6, when test 5 is triggered. Then the refinement process
for test 5 computes the last known fault free time to 98.9. Using this information
Diagnosis computes the set of minimal diagnosis to{1, 3, 5, 6} andTestSet the
new set of tests to{1, 3, 10, 13}. The old tests 2 and 5 are removed and the new
tests are added byCreateTests. All of the tests are computed from time 98.9 until
time 102.7 when test 13 is triggered, which means that they are computed from
historic data until time 102.6. In this manner the set of tests is updated one more
time before concluding thatf1 is the only consistent single fault.

The FlexDx algorithms are implemented in Matlab and integrated through
code generation into DyKnow which is implemented in C++ usingCORBA as
a communication infrastructure.

8. Conclusions

FlexDx, an implemented reconfigurable diagnosis frameworkis proposed. It
reduces the computational burden of performing multiple fault diagnosis by only
running the tests that are currently needed. This involves amethod for dynami-
cally starting new tests. An important contribution is a method to select tests such
that the computational burden is reduced while maintainingthe isolation perfor-
mance of the diagnostic system. Key components in the approach are test selection
and test initialization. To illustrate that the general framework can be instantiated,
specific algorithms for diagnosing linear dynamical systems have been developed
for each component.

26

Implementing a reconfigurable diagnosis framework such as FlexDx intro-
duces a number of interesting issues. First, FlexDx must be reconfigured to com-
pute the new set of tests each time the set changes. Second, these computations
must begin at the last known fault free time, which will be in the past. Third, at the
same time as FlexDx is performing tests on historic data, system observations will
keep coming at their normal rate. To handle these issues FlexDx is implemented
using DyKnow, a stream-based knowledge processing middleware framework.

In the given example, the proposed approach has shown a significant reduction
of the computational burden for a relatively small dynamical system. For systems
with a high degree of redundancy, i.e. systems for which there exists many pos-
sible tests, the reduction can be expected to be even higher.Systems with low
failure rate are also a class of systems where the approach can be expected to be
advantageous, since then typically only a small subset of the tests are required to
run continuously, rendering a significant reduction in computational burden.

[1] J. de Kleer, Diagnosing multiple faults, Artificial Intelligence 32 (1) (1987)
97–130.

[2] W. Hamscher, L. Console, J. de Kleer (Eds.), Readings in model-based diag-
nosis, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992.

[3] M.-O. Cordier, P. Dague, F. L. J. Montmain, M. Staroswiecki, L. Trave-
Massuyes, Conflicts versus analytical redundancy relations: A comparative
analysis of the model based diagnosis approach from the artificial intelli-
gence and automatic control perspectives, IEEE Transactions on Systems,
Man, and Cybernetics–Part B: Cybernetics 34 (5) (2004) 2163– 2177.

[4] B. Pulido, C. Gonzalez, Possible conflicts: a compilation technique for
consistency-based diagnosis, IEEE Transactions on Systems, Man, and
Cybernetics–Part B: Cybernetics 34 (5) (2004) 2192– 2206.

[5] J. Gertler, Fault Detection and Diagnosis in Enginerering Systems, Marcel
Dekker, Inc., 1998.

[6] R. J. Patton, P. M. Frank, R. N. Clark (Eds.), Issues of Fault Diagnosis for
Dynamic Systems, Springer, 2000.

[7] M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, J. Schröder, Diagnosis
and Fault-Tolerant Control, Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006.

27

[8] M. Basseville, I. Nikiforov, Detection of Abrupt Changes,PTR Prentice-
Hall, Inc, 1993.

[9] M. Nyberg, A fault isolation algorithm for the case of multiple faults and
multiple fault types, in: Proceedings of Safeprocess, 2006.

[10] M. Nyberg, M. Krysander, Combining AI, FDI, and statistical hypothesis-
testing in a framework for diagnosis, in: Proceedings of IFAC Safepro-
cess’03, Washington, USA, 2003.

[11] S. Ploix, S. Touaf, J. M. Flaus, A logical framework for isolation in fault di-
agnosis, in: Proceedings of IFAC Safeprocess’03, Washington, USA, 2003.

[12] P. M. Frank, B. K̈oppen-Seliger, New developments using AI in fault diag-
nosis, Engineering Applications of Artificial Intelligence 10 (1) (1997) 3 –
14.

[13] M. Krysander, Design and analysis of diagnosis systemsusing structural
methods, Ph.D. thesis, Linköpings universitet (Jun. 2006).

[14] J. de Kleer, J. Kurien, Fundamentals of model-based diagnosis, in: Proceed-
ings of IFAC Safeprocess’03, Washington, USA, 2003, pp. 25–36.

[15] P. Frank, On-line fault detection in uncertain nonlinear systems using diag-
nostic observers: a survey, International Journal of Systems Science 25 (12)
(1994) 2129–2154.

[16] M. Staroswiecki, G. Comtet-Varga, Analytical redundancy relations for fault
detection and isolation in algebraic dynamic systems, Automatica 37 (5)
(2001) 687–699.

[17] C. D. Persis, A. Isidori, A geometric approach to nonlinear fault detection
and isolation, IEEE Trans. on Automatic Control 46 (6) (2001)853–865.

[18] F. Heintz, DyKnow: A stream-based knowledge processing middleware
framework, Ph.D. thesis, Link̈opings universitet (Mar. 2009).

[19] J. de Kleer, A. Mackworth, R. Reiter, Characterizing diagnoses and systems,
Artificial Intelligence 56 (2-3) (1992) 197–222.

[20] R. Reiter, A theory of diagnosis from first principles, Artificial Intelligence
32 (1) (1987) 57–95.

28

[21] J. Biteus, M. Nyberg, E. Frisk, J.̊Aslund, Determining the fault status of
a component and its readiness, with a distributed automotive application,
Engineering Applications of Artificial Intelligence 22 (3)(2009) 363–373.

[22] J. Biteus, Fault isolation in distributed embedded systems, Ph.D. thesis,
Linköpings universitet (April 2007).

[23] H. Efendic, Model-on-Demand MATLAB Toolbox for Fault Diagnosis, in:
Proceedings of the 5th International Conference on Circuits,Systems, Elec-
tronics, Control & Signal Processing, 2006.

[24] A. Korbicz, J. M. Koscielny, W. Cholewa, Z. Kowalczuk, Fault Diagnosis:
Models, Artificial Intelligence, Applications, Springer,2004.

[25] P. Struss, Testing for discrimination of diagnoses, in: Proceedings of DX,
1994.

[26] E. Benazera, L. Trav́e-Massuỳes, A diagnosis driven self-reconfigurable fil-
ter, in: Proceedings of DX, 2007.

[27] M. Nyberg, E. Frisk, Residual generation for fault diagnosis of systems de-
scribed by linear differential-algebraic equations, IEEETransactions on Au-
tomatic Control 51 (12) (2006) 1995–2000.

[28] J. de Kleer, B. Williams, Diagnosis with behavioral modes, in: Readings in
model-based diagnosis, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1992, pp. 124–130.

[29] R. Nikoukhah, Innovations generation in the presence ofunknown inputs:
Application to robust failure detection, Automatica 30 (12) (1994) 1851–
1867.

[30] E. Frisk, Residual generation in linear stochastic systems - a polynomial
approach, in: Proc. of the 40th IEEE Conference on Decision and Control,
2001.

[31] J. W. Polderman, J. C. Willems, Introduction to Mathematical Systems The-
ory: A Behavioral Approach, Springer-Verlag, 1998.

[32] S. Tuhrim, J. Reggia, S. Goodall, An experimental study of criteria for hy-
pothesis plausibility, Journal of Experimental & Theoretical Artificial Intel-
ligence 3 (2) (1991) 129–144.

29

[33] E. Page, Continuous inspection schemes, Biometrika 41 (1954) 100–115.

30

	Linköping University Post Print-TitlePage.pdf
	entire

