
Use of Cognitive Robotics Logic in a Double

Helix Architecture for Autonomous Systems

Erik Sandewall
Department of Computer and Information Science

Link�oping University
S������ Link�oping� Sweden

erisa�ida�liu�se

Abstract� This paper addresses the two�way relation between the ar�
chitecture for cognitive robots on one hand� and a logic of action and
change that is adapted to the needs of such robots on the other hand�
The relation goes both ways� the logic is used within the architecture�
but we also propose that an abstract model of the cognitive robot archi�
tecture shall be used for de�ning the semantics of the logic�
For this purpose� we describe a novel architecture called the Double Helix
Architecture which� unlike earlier proposals� emphasizes a precise account
of the metric discrete timeline and the computational processes that take
place along that timeline� The computational model of the Double Helix
Architecture corresponds to the semantics of the logic being used� namely
the author�s Cognitive Robotics Logic which is based on the �Features
and Fluents� theory�

� Introduction

This paper addresses the two�way relation between the architecture for
cognitive robots on one hand� and a logic of action and change that is
adapted to the needs of such robots on the other hand	 The relation goes
both ways	 There is widespread agreement that a logic�based deliberative
system is one necessary part of the robot architecture� but in addition we
propose that an abstract model of the cognitive robot architecture should
be applied to de
ning the semantics of the logic being used	 Essential
notions in the logic of the cognitive robot� such as the concepts of �state�
and �action�� the success or failure of actions� and even the notion of time
within which observations are made and actions are performed � all of
these notions are pertinent for both the logic and the system architecture	

��� Logic and Architecture

The logic being used here is the author�s Cognitive Robotics Logic �CRL
���� which is based on his earlier work on �Features and Fluents� ����	
CRL is closely related to Doherty�s Time and Action Logic �TAL ���

and� somewhat more remotely� to the modern event calculus ����	 It is
characterized by the use of explicit� metric time that allows for concur�
rent actions� actions of extended� overlapping duration� combinations of
continuous and discrete change� characterizing the range of precision in
sensors and actuators� and more	 The approach presented here can prob�
ably be easily transferred to other logics in the same group	 It appears
that it can not easily be transferred to logics without metric time� such
as the situation calculus ���� since the modelling of low�level� real�time
processes is an important part of our enterprise	

We also present a novel architecture� called the Double Helix Architec�
ture �DHA that di�ers from previously proposed robotic architectures
by being much more speci
c with respect to the time axis and its associ�
ated computational processes	 It is common to de
ne robot architectures
in terms of graphs consisting of boxes and arrows� where the boxes de�
note computational processes and data stores� and the arrows denote
data �ow or control �ow	 Such diagrams abstract away the passage of
time� which means that they are not su�cient for characterizing the se�
mantics of a logic of time� actions� and change	 The DHA will therefore
be presented using two complementary perspectives� including both the
traditional data��ow diagrams and the new time�axis diagrams	

The actual Double Helix Architecture contains more details than can
be described in an article of the present size� so our account must be
limited to the most salient aspects	

��� Implementation

The work on the Double Helix Architecture is a separate and rather small
part of the WITAS project which aims at the construction of an intelli�
gent helicopter UAV �Unmanned Aerial Vehicle� ��� as well as research
on a number of related technologies	 The on�going and very large im�
plementation e�ort for the on�board system in the WITAS helicopter is
described in ���	 The DHA is a concept study and an experimental im�
plementation� we wish to make it clear that the implementation of DHA
is not integrated in the main implementation e�ort in the project	 Also�
similarities in design between the main WITAS system and the DHA are
due to common background� so the design described here should not be
interpreted as a description of the main WITAS system	

The priority for the DHA study is to obtain a design and an implemen�
tation that are as simple as possible� even at the expense of considerable

� http���www�ida�liu�se�ext�witas�

idealization� in order to make it possible to establish a strong relation
between the design and the corresponding logic	 In addition� the DHA
implementation provides a simulated environment of UAV and ground
phenomena that is used for the continued development of a user dialogue
system for WITAS���	 It will be further described in section �	

� Assumptions

Since DHA is presently tried out in a simulated environment� it is very
important to make precise what are the assumptions on the forthcoming
situations where the system will serve an actual robot	 Every simulation
must be a simulation of something concrete	

��� Assumptions on the robotic system

We focus on cognitive robotic systems with the following characteristics�

� They control mechanical robots �rather than e	g	 �web robots� and
in particular� vehicles using computer vision as one important sensor
and source of information about its environment	

� They have strict real�time requirements on them� but di�erent as�
pects of the behavior operate on di�erent time�scales� which makes
it appropriate to use a layered architecture	 In the case of our UAV
application� it takes after all a while to �y from point A to point B� so
there is room for computations that may take many seconds or even
several minutes� if need be� besides other processes that operate on
fractions of seconds as you would expect in an aircraft	

� Besides the robotic vehicle itself� which typically has a
xed set of
components� the robot must also be able to represent a set of ob�
served objects that changes over time� including for example roads�
automobiles� and buildings on the ground �in the case of the UAV	
Each such observed object is assumed to be within the robot�s
eld of
vision for a limited period of time� during which its properties can be
identi
ed although with limited precision and reliability	 Dealing with
such observed objects� their characteristics� and the events in which
they are involved is a strict requirement on both the architecture and
the logic	

� The robot must be able to communicate with persons or with other
robots in order to give and receive knowledge about itself and about
observed objects	 This means� in particular� that its knowledge rep�
resentation must support the way human operators wish to under�
stand and talk about observed objects and their characteristics and

processes� as well as of course the actions of the robot itself	 Further�
more� this consideration suggests that the chosen logic for cognitive
robotics should be able to represent the partial knowledge of each of
several agents within one body of propositions	

� In particular� the actions of the robot should not only be represented
as simple actions� such as ��y to position �x� y� z and hover there�	 The
operator may also e	g	 wish to inquire about how the �ight has been
performed or will be performed� or impose restrictions on trajectory�
velocity� altitude� etc	

There are a number of other requirements that must be made in the
case of the WITAS application� or any other concrete application� but
the present list will be su�cient for de
ning the direction of the present
work	

��� Assumptions on the deliberative system

We focus on a deliberative system that is capable of the following func�
tions� all of which refer to the use of actions and plans�

� Execute a previously de
ned plan� taken from a plan library� with
consideration of real�time constraints	 From the point of view of the
cognitive system� �executing a plan� means to communicate the plan�
piecemeal or in a single shot� to the robot control system and to receive
the corresponding feedback from it	

� Generate a plan for achieving a given goal	
� Interleave planning and plan execution� again taking real�time con�
straints into account	 Planning consumes real time	

� Engage in dialogue with one or more users� which also may involve the
use of� and the making of plans for dialogue actions	 Communicate its
current plans and the motivation for its past� current� and planned
actions� in dialogue with these users or operators	

� As a long�term direction� the system should also be able to �learn
by being told�� that is� to receive high�level advise about how it may
modify its own behavior	

We also emphasize crisp� true�false distinctions rather than graded
certainty	 Some of the constructs described here will rely on uncertainty
management on lower levels of architecture� but we assume that this is a
separate issue	 This is natural in particular because of the priority that
is made on the dialogue aspect	

� Related work

The topic of �robotic architecture� recurs very frequently in the literature
about A	I	 robotics	 The concept of architecture itself is not very precise	
Often� such as in Dean and Wellman�s book on Planning and Control ����
an architecture is seen as a prescription for how a number of modules
or subsystems are to be assembled	 Architectures in this sense are typi�
cally characterized using block diagrams� as was mentioned above	 Others�
such as Russell and Norvig in their standard textbook ����� view an ar�
chitecture as a computational infrastructure that can be �programmed�
to perform the desired cognitive tasks	 In this case the architecture may
include both the robotic hardware� its software drivers� and implementa�
tions of specialized languages such as RAPS ��� that provide a high�level
platform for building applications	

Our use of the term �architecture� in this article is closer to the one of
Russell and Norvig than the one of Dean and Wellman inasmuch as we
emphasize the importance of being able to �program� a generic software
system by attaching and replacing software modules �plug�ins� written
both in general programming languages and in specialized languages in�
cluding� but not restricted to� logic	

In yet another interpretation� the word �architecture� refers in a com�
prehensive way to all the signi
cant design choices and facilities on all
levels of a complex system	 That is not the way we use the term here	

The notion of multi�level architectures gained acceptance within A	I	
during the �����s ��� ���� superseding earlier and often simpler notions of
a sense�deliberate�act cycle	 Robotic architectures in modern A	I	 usually
emphasize the need for the di�erent layers to operate concurrently� so
that low�level and intermediate�level sensori�motoric processes can pro�
ceed while high�level deliberation is allowed to take its time	 Still there
is not much conceptual integration between the di�erent levels� the pro�
cedural languages that are often proposed for use on the higher levels of
these systems do not usually have the expressivity that is required e	g	
for characterizing the precision of sensors� or for specifying and adding to
control laws	 Please refer to ���� and to Chapter � in ���� for surveys of
architectures for intelligent robots	

The extensive research on logics of actions and change includes sev�
eral approaches that attempt to bridge the gap between the �lower� and
the �higher� levels of robotic performance	 This includes in particular the
work by Rao� George� et al on BDI architectures ����� the work by Re�
iter� Levesque� et al on GOLOG ���� Shanahan�s work on robot control

using the modern event calculus ����� and Nilsson�s triple�tower architec�
ture ����	 �The related topic of planning domain description languages
is also potentially relevant in this context� although action planning in
A	I	 has until recently tended to stay away from the challenges of cogni�
tive robotics	 However� none of the mentioned approaches contributes to
the clari
cation of the semantics of actions in terms of more elementary
principles� which is a major concern of the present work	 Also� with the
possible exception of Nilsson�s work� in all of these approaches the archi�
tecture seems to be chosen as an implementation of the logic being used	
In our work we wish to see the architecture as a way of orchestrating the
cohabitation between deliberative processes and conventional� procedural
computation	

Two aspects of our own earlier work are used for the Double Helix
Architecture and the associated logic	 With respect to the representation
of continuous change� we proposed in ���� an approach to embedding dif�
ferential equations in a logic of actions and change ���� ���	 This work was
later extended for representing the distinction between actual values of
state variables� observed values� and set values� and for the representation
of criteria for the success and failure of actions ����	 These representational
methods have been included in Cognitive Robotics Logic	

Secondly� we proposed in ���� a logic characterization of goal�directed
behavior� which was de
ned as behavior where given goals cause an agent
to select one of several possible plans for achieving the goal� to attempt to
execute the plan� and to try again �possibly with the same plan� possibly
another one if the
rst attempt fails	 This is a standard aspect of rational
behavior	 Other aspects of rational behavior such as the use of utility
measures in the choice of plans was not represented in that work� and is
currently a topic for research	

� The Double Helix Architecture

The present implementations of DHA� i	e	 DOSAR and DORP� are em�
bedded logic systems	 In their overall architecture there are several spe�
ci
c uses of logic formulas and of deduction and other inference opera�
tions	 Logic formulas occur both as a kind of data structures or messages
�typically for ground literals� and as rules that are used for forward in�
ference from observations� or for answering queries deductively	

We shall describe the DHA in two steps	 The
rst step corresponds
to a variant of a three�layer architecture where the intermediate layer is
minimal� the second step corresponds to a full three�layer architecture	

��� The Elementary Double Helix Architecture

Figure � shows a simpli
ed structure of the computational processes in
the system along a time axis that runs vertically and from top to bottom	
The system has a cyclic behavior where each cycle consists of a relatively
long evolution and deliberation phase and a shorter information exchange

phase	 The �evolution� here refers to the spontaneous developments in the
physical world within which the robot or �in our case the UAV operates�
together with the automatic control processes where the robot is engaged	
Concurrently with it� and independently of it� there is the �deliberation�
where the system generates and checks out plans and predicts the likely
immediate future for itself and in its environment	

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������
���������

in the robot’s
 Deliberation

 cognitive
 system environment

 Evolution
 of the
 physical

t+1

t+1- ε

t+1+ε

t+ ε
t

t- ε

Fig� �� View of fhe Double Helix Architecture along the time axis� Shaded areas refer
to user intervention �see section ���

For the purpose of developing the higher levels of the architecture�
it is appropriate to replace large parts of the evolution subsystem by a

simulation� provided that the simulation is a su�ciently good imitation
of the target system in those aspects that are relevant for the higher lev�

els that are being developed	 Systematic use of simulation in this way is
standard practice in concurrent engineering� but it requires of course that
the relevance of the simulation is carefully monitored and evaluated	

The information exchange phase occurs each time it is appropriate
to deliver sensor data� and observations based on them� to the delibera�
tion system	 At the same time� the deliberation system may update its
decisions on ongoing actions or activities� helicopter maneuvers� camera
movement� method for communication with the ground� etc	 We expect
that the information exchange phase will occur with
xed frequency most
of the time� although the frequency may be reset corresponding to di�er�
ent �ight modes and the system should be able to accomodate occasional
deviations from the
xed frequency	

The data �ow through this structure looks like a modi
ed double helix�
the evolution strand may lead to an observation that is transmitted to
the deliberation system at time t� causing it to deliberate and to initiate
an action at time t � �� whereby the evolution from time t � � onwards
is a�ected	 The modi
cation to the double helix occurs because both the
evolution and the deliberation strand has a persistence of its own� besides
receiving impulses from the other side	 It is for this reason that we refer
to this design as a Double Helix Architecture �
gure �	

Another and more conventional projection of the data �ow is shown
in
gure �� where the time dimension has been removed �it is orthogonal
to the paper or screen� and one can distinctly see the cycle of data �ow
between the evolution line� represented to the right in the
gure� and the
deliberation line to the left	 Atomic CRL formulas of the following kinds
are used for transmitting information between the di�erent subsystems�

� H�t� obs�f� v expressing that the value of the feature f is estimated
as v based on observations at time t

� H�t� set�f� v expressing that the controllable feature f �e	g	 the de�
sired forward horizontal acceleration of the UAV is set to v at time
t by the procedure carrying out the current action selected by the
deliberation system

� D�s� t� a expressing that the action a started at time s and terminated
at time t

� Dc�s� t� a expressing that the ation a started at time s and is still
going on at time t	 This is an abbreviation for �u�D�s� u� a � t � u�
where the c in Dc stands for �continuing�

� H�t� fail�a� T expressing that D�s� t� a and the action failed	 �The

Fig� �� The Double Helix of the Architecture�

execution of an action is classi
ed in a binary way as success or failure

These are the atomic formulas that are handled by the deliberation
system and by the high�level action execution system	 Formulas of the
form H�t� f� v are also in the logic� and designate that the true value of
the feature f at time t is v	 This will of course not be directly known
to the system� but the logic may make reference to such expressions in
contexts such as H�t� f� v � H�t� obs�f� v� � abs�v � v� � � which
expresses that the observation error for the feature f is less than a known
�	 In this way it is logically possible for the system to reason about the
value of v in H�t� f� v although its exact magnitude is not known	

High�level and low�level action execution are handled di�erently in
this design	 As is shown in
gure �� there must necessarily be a number
of feedback control loops that operate with a higher frequency� and whose
detailed operation need not make active use of the logic	 For example� one
action may specify the set value for the forward acceleration of the UAV�
in the course of high�level action execution	 The feedback control may
then use a �controlled state variable� for the level of the throttle at each
instant	

Goals

Deliberation

Evolution

State variable
H(t,f,v)

Input variable
H(t,f,v)

sensor

actuator

Action
Dc(s,t,a)

Set variable
H(t,set(f),v)

Feedback
controller

H(t, obs(f), v)

percepts

Fig� �� Data�ow�oriented view of the elementary Double Helix Architecture�

The feature expressions f can be e	g	 pos�car�� meaning the current
position of an object identi
ed as car number �� or vel�car� for its for�
ward velocity� or again acc�car� for its forward acceleration	 Observed
instantaneous events are represented in the same way but often with
boolean values	 For example� an instantaneous event where car� yields to
car� may be represented as H�t� yield�car�� car�� T where the capital T
stands for rei
ed truth�value	 In such cases H�t� obs�yield�car�� car�� T
designates that the event recognizer has reported such an event� it may
or may not have actually taken place	 �Here we assume� for the sake of
simplicity� that there is an objective de
nition of whether that event has
taken place in terms of the actual trajectories of the cars being refer�
enced	

The deliberation and evolution boxes in
gure � represent ongoing
activities that interact in each information exchange phase� but which
also have their own continuity	 Observations in the form of formulas
H�t� obs�f� v do not persist intrinsically	 For elementary features f they
have to be calculated and reported anew in each cycle	 The same applies

for set�value statements of the form H�t� set�f� v which have to be re�
calculated in each cycle by the control procedures for the actions that are
presently being carried out	

The expressions denoting actions do have persistence� however	 When
the deliberation system decides to initiate an action a at time s� it does so
by asserting the formula Dc�s� s� �� a� meaning that the action started
at time s and is still executing at time s � �	 This formula persists as
Dc�s� t� a for successively incremented t� and for each timepoint t it is
used to infer the appropriate values for �its� set state variables or features	

There are several ways that an action can terminate� by a decision
of its own control procedure� or by the decision of the event recognizer�
or by deliberation	 Also the termination may be with success or fail�
ure	 In any case� however� the termination is done by adding a formula
D�s� t� a saying that the action a started at time s �which was known
before but also that it ended at time t	 Furthermore in the case of failure
the formula H�t� fail�a� T is also added	 In case of success the formula
H�t� fail�a� F may be added explicitly or be obtained by default� this
is an implementation consideration	

The persistence of formulas of the form Dc�s� t� a is therefore dis�
abled by the appearance of the D�s� t� a formula	 This action persistence

mechanism in its simplest form can be characterized by the nonmonotonic
formula Dc�s� t� a�Unless D�s� t� a� Dc�s� t��� a An extended set of
rules is used for also dealing with goal�directed composite actions� where
the conclusion of one action with success or with failure may initiate
additional actions	

��� Event recognition in the full Double Helix Architecture

If taken literally� the Elementary DHA would require observations to be
fed from evolution to deliberation at every time�step	 This is however not
computationally realistic� and
gure � shows the full architecture also
containing a non�trivial intermediate layer	 �Note that the usual� vertical
ordering of the layers has been replaced by a horizontal one in
gures �
and �	 This facilitates comparison with
gure �� where deliberation and
evolution are also placed side by side	 The box labelled �event recognizer�
represents observation aggregation processes whereby a �ow of detailed
observations are combined into higher�level concepts� such as the arrival
of an observed object into the
eld of observation� or the beginning and
end of activities where the observed object is involved	

The term �event recognizer� covers a fairly broad range of computa�
tions� therefore	 From a propriosensoric point of view for the robot� it can

Goals

Deliberation

Evolution

State variable
H(t,f,v)

Input variable
H(t,f,v)

sensor

actuator

Action
Dc(s,t,a)

Set variable
H(t,set(f),v)

Feedback
controller

H(t, obs(f), v)

percepts

recognizer
Event

H(t,fail(a),T)

D(s,t,a)

A

B

C

action
Inter-

Fig� �� Data�ow view of the full Double Helix Architecture� including the middle layer�

assume a
xed set of subsystems� sensors� and actuators� much like in
an industrial process control system� and then the term event recognizer
is accurate	 For observed objects� on the other hand� the same computa�
tional process must both administrate the introduction and abandonment
of data objects that represent observed physical objects� and the recog�
nition of properties and events where these are involved	

In these respects� the �event recognizer� is interdependent with the
computer vision system	 Each of them must adapt to the capability of the
other one� and to the extent that they are developed independently each
of them should specify what assumptions it makes about the other side	
Consider� for example� a dynamic vision system that is able to segment
incoming images obtaining more or less precise �blobs�� to track them
reliably during certain intervals of time even when there are several of
them at the same time in the
eld of vision� and that is also able to
determine and to report whenever there is a signi
cant risk that the
presently observed blobs have been mixed up	 This is a concrete and well
de
ned situation for the event recognizer as well as for the deliberation

subsystem	
The following is in outline how such a component of the architecture

can be related to the cognitive robotics logic	 When the event recognizer
receives notice of a new �blob� it generates a tracker object b and at least
one activity demon that supervises to the tracker object	 The tracker
object keeps track of the continued evolution of the �blob� as long as the
underlying vision system is con
dent that the blob still refers to the same
object	 An activity demon of type p that is administrated by a perceiving
agent a and that refers to a tracker object b that is considered �possibly
after deliberation to designate an actual object c� serves to identify an
activity p�a� c with a particular duration �s� t� that is identi
ed by the
demon while using the information collected by the tracker object	 In logic
terms� the occurrence of this activity is represented as D�s� t� p�a� c� and
this is the formula that shall be made available to the deliberation part of
the system if the mapping from b to c is certain	 Notice in particular that
the �events� that are recognized in this way can have extended duration�
and that we are not only using instantaneous events	

The current DOSAR system contains an explorative implementation
of the computational chain from tracker objects via activity demons� to
activities expressed in logic� but without using any actual vision system	
�As stated in section �	�� our implementation is not part of� or connected
to the current D�R software architecture used with the actual WITAS
UAV platform���	 Instead� tracker objects are generated directly from
the simulator	 This is su�cient as a
rst step� but additional work is
needed in order to better understand the logical aspects of perception in
relation to realistic assumptions about what information can be obtained
from vision systems and other high�level sensor systems	

��� Action execution in the full Double Helix Architecture

A cognitive robotic system must at least provide two levels for characteriz�
ing actions and plans� namely as procedures in the programming language
being used� and as formulas in the chosen logic of actions and change	 The
DOSAR implementation of the full Double Helix Architecture o�ers the
following intermediate levels of description as well�

� As programmable hybrid automata	 If the logic refers to one action
as for example D�s� t� f lyto�building���� where s is the starting�time
and t is the ending�time of the action characterized by �yto�building�

���� then that action may be implemented as a hybrid automaton
where the state transitions are understood as mode change within the
action	

� As composite actions	 The third argument of the predicate D may use
composite actions such as seq�a� b� try�a� b� and if�p� a� b where a

and b are again actions� recursively� and p is a condition corresponding
to and combining the second and third argument of the predicate H	
Here seq�a� b executes
rst a and then b if a was successful� whereas
try�a� b executes a and then b if a failed	

� By pursuing an agenda	 An agenda contains a set of intended forth�
coming actions whose rami
cations have been checked out by careful
deliberation	 The system is able to interpret such an agenda and to
execute the actions in it successively	 The generation process for this
agenda will be described in section �	

There is no major di�erence between the expressivity in these levels
of action speci
cation as long as one only considers normal� successful
execution of actions	 However� the later description methods are more
powerful when it comes to characterizing and controlling action failure�
in order to diagnose the fault or take alternative action	 The similarity
of primary expressivity is then an advantage� we expect to implement
facilities for automatic conversion between the action description levels
in order to �compile� and �decompile� action scripts when needed	 Because
of space limitations it is unfortunately not possible to describe the hybrid
automata and composite actions levels here	

� The Logic

��� The use of logical inference

If the use of logical formulas in this architecture were restricted to their
use as information units that are transmitted between the various compu�
tational processes� then it would be merely a choice of data structure	 The
use of logic becomes signi
cant when one or more of those computational
processes can be organized as deduction or other forms of inference� or
if the speci
cation of a process can be made in that way as a basis for
verifying the implementation	

The deliberation process is the most obvious use of logic inference	
We shall return to it in section �� but it is not the only place for logical
inference in DHA	 The �middle layer� of the full DHA can be understood
as a dynamic rule�based system� where rules react to messages obtained
from the two main strands of the architecture� and where also the set of
rules changes dynamically	 Action persistence� the management of com�
posite actions� and the management of basic goal�directed behavior can

be performed using a
xed set of rules	 At the same time� event and ac�
tivity recognizers as well as hybrid�automata de
nitions of actions are
in principle situation�action rules that apply for limited periods of time	
In all these cases the rules can be expressed in CRL for the purpose of
uniform speci
cation� although the implementation looks di�erent in the
interest of computational e�ciency	

Action persistence was characterized by a simple nonmonotonic rule
above� and that rule can be extended to also handling the successive invo�
cation of actions in a linear script� and to the realization of goal�directed
behavior	 A strict application of the structure in
gure � would imply
that if an action fails then it is reported as discontinued� the correspond�
ing set feature formulas H�t� set�f� v are no longer generated� but also
the deliberation system is informed about the failure and is able to con�
sider trying some other action towards the same goal� or even trying the
same action again	 However� this involves a delay� and one will often be
interested in having a shorter path from the failure of one action to the
initiation of a substitute action	

The formalization of goal�directed behavior in logic ���� can
ll this
need	 That method uses a small number of axioms� operationally used for
forward�inference� where the antecedents involve the kind of expressions
that indicate the termination of actions in our present approach� that is�
as D�s� t� a and H�t� fail�a� T 	 These axioms� together with an appro�
priate plan library� serve to take the step from one action failure to the
start of a substitute action without any intermediate deliberation cycle	

Furthermore� the implementation of speci
c actions can be done using
rules of the general form Dc�s� t� a � �D�s� t� a � H�t� set�f� v with
an opportunity to add additional conditions in order to control which
features are to be set� and with what values	

��� DHA�based semantics

Almost all logics for action and change that have been proposed until now
use integers� rather than a continuous domain as their concept of metric
time	 Surprisingly enough� however� there has been little consideration of
the computational phenomena along that integer time axis	 When com�
bining the DHA and the CRL� we explicitly intend the time�steps in DHA
to also be the time�steps in the integer time metric of the CRL	

The usual constructs in logics of action and change raise a number of
de
nition issues� such as�

� Do we allow actions that take zero time� or must all actions take at
least one time�step�

� Is it possible to invoke an action that is not applicable� and if so�
does that lead to the action �failing�� or is it simply not semantically
possible to invoke an action in a situation where it is inapplicable�

� Is it possible to have an action of a particular type from time t� to
time t� and then another action of the same type from time t� to time
t�� or is it just one single action from t� to t� in such a case�

We propose that such questions ought not be resolved by vague no�
tions of �common sense� applied to particular scenario examples	 Instead�
they should be answered by de
ning the invocation� execution� termi�
nation� success� and failure of actions in terms of a precisely expressed
agent architecture� and in particular the DHA	 In doing so� one obtains a

rm foundation for these concepts in themselves� and also for the subse�
quent project of de
ning high�level� discrete actions in terms of low�level�
continuous or piecewise continuous phenomena	

As a topic of future research� we suggest that some aspects of symbol
grounding� which is a topic of great current interest� can also be analyzed
in this way	

� The temporal situatedness of logical rules

The DHA time axis is important both for the logic and for the deliber�
ative and other computational processes	 In this section we shall argue
that a precise understanding of the architecture�s time axis is very use�
ful when designing axiomatizations� deliberation systems� and function�
speci
c software alike	

CRL predicates such as H�t� f� v and D�s� t� a treat time as some of
the arguments� at a par with non�temporal arguments	 From a computa�
tional point of view� however� it is natural to use the concept of a �current
state� that describes the state of the world at the �current time�	 Instead of
placing all formulas in one single store and using the current time �as an
integer as a selector in that store� one may decide to collect all formulas
of the form H�t� f� v and Dc�s� t� a with the same t into a heap of their
own� which will be called a state description or simply a state for time t	
Many parts of the computation can then be understood as performing a
transformation from the state for one timepoint t� creating or amending
a state for the timepoint t � �	 We use the terms �old state� and �new
state� for those two states as seen from the computation	 Note� however�
that the considerations that follow apply as well if one uses current time
as a selector into a global formula store	

The concurrent exchange that is illustrated by the two crossing arrows
in the
gures indicate the need for distinguishing old and new state� and
not just doing assignments into one �current� state	 In this case the two
states for information exchange at time t refer to the case �just before� t
and �just after� t� respectively	 This is indicated in the diagram as t � �

and t� �� if the information exchange is approximated as instantaneous
then we are talking here of left and right limit values along the continuous
time axis	

Other parts of the architecture relate in entirely di�erent ways to the
architectural time axis	 For the computation in the deliberation subsys�
tem� the �old state� refers to t� �� and the �new state� that is constructed
in the course of deliberation refers to t� �� �	

For the computation in the evolution subsystem�
nally� the distinction
between �old� and �new� state is probably not useful at all	 There will
normally be one �current state� that is updated a number of times between
the discrete timepoints that are here designated as t and t� �	

The cycling of the states� where what has been set up as the �new state�
becomes the �old state�� and a new �new state� is initiated� can in principle
be made either just before� or just after the information exchange phase�
since those are the only natural synchronization points	 It is more natural
to do the cycling just before� so that the information exchange phase can
be de
ned to construct essential parts of its �new state� from its �old
state�	 Correspondingly� if current time is represented as a single variable
currenttime� there will be an assignment of the form currenttime ��
currenttime�� just before the information exchange phase	 The location
of this time shift is illustrated in
gure � �time axis and in
gure � �cycle	

In our experience it was di�cult to write the logical rules for the dif�
ferent processes before we were clear about the di�erence between the
various computational subsystems with respect to their temporal situat�
edness	 The same need for a precise understanding of information states
and their changes along the time axis was even stronger when it came to
writing specialized software that was to be embedded in ��plugged into�
the architecture	

� Deliberation

	�� Robotic deliberation using natural deduction

Let us turn now to the deliberation part of DHA� which uses a variant
of natural deduction	 The WITAS DORP system is an early and partial
implementation of the following design	

���������
���������
���������

���������
���������
���������

���������
���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������
���������

in the robot’s
 Deliberation

 cognitive
 system environment

 Evolution
 of the
 physical

Time-shift

Time-shift

Snapshot

Snapshot
t+1

t+1-

εt+1+

ε

t+ε
t

t- ε

Fig� �� Location of Timeshift and Snapshot in the time axis view of the Double Helix
Architecture�

Natural deduction is an inference system �set of inference rules that
allows one to set up and pursue �blocks� or �subproofs�	 Blocks can be
nested recursively	 Each block starts with a hypothesis that can be selected
as any well�formed formula� and proceeds with conclusions that may rely
on the hypothesis and on any previous conclusion in any outer block	 A
block that begins with the hypothesis H and has a formula P on a later
line supports a conclusion H � P outside the block	 Special restrictions
apply for the use of variables in block hypotheses	 Please see e	g	 ���� for
an introduction to natural deduction	

This technique is useful in the design of a cognitive robot that needs
to reason predictively about its immediate future and to do progressive
planning� in particular if natural deduction is modi
ed slightly as we
shall describe here	 Consider for example the situation where an agent
has adopted a goal g� and it considers two alternative ways of achieving
the goal� characterized by the actions seq�a� b and seq�c� d� e� respec�

Goals

Deliberation

Evolution

State variable
H(t,f,v)

Input variable
H(t,f,v)

sensor

actuator

Action
Dc(s,t,a)

Set variable
H(t,set(f),v)

Feedback
controller

H(t, obs(f), v)

percepts

recognizer
Event

H(t,fail(a),T)

D(s,t,a)

A

B

C

action
Inter-

Timeshift

Fig� �� Location of Timeshift in the data�ow view of the full Double Helix Architecture�

tively� where seq is the sequential composition operator for actions� as
was described in section �	�	 The deliberation system will then create
two natural deduction blocks� one of which uses the initial hypothesis
to execute the action seq�a� b starting at some timepoint greater than
the present time� whereas the other one uses the initial hypothesis of
executing seq�c� d� e similarly	

The system�s deliberations have the e�ect of �a adding conclusions�
natural deduction style� to one or both of these blocks� based on the
hypotheses in question and on known facts that are available �outside�
the block� and �b strengthening the assumptions when this is needed
in order to have an adequate plan	 Strengthening the assumptions can
be done e	g	 by choosing a particular itinerary for a move action� or a
particular object or tool for the action	

These deliberations serve to identify consequences of the proposed
action in the physical and operational environment at hand	 They also
serve to derive detailed aspects of the actions� such as how to initiate and
conclude the action	 For example� in a sequence of actions each of which
requires movement of the robot or some of its parts� the
nal phase of

one action may be constrained by the requirements of the initial phase of
the succeeding action	

	�� Opening of natural�deduction blocks

The formulas that are communicated in the operation of the double he�
lix are consistently ground �i	e	 variable�free literals	 The deduction in
hypothetical blocks must be somewhat more general� however� since it is
necessary to introduce variables for the starting�time and termination�
time of actions that occur in the block�de
ning hypotheses	 It is also
sometimes necessary to introduce variables corresponding to the choices
that need to be made� for example the choice of object or instrument for
a particular action� and corresponding to feature values that are not yet
known at the time of prediction or planning	

In all of these cases� however� the intention is that the variables that
occur in a hypothetical block will later on be instantiated� either by the
decision of the agent �starting time of actions� active choices� or by the
arrival of information from observations �ending time of actions� in most
cases� and feature�values that become known later	

In ordinary uses of natural deduction� free variables in the block hy�
potheses may be used for subsequent introduction of a universal quanti
er
on the implication that is extracted from the block� and after that for mul�
tiple instantiations of the all�quanti
ed formula	 In our case� however� we
do not foresee more than one instantiation of a given block	 Therefore�
when an action or action�plan has been selected after having been ana�
lyzed in a natural�deduction block� one can simply �open up� the block
and declare that all propositions in the block are in fact propositions on
the top level �or in the case of nested blocks� on the level immediately
outside the block being opened	 At the same time� the free variables
in the block�s hypothesis become reclassi
ed as constant symbols	 Some
propositions must also be added� in particular� a proposition specifying
the actual starting time of the block�s action� and propositions that clar�
ify how the invocation of later actions depends on the success or failure
of earlier actions in the block	

	�� Self�reference for natural�deduction blocks

Besides investigating consequences of particular plans on a logical level�
a rational robot must also be able to compare and evaluate the e�ects of
alternative plans	 In order to make such considerations accessible to the
logic formalization� we introduce a concept of block designator and make

the following technical adjustment of the approach that was described in
the previous subsection	 Each new block that represents a possible course
of action is assigned its own� unique designator bdn which is a constant
or function symbol	 A block for a particular plan e	g	 seq�a� b� c is rep�
resented by introducing a block with Decide�bdn� s as its hypothesis�
and a new formula of the form Decide�bdn� s � �t�D�s� t� seq�a� b� c
outside that block	 It is clear that formulas of that kind can be freely
introduced without signi
cantly extending the set of theorems	 The con�
sequence �t�D�s� t� seq�a� b� c follows trivially inside the block	

The more general case where an action has additional parameters can
be handled by a straightforward generalization	 Parameters whose value
is chosen by the agent become arguments of the block designator� param�
eters that emerge from the development of the world obtain an existential
quanti
cation similar to the action�s ending�time t	

In this way� the block designator can be used as a handle at which
one can associate utility information for the actions de
ning the block�
as well as procedural information about the resources required for the
deliberations in the block and the chances of obtaining a desired result	

� External contributions and logs

We have already explained how di�erent parts of the DHA system relate
di�erently to the time axis and the breakpoints along it	 In the practical
system there are a number of other things that also occur along the same
time axis� and that likewise bene
t from a clear account of the temporal
relationship between di�erent computational tasks	

When designing and testing the deliberation subsystem� including the
rules that it contains� it is convenient to have one well�de
ned point in
the cycle where the user can intervene in order to inspect the current
contents of the �old� and the �new� state� and also to change some of their
contents	 If the evolution is implemented as a simulation then one may
need to intervene in a similar way in the simulation results	 The shaded
areas in
gures � and � indicate the natural location for this interaction
on the time axis	

Communication with a user via a language or multimedia interface�
on the other hand� is better made as a part of the information exchange
phase� and concurrently with the other exchanges there� so that the de�
liberative system can consider all its input at once in each cycle	

For the purpose of design and debugging� as well as for the tutorial
purpose of understanding how the system works� it is also useful to pro�

duce a log of the current state of the system at some point in the cycle	
We found it natural to let the log consist of such snapshots of the �new
state� just before information exchange phase� as indicated in
gure �
�time axis view and
gure � �data�ow view	

Goals

Deliberation

Evolution

State variable
H(t,f,v)

Input variable
H(t,f,v)

sensor

actuator

Action
Dc(s,t,a)

Set variable
H(t,set(f),v)

Feedback
controller

H(t, obs(f), v)

percepts

recognizer
Event

H(t,fail(a),T)

D(s,t,a)

A

B

C

action
Inter-

Snapshot

Fig� 	� Location of Snapshot in the data�ow view of the full Double Helix Architecture�

For detailed design and checking� it is useful to have a single�step
capability where one can easily intervene at each point in �simulated
time	 In an interactive and incremental programming system such as Lisp�
it is natural to let the interaction �shaded segments be done through the
system�s general command loop� and to de
ne one interactively available
operation that advances the system one cycle� that is� from one interaction
point to the next one	 This is yet another way that the DHA cycle can
be split up in order to match the needs of a particular usage situation	
The following sequence of operations is obtained for the single�step case�
using the references A� B� and C of
gures � and ��

�	 Deliberation� part C
�	 Contribute snapshot to log
�	 Information Exchange �two directions� performed concurrently
�	 Let �new state� become �old state�� or advance timepoint counter by �
�	 Deliberation part A �interaction with operators� followed by Deliber�

ation part B �deliberation proper� all of this concurrently with Evo�
lution	

	 Implementation and validation

The software implementation of the Double Helix Architecture serves
two very di�erent goals	 Ideally� we would like to have an implementation
that can both be used as a signi
cant component of the actual on�board
system in the WITAS helicopter� and at the same time is such a crisp
and transparent computer program that it can be formally characterized
by axioms in CRL with provable consistence between axiomatization and
implementation	

Neither of those goals has been achieved yet� but we try to balance
the priorities so that both can eventually be reached	 A crisp� analyzable
software that is not used on�board� but which is reasonably isomorphic to
the actually used software according to an informal analysis� would also
be an acceptable
nal result	

The presently working DOSAR system contains a simulator where
a simulated helicopter �ies over simulated cars that move around in a
small street network with an update frequency of �	� Hz	 A graphics
package allows to display the ongoing simulation in real time	 Helicopter
actions can be de
ned on the three levels that were described in section
�	�� and the present� small library of helicopter actions is being extended
gradually	 On the perception side� a few recognizers for car activities have
been written	 They interface to the logic level of the system in the way
that was described in section �	�	

DOSAR also has the capability to represent a catalogue of scripts that
can be used as methods for achieving goals	 Each script is represented as
a composite action expression	 On command� the system can create nat�
ural deduction blocks �subproofs for each of the applicable methods for
a given goal� and construct the corresponding elementary propositions in
a way that is local to the block	 On another command it can execute the
actions in a given such block� which means that the �decision� is presently
left to the operator	 The program parts for inference of additional conse�
quences within a block� or in combinations of blocks are next in line for

realization	 The system presently relies on a library of plans� and does
not at present provide for planning in the classical sense	

The decision what to include and what not to include in the present
implementation was partly guided by the theoretical interests� and partly
by the immediate practical use of the software	 In the short term� it is to
be used as the simulation counterpart for the continued development of
the WITAS high�level operator dialogue facility that is being built for us
at Stanford University ���	 This consideration dictated a priority on simu�
lating car movements and arranging for logic�level observations on them�
as well as the use of a plan library rather than autonomous planning� and
the choice of a quite crude simulator for helicopter movements	

Later on� it is intended to use DOSAR as the bridge between the
dialogue and on�board systems� at which point the simulation part will
be removed and replaced by an interface to the on�board system	 �This
interface will also need to include a safety�switch under operator control	
Di�erent approaches to deliberation are presently being pursued in the
on�board system for WITAS as well as in the DHA� and it remains to be
determined how these will compete with� or complement each other	

On the theoretical side� our strategy is to iterate on the software design
in order to gradually make it more crisp� and thus to move in the direction
of an implementation that can be validated formally	

The DORP software is a separately maintained system variant where
deliberation and agenda management facilities are checked out with an
alternative set of actions	 This testbench is particularly useful for veri�
fying the consistency of the timing when actions are invoked� scripts are
executed� and events and activities are recognized along a common time�
line	 Facilities that have been validated in DORP as working correctly
are routinely transferred to DOSAR	

Both DOSAR and DORP have been implemented in CommonLisp in
order to prepare the ground for the theoretical arm of the work	 They are
running in standard PC environments	 Achieving the required real�time
performance has never been a limiting factor in this work	 The Software
Individuals Architecture ���� is used as the lowest Lisp software layer� pro�
viding a systematic way of structuring software modules� data directories�
command sessions� and software maintenance and exchange	

�
 Conclusion

We have described the mutual relation between the Double Helix Ar�
chitecture and the Cognitive Robotics Logic	 Our main message is that

this agent architecture� which explicitly describes the location of di�er�
ent computational processes and layers along a time axis with discrete
steps� is useful for clarifying both the organization of the computation�
the semantics of the logic� and the interdependence between those two
issues	

�� Acknowledgements

The WITAS project is funded by a generous grant from the Knut and
Alice Wallenberg Foundation	

References

�� Raja Chatila and Jean�Paul Laumond� Position referencing and consistent world
modelling on mobile robots� In IEEE International Conference of Robotics and
Automation� pages �	
���� ��
�

�� Thomas Dean and Michael P� Wellman� Planning and Control� Morgan�
Kaufmann� �����

	� Patrick Doherty� G�osta Granlund� Krzystof Kuchcinski� Erik Sandewall� Klas Nord�
berg� Erik Skarman� and Johan Wiklund� The witas unmanned aerial vehicle
project� In European Conference on Arti	cial Intelligence� pages ������ �����

�� Patrick Doherty� Joakim Gustafsson� Lars Karlsson� and Jonas Kvarnstr�om� Tem�
poral action logics language� speci�cation and tutorial� Electronic Transactions on
Arti	cial Intelligence� ����	�	��� ���
�

� Patrick Doherty� Tommy Persson� Bj�orn Wingman� Patrick Haslum� and Fredrik
Heintz� A CORBA�based deliberative�reactive architecture for unmanned aerial
vehicles� Unpublished manuscript�� �����

�� R� James Firby� Roger E� Kahn� Peter N� Prokopowicz� and Michael J� Swain� An
architecture for vision and action� In International Joint Conference on Arti	cial
Intelligence� pages ������ ����

�� Oliver Lemon� Alexander Gruenstein� and Stanley Peters� Collaborative activi�
ties and multi�tasking in dialogue systems� Traitement Automatique des Langues�
special issue on dialogue� ����� To appear�

� Hector Levesque� Fiora Pirri� and Ray Reiter� Foundations for the situation cal�
culus� Electronic Transactions on Arti	cial Intelligence� �������
� ���
�

�� Hector J� Levesque� Raymond Reiter� Yves Les�erance� Fangzhen Lin� and
Richard B� Scherl� Golog� A logic programming language for dynamic domains�
Journal of Logic Programming� 	����	����
�� April�June �����

��� J�org M�uller� Control architectures for autonomous and interacting agents� A sur�
vey� In Lawrence Cavedon� Anand Rao� and Wayne Wobcke� editors� Intelligent
Agent Systems� pages ����� �����

��� J�org M�uller� The Design of Intelligent Agents� Springer Verlag� �����
��� Nils Nilsson� Teleo�reactive programs and the triple tower architecture� Electronic

Transactions on Arti	cial Intelligence� B�������� �����
�	� Anand S� Rao and Michael P� George�� An abstract architecture for rational

agents� In International Conference on Knowledge Representation and Reason�
ing� pages �	������ �����

��� Stuart Russell and Peter Norvig� Arti	cial Intelligence� A Modern Approach�
Prentice�Hall� ����

�� Erik Sandewall� Combining logic and di�erential equations for describing real�
world systems� In Proc� International Conference on Knowledge Representation�
Toronto� Canada� ��
��

��� Erik Sandewall� Filter preferential entailment for the logic of action in almost
continuous worlds� In International Joint Conference on Arti	cial Intelligence�
pages
���
��� ��
��

��� Erik Sandewall� Features and Fluents� The Representation of Knowledge about
Dynamical Systems� Volume I� Oxford University Press� �����

�
� Erik Sandewall� Towards the validation of high�level action descriptions from their
low�level de�nitions� Arti	cial Intelligence Communications� December ����� Also
Link�oping University Electronic Press� http���www�ep�liu�se�cis��������	��

��� Erik Sandewall� A logic�based characterization of goal�directed behavior� Elec�
tronic Transactions on Arti	cial Intelligence� �������
� �����

��� Erik Sandewall� Cognitive robotics logic and its metatheory� Features and �uents
revisited� Electronic Transactions on Arti	cial Intelligence� ��	���	��� ���
�

��� Erik Sandewall� On the design of software individuals� Electronic Transactions on
Arti	cial Intelligence� B���	����� �����

��� George N� Saridis and Kimon P� Valavanis� On the theory of intelligent controls�
In Proc� of the SPIE Conference on Advances in Intelligent Robotic Systems� pages
�

���� ��
��

�	� Murray Shanahan� A logical account of the common sense informatic situation for
a mobile robot� Electronic Transactions on Arti	cial Intelligence� ��������� ���
�

��� D� van Dalen� Logic and Structure� Springer Verlag� ��
��

This article was processed using the LATEX macro package with LLNCS style

