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Linköping University
SE-581 83 Linköping, Sweden
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Abstract
When troubleshooting malfunctioning technical eq-
uipment, the task is to locate faults and make repairs
until the equipment functions properly again. The
AO* algorithm can be used to find troubleshooting
strategies that are optimal in the sense that the ex-
pected cost of repair is minimal. We have adapted
the AO* algorithm for troubleshooting in the auto-
motive domain with limited time. We propose a new
heuristic based on entropy. By using this heuristic,
near-optimal strategies can be found within a fixed
time limit. This is shown in empirical studies on a
fuel injection system of a truck. In these results, the
AO* algorithm using the new heuristic, performs
better than other troubleshooting algorithms.

1 Introduction
The task of a troubleshooter is to locate faults and make re-
pairs in machinery and technical equipment. For example, in
the automotive domain, the troubleshooter is a mechanic that
resolves a problem on a vehicle by repairing components. To
know which components to repair, the mechanic can make
observations to locate the cause of problem. As vehicles get
more complex, the troubleshooting task becomes more diffi-
cult. An automated troubleshooter infers probabilities of com-
ponent faults given observations and aids the mechanic by re-
commending appropriate actions to perform.

If we also want to minimize the costs, the troubleshooting
task becomes an optimization problem that can be solved as a
planning problem. This problem is known to be NP-hard so
if we want the computations to be made while the mechanic
is waiting, approximate methods are needed [Vomlelová and
Vomlel, 2000].

AO* is a well known heuristic search algorithm that can
solve planning problems involving uncertainty and feedback.
It uses a heuristic function to focus its search. Provided that
the heuristic is admissible the solution found is optimal [Nils-
son, 1980]. There are heuristics that have been used with AO*
to solve the troubleshooting problem in the literature [Faure,
2001; Vomlelová and Vomlel, 2000; Raghavan et al., 1999],
but we need stronger heuristics to focus the search more to
find solutions of larger problems.
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In this paper we propose a way to use AO* to find near-
optimal solutions in a limited time. We use a new heuristic
that, in empirical experiments on a case study, is shown to
find solutions with lower costs compared to heuristics used in
[Raghavan et al., 1999; Vomlelová and Vomlel, 2000]. The
case study is from the automotive domain and it is the fuel
injection system of a truck.

In Section 2 we give the problem formulation and in Sec-
tion 3 we present the case study. In Section 4 we describe
some solution methods from the literature to the troubleshoot-
ing problem and other related problems. In Section 5 we show
how AO* is used to solve the troubleshooting problem. In
Section 6 we present the new heuristic. In Section 7 we do
an empirical evaluation of the implementation and the new
heuristic and finally we conclude in Section 8.

2 Problem Formulation
We will use the problem formulations of the troubleshoot-
ing frameworks presented in [Heckerman et al., 1995], [Vom-
lelová and Vomlel, 2000], and [Langseth and Jensen, 2002].
In the troubleshooting problem the probabilistic relationships
between component faults and observations is represented as
a Bayesian network [Jensen, 1996]. With this probabilistic
model it is possible to infer probability distributions of com-
ponent faults conditioned on the information gained from pre-
viously performed actions.

Actions that we can perform on the system are either repair
actions that successfully repair a single component or observ-
ing actions that observe the value of a node in the Bayesian
network. Each action a is associated with a cost ca. This cost
is independent of any previously performed actions. In the
Bayesian network there exists a single problem-defining node
that indicates if any component is non-functioning. The ob-
serving action that observes this node is called the function
control. The troubleshooting is said to be successful when a
successful function control is made and the problem-defining
node is observed to be non-indicating.

A troubleshooting strategy is defined as a labeled directed
tree that describes the process of performing actions until the
process terminates. The edges of the directed tree are labeled
with actions. Edges labeled with observing actions are associ-
ated with a specific outcome of the action. Branching occurs
only from nodes where each outgoing edge is labeled with an
observing action. An example of a troubleshooting strategy is
shown in Figure 1.
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Figure 1: Example of a troubleshooting strategy with repair
actions r1, r2 and observing actions o1, o2 having binary out-
comes 0 or 1.

When a troubleshooting strategy is executed, we perform
actions on the path from the root to a terminal node result-
ing from the responses of the observing actions. A terminal
node is said to be successful if the action on the last edge is
a successful function control and a successful troubleshooting
strategy is a troubleshooting strategy where all terminal nodes
are successful. This is done to validate that the problem is
resolved.

The cost of reaching a terminal node t from the root node
of a troubleshooting strategy s, CR(s, t), is

CR(s, t) =
∑

a∈P(s,t)

ca (1)

where P(s, t) is the set of all actions on the path from the root
of the strategy s to the node t and ca is the cost of the action
a.

Let T (s) be the set of all terminal nodes of the trou-
bleshooting strategy s and let ε be the current evidence rep-
resenting our accumulated knowledge of the system, i.e. the
results of all previously performed actions. When s is exe-
cuted a terminal node t ∈ T (s) is reached with a certain prob-
ability, P (T = t|s, ε), where T is a stochastic variable with
the outcome space T (s). These probabilities can be obtained
from the probabilistic model. The expected cost of repair of s
given ε, ECR(s, ε), is the expectation of the cost of reaching
any node in T (s):

ECR(s, ε) = E(CR(s, T )|s, ε)
=

∑
t∈T (s)

P (T = t|s, ε)CR(s, t) (2)

The task in the troubleshooting problem is to find a suc-
cessful troubleshooting strategy s∗ that is optimal in the sense
that it minimizes the expected cost of repair given the current
evidence ε:

s∗ = arg min
s

ECR(s, ε) (3)

3 Case Study — A Fuel Injection System
We will use an existing fuel injection system of a truck as
a case study when evaluating the here proposed algorithms.
This is a motivating and inspiring example from the real world
since it is particularly hard for the on-board diagnosis system
to isolate component faults.

The fuel injection system uses a high injection pressure to
inject diesel in the cylinders of the engine. For many me-
chanical faults on this system, the only symptom is a loss in
injection pressure. These faults can only be located by man-
ual testing. A picture of the fuel injection system is shown in
Figure 2.

Figure 2: Extreme High Pressure Fuel Injection System.
The system is modeled with 17 components (pipes, pumps,

filters, and valves) of which 7 are observable, i.e. a single
observing action can unambiguously determine if the compo-
nent is faulty. In total there are 30 binary observations that
can be made (e.g. cylinder balancing, visible leakage, and air
in fuel test). 21 of them can be accessed by observing actions.
The remaining 9 observations are generated by the on-board
diagnosis system of the truck and their values are given prior
to the troubleshooting.

The dependencies between component faults and observa-
tions are modeled with a Bayesian network. Details on how
this information was retrieved can be found in [Mossberg,
2007]. Apart from the assumption that at most one compo-
nent can be faulty at the same time there are no causal depen-
dencies between the faults. Observations are dependent on
current component faults and on themselves in the sense that
an observing action will always yield the same result when re-
peated unless any of the faults, that the observation is causally
dependent on, is repaired.

The costs of the actions are heterogeneous, but in general
the repair actions are more expensive than observing actions.
The function control is the most expensive observing action
since it requires a test drive of the vehicle.

4 Approximate and Exact Solutions to the
Troubleshooting Problem in the Literature

In this section we will describe some different approaches
to the troubleshooting problem. There are the greedy ap-
proaches mainly based on work by [Heckerman et al., 1995]
and [Langseth and Jensen, 2002] where time efficient algo-
rithms are used to find approximate solutions to the trou-
bleshooting problem. There are also various search based
methods where more accurate solutions are found by search-
ing at a higher cost in time.

4.1 Solving the Troubleshooting Problem Using
Greedy Algorithms

In [Heckerman et al., 1995] a special case of the troubleshoot-
ing problem is solved optimally in linear time using a greedy



algorithm. We will take some time to describe this approach
since we will compare our approach with this one in Section
7.3. The problem formulation of the basic troubleshooting
problem is extended with the following assumptions:

• There can only be at most one faulty component.

• Immediately following any component repair a function
control must be made.

• When the troubleshooting starts the problem-defining
node is observed to be indicating, i.e. we know that ex-
actly one component is faulty.

• Some components are observable, i.e. an observing ac-
tion can be made that unambiguously determines if the
component is functioning or not.

• No other observing actions are available.

Under these assumptions it is proved that an optimal trou-
bleshooting strategy that minimizes the expected cost of repair
can be obtained by always performing the action correspond-
ing to the component with the highest efficiency first. The
efficiency of an observable component is defined as the ratio
of the probability that the component is faulty and the cost of
observing it. For unobservable components the efficiency is
defined as the ratio of the probability and the sum of the costs
of repairing the component and making the function control.

Let pi = P (component i is faulty|ε). Then, using (2), the
expected cost of repair using the strategy based on efficiencies
seff on a system with n components is

ECR(seff , ε) =
n∑

i=1

pi

 i∑
j=1

coj

+ cri + cfc

 (4)

where coi is the cost of observing component i, cri is the cost of
repairing component i and cfc is the cost of making the func-
tion control. An unobservable component is ”observed” by
first repairing it and then performing a function control. For
these components coi is the cost of repairing the component
and making the function control and cri = −cfc so that cri and
cfc cancel each other in (4).

If any of the assumptions above are relaxed seff is no
longer guaranteed to be optimal. However, near optimal trou-
bleshooting strategies can be found by extending the strat-
egy based on efficiencies with a two step look-ahead algo-
rithm when more general observing actions also are available
[Langseth and Jensen, 2002]. The two step look-ahead algo-
rithm works by only allowing general observing actions to be
either performed immediately in this time step or in the next.

Greedy algorithms can be constructed to solve the trou-
bleshooting problem in other ways than using efficiencies.
For example, in [de Kleer and Williams, 1987; Gillblad et
al., 2006] the next action to be performed is chosen as the
one that maximizes the information gain. However, in em-
pirical tests troubleshooting printers, the two step look-ahead
algorithm is shown to find near-optimal solutions with an
error of only a few percent [Vomlelová and Vomlel, 2000;
Langseth and Jensen, 2002].

4.2 Solving the Troubleshooting Problem by
Searching

Solving the troubleshooting problem optimally is a planning
problem involving uncertainty and feedback. These types of
problems can in a natural way be formulated as AND/OR
graphs in which an optimal solution can be found by search-
ing [Ghallab et al., 2004; Bonet and Geffner, 2000]. AND/OR
graphs are often used when solving the troubleshooting prob-
lem by searching. In [Vomlelová and Vomlel, 2000] they are
used to describe and optimally solve small troubleshooting
problems and in [Raghavan et al., 1999; Olive et al., 2003]
they are used when finding optimal and near-optimal solutions
to the test sequencing problem. The test sequencing problem
is similar to the troubleshooting problem, where the goal is
to isolate the fault by performing tests to progressively gain
more information.

AND/OR Graphs
An AND/OR graph can be represented as a labeled directed
hypergraph with a single root node [Nilsson, 1980]. The edges
connect one parent node with one or more successor nodes.
An edge connecting a parent node to k successor nodes is
called a k-connector. AND/OR graphs are sometimes rep-
resented as regular directed graphs where the nodes of the hy-
pergraph are called OR nodes and k-connectors with k ≥ 2
are replaced by nodes called AND nodes with one incoming
edge and k outgoing edges. An example of an AND/OR graph
represented by a hypergraph is shown in Figure 3.

Figure 3: An AND/OR graph represented as a hypergraph.
2-connectors are shown as arrows joined with arcs.

When the AND/OR graph is used to describe the trou-
bleshooting problem, each node represents a decision point
where each outgoing connector represents an action that can
be chosen to be performed. When a repair action is per-
formed another decision point is reached. The nodes repre-
senting these decision points are connected by a 1-connector
labeled with the repair action. When an observing action with
k possible outcomes is performed, different decision points
will be reached depending on the outcome. These nodes are
connected by a k-connector labeled with the observing action.

A subgraph s of an AND/OR graph G is a solution of G
corresponding to a troubleshooting strategy if the following
conditions are true [Vomlelová and Vomlel, 2000]:

• the root of s is also the root of G.



• if n is a non-terminal node in s, then exactly one outgoing
connector from n also belong to s.

• if c is a connector in s, then all successor nodes of c also
belong to s.

• all terminal nodes in s are leaf nodes in G.

Since a solution corresponds to a troubleshooting strategy the
cost of a solution can be defined by (2).

Algorithms for Finding Solutions in AND/OR Graphs
Describing the troubleshooting problem like this allows us to
use existing algorithms used for finding solutions in AND/OR
graphs such as Value Iteration [Bertsekas, 1995] and AO*
[Martelli and Montanari, 1978; Nilsson, 1980] to find optimal
troubleshooting strategies.

Value Iteration is a general algorithm often used for finding
optimal strategies in Markov Decision Processes. In [Cas-
sandra et al., 1998] Value Iteration is adapted to solve prob-
lems formulated as Partially Observable Markov Decision
Processes which is a problem formulation similar to AND/OR
graphs. In Value Iteration, estimates of the optimal solution
are updated sequentially for every possible state of the prob-
lem until convergence. An advantage with this algorithm is
that once a solution is found the optimal troubleshooting strat-
egy is also found for every possible initial state. However,
since an estimate needs to be assigned to every possible state
Value Iteration becomes inefficient when the state space is
large.

AO* is a search algorithm that makes use of a heuristic
function to focus the search when finding optimal solutions
in acyclic AND/OR graphs. The heuristic is used to estimate
cost-to-go in each leaf node, i.e. the cost of an optimal solu-
tion of the subproblem rooted in the leaf node. When good
heuristics are available AO* has been shown to perform better
than Value Iteration for solving AND/OR graphs [Bonet and
Geffner, 2005]. The AO* algorithms expand the AND/OR
graph node by node and keep track of the currently best par-
tial solution given heuristic estimates of the cost-to-go in each
leaf. This gives AO* the advantage that it can be stopped pre-
maturely returning a suboptimal partial solution.

A disadvantage with AO* is that it cannot handle cycles
and that it is memory intensive. However, there are variants
of AO* that handle cyclic AND/OR graphs [Hansen and Zil-
berstein, 2001], but it turns out that, for our problem, cycles
in the AND/OR graph can be prevented by forbidding certain
actions without loss of optimality. Also, there are memory
bounded variants of AO* [Chakrabarti et al., 1989] so that the
memory usage can be controlled by trading space with time.

5 Using AO* to Solve the Troubleshooting
Problem

In this section we will describe how AO* is implemented to
solve troubleshooting problem such as the one described in
Section 3. First we will give a brief overview of how the AO*
algorithm works as described in [Nilsson, 1980]. Then we
show how we do the state representation of the troubleshoot-
ing problem and how we treat this in our implementation. We
will also describe how we use AO* to search with limited
time.

5.1 Overview of the AO* Algorithm
Let G be the implicit AND/OR graph of the troubleshooting
problem and let G′ be the explicit subgraph of G consisting
of the nodes and connectors that have been explored by the
algorithm. Every node n in G′ are associated with a cost qn
and labeled with a state S ∈ S that describes the system at
a given moment where S is the state space. The cost of a
leaf node n in G′ that is not a leaf in G is given by a heuristic
function h : S 7→ R. The best partial solution is an arbitrarily
chosen solution of G′ that minimizes (2). Let this solution be
denoted ŝ.

The algorithm starts the search with ŝ consisting solely of
the root node of G. Until ŝ is also a solution of G, the node
with the highest cost of the terminal nodes in ŝ that are not
leafs in G is expanded. Whenever a node is expanded, the
currently best solution ŝ is updated. The algorithm terminates
once a solution of G is found. If the heuristic function is ad-
missible, i.e. it never over-estimates the true cost-to-go, the
solution corresponds to the troubleshooting strategy that min-
imizes (2).

5.2 State Representation
The state that we label each node with needs to contain the
information necessary to describe our knowledge of the sys-
tem at that point in the troubleshooting process. If we assume
the Markov property, we can describe our knowledge with a
belief state in accordance with [Russell and Norvig, 2003].

Let fi,k : i ≥ 1 be the event that component i is faulty at
time k and let f0,k be the event that the system has no faults
at time k. Let e1:k be the accumulated evidence from at time
k. If no new information is gained, the probability that com-
ponent i is faulty remains the same at time k + 1:

P (fi,k+1|e1:k) = P (fi,k|e1:k) (5)

Let us now assume that observations are only dependent on
current component faults. Then:

P (ek|fi,1:k, e1:k−1) = P (ek|fi,k) (6)

where ek is an observation made at time k.
If we know the probability distributions of all faulty com-

ponents given all accumulated evidence at time k− 1, we can
calculate the probability distributions of all faulty components
given the accumulated evidence at time k.

P (fi,k|e1:k) = P (fi,k|ek, e1:k−1)
∝ P (ek|fi,k, e1:k−1)P (fi,k|e1:k−1)

(5)(6)
∝ P (ek|fi,k)P (fi,k−1|e1:k−1) (7)

This probability distribution is referred to as the belief state.

Definition 1. (Belief state) The belief state is a vector bk
containing the probability distribution over component faults
given the accumulated evidence e1:k at time k. Each element
bk(i) is

bk(i) = P (fi,k|e1:k) (8)

The belief state b0 at time 0 is the à priori probability distribu-
tion over component faults. 2



When an observing action is performed the evidence ek is
gained and we can calculate a new belief state bk from the
previous belief state bk−1. For each element bk(i) in bk

bk(i) Def. 1= P (fi,k|e1:k)
(7)
∝ P (ek|fi,k)P (fi,k−1|e1:k−1)
∝ P (ek|fi,k)bk−1(i) (9)

Since we assume single faults, when a repair action is per-
formed we increase the probability that the system is free of
faults with the probability that the repaired component was
faulty and then we set that probability to zero. After compo-
nent j is repaired, for each element bk(i) in bk

bk(i) =

{
bk−1(0) + bk−1(j) if i = 0
0 if i = j
bk−1(i) otherwise

(10)

5.3 Repeated Observing Actions
For the fuel injection system described in Section 3 we said
that an observing action that is repeated always yields the
same result unless any of the faults, that the observation is
causally dependent on, is repaired. This means that no new
information can be gained by that observing action. Even
though this violates the Markov property, we do not have to
change the probabilistic model if we add a small exception to
(9).

We propose to keep track of all recently made observing ac-
tions at time k in a set Ok. When a component is repaired we
remove, from the same set, all observing actions that observes
a node that is causally dependent on this component fault. Let
Ai be the set of all observing actions observing nodes that are
causally dependent on the component fault i. Then if compo-
nent i is repaired the set of all recently made observations is
updated such as

Ok = Ok−1 \ Ai (11)
and when an observing action o is performed it is updated
such as

Ok = Ok−1 ∪ {o} (12)
Let ek be the evidence gained from an observing action o.

Then instead of using (9), after o is performed we update the
belief state such that for each element bk(i) in bk

bk(i) =
{
bk−1(i) if o ∈ Ok−1

P (ek|fi,k)bk−1(i) otherwise (13)

In order to describe the state of the system at a given mo-
ment we need to have a state that includes both the belief state
and the set of recently made observations.
Definition 2. (State) A state S is a tuple containing a belief
state b and a set of recently made observing actions O:

S = 〈b,O〉 (14)

2
A goal state is a state in which the probability that no com-

ponent is faulty is one. Any node containing a goal state is a
leaf in G.

We will use the notation Sn = 〈bnOn〉 = 〈bkOk〉 for the
state description of a node n at time k meaning that the parent
node of n is labeled with the state Sk−1 = 〈bk−1Ok−1〉.

5.4 Expanding Nodes
When the algorithm expands a node, given the state a limited
amount of actions can be performed. A repair action yields
a 1-connector connected to a node labeled with a state cre-
ated from the previous state using (10) and (11). If no node
labeled with that state already exists in the explicit graph G′,
a new node is created. A binary observing action yields a 2-
connector connected to nodes labeled with states created using
(13) and (12).

When expanding, we will only consider actions that bring
the system closer to the goal of repairing the system, i.e. repair
actions that repair component faults with a probability greater
than zero and observing actions from which new information
can be gained. These actions are said to be applicable actions.
Definition 3. (Applicable Action) Let B′ be the set of re-
sulting belief states when action a is performed on the state
S = 〈b,O〉. An action a is applicable in S if there exists
b′ ∈ B′ such that b′ 6= b. 2

Remark. When a binary observing action is performed, B′
consists of two belief states, one for each possible outcome of
the observation. When a repair action is performed B′ consists
a single belief state.

5.5 Updating the Best Partial Solution
Each connector is associated with an action a and a probabil-
ity pm for each successor node m. For a 2-connector pm is
the probability of having the corresponding outcome ek given
the accumulated evidence e1:k−1:

pm = P (ek|e1:k−1)

=
∑

i

P (ek|fi,k, e1:k−1)P (fi,k|e1:k−1)

=
∑

i

P (ek|fi,k)bk−1(i) (15)

For a 1-connector pm = 1 since there is only one outcome.
The cost of a connector c, k(c), is a function of the action
cost ca and the probabilities pm for each node m in the set of
successor nodes succ(c).

k(c) = ca +
∑

m∈succ(c)

pmq(m) (16)

When the algorithm has expanded a node n, the cost qn is
updated such that

qn = min
c∈outg(n)

k(c) (17)

where outg(n) is the set of all outgoing connectors from n.
The connector c that minimizes (17) is included in a partial
solution of the subproblem rooted in n. Until a partial solution
is found for the root node, the same procedure is done for all
predecessors of n in ŝ. When this is done, the partial solution
for the root node is now the new best partial solution.

Recall that in the problem formulation in Section 2 we said
that the terminal node in a troubleshooting strategy is success-
ful only if the previous action is a successful function control.
This means that even if we believe that the system is free of
faults we still have to make the function control to complete
the troubleshooting. Let this action be a with the cost cfc .



Then the cost qn of a node n that is terminal in the explicit
graph G labeled with the goal state S = 〈b,O〉 is

qn =
{

0 if a ∈ O
cfc otherwise (18)

Note that if have the function control a ∈ O in the goal state,
this action must have been the most recently performed action.

A terminal n node in G′ labeled with a state Sn that is not
a goal state cannot be a terminal node in G. The cost of this
node is given by a heuristic function h.

qn = h(Sn) (19)

5.6 Searching with Limited Time
Finding an optimal solution to a large AND/OR graph can-
not be done efficiently even with a fairly good heuristic. If
we want the algorithm to come up with a solution while the
user is waiting, it must finish in reasonable time. Therefore,
after a certain time T we will forbid the expansion of more
nodes. Instead, the cost of the nodes, that should have been
expanded, is set to a certain cut-off cost and the best partial
solution ŝ is returned. This makes our search incomplete and
the solution can no longer be guaranteed to be optimal. In
[Sadikov and Bratko, 2006] it is argued that an optimistic
heuristic function can degrade the result when used with in-
complete heuristic search methods. Therefore, we propose to
use a cut-off cost that gives us a pessimistic estimate of the
optimal cost-to-go. The troubleshooting strategy based on ef-
ficiencies seff described in Section 4.1 has this property. Since
seff assumes that the system is faulty, the cost of making the
function control cfc is added, if there is a non-zero probabil-
ity that the system is free of faults. If the system has a fault,
the expected cost is calculated using (4). For a node n with
the state Sn = 〈bn,On〉, let the integers a1, a2, . . . , am be the
indexes of components ordered by efficiencies in descending
order. When n is cut off the cost qn of that node is set to be

qn = dbn(0)ecfc+
(
1−bn(0)

) m∑
i=1

(
bn(ai)

(
crai

+cfc+
i∑

j=1

coaj

))
(20)

where coj and crj are action costs of observing respectively re-
pairing component j.

6 The Heuristic Function
The AO* algorithm will find the optimal solution provided an
admissible heuristic function, i.e. a function that never over-
estimates the optimal cost-to-go from a node. As concluded
in the previous section, when searching with limited time, the
solution is no longer guaranteed to be optimal. Therefore, it
is not necessary that the heuristic function is admissible. The
aim of the new heuristic function is to minimize the relative
error in the estimated cost-to-go.

In [Vomlelová and Vomlel, 2000] an admissible heuris-
tic function is used together with AO* for solving the trou-
bleshooting problem in the domain of home electronics. It
is derived from a relaxation of the troubleshooting problem
where we can make a ”perfect” observing action that points
out the true underlying component fault at no cost. The opti-
mal cost of repair of the relaxed problem is easily calculated.

It is the cost of repairing the faulty component weighted with
its probability plus the cost of a final function control. It is
well known that admissible heuristics can be acquired by solv-
ing a relaxation of the problem optimally [Russell and Norvig,
2003]. Let h1 : S 7→ R be this heuristic. For a system with n
components and the state S = 〈b,O〉, i.e.

h1(S) = cfc +
n∑

i=1

b(i)cri (21)

where cfc is the cost of the function control and cri is the cost
of repairing component i.

A problem with this heuristic is that it only considers the
cost of the repair actions. This means that, if many observing
actions are included in the optimal troubleshooting strategy,
h1 returns a value much too low. This is the case for the fuel
injection system described in Section 3. Therefore we need a
stronger heuristic.

A feature of the troubleshooting problem that is ignored by
h1, is our uncertainty of which component is faulty. The en-
tropy of the probability distribution can be used as a measure
of this uncertainty [Gray, 1990]. Let S = 〈b,O〉 be the state
of a node. Then the entropy of the probability distribution in
b, H(b), is given by

H(b) = −
n∑

i=0

b(i) log b(i) (22)

where n is the number of components.
In experiments on the fuel injection system we have mea-

sured the optimal cost-to-go q∗n and the state Sn = 〈bn,On〉
of every node n for which the optimal solution could be found
using the h1 heuristic. In Figure 4 we have plotted q∗n−h1(Sn)
against H(bn). As H(bn) grows a linear trend in the differ-
ence q∗n − h1(Sn) is visible. This is caused by the extra ob-
serving actions needed isolate component faults.

Figure 4: Plot of q∗n − h1(Sn) against H(Sn) of 4250 mea-
sured nodes. Darker areas indicate a higher density of mea-
surements.

The heuristic function that we propose exploits this linear
trend to get a better approximation of the estimated cost-to-go.
The linear trend is modeled by a parameter ĉH that describes
the estimated cost of reducing entropy. We will call this the
entropy cost. The new heuristic function h2 : S 7→ R is
defined as

h2(S) = h1(S) + ĉHH(S) (23)



As with h1, this heuristic does not require any expensive
computation but it is not admissible and it requires a set of
training data from the problem domain so that a value of ĉH
can be assigned.

We want to keep the relative error ε(n) of the optimal cost-
to-go q∗n and the heuristic value h2(Sn) minimal for every
node n, i.e.

ε(n) =
|q∗n − h2(Sn)|

q∗n
(24)

We do this by fitting the parameter ĉH in (23) to data from
a training set of simpler problems in which q∗n is known using
linear regression. For the fuel injection system in our case
study this value was 60.3 and it is indicated by a dashed line
in Figure 4.

7 Empirical Evaluation
To evaluate the new heuristic we will study how the relative
error and the size of the search graph grows with problem
size. We will also study how the new heuristic affects the
performance of troubleshooting when we have limited time.

7.1 Relative Error
We can only measure the relative error on problems that can
be solved optimally. These problem instances are obtained by
making a series of random actions on the case study until the
remaining problem is small enough to be solved using AO*
with the admissible heuristic h1. As a measurement of prob-
lem size we use the number of applicable actions available.

We will use as a reference a heuristic that is based on an
analogy to the Huffman coding problem which is used with
AO∗ to solve the test sequencing problem [Raghavan et al.,
1999]. Let c1, c2, . . . be the costs of the observing actions that
are applicable in the state S ordered such that c1 ≤ c2 ≤ . . ..
Then the heuristic function h3 is given by

h3(S) =
bH(S)c∑

i=1

ci +
(
H(S)− bH(S)c

)
cbH(S)c+1 (25)

Since the test sequencing problem does not involve repair
actions we will combine h1 and h3 to get a more fair compar-
ison. We will call the resulting heuristic h4:

h4(S) = h1(S) + h3(S) (26)

Figure 5 shows a comparison of the relative errors of h1, h2,
and h4 on a different data set than the one used to calculate ĉH
with a problem size varying from 3 to 12.

Since the parameter ĉH is designed to minimize the relative
error, this value is the lowest for the h2 heuristic. The relative
error is approximately constant for all problem sizes in the
experiment which indicates that h2 is equally strong also for
larger problem sizes.

7.2 Size of the Search Graph
To show the difference in the ability to focus the search, we
have measured the number of created nodes G′ and the relative
error from optimum δ when the algorithm is run with different
heuristics on solvable problems with growing size. Let ECRi

be the expected cost of the solution found using the heuristic

Figure 5: Mean relative error of h1, h2, and h4 measured in
3596 solved nodes.

hi and let ECR∗ be the expected cost of the optimal solution.
Then the relative error of the heuristic hi is

δ(hi) =
|ECR∗ − ECRi|

ECR∗
(27)

Since h1 is admissible, ECR1 = ECR∗. The sizes of the
search graphs for h1, h2, and h4 are shown in Figure 6. The
relative error δ was at all times below 0.01 for both h2 and h4.

Figure 6: Mean sizes of the search graphs for 229 problems
of varying size searched using the heuristics h1, h2, and h4.

The exponential growth of the search graph is the least for
the h2 heuristic. This allows for finding near-optimal solu-
tions of larger problems.
7.3 Troubleshooting with Limited Time
When troubleshooting with limited time we will only have a
partial solution. The first action in this solution is performed
on the system and a new partial solution is calculated. In this
experiment, we will compare our version of AO* with limited
time using h1 and h2 with the greedy two step look-ahead
troubleshooting algorithm presented in [Langseth and Jensen,
2002].

We will let the troubleshooting algorithms troubleshoot the
fuel injection system with predefined hidden faults. The sys-
tem will respond to actions according to the probabilistic
model. The troubleshooting stops when the correct compo-
nent is repaired and a confirming functional control is made.



Each algorithm is allowed 10 seconds to decide the next ac-
tion to perform. In 10 seconds the search algorithm expands
approximately 30000 nodes. The mean cost of repair is mea-
sured for 100 randomly generated problem instances. The re-
sults are shown in Table 1.

Time limited AO* using h1 556.95
Time limited AO* using h2 476.91
Time limited AO* using h4 518.52
Greedy two step look-ahead 618.57

Table 1: Comparison of the mean cost of repair for the trou-
bleshooting algorithms.

The greedy two step search found its solutions within mil-
liseconds, but since a function control always is required after
each repair action the costs became higher. The time limited
search algorithm is not constrained by this and thereby the
costs were less. The h2 measured the lowest costs. This is
mainly due to that larger parts of the search graph could be
explored during the 10 seconds.

8 Conclusions
We have shown how the AO* algorithm can be used to solve
the troubleshooting problem on a case study from the auto-
motive domain. We have shown that it can be used to recom-
mend troubleshooting actions within a fixed time limit. We
have presented a new entropy based heuristic. In the empir-
ical evaluations we have shown that, by using this heuristic,
the troubleshooting costs can be reduced compared to when
using the greedy two-step look-ahead algorithm or any of the
heuristics h1 and h4.
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and Hervé Poulard. AO* variant methods for automatic
generation of near-optimal diagnosis trees. In 14th In-
ternational Workshop on Principles of Diagnosis (DX’03),
pages 169–174. 2003.

[Raghavan et al., 1999] Vijay Raghavan, M. Shakeri, and Kr-
ishna R. Pattipati. Optimal and near-optimal test sequenc-
ing algorithms with realistic test models. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part A, 29(1):11–
26, 1999.

[Russell and Norvig, 2003] S. Russell and P. Norvig. Artifi-
cial Intelligence: A Modern Approach. Prentice Hall, En-
glewood Cliffs, 2003.

[Sadikov and Bratko, 2006] Aleksander Sadikov and Ivan
Bratko. Pessimistic Heuristics Beat Optimistic Ones in
Real-Time Search. In ECAI, pages 148–152. IOS Press,
2006.
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