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2 Abstract
This chapter presents a distributed architecture for unmanned aircraft systems that provides full integration
of both low autonomy and high autonomy. The architecture has been instantiated and used in a rotor-
based aerial vehicle, but is not limited to use in particular aircraft systems. Various generic functionalities
essential to the integration of both low autonomy and high autonomy in a single system are isolated and
described. The architecture has also been extended for use with multi-platform systems. The chapter
covers the full spectrum of functionalities required for operation in missions requiring high autonomy.
A control kernel is presented with diverse flight modes integrated with a navigation subsystem. Specific
interfaces and languages are introduced which provide seamless transition between deliberative and reactive
capability and reactive and control capability. Hierarchical Concurrent State Machines are introduced as
a real-time mechanism for specifying and executing low-level reactive control. Task Specification Trees
are introduced as both a declarative and procedural mechanism for specification of high-level tasks. Task
planners and motion planners are described which are tightly integrated into the architecture. Generic
middleware capability for specifying data and knowledge flow within the architecture based on a stream
abstraction is also described. The use of temporal logic is prevalent and is used both as a specification
language and as an integral part of an execution monitoring mechanism. Emphasis is placed on the robust
integration and interaction between these diverse functionalities using a principled architectural framework.
The architecture has been empirically tested in several complex missions, some of which are described in
the chapter.
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3 Introduction
Much of the recent research activity with Unmanned Aircraft Systems (UASs) has focused primarily on the
Air Vehicle (AV) itself, together with the avionics and sensor subsystems. Primary focus has been placed on
the navigation subsystem together with low-level control combined with motion planners that allow a UAS
to operate with limited autonomy. The control kernel implements diverse control modes such as take-off,
landing, flying to waypoints and hovering (in the case of rotor-based systems). Sensor payloads are then
used to gather data after positioning the AV at salient points of interest.

Development of this type of low-level autonomy has been impressive, resulting in many AV systems that
with the help of human operators can autonomously execute missions of moderate complexity. Specification
of such missions is often based on the manual or semi-manual construction of a waypoint database, where
waypoints may be annotated with sensor tasks to be achieved at each of these points. Such a means of
specifying missions is often time consuming and also prone to error due to the low level of abstraction used
and to the lack of automation in generating such plans. Additionally, one lacks techniques for the automatic
verification of the correctness of a mission.

Although these capabilities provide the basic functionality for autonomous AVs, if one is interested in
increasing the complexity of the missions executed and the usefulness of UASs, much more is required.
The collection of functionalities and capabilities required to automate both the process of specifying and
generating complex missions, instantiating their execution in the AV, monitoring the execution and repairing
mission plans when things go wrong commonly goes under the umbrella term “high autonomy”. Systems
with high autonomy require additional architectural support beyond what one commonly uses to support the
low-level autonomy. Furthermore, one has to ensure that each of the architectural components that support
both low and high autonomy are fully integrated in the resulting system and provide the proper level of
quality of service for the relevant tasks.

This chapter describes a distributed software architecture that fully integrates functionality for both
low and high autonomy. The architecture has been developed for a number of years and has been both
tested and deployed on a number of rotor-based AV systems. The purpose of this chapter is not only to
describe the instantiation of the architecture on a particular AV system, but also to isolate and describe
various generic functionalities essential to the integration of low and high autonomy. These functionalities
and their architectural support can be used on any robotic system, be it an aerial, ground or underwater
system. Consequently, this architectural framework should be of interest to anyone developing autonomous
systems.

Let us begin by providing a motivating scenario for the use of UASs. On December 26, 2004, a devastating
earthquake of high magnitude occurred off the west coast of Sumatra. This resulted in a tsunami which
hit the coasts of India, Sri Lanka, Thailand, Indonesia and many other islands. Both the earthquake and
the tsunami caused great devastation. Initially there was a great deal of confusion and chaos in setting
into motion rescue operations in such wide geographic areas. The problem was exacerbated by shortage of
manpower, supplies and machinery. The highest priorities in the initial stages of the disaster were searching
for survivors in many isolated areas where road systems had become inaccessible and providing relief in
the form of delivery of food, water and medical supplies.

Assume that for a particular geographic area, one had a shortage of trained helicopter and fixed-wing
pilots. Assume also that one did have access to a fleet of autonomous unmanned helicopter systems with
ground operation facilities and the ability to both scan for salient entities such as injured humans and deliver
supplies and resources such as relief packages containing food, water and medical supplies. These systems
could then provide essential assistance to emergency rescue services.

Participating UASs would require functionalities associated with both low and high autonomy operating
in tight integration with each other. Additionally, this scenario would involve several UASs, so additional
support would be required for collaboration between ground operation and AVs in addition to cooperation
between the AVs themselves.
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The complex real-world deployment outlined above would have two phases. In the first, one would
require the use of as many AVs as were in the area to scan a specific region for injured and to generate a
saliency map that could then be used by emergency services or other UASs to provide relief assistance in
the form of medical and food supplies. In the second phase, given a particular saliency map, one would
have to determine efficient ways to deliver the appropriate supplies to the different regions in an optimal
manner. In essence, there are two high-level goals to be achieved:

1. Scan a specific region with available AVs to generate a saliency map consisting of geo-locations of
injured civilians.

2. Put together a logistics plan based on the saliency map and available AVs to deliver medical and food
supplies to appropriate locations within this region.

Ideally, one would like to specify a mission at this level of abstraction and have the UASs generate the ap-
propriate plan or plans for the specific AVs involved based on their capabilities, resources, and availability.

This in itself is a highly complex endeavor based on the use of sophisticated automated distributed
planning techniques for teams of AVs and human resources in a mixed-initiative context. An essential
aspect of the higher-level or high-autonomy functionalities is the ability to clearly and succinctly specify
and generate missions to be executed and to coordinate their execution in a distributed manner.

The execution of the tasks associated with such missions in the individual AVs is just as complex. An
essential aspect of the lower-level or low-autonomy functionalities involves different forms of compilation
and execution mechanisms in (soft) real-time that ultimately result in the coordination and use of real-time
continuous control modes associated with the individual AVs. Most importantly, the tight integration of
processes at these different levels of abstraction is fundamental to the robust operation of AVs in missions
which require such high degrees of autonomy.

Later in the chapter, additional detail will be provided as to how the architecture supports the deployment
of AVs in missions of this complexity. Before this, there will be an overview of the architecture and the
functionalities it includes and a roadmap based on this overview. The remainder of the chapter will provide
more detailed descriptions of these functionalities and their integration with each other.

3.1 Overview of the HDRC3 Architecture
In recent years, there has been a consolidation of thought regarding essential conceptual components re-
quired in software architectures for mobile robots, although there is wide variation in the way these com-
ponents are implemented in specific robotic systems. One of the clearest presentations of this consolidation
of thought is described in Gat (1997). In this article, he traces the history and development of robotic
architectures in artificial intelligence and the transition from sense-plan-act architectures to what are now
generically known as three-layered architectures. In his own words,

The three-layer architecture arises from the empirical observation that effective algorithms for
controlling mobile robots tend to fall into three distinct categories: (1) reactive control algo-
rithms which map sensors directly onto actuators with little or no internal state; (2) algorithms
for governing routine sequences of activity which rely extensively on internal state but perform
no search; and (3) time-consuming (relative to rate of change of the environment) search-based
algorithms such as planners. (Gat, 1997, p. 209)

The algorithms associated with each of these categories have distinct temporal latencies in the decision
cycles: (1) millisecond range; (2) seconds range and; (3) seconds or even minutes range. Each of these
computational abstractions require interfaces to each other which in essence implement compilational tran-
sitions between the layers.
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(b) The layered view

Figure 1: The structure of the Hybrid Deliberative/Reactive (HDRC3) architecture.

The Hybrid Deliberative/Reactive (HDRC3) Architecture presented here is based conceptually on the
three-layered approach. It is important to state that this is due not only to the theoretical clarity of the
approach but also to empirical necessity. In the development of architectures which support high and
low autonomy and their integration for use in complex missions, one naturally gravitates towards such
architectures. Although conceptually layered, in practice, the HDRC3 architecture is better described as
concentric (as depicted in Figure 1(a)) in the sense that data and control flow are both vertical and horizontal
within and across layers and that the processes evoked by the various algorithms are highly concurrent and
distributed.

Figure 1(b) provides a conceptual and functional depiction of the HDRC3 architecture. It also provides
a visual depiction of the roadmap for the chapter where a bottom-up approach will be used to describe the
architectural components. The HDRC3 architecture consists of three functional layers and a number of
interfaces between the layers:

Control Layer This layer provides a library of control modes based on the implementation of continuous
control laws such as takeoff, trajectory following and vision-based landing. Algorithms associated
with this layer generally have little or no internal state. Additionally, it provides a real-time environ-
ment for accessing hardware and sensors, executing control modes and switching between them.

Reactive Layer This layer coordinates the execution of high-level plans generated by the deliberative layer
and implements a set of robotic behaviors such as fly-to and scan-area that may be viewed as com-
piled plans or as reactive procedures. These are specified as Task Specification Trees (TSTs). The
reactive layer also includes a thread-based executor for TSTs. Algorithms associated with this layer
do have internal state, but of a postdictive nature generally in terms of previous states of actions.

Deliberative Layer This layer provides a rich set of algorithms commonly associated with deliberation
such as automated task planners, motion planners, reasoning and diagnosis mechanisms and execution
monitoring mechanisms. Algorithms associated with this layer generally have rich internal state of
both post- and predictive nature and often include search through large state spaces.

The interfaces used to transition between these layers are central to the success of such architectures.
The HDRC3 architecture provides a rich set of interfacing mechanisms:
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Interfaces between the Control Layer and the Reactive Layer A specialized language and implementa-
tion is used for interfacing between the control layer and the reactive layer. Hierarchical Concurrent
State Machines are used to specify and implement mode switching behaviors at the control layer.
Additionally they are used to implement low-level reactive behaviors normally associated with flight
control or perception control.

Platform Server Interface Helicopter pilots and ground control personal often think of controlling un-
manned aircraft in terms of a Flight Control Language (FCL) representing various flight modes and
a Payload and Perception Control Language (PPCL) representing various modes of perception and
sensor control. Because this abstraction is so powerful, an independent server exists which imple-
ments this abstraction using two well-defined languages for flight control and perception control,
respectively. Any functionality in the system can access the server through these abstract languages.

Interfaces between the Reactive and Deliberative Layers The notion of robot task specifications and the
processes they invoke are central to the achievement of goal-directed behavior. Tasks can be spec-
ified in many different ways. HCSMs are one way to specify low-level tasks. At the other end of
the spectrum are highly complex tasks which use low-level tasks as primitives. Task Specification
Trees (TSTs) are used as a means of not only specifying such high-level tasks declaratively, but also
providing procedural correlates executable in the system. TSTs therefore provide both a declarative
and procedural means of transitioning between the deliberative and reactive layers. It is often the
case for instance that TSTs are used to sequentialize commands associated with the FCL and PPCL.
Additionally, the output of an automated planner may be viewed as a TST.

3.1.1 Middleware Infrastructure

The functionality in the reactive and deliberative layers of the HDRC3 architecture should be viewed as
sets of loosely coupled distributed processes that are highly concurrent and often require asynchronous
communication with each other. These processes run on multiple on-board (or ground-based) computers,
communicating through service calls and transmitting information through a set of distributed communi-
cation channels. This requires a rich middleware infrastructure to provide the communication channels
between these processes and the ability of each to use other processes when required. An example would
be interaction between task planners, path planners and execution monitors.

In early iterations of the HDRC3 architecture, the underlying middleware infrastructure was based on
the use of CORBA (Common Object Request Broker Architecture). The architecture has recently been
transitioned to using ROS, the Robot Operating System. This is a convenient open-source framework
for robot software development that provides client libraries and tools for several programming languages
(Quigley et al., 2009).

Software written for ROS is organized into packages which contain nodes, libraries and configurations.
Nodes represent computational processes in the system and are written using the client libraries. For ex-
ample, many capabilities such as task planning and motion planning are realized as separate ROS nodes.
These nodes communicate by passing structured messages on topics which can be seen as named buses to
which nodes can subscribe, and by using request/reply communication through services.

Although emphasis in this chapter is placed on a single platform using the HDRC3 architecture, it is
also set up for collaborative missions with multiple AV systems. All agents in such a collaborative sys-
tem currently use a common ROS Master, a standard ROS functionality providing registration and lookup
services. For disconnected operation, a federated approach to the ROS Master is used.

Figure 2 gives an overview of some of the essential processes and ROS topics that are present in the
HDRC3 architecture. These include functionality for use of individual platforms in collaborative scenarios.
The functionality associated with the control layer is encapsulated in the Platform Server and accessed by
the two languages FCL and PPCL mentioned earlier.

Black arrows indicate calls between processes. Each gray rectangle contains processes and topics that
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Figure 2: Overview of the ROS-based implementation.

are explicitly associated with a particular agent. Inside this, each rounded rectangle represents a distinct
functionality that is currently implemented as one or more related ROS services provided by one or more
ROS nodes. Given the fundamental structure of ROS, functionality can easily be moved between nodes
without affecting the remainder of the system. Therefore an exact specification at the node level is not
relevant at this level of abstraction.

There is one special functionality associated with the HDRC3 architecture which can be viewed as a shared
middleware and interfacing mechanism supporting the creation and management of data flow in the archi-
tecture. This middleware is called DyKnow and it is based on the abstraction of streams of data.

One of the highly problematic and open research issues in AI and robotics is the large discrepancy
between the quantitative and large amount of raw sensor data input to a robotic system and the requirement
for sparse, well-structured and grounded qualitative data used by the deliberative functionalities in robotic
architectures. This is often called the sense-reasoning gap.

DyKnow is a middleware functionality that has been developed in the HDRC3 architecture which pro-
vides a principled means of closing this gap both theoretically and pragmatically. DyKnow provides ab-
stractions for the construction, reasoning, processing and abstraction of data streams within the architecture
itself. This middleware is leveraged throughout the architecture and used by many functionalities to great
benefit. It is used in a variety of ways at any layer in the HDRC3 architecture and is integrated with ROS.

3.2 Roadmap to the Chapter
Both Figure 1 and Figure 2 provide concise visual depictions of the HDRC3 architecture and its essential
functionalities. This framework will be used to structure and provide a roadmap for the remainder of the
chapter.

Section 4 describes the UAS Tech Lab (UASTL) RMAX helicopter system which includes a distributed
hardware architecture and a suite of sensors integrated with the base Yamaha RMAX helicopter system.

Section 5 describes the Control Layer. This includes a description of the Control Kernel itself with its
primary flight modes (Section 5.2), in addition to two complex compound flight modes: a Path Following

6



Control Mode (Section 5.3) and a Vision Based Landing Mode (Section 5.4).
Section 6 describes the Reactive Layer. This includes a description of Hierarchical Concurrent State

Machines and a real-time HCSM interpreter (Section 6.1). This is a generic capability that requires in-
stantiation and use in terms of specific HCSMs. Section 6.1.1 describes these specific HCSMs used in the
UASTL RMAX system. The higher-level ROS-based system shown in Figure 2 interfaces to the real-time
control functionalities (Section 5.2) through the Platform Server. This is described in Section 6.2. Complex
tasks and missions are concretely represented as Task Specification Trees using elementary actions such
as flying together with a number of task composition constructs such as sequences, concurrent execution,
and loops (Section 6.3). Nodes in such trees, which are general and declarative specifications of tasks to
perform, are both created by and stored in a TST Factory. The TST Executor functionality is responsible
for generating platform-specific procedural executors for any node type that a particular agent supports.
Platform-specific constraints on how a certain task can be performed, such as those related to the flight
envelope of the RMAX, are also specified here.

Section 7 describes the Navigation Subsystem. This subsystem includes the path and motion planning
algorithms (Section 7.1) in addition to the specific HCSMs used to coordinate these processes (Section 7.2).

Section 8 describes DyKnow, the stream-based processing middleware framework used for managing
data and knowledge flow within the HDRC3 architecture. This functionality is used by many other func-
tionalities within the architecture. Connections to DyKnow are omitted in Figure 2 in order to avoid clutter,
as information processed by DyKnow can be used by any deliberative or reactive functionality. A traffic
monitoring example, where DyKnow plays an essential role, is described in Section 8.7.

Section 9 describes many of the high-level deliberative functionalities in the HDRC3 architecture that
can be used by other functionalities in the architecture. One open research issue of great importance is the
requirement of formally verifying the behavior of complex deliberative functions which are often dependent
on rich world models and also highly non-deterministic in nature. The HDRC3 architecture uses temporal
logics not only for specification, but for on-line monitoring purposes. Section 9.1 describes Temporal Ac-
tion Logic (TAL) which is used for formally specifying task plans and Task Specification Trees. Section 9.2
describes a task planner called TALplanner that is used in the HDRC3 architecture and is highly integrated
with motion planners and execution monitoring mechanisms. One of the responsibilities of the task planner
is to expand goal nodes in a Task Specification Tree into detailed task specifications, which is why it can
be called from the TST Executor shown in Figure 2. The task planner can also call the motion planner and
Motion Plan Info functionalities in order to estimate whether a given flight action is feasible as part of a plan
being generated, and if so, at what cost. Section 9.3 describes a very sophisticated and efficient execution
monitoring functionality based on the use of model checking temporal logical formulas in real-time through
use of a progression algorithm. Section 9.4 describes an extension to Temporal Action Logic that allows
one to formally specify complex missions. These missions can be compiled into Task Specification Trees
and are also useful in specifying collaborative missions.

Section 10 briefly discusses collaborative systems consisting of multiple platforms. In a collabora-
tive setting, delegation is the key to assigning the responsibility for specific aspects of a mission to spe-
cific agent-based unmanned systems. Delegation requests are specified as speech acts in the FIPA Agent
Communication Language (ACL) (Foundation for Intelligent Physical Agents, 2002) and are sent between
agents through a set of communication channels, currently implemented using ROS topics. A gateway
functionality acts as a clearinghouse for all inter-agent communication based on such speech acts. Deter-
mining whether an agent can accept a delegation request also requires reasoning about whether and how the
agent can satisfy the temporal and resource-related constraints associated with a task. This is implemented
through a resource reasoning capability that includes a constraint server. These particular functionalities
are shown in Figure 2.

Section 11 provides examples of several highly complex mission scenarios that have been used to empir-
ically test the HDRC3 architecture, its various functionalities, and the tight integration required among the
functionalities. UASTL RMAXs have been deployed and used in these scenarios and variations of them on
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Figure 3: The UASTL RMAX helicopter.

numerous occasions to not only refine the HDRC3 architecture but also to ensure repeatability of missions
and robustness of the architecture in real-world environments.

Section 12 summarizes and discusses the generic nature of the architecture and many of its functionali-
ties.

4 Unmanned Aircraft Platforms
The HDRC3 architecture and variations of it have been used on a number of different research platforms,
in particular in the context of research with heterogeneous collaborative systems (Doherty et al. (2013);
http://www.ida.liu.se/divisions/aiics/aiicssite/). For example, a lightweight ver-
sion of the architecture has been ported to the LinkQuad, a micro-aerial vehicle platform developed within
the UAS Tech Lab (http://www.uastech.com). However, this chapter focuses solely on the use of
the HDRC3 architecture on a Yamaha RMAX system which has been extended for autonomous use. This
platform is called the UAS Tech Lab (UASTL) RMAX (Conte and Doherty, 2009; Doherty et al., 2004;
Rudol and Doherty, 2008; Wzorek et al., 2006a).

4.1 The RMAX Helicopter Platform
The UASTL RMAX platform is a modified Yamaha RMAX helicopter (Figure 3). The Yamaha RMAX
helicopter is a radio-operated commercial system marketed in Japan by Yamaha Motor Co. Ltd. Two of
these were acquired and used as a basis for developing fully autonomous systems. The HDRC3 architecture
is integrated on both systems.

The RMAX is approximately 2.7×0.7 meters with a total length of 3.6 meters including the rotor. It
uses a 21 HP two-stroke engine and has an empty weight of 61 kg and a maximum takeoff weight of 95 kg.

4.2 Computational Aspects
The computer systems used on-board the UASTL RMAX need to work reliably in harsh environmental
conditions characterized by high vibrations, limited space and a high range of operating temperatures. The
PC104 is an industrial grade embedded computer standard that is especially suited for such applications.
The on-board system developed for the UASTL RMAX contains three such PC104 embedded computers.
These embedded computers physically reside in a specially designed box which is integrated with the
RMAX and is shown in Figure 3. Figure 4 provides a hardware schematic of the integrated system.
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Figure 4: On-board hardware schematic.

• The Primary Flight Computer (PFC, 1.06 GHz Intel Celeron M) handles core flight functionalities
and control modes. This computer is directly connected to a GPS receiver and several additional
sensors including a barometric altitude sensor. The PFC is also connected to the UASTL RMAX
helicopter through the standard Yamaha Attitude Sensor (YAS) and Yamaha Attitude Control System
(YACS) interfaces.
• The Deliberative/Reactive Computer (DRC, 1.5 GHz Intel Core 2 Duo) executes all high-level au-

tonomous functionalities such as path planning (Section 7.1), stream-based reasoning (Section 8),
and mission planning (Section 9.2).
• The Primary Perception Computer (PPC, 1.06 GHz Intel Celeron M) runs software related to the use

of cameras, range finders and similar equipment. This includes image processing and sensor fusion.

Due to the high degree of vibration on-board the UASTL RMAX, in its current configuration it is not pos-
sible to use standard hard drives for storage. Instead all computers use Solid State Disk (SSD) technology.

Network communication between the on-board computers is realized with serial lines (RS232C) as well
as Ethernet. The serial lines are used to implement a robust real-time communication channel between each
of the on-board computers.

4.3 Communications, Sensors and Other Hardware
A wireless Ethernet bridge as well as a GSM modem is available for communication with ground control
stations. GSM provides a mature, commercially available communication infrastructure that permits the
operation of AVs at large distances, out of sight from the ground operator. It also provides a redundant
alternative in the case where other communication frequencies are jammed. In order to test the feasibility
of GSM technology for interfacing purposes, a multi-modal graphical user interface has been designed,
constructed and implemented on a mobile telephone (Wzorek et al., 2006b). This has been used as a mobile
ground operator control system where mission plans can be specified, uploaded and monitored through the
mobile telephone.
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(a) CCD Block Camera on PTU. (b) Infrared Camera.

Figure 5: Cameras used on the UASTL RMAX.

A camera platform is suspended under the AV fuselage, vibration-isolated by a system of springs. The
platform consists of a Sony FCB-780P CCD block camera (Figure 5(a)) and a ThermalEye-3600AS minia-
ture infrared camera (Figure 5(b)) mounted rigidly on a Pan-Tilt Unit (PTU). Section 11.1.1 presents a
method for using both cameras in an algorithm for finding human bodies and building saliency maps. The
video footage from both cameras is recorded at full frame rate by two miniDV recorders to allow processing
after a mission.

A modified SICK LMS-291 laser range finder has also been integrated with the UASTL RMAX using a
rotation mechanism developed in-house. It is mounted on the front as shown in Figure 3. This system pro-
vides the ability to generate high-accuracy 3D models of the environment in which the aircraft is operating,
without the need for reflectors, markers or scene illumination (Section 11.2).

A software-controlled power management unit provides information about voltage levels and current
consumption. It also allows for remote power control where all devices can be switched on or off through
software. The unit controls all three PC104 computers, all sensors, and the wireless Ethernet bridge.

The HDRC3 architecture is distributed on this hardware platform. The control layer of this architecture,
which in many ways operates close to the hardware, will now be described.

5 The Control Layer
The Control Layer implements basic continuous control modes used by the UASTL RMAX. These control
modes are implemented using continuous control laws as a basis. Already at this level, the algorithms used
are quite complex. For instance, two essential modes described in this section, path following (Section 5.3)
and vision-based landing (Section 5.4), require tight integration with the architecture and involve discrete
event control capability (Section 6.1). This section describes both these modes in addition to the control
kernel (Section 5.2) and its real-time demands (Section 5.1).

5.1 Real-Time Aspects
Certain functionality, such as control laws in the Control Kernel, requires support for real-time processing
with latency guarantees. Since the current implementation of the HDRC3 architecture runs on a Linux-
based operating system, the Real-Time Application Interface (RTAI (Mantegazza et al., 2000)) is used for
this purpose.
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RTAI is a hard real-time extension to the standard Linux kernel and provides industrial-grade real-time
operating system functionality. RTAI allows for the creation of a kernel module that takes full control
over the CPU and can suspend itself in order to let user-space applications run. Such a module is used to
implement real-time functionalities in the HDRC3 architecture. The standard Linux distribution running on
the same CPU is viewed as a separate task with lower (non-real-time) priority, running preemptively so that
it can be interrupted by real-time processes at any time. Real-time and non-real-time processes can then
communicate through shared memory.

All computers in the UASTL RMAX platform (Figure 4) have both hard and soft real-time components
but the processor time is assigned to them in different proportions. On one extreme, the PFC runs mostly
hard real-time tasks with only a minimal number of non-real-time user space applications (for example,
an SSH daemon for remote login). On the other extreme, the DRC uses the real-time part only for device
drivers and real-time communication, while the majority of its time is spent on running deliberative services.

5.2 The Control Kernel
The Control Kernel (CK) encapsulates all core control functionalities, including a set of continuous control
laws implementing the basic flight and payload control modes as well as control over the perception capa-
bilities that can be used by the reactive and deliberative layers. It is also responsible for switching between
control modes through the use of Hierarchical Concurrent State Machines (Section 6.1).

The kernel is distributed on two on-board computers (PFC and PPC), and also coordinates real-time
communication between these computers as well as between CKs of other robotic systems when collabo-
rative missions are involved. However, the kernel itself is self-contained and only the part running on the
PFC computer is necessary for maintaining flight capabilities. This enhances the safety of the operation of
the UASTL RMAX platform.

The following flight control modes have been implemented on the UASTL RMAX platform:

• Hovering: Keep the helicopter in the desired position, heading and altitude given current sensor
readings. The mode is implemented using a set of PID loops.
• Take-off: Bring the helicopter from the ground to a specified altitude.
• Path following: Fly along a specified segmented path (Section 5.3).
• Vision-based landing: Land the AV on an artificial pattern. This mode does not require a GPS signal,

instead it relies on a more accurate relative state estimation performed on-board (Section 5.4).
• Reactive car following: Maintain a specified distance to a moving car. The car position estimation

is performed on board the AV and is based on color tracking using camera images.

Additionally, a set of control modes for payloads has been developed:

• Camera Pan-Tilt absolute/relative control: Maintain the absolute/relative angles of the pan-tilt
mechanism.
• Camera Pan-Tilt visual servoing control: Keep a tracked object in the center of the camera image.

The position of the object is provided by image processing functionalities such as vision-based color
object tracking.
• Camera Pan-Tilt look at GPS coordinate control: Keep a geographical location in the center of

the camera image.
• Camera (color, IR) parameter control: Actively control camera parameters such as shutter, zoom

and iris. Among other things, this allows for adjusting to the current lighting conditions.
• Laser range finder rotational mechanism control: Actively control parameters of the rotational

mechanism, such as rotational speed. Among other things, this allows for adjusting the trade-off
between speed and accuracy when building a 3D map.
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• Laser range finder parameter control: Actively control parameters of the laser range finder, such
as its measurement distance resolution and angular resolution. Among other things, this allows for
adjusting the trade-off between speed and accuracy when building a 3D map.

Perception functionalities accessible in the control kernel include:

• Vision-based state estimation: Provides a very accurate pose estimate in relation to a specifically
designed pattern. This functionality is used for the autonomous vision-based landing mode.
• Vision-based object tracking: Provides an estimate of the relative position to a moving object based

on the color and/or thermal image streams. This is used in the reactive car following control mode.
• Vision-based human body identification: Identifies human body positions in a stream of color and

thermal images (Section 11.1.1).
• Laser range finder 3D map building: Provides a 3D elevation map of the environment based on

laser range finder data. The map can be used for various applications such as navigation where it is
used as input to a path planner (Section 11.2).
• Localization based on reference images: Provides an absolute position estimate in GPS denied

environments based on geo-referenced imagery (Conte, 2009).

Two complex flight control modes will now be considered in more detail.

5.3 Path Following Control Mode
One of the control modes executed and coordinated by the Control Kernel is the Path Following Control
Mode (PFCM (Conte, 2009; Conte et al., 2004), bottom part of Figure 17 on Page 33) which executes paths
consisting of a set of segments. Figure 7 presents an example path consisting of three segments.

Given a specific robotic platform, a classical problem in control theory is to find a trajectory compatible
with its kinematic and dynamic constraints. A trajectory is the evolution of the state of a robot. The robot
state is a vector composed of a set of time-dependent variables describing its kinematic and dynamic status.
In this specific case the most relevant components of the state vector are the three dimensional position,
velocity and acceleration, the attitude angles (pitch, roll, yaw) and the attitude rates. In general, the problem
of finding a trajectory compatible with the platform dynamic constraints is a very difficult problem. In the
context of a robotic helicopter flying in a cluttered environment, the problem becomes even harder since
the platform dynamics is unstable. In addition, the flight path must not collide with the obstacles in the
environment. The methodology used here to deal with this complexity is to decompose the problem as
follows:

• Decoupling the path-planning problem from the platform dynamics, by first searching for a collision-
free path and then adapting this path to the dynamics of the AV platform. This yields a dramatic
dimensionality reduction in the search space. In the HDRC3 architecture, the task of finding a
collision-free path is solved by a path planner.
• Dividing the control problem into fast and slow dynamics. This is usually achieved using an inner

feedback loop which has the task of stabilizing the attitude dynamics. The inner loop is usually
implemented at a relatively high frequency (around 200 Hz). An outer feedback loop is then used
to stabilize the platform position and velocity at a lower frequency (around 20 Hz). Dividing the
problem in this way facilitates analyzing and solving the platform control task. In other words, the
inner loop takes care of stabilizing and controlling the rotational dynamics while the outer loop takes
care of stabilizing and controlling the translational dynamics. They are implemented at different
frequencies because the platform rotational and translational dynamics have different time constants.
The rotational dynamics is usually faster than the translational dynamics.
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Control'Point'

Figure 6: Control point on the reference path.

This section deals with the problem of finding a guidance algorithm which enables the helicopter to follow a
geometric path generated by a path planner. The distinction between path and trajectory must be emphasized
here. As previously mentioned, a trajectory is the evolution of the state of the vehicle in the state-space. The
trajectory is usually time-dependent. The path is a geometric description of the flight course and it is time-
independent. The problem addressed here is referred to in the literature as the path following problem. The
approach is suitable when a geometrical description of the path is provided in a parameterized polynomial
form. In this case the so-called virtual leader approach (Egerstedt et al., 2001) can be applied.

By using the path following method, the helicopter is forced to fly close to the geometric path with
a specified forward speed. In other words, following the path is always prioritized over following other
trajectory parameters as for instance the desired speed. This is a requirement for robots that, for example,
have to follow roads and avoid collisions with buildings. The PFCM method developed is weakly model-
dependent and computationally efficient.

The approach adopted here uses a guidance algorithm similar to the one described in Egerstedt et al.
(2001) which is also known as virtual leader. In this case the motion of the control point on the desired
path is governed by a differential equation containing error feedback which gives great robustness to the
guidance method. The control point (Figure 6) is basically the closest point on the path relative to the
current platform position.

A path is composed of several consecutive segments. Each segment is mathematically described by the
equation ~p(s) = As3 +Bs2 +Cs+D, where A, B, C and D are 3D vectors calculated from the boundary
conditions of the segment. s is the segment parameter and assumes values between 0 (start of the path)
and 1 (end of the path). The control point is found using a feedback method. Details of the algorithm can
be found in Conte (2009); Conte et al. (2004). Once the control point is found, from the path equation it is
possible to compute all the geometric parameters which are then used for control purposes. The parameters
are the 3D position, 3D path tangent and 3D path curvature.

Path segments are generated in the deliberative layer of the HDRC3 architecture by the path planner
functionality (Section 7). The segments in a path are passed sequentially to the PFCM for execution.
Together with the path parameters, the path planner provides a desired target velocity to the PFCM. During
execution, the PFCM performs a compatibility check between the desired target velocity and the maximum
allowable velocity at that precise point on the path. The maximum allowable velocity profile for a path is
calculated using the path curvature R and the maximum helicopter roll angle φmax: V =

√
|φmaxgR|, where

g is the gravity constant. In addition, the path curvature is used as a feed-forward term in the outer control
loop in order to reduce the tracking error. Besides the basic control task, the PFCM returns a set of status
flags which are used to coordinate the path segment switching mechanism.

A safety braking procedure is activated in case the next segment is not provided by the navigation
subsystem (for example due to communication failure) before a specific point in time. This time point
is calculated using the minimum distance necessary to safely stop the helicopter at the end of the current
segment.

Figure 7 shows a multi-segment path and the relative velocity profile during a real flight-test using the
UASTL RMAX helicopter. The segments AB, BC and CD have the desired target velocity set at 8 m/s,
3 m/s and 8 m/s, respectively. One can observe how the PFCM adjusts the target speed, slowing down the
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Figure 7: Flight-test of a multi-segment path.

helicopter in order to meet the compatibility requirements discussed above.

5.4 Vision-Based Landing Mode
Many autonomous landing systems for AVs are based on GPS and a dedicated close range sensor for accu-
rate altitude measurement (radar altimeter, sonar, infrared or theodolites). However, in urban environments,
buildings and other obstacles disturb the GPS signal and can even cause loss of signal (multi-path effects,
EM noise due to active emitters). Once the GPS signal is lost, the dead reckoning capability of affordable
on-board inertial navigation systems does not allow precision navigation for more than a few seconds.

In contrast, the vision-based landing mode discussed here is self-contained and not jammable (Merz
et al., 2004). In the current implementation it provides a position measurement one order of magnitude
more accurate than standard GPS (cm accuracy or better). Additionally, it does not require a complex
infrastructure, only a pattern placed on the designated landing area (Figure 8). To improve robustness,
readings from an inertial measurement unit are fused with the position sensed by the vision system.

The landing system includes three main components: (a) a vision system that allows robust pose esti-
mation from a suitable distance at a sufficient rate with low latency, using a landing pad of minimal size;
(b) an algorithm to fuse vision data with inertial measurements, and; (c) a matching control strategy.

Vision System. The vision system consists of a monocular camera mounted on a pan/tilt unit (PTU) and
a landing pad (a foldable rectangular plate) with a reference pattern on its surface (Figure 8). The reference
pattern is designed specifically for fast recognition, accurate pose estimation for close and distant range,
minimum size, and minimal asymmetry. The choice of black circles on a white background allows for fast
detection and provides accurate image features. From the projection of three circles lying on the corner
points of an equilateral triangle, the pose of an object is uniquely determined assuming all intrinsic camera
parameters are known. Circles are projected as ellipses, described by the center point, the semi-major axis,
the semi-minor axis, and the semi-major axis angle. The pose of the landing pad with respect to the camera
coordinate system is estimated by minimizing the reprojection error of the extracted center points and semi-
axes of the three ellipses. Five circle triplets of different size are used (radius: 2 to 32 cm, distance: 8 to
128 cm) with a common center point to achieve a wide range of possible camera positions. Each triplet is
uniquely determined by a combination of differently sized inner circles.

The output of the image processing unit is the camera pose relative to the pattern. The pose parameters
are converted to helicopter position and attitude using angles from the PTU and known frame offsets and
rotations.
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Figure 8: Landing pad with reference pattern seen from the on-board camera.

Sensor Fusion. The position and attitude estimates provided by the vision system cannot be fed directly
into the controller due to their intrinsic lack of robustness: the field of view can be temporarily occluded
(for example by the landing gear), the illumination conditions can change dramatically just by moving a few
meters (sun reflections, shades, etc.). On the other hand, vision readings are very accurate, when available.

Hence, a navigation filter based on a Kalman filter (KF) has been developed, fusing highly accurate 3D
position estimates from the vision system with inertial data provided by the on-board accelerometers and
angular rate gyros. Besides filtering out a large part of the noise and outliers, the filter provides an adequate
dead reckoning capability, sufficient to complete the landing even when the vision system is "blind" due to
occlusions between the camera and the pattern (landing gears) or due to sun reflections.

Control Strategy. The requirements set on the flight control system during landing are the following:

1. It should be possible to engage the landing mode from any point where the landing pad is visible,
meaning approximately within a 20 m radius hemisphere centered on the pattern.

2. Once the landing mode is engaged, the helicopter state should be compatible with the proper func-
tionality of the vision system until touchdown. Thus, during the approach phase the following should
be considered: (a) the helicopter’s position and attitude should not cause physical occlusion of the
visual field; (b) the regions where the accuracy of the vision system is worst should be avoided, if
possible; (c) the helicopter velocity and angular rates should not saturate the pan/tilt unit’s capability
for compensation: too high angular rates of the visual beam may result in blurred images; (d) the
position of the dominant light source (sun) should be considered, to avoid full reflections.

3. The wind direction has to be taken into account: tailwind landings should be avoided.
4. The control system should be dimensioned for wind levels up to 10 m/s.
5. The engine should be shut down autonomously once touch-down is detected. Detection should be

timely: Early detections cause high touchdown loads and late detections can cause ground resonance.
6. The vertical velocity at touchdown should be of the same order of magnitude as for a manual landing.

Experimental Results. Numerous autonomous landings were conducted from different relative positions
to the landing pad within the specified envelope, on grass and snow fields, with different wind and illumina-
tion conditions. The vertical velocity at touchdown ranged between 18 and 35 cm/s, corresponding to load
factors of about 1.4 g on grass fields. The horizontal velocity was in the order of magnitude of 15 cm/s. The
average touchdown point precision was about 42 cm (13% of the rotor diameter).

This section has isolated and described the essential aspects of the control kernel and two complex
control modes. In order to put these to use, though, they have to be integrated and interfaced with many
different parts of the HDRC3 architecture. These details are described in Section 6 and in Section 7.
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6 The Reactive Layer
The functionality associated with the reactive layer is an essential part of the HDRC3 architecture since
it provides transitional capability between functionality in the deliberative layer and functionality in the
control layer. The tasks associated with this layer range from very low-level state machine based processes
which provide discrete control capability for the control layer to much higher level procedural mechanisms
which provide discrete control capability for complex functionalities in the deliberative layer. In fact, the
abstractions and language interfaces used for these transitions are what make such architectures so unique
and useful. Specification and design of these mechanisms involves more than just engineering skills.

There is an independent generic flavor to the mechanisms required for combining both discrete and
continuous control capabilities and managing the processes evoked by task descriptions at many different
levels of abstraction with required temporal latencies to guarantee quality of service and robustness.

This section will describe three generic interfacing capabilities associated with the HDRC3 architec-
ture in addition to several task execution mechanisms for tasks defined at different levels of abstraction.
Section 6.1 considers the specification of complex combinations of state machines using Hierarchical Con-
current State Machines as a specification language. Additionally, an algorithm for executing HCSMs in
real-time using an on-line interpreter is described. Section 6.2 describes the two abstract languages FCL
and PPCL and a Platform Server which relates these languages to combinations of low-level control modes.
This mechanism provides a high-level abstraction for any functionality in the system to access the control
layer and combinations of control modes in an efficient and declarative manner. Section 6.3 describe Task
Specification Trees. TSTs provide both a declarative means of specifying complex tasks and an execution
mechanism which allows for distributed execution of TSTs.

6.1 Hierarchical Concurrent State Machines
Missions generally involve multiple control modes used in sequence or in some cases in parallel. For
example, in building surveillance one would use take-off, hovering, path following, camera control, landing,
and possibly other control modes. Even if only a sequence of control modes is needed, execution is non-
trivial as it requires a smooth handover between the control mode that is terminated and the one that is
started, leading to what is often called the mode switching problem.

The conditions for being able to switch to a new control mode vary depending on the particular mode
transition. For example, in the case of switching between hovering and path following modes, one must
verify that the current helicopter heading is aligned with the path to be flown. If the heading difference is too
large, an additional yaw maneuver is necessary before the transition to the path following mode. Otherwise
the execution of the path could result in a maneuver that potentially leads to a crash.

Solutions to the mode switching problem are often based on Finite State Machines (FSMs) (Harel,
1987; Koo et al., 1998), a mathematical abstraction used to create a behavior model of a system. FSMs
are composed of a finite number of states, state transitions that can be guarded by conditions, and actions.
For example, a condition can depend on the evaluation of a sensor value. The input to a state machine is
a sequence of symbols, events or commands. Standard FSMs such as Moore (Moore, 1956) and Mealy
(Mealy, 1955) machines have been successfully used in the past for modeling systems for various purposes.
However, several extensions are necessary to make them useful for modeling complex real-time systems.

One major problem related to FSMs is their flat single-level structure, which provides no easy way
to partition a problem into sub-problems that can be dealt with separately. Each state has to be modeled
explicitly, leading in the worst case to a combinatorial explosion in the number of states. This results in
large and unmanageable models even for moderately complex systems.

It would be much easier to define a system gradually with different levels of granularity or with the
help of various levels of abstraction. An obvious additional advantage would be the reusability of existing
modeled parts of the system in different contexts. A novel modeling and development framework for hybrid
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Figure 9: HCSM visual syntax with an example of three state machines.

control systems called hierarchical concurrent state machines (HCSMs (Merz, 2004; Wzorek, 2011)) has
been developed. HCSMs are based on a combination of Moore and Mealy machines with several extensions
which include support for hierarchy and concurrency. This allows all low-level components to be efficiently
modeled and contributes to a solution to the mode switching problem in the HDRC3 architecture. It permits
all functional units of the control system to be coordinated ranging from the lowest level (such as device
drivers), through the use of control laws (such as hovering and dynamic path following) and communication,
to high-level deliberative components. The system has proven to be robust, reliable and easy to extend and
has been used in a number of autonomous missions during a period of several years.

The HCSM specification language and computation model are to an extent influenced by the Statecharts
formalism (Harel, 1987) which has certain similarities to MATLAB Stateflow. However, the HCSM lan-
guage and model have several differences intended to support a clean visual syntax, a clear semantics, and
a highly efficient implementation providing strong real-time guarantees. HCSMs can also be interpreted as
opposed to being compiled. This facilitates reconfiguring the system at run-time.

State Machines, Hierarchy and Concurrency. A state machine consists of states and transitions. A
state represents any activity of a system at any level of abstraction. Two main types of states are defined:
simple states and superstates. A superstate represents a nested state machine, allowing a hierarchy of state
machines to be created. Two special types of simple states are defined: init (the starting state) and exit
(which terminates execution). Figure 9 presents a visual syntax for HCSMs and provides an example of a
simple state and a superstate: State 2 and State 1 of the root automaton, respectively. In the remainder of
this chapter the terms state machine and automaton will be used interchangeably and will refer to HCSMs.

A state machine container is a collection of one or more concurrent (child) state machines. Each of
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these machines is contained in a region. Regions are ordered by a consecutive number (RegionNumber)
and are separated by a dashed line in the visual syntax. For example, Automaton B contains two regions in
Figure 9.

Hierarchies provide a powerful mechanism for encapsulating specific behaviors. The framework per-
mits reuse of state machine containers, providing all the necessary means to execute multiple instances of a
state machine. Such encapsulation also provides a practical way of aborting a particular behavior. Concur-
rency prevents combinatorial explosion of states, which would occur in FSMs, and permits easy handling
of asynchronous state machines. In the HCSM visual language, a hierarchy is modelled by vertical state
machine decomposition and concurrency by horizontal decomposition (Figure 9).

An example where one can take advantage of concurrency and hierarchy is when modeling complex
behaviors such as vision-based landing (Section 5.4). The landing mode consists of several lower-level be-
haviors controlled by the main superstate of the landing mode. For instance, it includes control laws steering
the helicopter and it coordinates the camera system and image processing functionalities. When the landing
behavior is activated, several state machines modeling the necessary activities are executed. These include
searching for a pre-defined pattern with the camera system and inputing the image processing results to a
Kalman filter which fuses them with inertial measurements. Once the pattern is found another state machine
controls the camera in order to keep the pattern in the center of the image. This increases the robustness of
image processing when the helicopter is close to the ground or in the presence of strong wind gusts.

State Transitions, Events and Guards. A transition between two states is triggered by an event. Events
in the HCSM framework can be generated internally by the state machine itself or externally. Both asyn-
chronous (or sporadic) and periodic events are supported.

There are two types of special events. A pulse event is a periodic event generated before each iteration
of the HCSM algorithm, similar to a clock pulse (discussed later). For example, this can be used to trigger a
transition without a specific asynchronous event. An exit event is created when a state machine is in its exit
state and it is only sent to the parent superstate informing it that a child automaton has finished its execution.

State transitions can optionally be guarded by conditions in the form of Boolean expressions. If an event
for a particular state transition has been generated and the condition guarding the transition is TRUE, then
the state transition takes place.

Activities vs. Actions. As in Harel (Harel, 1987), a distinction is made between actions and activities.
Actions have no duration (zero-time assumption) and are executed in transitions (as in a Mealy machine),
while activities take time and are associated with states (as in a Moore machine).

During each transition, a possibly empty set of actions can be executed. Supported actions include
setting binary flags (SET flag-name), sending events (SEND event-name data target-computer), retrieving
(GET source) and storing (PUT dest) data. Data is transmitted using a predefined memory bank with labeled
slots. Data from received events is automatically stored in the cache memory slot. A GET action copies
data from a source slot to the cache slot. A PUT action copies data from the cache slot to a destination slot.

Activities are defined in terms of regularly executed functions. They are coordinated by a set of binary
flags which are changed by actions. Functions are executed outside the state machine algorithm and their
execution is discussed in the next section.

HCSM Design and Execution. As illustrated in Figure 10, the design of a system in the HCSM frame-
work starts either by generating a visual description of state machines using a graphical tool or (in simpler
cases) by directly describing state machines in a text-based language. In either case, tables describing tran-
sitions can be derived and passed to the system and are then interpreted by HCSM Interpreters at run-time
on the robotic platform. Due to its compact and efficient implementation, the interpreter can run in the
real-time part of the system as a periodic task with high execution rate.

The HCSM supports AND/OR/NOT operators in condition statements directly in the visual description
and HCSM text files. However, the atomic conditions and the activities used are implemented procedurally.
A library of such conditions and activities is generally written in an early development phase, after which
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Figure 10: Overview of the HCSM design process and execution.

Algorithm 1 Skeleton of a procedure for execution of a HCSM-based system on a single computer.
– Main Execution Loop

1: while system is running do
2: . . .
3: Communicate(); {Send and receive data packets containing debug information and external

events. Events are put in the external event queue.}
4: ExecuteStateMachine(); {Execute algorithm 2}
5: RunControlFunctions(); {Run the appropriate control functions based on the binary flags set by actions

in the HCSM.}
6: . . .
7: end while

the modeling of the system behavior itself can take full advantage of the flexibility of the interpreted state
machine language with no need for recompilation.

Three forms of communication are supported: (1) between states of the HCSM language processed by
the same interpreter; (2) between computer systems of the same robot; and (3) between different robots or
robots and operators. The first form is realized by an internal event queue, while the remaining two are
realized by transmitting external events in packets with predefined sizes. Received external events are put
in an external event queue. The framework directly supports real-time transmissions with built-in integrity
checking given that the network satisfies real-time properties, and it automatically generates the required
communication code during the design process (Figure 10).

Abstractly, HCSM execution proceeds as shown in Algorithm 1 (see Section 6.1.1 for concrete ex-
amples). The automatically generated communication functions are called in the Communicate function.
Events received by the system are parsed, checked for integrity and put in the external event queue. The
HCSM is then executed (ExecuteStateMachine). Binary flags set by the state machine transitions (using
actions) coordinate the execution of the control functions (RunControlFunctions) which are defined by the
user.

Details are shown in Algorithm 2. Transitions in HCSMs are divided into macro steps and micro steps,
where external events are considered in the macro step and internal events in the micro step. A macro
step (ExecuteStateMachine lines 5 to 9) begins by processing the first event from an external event queue.
Events are processed in the order they were received. An event can trigger one or more transitions. These
transitions may generate both internal and external events which in turn trigger more transitions. The macro
step is finished when the external event queue is empty and no more transitions are made. Micro steps are
steps within a macro step (ExecuteStateMachine lines 7 to 8).

In case the external event queue is empty only the micro steps are executed, which results in all of the
internal events being processed (at the beginning one pulse event is in the internal event queue).

The system assumes the "synchrony hypothesis”: During a macro step, inputs do not change and exter-
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Algorithm 2 The HCSM Algorithm.
– ExecuteStateMachine

1: lock memory
2: create empty internal event queue
3: append pulse event to internal event queue
4: repeat
5: remove first event from external event queue and append to internal event queue
6: while internal event queue not empty do
7: remove first event e from internal event queue
8: call MakeTransitions(1,e)
9: end while

10: until external event queue empty
11: unlock memory
– MakeTransitions(MachineLevel,Event)

1: for all concurrent state machines M at MachineLevel do
2: if Event is received by transition of current state in M and Guards are TRUE then
3: call ExecuteActions(actions associated with the transition)
4: make transition
5: else if current state is superstate then
6: call MakeTransitions(MachineLevel+1,Event)
7: end if
8: end for

– ExecuteActions(ActionList)
1: for each action Action in ordered ActionList do
2: if Action is send event action then
3: if destinationID is external computer then
4: append Event to external communication queue
5: else
6: append Event to internal event queue
7: end if
8: else
9: execute action

10: end if
11: end for

nal events are not received. In practice, external events are not processed as soon as they arrive but they are
buffered until the state machine interpreter is called.

On the UASTL RMAX the state machine interpreter is called periodically every 20 ms in the real-time
environment. The duration of one macro step is set to 200 µs which corresponds to the worst case execution
time. This time depends on the complexity of the state machine being executed, which is expressed in terms
of the number of regions and the maximum number of micro steps (generated events). The periodic update
time and the duration is user-configurable and was empirically chosen for the UASTL RMAX system.

Related work. Many specification languages, software frameworks, and design tools are used in control
or embedded system design, including Ptolemy II (Eker et al., 2003), Esterel (Berry, 1992), Statecharts
(Harel, 1987), Stateflow (http://en.wikipedia.org/wiki/Stateflow), Simulink (http://
en.wikipedia.org/wiki/Simulink), and UML 2 (Booch et al., 2005), but none of these are opti-
mized for building control systems for autonomous robots.

HCSMs are primarily influenced by Harel’s Statecharts formalism. State machine based approaches
have already been used successfully in many robotic systems. Brooks (1989) for instance uses state ma-
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chines to build reactive systems and Kleinehagenbrock et al. (2004) include them in a deliberative/reactive
system. Albus and Proctor (2000) propose an architecture for intelligent hybrid control systems which
has some similarities with the HCSM framework. It also includes state machines, defines a hierarchy of
functional modules and includes a communication system, but it lacks some of the features mentioned
above. The HCSM framework supports the component-based design methodology. In Brooks et al. (2005)
a component-based framework is proposed which aims for similar goals but it also does not provide some
of the features mentioned above (such as real-time aspects). Cremer et al. (1995) propose a framework for
modeling reactive system behavior in virtual environment applications. Although some similarities in the
modeling formalism exist it lacks some of the fundamental features required for use in robotics applications
such as strong real-time execution guarantees and a clear definition of the visual syntax necessary in the
design of complex control systems.

6.1.1 Using HCSMs on the UAS Tech Lab RMAX

HCSMs are used on the UASTL RMAX platform as a low-level real-time mechanism for modeling system
behavior and are executed on all three of its on-board computers. This is illustrated in Figure 11 which also
shows the Platform Server that will be discussed in Section 6.2.1. HCSMs are used on the PFC computer
for modeling and executing the control system. HCSMs control a set of sensors and available perception
functionalities on the PPC computer. On the DRC computer, HCSMs provide an interface to flight control
modes, payload and perception functionalities in the Control Kernel (Section 5) accessible to the high-level
deliberative and reactive algorithms. Because the HCSMs running on different computers communicate
with each other, all of the individual events used in the system have globally unique IDs.

Several non-real-time processes also run on each of the computers and communicate with the real-time
HCSMs through shared memory. Specifically:

• PFC: The TCP/UCP communication handling necessary for sending HCSMs status data used for state
machine debugging interfaces (see Figure 10).
• DRC: The Platform Server, which provides the deliberative and reactive services with an interface to

the Control Kernel through the FCL and PPCL languages (Sections 6.2.1 to 6.2.3).
• PPC: The perception functionalities available in the Control Kernel.

The remainder of the section presents an example using HCSMs running on the PFC computer. An overview
of all HCSMs running on the PFC system is given, followed by a description of two state machines involved
in control mode switching. A more detailed example of the use of HCSMs in the context of the path
following control mode (PFCM) is presented in Section 7.2.

Overview of the PFC HCSMs. Figure 12 presents a hierarchical view of all of the 15 automata that run
on the PFC computer. The whole UASTL RMAX system uses 207 events in total. Note that the HCSMs
presented in this section are examples from the deployed system. Various extensions and different ways of
modeling to achieve the same functionality of the system are of course possible.

The software-controlled power system (Section 4.3) is managed by the PFC computer. This allows
all devices except the PFC itself to be switched on and off through software coordinated by the Power
Switch automaton. At system start-up the Root automaton makes sure that at least the DRC computer is
switched on (in case it has not been manually switched on by the user). The Root automaton also contains
a superstate for the Run automaton, which in turn contains only one superstate for the following automata:
Power Switch, Sync, Sync DRC, Auto Switch, Control Mode, Visual Navigation and User Interface.

The Sync and Sync DRC automata are responsible for achieving a common state among the different
computers through synchronization. For example, the common state includes the local computer time and
the ground position and altitude reference. The Sync DRC automaton handles the synchronization between
the PPC and DRC computers. The Sync automaton is responsible for sending the common state from the
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Figure 12: A hierarchical view of the HCSM automata running on the PFC computer.

PFC to the PPC and DRC computers.
The User Interface automaton handles commands received from a ground control user interface (UI),

while the UI Timer automaton implements timeouts for accepting commands by the User Interface state
machine when using a miniaturized external keyboard.

The Visual Navigation automaton coordinates the execution of a localization algorithm that runs on
the PPC and is based on reference images (Conte, 2009). The Auto Switch automaton handles helicopter
platform initialization and operational modes, including the following aspects:

• Initializing the UASTL RMAX helicopter system before it is ready to accept commands. This in-
cludes monitoring the engine-on status and the RC radio transmitter status.
• Monitoring sensor data and initializing a Kalman filter used for the state estimation of the helicopter.
• Handling the simulation mode of a hardware-in-the-loop simulator that uses a dynamic helicopter

model (Conte, 2007; Duranti and Conte, 2007) and runs all of the software components used during
a real flight onboard the AV. This allows newly developed functionalities to be tested before a real
flight is performed.
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Figure 13: The Mode Switch and Control Mode automata.

• Handling the RC radio transmitter switch that selects manual or autonomous flight mode.

The Auto Switch automaton starts up the execution of the Mode Switch state machine after a successful
initialization of the system when the autonomous flight mode switch is selected. The Mode Switch and
Control Mode automata in turn handle the switching between flight control modes. This includes initial-
izating, running and handling error conditions for particular control functions.

Certain control modes are also associated with their own mode-specific state machines: Traj3D for the
path following control mode (Conte et al., 2004), Landing for the vision-based landing control mode (Merz
et al., 2004), Traj3D Flyto for a simplified path following mode which only uses straight line paths and
Track for a reactive car tracking mode. Other control modes such as take-off and hovering do not require
multiple states and are therefore modeled directly by the Mode Switch and Control Mode automata without
any additional state machines.

Periodic Execution. The Main Execution Loop in Algorithm 1 executes periodically at a rate of 50 Hz.
In each iteration data packets can be sent and received and HCSMs are executed (Algorithm 2) and can
update a set of action flags using SET. The active control mode is then updated based on the current values
of these flags, after which the flags are automatically unset. Thus, action flags should essentially be seen as
triggers that switch control modes. Finally, the currently selected control mode is executed.

Examples. Figure 13 presents two state machines that handle the execution of control modes and imple-
ment a mode switching mechanism for the UASTL RMAX. For clarity the following notation is used:

• For fast identification, each automaton has a letter label and all state transitions are numbered.
• Names of states end with “-ST", while names of events end with “-EV".
• Names of conditions end with “-CO".
• Names of SET action flags end with “-AC".
• Names of labeled memory slots (data offsets) end with “-DO".

Each control function follows a predefined template with at least three internal states (initializing, running
and stopping) and two internal flags: An input flag used to switch between the internal states and a status
flag used for error handling (for example when the initialization of the function fails). Both flags are used
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Figure 14: Execution trace: The interaction between the Control Mode and Mode Switch automata.

by the Control Mode automaton which models the internal states of the function (Ctrl-Init-ST, Ctrl-Run-ST
and Ctrl-Stop-ST). The additional states present in the automaton (Ctrl-Off-ST and Ctrl-Error-ST) are used to
make sure the previous function has been properly stopped and no other functions are initialized.

The Control Mode automaton (Figure 13) sets the appropriate input flag and keeps track of the control
function status. Because each control function follows the predefined template, the Control Mode state
machine handles all modes transparently and there is no mode-specific state. When a particular control
function should be executed, a state machine (such as Mode Switch) sends a mode specific start event (such
as PFC-Hover-EV) to the Control Mode automaton. This triggers one of the transitions B.2, B.3, B.4, B.5,
or B.6 during which appropriate internal flags are set by executing SET actions (for example, SET Hover-
Mode-AC). In the next iteration of the Main Execution Loop the control function starts its execution passing
through the initialization state (Ctrl-Init-ST). If the initialization is successful, the Control Mode automaton
switches its state to Ctrl-Run-ST and the control function is executed periodically in each iteration.

Control Mode mainly interacts with the Mode Switch state machine which implements flight mode
switching, including sequentialization and coordination of control function execution. For example, it
ensures that after the execution of the path following control mode, a default hovering mode is switched on.

The Mode Switch state machine, additionally, generates events that are sent to the high-level system
(DRC), for example in the A.2 transition. It also reacts to events sent from the DRC, such as A.6.

Use Case: Example of Control Mode Switching. The following example relates to a simple use case
where a backup pilot performs a manual take-off procedure. When the maneuver is finished, the AV control
is switched to autonomous mode by using the auto switch button on the RC radio transmitter. A default
hovering function should then be engaged as described below.

Figure 14 shows the interaction between the Control Mode and Mode Switch automata for this example.
The time-line shows state transitions and events exchanged between the two state machines. The execution
starts with an exchange of two events, Ctrl-Stop-EV (A.1) and Ctrl-Stopped-EV (B.1), to make sure no other
control function is active. The Mode Switch automaton executes a braking procedure (Braking-ST). This
procedure, also called emergency braking, is designed to stop the helicopter before the default hovering
mode is engaged. The procedure uses the path following control mode with a predefined straight line path
and a zero target velocity value as an input.
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When braking has finished the current helicopter position is saved to be used for the hovering function
(in the Hovering-DO memory slot). Two events are also sent to the Control Mode automaton. The first event
(PFC-Hover-EV, A.3) makes Control Mode select the hovering function for execution (SET Hover-Mode-
AC). The second one (Ctrl-Start-EV, A.3) starts the initialization of the hovering control function.

After a successful initialization, Ctrl-Ok-EV (B.8) is generated and Mode Switch changes its state to
Stabilizing-ST. The automaton remains in this state until a Hover-Stable-CO condition is satisfied. The
condition checks if the position, altitude, heading and velocity are within hovering tolerance bounds. The
tolerances used in the UASTL RMAX system are set to 5 m for position, 2 m for altitude, 5 degrees for
heading, and 1 m/s for vertical and horizontal velocities.

When the Hover-Stable-CO condition is satisfied, a Hover-Stable-EV event is sent to the DRC computer
and an internal system flag is set to indicate that the system is in the autonomous mode and ready to accept
new commands (SET PFC-Auto-Idle-AC). The Mode Switch automaton changes its state to Hovering-ST.

Extended State Machines. The HCSM framework has been further developed, resulting in Extended
State Machines (ESMs) (Merz et al., 2006). The new framework adds several useful modeling features. The
main changes include explicit modeling of task states, data flow, control and system flags, an event filtering
mechanism and no explicit external events. It also includes a visual tool for designing and debugging state
machines, facilitating the development of new and existing systems.

ESMs use three types of states: simple states, superstates (as in the HCSMs), and task states. Control
and other functions are modeled explicitly in the task states. A schedule for function execution is provided
by a scheduler included in the framework. The data used as input/output to the task state functions (data
flow) is also explicitly modeled in the ESM formalism by Data paths. Asynchronous external events are
modeled by a combination of pulse event and guard conditions. Thus only one internal event queue is
used in the ESM. Additionally the ESM introduces an event filtering mechanism which limits the scope of
internal events. The full details are available in Merz et al. (2006).

6.2 Interfacing between the Control Kernel and Higher Layers
6.2.1 The Platform Server

The Platform Server (Figure 11 on Page 22) encapsulates the functionality of the Control Kernel to pro-
vide a higher-level control and sensing interface for use by any of the functionalities in the reactive and
deliberative layers. These functionalities interface to the Platform Server through two languages, the Flight
Control Language (FCL) and Payload and Perception Control Language (PPCL) described in the following
subsections. The former provides high-level parameterized commands which actuate the helicopter itself
while the latter provides commands which actuate sensor payloads and call perception-based functionality.
Many of these commands provide feedback to their callers in the form of events which are communicated
through a shared memory resource. Each command is essentially associated with one or more HCSMs.

From one perspective, the commands associated with FCL and PPCL provide the primitive or basic
actions provided by the UASTL RMAX system. Specification of more complex tasks used by different
functionality in the reactive and deliberative layers use these basic actions as part of their definition. The
intent is that most if not all use of the functionality in the control layer is accessed through the Platform
Server interface.

This is a design decision that encapsulates the use of the control and sensor system in the UASTL RMAX
through one common language interface. This makes the control kernel extensible in a straightforward
manner. Any new control modes or addition of sensors are added to the system by implementing appropriate
HCSMs to deal with real-time properties and temporal latencies near the hardware. The FCL and/or PPCL
are then extended with an appropriate command interface.

Since the functionalities in the reactive and deliberative layers are only committed to soft real-time
behavior while the HCSMs encapsulate real-time constraints, the Platform Server serves as an intermediary
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between these different temporal latencies. The distributed nature of the HCSM framework allows different
functionalities to run on different computers. Each of the on-board computers therefore executes its own
HCSM interpreter and peer-to-peer RS232 serial lines are used to implement real-time communication
channels between these. This allows the Platform Server to run on the DRC computer despite the fact that
it must communicate with HCSMs associated with flight control modes and payload control which rely on
timely execution and run in the real-time part of the system on the PFC and PPC computers.

Calling the Platform Server. The Platform Server runs on the DRC computer and provides a ROS-based
interface to the commands available in the FCL and PPCL languages. When the server is asked to execute a
specific command, it internally forwards the command through a lower-level programming interface based
on the FCL and PPCL (“C-API” in Figure 11). This API in turn uses shared memory to forward the
command to an HCSM executing in the real-time part of the DRC.

The HCSM on the DRC generates one or more events that are sent through the real-time communication
channel to an HCSM on either the PFC or the PPC, depending on the command. The events generated on
those computers, as well as any associated sensor data generated in the CK, are passed back to the Platform
Server in the same manner.

FCL and PPCL commands are executed sequentially without an internal command queue for buffering
commands. If a command has been accepted for execution, a success flag (FCL_OK or PPCL_OK) is re-
turned. In case the system was already executing another command, a busy flag (FCL_BUSY) is returned. In
case a new command has to be started immediately, the caller can first abort any currently running activity
by sending a Cancel command.

Data Interface. An additional task of the Platform Server is to provide a Data Interface (DI) to the state of
the UASTL RMAX system. The data periodically published through this interface contains the AV’s state
information (position, attitude, velocities), status information (such as the current engine RPM), payload
information (such as the current position of the pan-tilt unit), and the results of perception-based func-
tionalities (such as the color tracker). The Data Interface provides a common interface accessible by all
deliberative and reactive functionalities. For example, the information obtained through the DI is used by
the DyKnow system (Section 8) and by execution monitoring (Section 9.3).

6.2.2 FCL: Flight Control Language

The Flight Control Language (FCL) consists of a set of commands that are based on the control modes
available in the Control Kernel and their parameterization. The reactive and deliberative services use the
FCL commands for mission execution as it provides the interface to the available control functionalities in
the CK.

The following are the most important commands currently available on the UASTL RMAX platform.
The list is not exhaustive: Certain housekeeping commands, parameters, and return values are omitted here.

• Take-off: fcl_takeoff() takes off to a predefined altitude (using the take-off control mode). Returns:

– FCL_BUSY: Another command is being executed.
– FCL_NOT_ACCEPTED: Take-off can only be commanded when the AV is on the ground.
– FCL_FINISHED.

• Land: fcl_land(heading) performs a vision-based landing (using the landing control mode). The
parameter specifies the desired heading for landing. This heading should take into account the current
position of the sun in order to avoid having the shadow of the AV fall on the landing pattern. Returns:

– FCL_BUSY: Another command is being executed.
– FCL_NOT_ACCEPTED: This command can only be issued if the AV is hovering.
– FCL_FINISHED.
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• Yaw: fcl_yaw(heading) changes the heading to a specific value (using the hovering control mode with
a specified heading).
Returns: The same values as for the fcl_land() command above.
• Climb: fcl_climb(altitude) climbs or descends to the given altitude (using the path following control

mode with a predefined vertical path).
Returns: The same values as for the fcl_land() command above.
• Traj3d fly-to: fcl_traj3d_flyto(longitude, latitude, altitude, velocity) flies to a position in a straight line

(using the path following control mode with a single straight line segment). The parameters specify
the world position to fly to and the desired cruising velocity.
Returns: The same values as for the fcl_land() command above.
• Traj3d: fcl_traj3d(spline_description, velocity, end_velocity) flies between two waypoints following a

spline specification (using the path following control mode). The parameters specify the beginning,
ending, and direction vectors of the spline path, and the cruise / final segment velocities (Section 5.3).
Returns: The same values as for the fcl_land() command above.
• Track: fcl_track() engages the object following control mode (uses the path following control mode,

camera pan-tilt visual servoing control and vision-based color object tracking).
Returns: The same values as for the fcl_land() command above.
• Emergency brake: fcl_emergency_brake() engages the emergency brake mode (path following and

hovering control modes). This immediately aborts all flight control modes and engages the hovering
control mode.
Returns: FCL_OK.
• Cancel: fcl_cancel() cancels the execution of the current FCL command.

Returns: FCL_OK.

For example, to scan an area in a given environment where the AV starts on the ground, the FCL commands
used would include a take-off, a sequence of fly-to commands, and a land command.

6.2.3 PPCL: Payload and Perception Control Language

Similarly to the FCL, the Payload and Perception Control Language (PPCL) consists of a set of commands
that are based on the modes available in the CK and their parameterization. The commands in this group
relate to the use of payload control modes and perception functionalities.

The following are the most important PPCL commands currently available on the UASTL RMAX plat-
form. The list is not exhaustive: Certain housekeeping commands, parameters, and return values are omitted
here.

• Request PTU, camera, laser range finder, perception functionality control: Requests exclusive
control and ownership for these functionalities. For example, the control over the pan-tilt unit and
camera parameters cannot be granted during a vision-based landing. The landing control mode han-
dles these parameters.

– ppcl_request_ptu_control(): request control over the pan-tilt unit.
– ppcl_request_cam_control(): request control over the camera parameters.
– ppcl_request_ip_control(): request control over the image processing algorithms.
– ppcl_request_laser_control(): request control over the laser range finder.

Returns:

– PPCL_CONTROL_DENIED

– PPCL_OK
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• Release PTU, camera, laser range finder, perception functionality control: Releases the control
over these functionalities.

– ppcl_release_ptu_control(): release control over the pan-tilt unit.
– ppcl_release_cam_control(): release control over the camera parameters.
– ppcl_release_ip_control(): release control over the image processing algorithms.
– ppcl_release_laser_control(): release control over the laser range finder.

Returns:

– PPCL_OK

• Pan-tilt unit control: engages one of the pan-tilt control modes.

– ppcl_look_at(longitude, latitude, altitude): world coordinates of a position at which the camera
should be pointed.

– ppcl_turn_to(pan_angle, tilt_angle): values of the pan-tilt unit axis to set.
– ppcl_ptu_abort(): abort the current control mode.

• Perception control: engages one of the perception functionalities.

– ppcl_ip_color_tracker(x, y): coordinates of a center of a object to track.
– ppcl_ip_state_estimation(): engages the vision-based state estimation algorithm.
– ppcl_ip_abort(): abort the current command.

• Camera parameters control: sets the required camera parameters.

– ppcl_zoom(value): the value of the camera zoom from 0 (full zoom out) to 1 (full zoom in).
– ppcl_exposure(auto): specifies whether automatic or manual exposure should be used.
– ppcl_iris(value): the value of the camera iris to set.
– ppcl_shutter(value): the value of the camera shutter to set.

• Laser parameters control: sets the required laser range finder parameters.

– ppcl_laser_angular_resolution(value): the angular resolution of the laser sensor (1, 0.5, 0.25 deg).
– ppcl_laser_distance_resolution(value): the distance resolution of the laser sensor (1 mm, 1 cm).
– ppcl_laser_rotation_speed(value): the speed and direction of the laser rotation mechanism.
– ppcl_laser_rotation_angle(value): the angle of the laser rotation mechanism to set.

• Laser control: engages one of the laser perception functionalities.

– ppcl_laser_start_data_collection(): starts collection of the laser range finder data.
– ppcl_laser_stop_data_collection(): stops collection of the laser range finder data.

• Pan-Tilt activity info: returns which pan-tilt control mode is currently active.

– ppcl_ptu_activity_info().

Returns:

– PPCL_LOOK_AT_POINT

– PPCL_TURNTO

– PPCL_IDLE

• Camera parameters: returns parameters of a specific camera.

– ppcl_get_camera_info(index): index of the camera (color or thermal)

Returns: Intrinsic camera parameters.
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• Pan-tilt parameters: returns parameters of the pan-tilt mechanism.

– ppcl_min_pan_value(), ppcl_max_pan_value(), ppcl_min_tilt_value(), ppcl_max_tilt_value():

Returns: Ranges of pan-tilt unit angles which can be set.

In the case of scanning an area in a given environment, the required PPCL command sequence would
include request control: pan-tilt, request control: camera, pan-tilt control: tilt 90 degrees, camera control:
set specific zoom, release control: pan-tilt, and release control: camera.

6.2.4 DI: Data interface

Along with the FCL and PPCL languages, the control kernel also provides information about the state of
the UASTL RMAX platform. This data is made available to the higher layers periodically at the rate of
25 Hz. It is currently distributed in the system in the form of ROS topics. The two most commonly used
data collections provided by this interface are:

• Helicopter state:

– altitude, latitude, longitude: current position.
– velocity_north, velocity_east, velocity_up: current velocity in the given direction.
– pitch, roll, heading: current pitch angle, roll angle and heading.
– rpm: engine revolutions per minute.
– on_ground_flag: true if the AV is on the ground.
– auto_flag: true if the AV is in autonomous flight mode.
– drc_minus_pfc_time, ppc_minus_pfc_time: time differences between computers.
– power_status: indicates which on-board devices are switched on.
– pfc_time: data timestamp.

• Camera state:

– id: id of the camera (color or thermal).
– pan, tilt: current position of the PTU’s pan and tilt axis, respectively.
– zoom: current zoom factor of the camera.
– ipc_time: timestamp.

6.3 Task Specification Trees
The concept of a task has many different interpretations in the literature and has been instantiated in many
different ways in architectures proposed for mobile robots. One way to specify a particular type of task
that has strict real-time requirements is using HCSMs. This type of task is often called a behavior in the
robotics literature (Arkin, 1998; Konolige et al., 1997) and different ways are proposed for combining such
behaviors. At the other end of the spectrum, a task is often interpreted as an action or combination of
actions (composite action) that are combined using standard control structures such as sequentialization,
concurrency, conditional branching, etc. In fact, there have been several proposals to simply implement
robot behaviors and tasks using a subset of a conventional programming language such as C (Konolige,
1997). Firby’s Reactive Action Packages (Firby, 1987) is one example where tasks are specified using a
specialized language which combine actions with control. RAPs are often interpreted as compiled plans.
Automated planners themselves combine actions specified as plan operators. The output of any planner can
be interpreted as a composite action or task. The transition from plans to executable tasks is an essential
part of any intelligent system.
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The choice and construction of a task specification language which covers much of the spectrum of
interpretations above has to be chosen with generality in mind in order to be used as a common interface
to many diverse functionalities, but at the same time, the actual tasks have to be efficiently executable.
The choice is further complicated by the fact that when specifying collaborative mission scenarios, tasks
are often shared and must be distributable. An additional factor is that in the context of heterogeneous
robotic systems, the specification of tasks should include context. For example, the fly-to action of a fixed
wing platform and the fly-to action of a rotor based platform have much in common but also much that is
different.

Task Specification Trees (TSTs) have been proposed as a general task specification language which
meets many of the requirements stated above. Each node in such a tree is a specification of an elementary
action such as a ROS call to an FCL command, a control structure such as sequential, concurrent, branching
or loop execution, or a goal for which a plan must be generated and executed (Section 9.2). In the latter
case, the tree is dynamically expandable as a plan is generated. Goal nodes are therefore allowed to add
children to themselves, after which they act as sequence or concurrency nodes. TSTs also allow for the
statement of context in the form of constraints which can then be checked for consistency with a constraint
solver. Additionally, these constraints are often temporal and spatial in nature and implicitly combine both
a reasoning and procedural execution mechanism for tasks.

A TST is in itself purely declarative, defining what should be achieved and providing parameters and
constraints for tasks. For example, a sequence node declaratively specifies that its children should be
sequentially executed while a fly-to node would specify that an aircraft should fly to a specific location,
usually with associated parameters such as the intended speed and altitude, possibly constrained by context.

At the same time there is a close integration with execution aspects of actions and action composition
constructs through the coupling of executors to specific types of TST nodes. Each executor is an executable
procedure specifying how a task of the given type should be performed. In many cases, the interface
provided by the Platform Server is used to issue commands in the Flight Command Language and Payload
and Perception Control Language (Section 6.2). The implementation of the executor can be platform-
specific, allowing the exact mode of execution for a particular task to be platform-dependent as is often
necessary when heterogeneous platforms are used. Thus, the use of executors provides a clear separation
between task specifications and platform-specific execution details.

In the case of the UASTL RMAX system, nodes for actions such as take-off, vision-based landing,
hovering or path following are generally associated with executors calling the Platform Server to initiate
the corresponding autonomous flight modes. Through this interface TST nodes can also control the payload
and sensors of the UAS platform and receive associated information including image processing results.
Note that executors are required even for control nodes or structural nodes, though such executors may be
identical across platforms. For example, a sequential node requires an executor that procedurally ensures
its children are executed in sequential order, possibly with additional timing constraints.

TSTs have been applied and tested successfully in a number of deployed UAS systems (Doherty et al.,
2013, 2010; Landén et al., 2010).

Example 6.1 Consider a small scenario similar to the first goal in the example described in the introduc-
tion. The mission is that two AVs should concurrently scan the areas AreaA and AreaB, after which the first
AV should fly to Dest4 (Figure 15(a)). The corresponding TST (Figure 15(b)) uses three elementary action
nodes (marked E), corresponding to two elementary actions of type scan-area and one of type fly-to. Fur-
thermore, it requires a concurrent node (marked C) specifying that the scan-area actions can be performed
concurrently, as well as a sequential node (marked S). Further explanations will be given below.

6.3.1 Task Specification Tree Structure

Task Specification Trees are implemented as a distributed data structure where nodes can reside on any
platform, linked to their parents and children on the same or another platform. Each platform involved in
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Figure 15: Example mission.

a mission has a TST manager accessible through ROS-based service calls, allowing communication and
synchronization between nodes when necessary.

As illustrated in Figure 15(b), each type of node is associated with a set of node parameters. Together,
these parameters are called the node interface. The interface always contains a platform (agent) assignment
parameter, usually denoted by Pi, which identifies the agent responsible for executing the task. There
are also always two parameters for the start and end times of the task, usually denoted by TSi and TEi,
respectively. Tasks often have additional type-specific parameters, such as a speed parameter and an area
parameter for a scan-area action node.

When a concrete TST is specified, some node parameters may be given actual values through arguments.
In the example, one may specify that the areas to scan are AreaA and AreaB (not shown in the figure). Other
parameters may be left open. Concrete values may then be chosen by the executing agent, subject to a set of
constraints associated with each node. These constraints can be used to constrain permitted values for the
parameters of the same node as well as all parameters of ancestor nodes in the tree. By constraining temporal
parameters, one can also express precedence relations and organizational relations between the nodes in the
TST that are not implicitly captured by the use of specific control nodes. Together the constraints form a
constraint network where the node parameters function as constraint variables.

Note that constraining node parameters implicitly constrains the degree of autonomy of an agent, as it
reduces the space of possibilities that the agent can choose from. Also, both human and robotic agents may
take the initiative and set the values of the parameters in a TST before or during execution. This provides
support for one form of mixed-initiative interaction.

6.3.2 Task Specification Tree Language

For convenience, a text-based language for representing Task Specification Trees has also been defined
(Figure 16). The TST construct corresponds to a specific parameterized node and introduces the main
recursive pattern. All such nodes must be explicitly named in order to allow name-based references. The
parameters provided after the name specify the node interface which can be accessed from the outside.
These can be constrained relative to each other using constraints in a where clause.

The formal semantics of a TST is specified through a translation from this language into composite
actions in Temporal Action Logic (Doherty and Kvarnström, 2008; Doherty et al., 2012). This provides a
means of formally verifying the behavior of tasks and is also useful as a debugging tool.
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TST ::= NAME ’(’ VARS ’)’) ’=’(with VARS)? TASK (where CONS)?
TSTS ::= TST | TST ’;’ TSTS

TASK ::= ACTION | GOAL | call NAME ’(’ ARGS ’)’ | sequence TSTS | concurrent TSTS |
if [VAR] COND then TST else TST | while [VAR] COND TST |
foreach VARS where [VAR] COND do conc TST

VAR ::= <variable name>
VARS ::= VAR | VAR ’,’ VARS

ARG ::= VAR | VALUE

ARGS ::= ARG | ARG ’,’ ARGS

CONS ::= <constraint> | <constraint> and CONS

VALUE ::= <value>
NAME ::= <node name>
COND ::= <FIPA ACL query message requesting the value of a boolean expression>
GOAL ::= <goal statement name(x)>
ACTION ::= <elementary action call name(x)>

Figure 16: Task Specification Tree language

Example 6.2 Consider again the TST depicted in Figure 15(b). This TST contains two composite actions,
sequence (here named τ0) and concurrent (τ1), and two elementary actions, scan (τ2, τ3) and flyto (τ4).

nodes in this TST have the task names τ0 to τ4 associated with them.

τ0(TS0 ,TE0) = with TS1 ,TE1,TS4,TE4 sequence
τ1(TS1 ,TE1) = with TS2,TE2,TS3,TE3 concurrent

τ2(TS2 ,TE2) = scan-area(TS2 ,TE2 ,Speed2,AreaA);
τ3(TS3 ,TE3) = scan-area(TS3 ,TE3 ,Speed3,AreaB)

where consτ1 ;
τ4(TS4 ,TE4) = fly-to(TS4 ,TE4 ,Speed4,Dest4)

where consτ0

consτ0 = TS0 ≤ TS1 ∧TS1 < TE1 ∧TE1 ≤ TS4 ∧TS4 < TE4 ∧TE4 ≤ TE0

consτ1 = TS1 ≤ TS2 ∧TS2 < TE2 ∧TE2 ≤ TE1 ∧TS1 ≤ TS3 ∧TS3 < TE3 ∧TE3 ≤ TE1

The use of TSTs which call path planners are described in the next section. Additional features of TSTs and
their relation to temporal action logic and high level mission specifications are described in Section 9.4.

7 The Navigation Subsystem
Many of the missions where AVs are deployed require sophisticated path planning capability. One might
need to fly directly to a particular waypoint, or in more complex scenarios, one might require the generation
of a segmented path which is guaranteed to be collision free. Many of the TSTs used in actual missions
are required to call a motion planner which then outputs such segmented paths. The TST is then expanded
with this output and executed. The navigation subsystem is responsible for this complex combination of
processes which begin with a call to a motion planner at the deliberative layer. The output of the motion
planner and its execution involves numerous calls to the Platform Server through use of FCL commands
which in turn initiate execution of appropriate HCSMs. These in turn use the continuous control modes
implemented in the Control Kernel.

This section provides a detailed description of the processes involved in the generation and execution
of motion plans on the UASTL RMAX system. Additionally, it describes two path planning algorithms
integrated in the HDRC3 architecture based on extensions (Pettersson, 2006; Pettersson and Doherty, 2006)
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Figure 17: Navigation subsystem and main software components

to two sample-based planning methods: Probabilistic RoadMaps (PRM (Kavraki et al., 1996)) and Rapidly-
Exploring Random Trees (RRT (Kuffner and LaValle, 2000)).

Navigation Scheme. The standard navigation scheme in the HDRC3 architecture, assuming static oper-
ational environments, is depicted in Figure 17. The task of flying is represented through an action node in
a TST. For example, the task of flying to a specific waypoint can be represented declaratively as an ele-
mentary action node of type fly-to. The executor for nodes of this type calls a path planner (step 1 in the
figure) that takes a map of static and dynamic obstacles together with the initial position, goal position,
desired velocity and possibly a set of additional constraints. The path planner then generates a segmented
path (see Section 7.1) which is represented as a sequence of cubic polynomial curves. The generated path
is collision-free relative to the world model provided by a Geographic Information System (GIS Service).
Each segment of the path is defined by start and end points, start and end directions, target velocity and end
velocity. If successful, this segmented path is returned to the TST node executor (step 2).

Once a segmented path is returned, the TST node executor requires a suitable interface to the low-
level Path Following Control Mode (PFCM). The PFCM implements continuous control laws which place
certain real-time requirements on the way they are used and the mode execution is therefore coordinated by
HCSM state machines. The TST node executor therefore sends the first segment of the path via the Platform
Server (step 3) and waits for a Request Segment event to be returned. This event is generated by the HCSM
responsible for the path execution as soon as the PFCM controller receives a path segment as input. Details
will be discussed in Section 7.2.

When a Request Segment event arrives (step 4) the TST node executor sends the description of the next
segment to the HCSM that coordinates path execution at the control level. This procedure is repeated (steps
3–4) until the last segment is executed. However, because the high-level system is not implemented in hard
real-time it may happen that the next segment does not arrive at the Control Kernel on time. In this case,
the controller has a timeout limit after which it goes into safety braking mode in order to stop and hover at
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Figure 18: Execution time-line for a path consisting of 2 segments.

the end of the current segment. The timeout is determined by a velocity profile dynamically generated for
the path segment together with the current position and current velocity.

Figure 18 depicts a timeline plot of the execution of a 2-segment trajectory. At time t0, a TST node
executor sends the first segment of the path to the PFCM controller and waits for a Request segment event
which arrives immediately (t1) after the helicopter starts to fly (tstart1). Typical time values for receiving a
Request segment event (t1− t0) are well below 200 ms. Time to1 is the timeout for the first segment which
means that the TST node executor has a ∆t1timeout time window to send the next segment to the PFCM
controller before it initiates a safety braking procedure. If the segment is sent after to1, the helicopter will
start braking. In practice, the ∆t1timeout time window is large enough to replan the path using the standard
path planner (Section 7.1). The updated segments are then sent to the PFCM controller transparently.

The path execution mechanism described here allows for dynamic replacement of path segments if
necessary. This is an important part of the architecture due to the fact that it is assumed that higher-level
deliberative components are continually planning, executing and monitoring missions which are likely to
change due to contingencies. This architectural solution supports a certain type of any-time behavior in the
system which takes into account resource constraints when reconfiguring plans (Wzorek, 2011).

7.1 Path and Motion Planning
Path planning and motion planning algorithms deal with the problem of generating collision-free paths for
a robot in order to navigate or move in an physical space, called the workspace W . The workspace is
most often modeled as R3 but can be restricted to R2 for robots navigating in a single plane. This type
of representation is particularly well-suited for collision checking since the robot and the obstacles are
represented in the same space. However in many practical applications the workspace is not sufficient to
describe the planning problem and a more expressive representation is required.

The configuration space (C or C-space) is defined as a vector space or manifold of configurations q,
where a configuration is a set of parameters that uniquely defines the location of all points of the robot in
the workspace W . For a rigid-body robot such as an AV platform this would include not only its position
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but also its orientation. Additionally, not all robot configurations are attainable due to obstacle constraints.
The free space denoted by Cfree is a subset of the C-space that is free from collisions with obstacles.

When dealing with robotic systems in motion, the configuration of the robot is insufficient to describe
the problem: The dynamic state of a robot (its velocity) also has to be accounted for. The state space rep-
resentation extends the configuration space by adding first-order derivatives q̇ of the robot configuration q.
Thus, for a robot configuration q = (q0, . . . ,qn), the state x is defined by x = 〈q, q̇〉 where q̇ = (q̇0, . . . , q̇n)

T .

Constraints. In addition to the requirement of avoiding collisions, plans must also satisfy kinematic and
dynamic constraints. Kinematic constraints include only first-order derivatives of the configuration pa-
rameters, while second-order derivatives such as acceleration are allowed in the dynamic constraints. The
algorithms presented below handle the kinematic and dynamic constraints of the UASTL RMAX platforms.

Both of these types of constraints belong to a class of non-holonomic constraints (also called motion
constraints) and are common for many types of robots. A robot is non-holonomic if it has fewer controllable
degrees of freedom than total degrees of freedom. A car is non-holonomic since it can only drive forwards
or backwards, not sideways. So is a helicopter: Though it can move freely in any direction, its freedom of
movement depends on its speed. When a helicopter is hovering or flying slowly it could be considered to
be holonomic, but this would constrain its usage.

Path Planning. The path planning problem is defined as finding a path in Cfree that connects the start (q0)
and the goal (qg) configuration. For high-dimensional configuration spaces this problem is intractable in
general which has led to the development of sample-based methods such as PRMs (Kavraki et al., 1996) and
RRTs (Kuffner and LaValle, 2000). These use an approximation of the Cfree continuous space (in configura-
tion space or state-space) in order to deal with the complexity of high-dimensional problems. The discrete
representation of the original continuous space (typically represented in the form of a graph) sacrifices
strict completeness for a weaker definition such as resolution completeness or probabilistic completeness
(LaValle, 2004).

7.1.1 Probabilistic Roadmaps and Rapidly Exploring Random Trees

The standard probabilistic roadmap (PRM) algorithm (Kavraki et al., 1996) works in two phases, one off-
line and the other on-line. In the offline phase, a discrete roadmap representing the free configuration space
is generated using a 3D world model. First, it randomly generates a number of configurations and checks for
collisions with the world model. A local path planner is then used to connect collision-free configurations
taking into account kinematic and dynamic constraints of the helicopter. Paths between two configurations
are also checked for collisions. This results in a roadmap approximating the configuration free space. In
the on-line or querying phase, start and goal configurations are provided and an attempt is made to connect
each configuration to the previously generated roadmap using a local path planner. Finally, a graph search
algorithm is used to find a path from the start configuration to the goal configuration in the augmented
roadmap.

Figure 19 provides a schema of the PRM path planner that is used. The planner uses an Oriented
Bounding Box Trees (OBBTrees) algorithm (Gottschalk et al., 1996) for collision checking and an A∗

algorithm for graph search. Here one can optimize for various criteria such as shortest path, minimal fuel
usage, etc.

The mean planning time in the current implementation for a selected set of flight test environments
is below 1000 ms and the use of runtime constraints (discussed below) does not noticeably influence the
mean. See Pettersson (2006); Pettersson and Doherty (2006) for a detailed description of the modified PRM
planner.

Rapidly exploring random trees (RRT (Kuffner and LaValle, 2000)) provide an efficient motion planning
algorithm that constructs a roadmap online rather than offline (Figure 19). The RRT algorithm generates
two trees rooted in the start and goal configurations by exploring the configuration space randomly in both

35



Roadmap'
Construc/on'

Probabilis)c+Roadmaps+

OBBTrees'
Construc/on'

A*'Search'

Curve'replacement'&'
path'op/miza/on'

RRT'Planning'

Curve'replacement'&'
path'op/miza/on'

World'Model'

Start'&'Goal'
Posi/ons'

Run/me'
constrains'

OBBTrees'
Construc/on'

World'Model'

Start'&'Goal'
Posi/ons'

Run/me'
constrains'

Offline+

Online+

Finished'Path' Finished'Path'

Rapidly+Exploring+Random+Trees+

Roadmap' OBBCTree'

Figure 19: PRM and RRT path plan generation.

directions. While the trees are being generated, an attempt is made at specific intervals to connect them to
create one roadmap. After the roadmap is created, the remaining steps in the algorithm are the same as with
PRMs. The mean planning time with RRT is also below 1000 ms, but the success rate is considerably lower
and the generated plans may sometimes cause anomalous detours (Pettersson, 2006). The UASTL RMAX
system uses both the PRM and RRT planners individually and in combination.

7.1.2 Path Planner Extensions

The standard PRM and RRT algorithms are formulated for fully controllable systems only. This assumption
is true for a helicopter flying at low speed with the capability to stop and hover at each waypoint. However,
when the speed is increased the helicopter is no longer able to negotiate turns of a smaller radius. This in
turn imposes demands on the planner similar to non-holonomic constraints for car-like robots.

The most straightforward way of handling dynamic constraints in the PRM and RRT algorithms is to
complement the configurations with their derivatives and record the complete state at each node in the graph.
This enables the local path planner to adapt the path between two nodes to their associated derivatives, which
is necessary to respect the dynamic constraints at boundary points between adjacent edges in the solution
path. The drawback of this approach is that the dimensionality of the space in which the roadmap/tree
is situated is doubled thus increasing the complexity of the problem. An alternative approach to non-
holonomic planning is to postpone the non-holonomic constraints to the runtime phase. The following
extensions have therefore been made with respect to the standard version of the PRM and RRT algorithms.

Multi-level roadmap/tree planning. Inspired by a multi-level planner proposed by Sekhavat et al. (1996),
new planners for AV applications have been developed (Pettersson, 2006; Pettersson and Doherty, 2006).
In this approach, linear paths are first used to connect configurations in the graph/tree and at a later stage
these are replaced with cubic curves when possible (Figure 20). These are required for smooth high speed
flight. If it is not possible to replace a linear path segment with a cubic curve then the helicopter has to slow
down and switch to hovering mode at the connecting waypoint before continuing. This rarely happens in
practice.

The random sampling nature of these planners and the limited density of the sampled nodes make the
PRM and RRT algorithms produce paths that are often jagged and irregular with occasional detours. In
order to improve the quality of the paths, a smoothing step is usually added. For the implemented path
planners the following smoothing steps are performed:

• Node Alignment: For each node n along the path, two attempts are made to move it to a point
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Figure 5.4: Alignment of nodes.

5.4 Post Processing the Plan

The random nature and limited density of the sampled nodes make the
PRM and RRT algorithms produce paths that are often jagged and irreg-
ular with occasional detours. In order to improve the quality of the paths,
a smoothing step is usually added to these planners [29, 41].

For the implemented path planner the following smoothing steps are
performed:

Alignment For each node along the path, two attempts are made to
move it to a point that straightens out the path. The new locations
that are tested for the nodes are illustrated in figure 5.4. For both
attempts, the point, m, in the middle between the two neighbors is
located. In the first pass (figure 5.4(a)), an attempt is made to move
the node, n, halfway to m, and in the second pass (figure 5.4(b)), an
attempt is made to move it all the way to m.

Node Elimination For each node along the path, an attempt is made to
eliminate the node by connecting the two adjacent nodes directly. If
the connection satisfies all constraints, the middle node is eliminated.

For the multi-level planner, the curve replacement step described in sec-
tion 5.2.2, is performed between the alignment and the elimination step.

(a)$Alignment$halfway$ (b)$Full$alignment$

Figure 21: Alignment of nodes for improved path quality.

that straightens out the path (Figure 21). The point m in the middle between the two neighbors is
located. First, an attempt is made to move n halfway to m (Figure 21a), if this is possible given
known obstacles. Then an attempt is made to move it all the way to m (Figure 21b).

• Node Elimination: For each node along the path, an attempt is made to eliminate it by connecting the
two adjacent nodes directly. If the connection satisfies all constraints, the middle node is eliminated.

The curve replacement step described above is performed between the alignment and the elimination step.

Runtime constraint handling. Some constraints are not available during roadmap or tree construction
but are added at runtime, when a final plan is requested. The motion planner currently handles the following
types of runtime constraints during the A∗ search phase:

• Maximum and minimum altitude – verified through an intersection test between the configuration or
curve and a horizontal plane.
• Forbidden regions (no-fly zones) – regions created by a set of horizontal polygons covering an area

which the AV must not enter. The satisfaction test for configurations involves checking if the AV’s
position, projected in the X/Y plane, is within the polygon. The test for curves includes checking if
the curve intersects any of the planes bounding the polygon in the 3D-space.
• Limits on the ascent and descent rate.

Adding constraints to a path planning problem may break the connectivity of the PRM roadmap. In this case
a combination of the PRM and RRT algorithms is used to mitigate the problem. An optional reconnection
attempt using the RRT planner is made during the query phase of the PRM planner in order to reconnect
the broken roadmap. Both planners (PRM and RRT) and their combination with the presented extensions
are accessible to the deliberative and reactive services in the HDRC3 architecture.

7.2 HCSMs for Path Execution
The use case described in this section assumes the UASTL RMAX system is already in autonomous flight
mode and the default hovering function is active (for example after executing the use case presented in
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Figure 22: The Traj3D automaton.

Section 6.1). The description focuses on the execution of the path at the lowest control level running on the
PFC computer after a TST node executor has received a path plan (a segmented cubic polynomial curve)
from the path planner as described at the beginning of previous section. For better understanding of the
interactions between the HCSM automata the focus will be on the execution of one path segment.

As previously stated, the TST node executor sends the first segment (step 3 in Figure 17, Traj3D-EV)
of the trajectory via the Platform Server and waits for a Request-Segment-EV event that is generated by
the controller. At the control level, the path is executed using the Path Following Control Mode (PFCM,
described in Section 5.2). When a Request-Segment-EV event arrives (step 4) the TST node executor sends
the next segment. This procedure (steps 3–4) is repeated until the last segment is sent. However, because
the high-level system is not implemented in hard real-time it may happen that the next segment does not
arrive at the Control Kernel on time. In this case, the controller has a timeout limit after which it goes into
safety braking mode in order to stop and hover at the end of the current segment.

As described in Section 6.1 the implementation of the PFCM function follows a predefined design
template. The function itself is executed by setting an appropriate internal flag using a SET action (SET
Traj3D-Mode-AC, B.3) by the Control Mode automaton. Mode Switch makes sure the default hovering func-
tion is properly terminated before the PFCM function can be activated. Additionally, when path execution
is finished it engages the default hovering function, in a manner similar to the example shown previously.

The role of the Traj3D automaton (Figure 22) is to coordinate an exchange of events with other services
(such as TST node executors) and to ensure that the appropriate segment data is available to the PFCM
control function when needed. An example time-line for a path execution showing the interaction between
the three automata is presented in Figure 23. The example focuses on the execution of a single segment.

The Mode Switch automaton starts in the Hovering-ST state. After receiving a Traj3D-EV event from the
DRC computer, the data describing a segment for execution is saved in the memory slot used by the PFCM
function (Traj3D-DO). Additionally, the Ctrl-Stop-EV event (A.6) is sent to the Control Mode automaton in
order to stop the execution of the default hovering function. At this time, Mode Switch transitions to the
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Figure 23: Execution trace: The interaction between Control Mode, Mode Switch and Traj3D.

Traj3D-ST state (Figure 22), thereby starting the Traj3D automaton in its init state. Mode Switch remains in
Traj3D-ST until the PFCM execution is finished and then switches to the default hovering mode.

When Traj3D starts, it waits for confirmation from Control Mode that the hovering function has been
terminated (Ctrl-Stopped-EV, B.10) and sends two events back to initialize and start the execution of the
PFCM control function (PFC-Traj3D-EV (C.1) and Ctrl-Start-EV (C.1)). It transitions to the Traj3D-Check-ST
state waiting for confirmation that the PFCM function has been initialized (Ctrl-Ok-EV, B.8). When the
event arrives the HCSM checks whether a single segment has been received (Single-Segment-CO, C.3).
A single segment is defined by the path parameters with the end velocity for the segment set to zero. If
the condition is satisfied, the event informing the DRC computer that the segment has been accepted for
execution is sent.

At this time the PFCM starts the execution of the segment. The Traj3D automaton is in the Traj3D-Single-
ST state and remains there until the Traj-Arrived-CO condition is not satisfied. On the UASTL RMAX the
segment has been successfully executed when the distance to the final waypoint is less than 3 meters. At that
point, the last waypoint of the path is saved for the hovering function and the Traj-Arrived-EV event is sent
to the DRC computer informing it that the path execution is finished. Additionally, the Traj3D automaton
stops the execution of the PFCM function by sending the Ctrl-Stop-EV event (C.3) to the Control Mode state
machine. When the termination of the execution is confirmed by receiving the Ctrl-Stopped-EV event (B.10)
the Traj3D automaton transitions to its exit state and the Mode Switch state machine takes care of engaging
the default hover mode, in a manner similar to the example described previously (Section 6.1.1).

39



8 DyKnow: Stream-Based Reasoning Middleware
For autonomous unmanned aerial systems to successfully perform complex missions, a great deal of em-
bedded reasoning is required. For this reasoning to be grounded in the environment, it must be firmly based
on information gathered through available sensors. However, there is a wide gap in abstraction levels be-
tween the noisy numerical data directly generated by most sensors and the crisp symbolic information that
many reasoning functionalities assume to be available. This is commonly called the sense-reasoning gap.

Bridging this gap is a prerequisite for deliberative reasoning functionalities such as planning, execution
monitoring, and diagnosis to be able to reason about the current development of dynamic and incompletely
known environments using representations grounded through sensing. For example, when monitoring the
execution of a plan, it is necessary to continually collect information from the environment to reason about
whether the plan has the intended effects as specified in a symbolic high-level description.

Creating a suitable bridge is a challenging problem. It requires constructing representations of infor-
mation incrementally extracted from the environment. This information must continuously be processed to
generate information at increasing levels of abstraction while maintaining the necessary correlation between
the generated information and the environment itself. The construction typically requires a combination of
a wide variety of methods, including standard functionalities such as signal and image processing, state
estimation, and information fusion.

These and other forms of reasoning about information and knowledge have traditionally taken place in
tightly coupled architectures on single computers. The current trend towards more heterogeneous, loosely
coupled, and distributed systems necessitates new methods for connecting sensors, databases, components
responsible for fusing and refining information, and components that reason about the system and the en-
vironment. This trend makes it less practical to statically predefine exactly how the information processing
should be configured. Instead it is necessary to configure the way in which information and knowledge
is processed and reasoned about in a context-dependent manner relative to high-level goals while globally
optimizing the use of resources and the quality of the results.

To address these issues, the stream-based reasoning middleware DyKnow (Heintz, 2009; Heintz and
Doherty, 2004; Heintz et al., 2010) has been developed. This is a central part of the HDRC3 architecture as
shown in Figure 1.

8.1 DyKnow
The main purpose of DyKnow is to provide generic and well-structured software support for the processes
involved in generating state, object, and event abstractions about the environments of complex systems.
The generation is done at many levels of abstraction beginning with low level quantitative sensor data and
resulting in qualitative data structures which are grounded in the world and can be interpreted as knowledge
by the system. To produce these structures DyKnow supports operations on streams at many different levels
of abstraction. For the result to be useful, the processing must be done in a timely manner so that a UAS can
react in time to changes in the environment. The resulting structures are used by various functionalities in
the HDRC3 architecture for situation awareness and assessment (Heintz et al., 2007), planning to achieve
mission goals (Section 9.2), and monitoring (Section 9.3). DyKnow provides a declarative language for
specifying the structures needed by the different subsystems. Based on this specification it creates represen-
tations of the external world and the internal state of an AV based on observations and a priori knowledge,
such as facts stored in databases.

DyKnow helps organize the many levels of information and knowledge processing in a distributed
robotic system as a coherent network of processes connected by streams. The streams contain time-stamped
information and may be viewed as representations of time-series data which may start as continuous streams
from sensors or sequences of queries to databases. Eventually, they will contribute to more refined, com-
posite, knowledge structures. Knowledge producing processes combine streams by applying functions,
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synchronization, filtering, aggregation and approximation as they move to higher levels of abstraction. In
this sense, DyKnow supports conventional data fusion processes, but also less conventional qualitative pro-
cessing techniques common in the area of artificial intelligence. In Heintz and Doherty (2006) it is argued
that DyKnow supports all the functional abstraction levels in the JDL Data Fusion Model (White, 1988).

A knowledge process has different quality of service properties such as maximum delay, trade-off be-
tween quality and delay, how to calculate missing values, and so on, which together define the semantics
of the knowledge derived by the process. It is important to realize that knowledge is not static, but is a
continually evolving collection of structures which are updated as new information becomes available from
sensors and other sources. Therefore, the emphasis is on the continuous and ongoing knowledge derivation
process, which can be monitored and influenced at runtime. The same streams of data may be processed dif-
ferently by different parts of the architecture by tailoring the knowledge processes relative to the needs and
constraints associated with the tasks at hand. This allows DyKnow to support easy integration of existing
sensors, databases, reasoning engines and other knowledge producing services.

A knowledge processing application in DyKnow consists of a set of knowledge processes (Figure 24)
connected by streams satisfying policies. A policy is a declarative specification of the desired properties of
a stream. Each knowledge process is an instantiation of a source or a computational unit providing stream
generators that produce streams. A source makes external information, such as the data provided by the
Data Interface in the Platform Server (Section 6.2.1), available in the form of streams while a computational
unit refines and processes streams.

8.2 Streams and Policies
Knowledge processing for a physical agent is fundamentally incremental in nature. Each part and func-
tionality in the system, from sensing to deliberation, needs to receive relevant information about the envi-
ronment with minimal delay and send processed information to interested parties as quickly as possible.
Rather than using polling, explicit requests, or similar techniques, the strategy is to model and implement
the required flow of data, information, and knowledge in terms of streams while computations are modeled
as active and sustained knowledge processes ranging in complexity from simple adaptation of raw sensor
data to complex reactive and deliberative processes.

Streams lend themselves easily to a publish/subscribe architecture. Information generated by a knowl-
edge process is published using one or more stream generators each of which has a (possibly structured)
label serving as an identifier within a knowledge processing application. Knowledge processes interested
in a particular stream of information can subscribe to it using the label of the associated stream generator
which creates a new stream without the need for explicit knowledge of which process hosts the generator.
Information produced by a process is immediately provided to the stream generator, which asynchronously
delivers it to all subscribers, leaving the knowledge process free to continue its work. Using an asyn-
chronous publish/subscribe pattern of communication decouples knowledge processes in time, space, and
synchronization, providing a solid foundation for distributed knowledge processing applications.

Each stream is associated with a declarative policy, a set of requirements on its contents. Such require-
ments may include the fact that elements must arrive ordered by valid time, that each value must constitute
a significant change relative to the previous value, that updates should be sent with a specific sample fre-
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quency, or that there is a maximum permitted delay. Policies can also give advice on how these requirements
should be satisfied, for example by indicating how to handle missing or excessively delayed values.

8.3 Objects, Features and Fluent Streams
For modelling purposes, the environment of an AV is viewed as consisting of physical and non-physical
objects, properties associated with these objects, and relations between these objects. The properties and
relations associated with objects are called features. Due to the potentially dynamic nature of a feature, that
is, its ability to change values through time, a total function from time to value called a fluent is associated
with each feature. It is this fluent, representing the value over time of a feature, which is being modeled.
Example objects are the AV, car37 and the entity observed by the camera. Some examples of features are
the velocity of an object, the road segment of a vehicle, and the distance between two car objects.

A fluent stream is a partial representation of a fluent, where a stream of samples of the value of the
feature at specific time-points is seen as an approximation of the fluent. Due to inherent limitations in
sensing and processing, an agent cannot always expect access to the actual value of a feature over time. A
sample can either come from an observation of the feature or a computation which results in an estimation
of the value at the particular time-point, called the valid time. The time-point when a sample is made
available or added to a fluent stream is called the available time. A fluent stream has certain properties such
as start and end time, sample period and maximum delay. These properties are specified by a declarative
policy which describes constraints on the fluent stream.

For example, the position of a car can be modeled as a feature. The true position of the car at each time-
point during its existence would be its fluent and a particular sequence of observations or estimations of its
position would be a fluent stream. There can be many fluent streams all approximating the same fluent.

8.4 State Generation
One important functionality in DyKnow is state generation. Many functionalities require access to a con-
sistent “state of the world”, but sensor readings take time to propagate through a distributed system which
may consist of multiple AVs together with ground stations and associated hardware and software. DyKnow
therefore provides services for data synchronization, generating a best approximation of the state at a given
point in time using the information that has propagated through the distributed system so far.

For example, if a car has both a speed and a position, then there are two features: "speed of car" and
"position of car". But this could also be represented by a single fluent stream containing tuples (in this case
pairs) of values, called states, containing both the speed and the position.

8.5 Semantic Integration of Symbolic Reasoning
One important use of DyKnow is to support the integration of symbolic reasoning in a UAS. To do symbolic
reasoning it is necessary to map symbols to streams available in a UAS, which provides them with the
intended meaning for the particular UAS.

For example, a temporal logic formula consists of symbols representing variables, sorts, objects, fea-
tures, and predicates besides the symbols which are part of the logic. Consider ∀x ∈ AV : x 6= av1 →
�XYDist[x,av1] > 10, which has the intended meaning that all AVs, except av1, should always be more
than 10 meters away from av1. This formula contains the variable x, the sort AV, the object av1, the fea-
ture XYDist, the predicates 6= and >, and the constant value 10, besides the logical symbols. To evaluate
such a formula, see Section 9.3 for details, an interpretation of its symbols must be given. Normally, their
meanings are predefined. However, in the case of reasoning over streams the meaning of features cannot
be predefined since information about them becomes incrementally available. Instead their meaning has to
be determined at run-time. To evaluate the truth value of a formula it is therefore necessary to map feature
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symbols to streams, synchronize these streams and extract a state sequence where each state assigns a value
to each feature.

In a system consisting of streams, a natural approach is to syntactically map each feature to a single
stream. This is called syntactic integration. This works well when there is a stream for each feature and the
person writing the formula is aware of the meaning of each stream in the system. However, when systems
become more complex and when the set of streams or their meaning changes over time it is much harder for
a designer to explicitly state and maintain this mapping. Therefore automatic support for mapping features
in a formula to streams in a system based on their semantics is needed. This is called semantic integration.
The purpose of this matching is for each feature to find one or more streams whose content matches the
intended meaning of the feature. This is a form of semantic matching between features and contents of
streams. The process of matching features to streams in a system requires that the meaning of the content
of the streams is represented and that this representation can be used for matching the intended meaning of
features with the actual content of streams.

The same approach can be used for symbols referring to objects and sorts. It is important to note that
the semantics of the logic requires the set of objects to be fixed. This means that the meaning of an object
or a sort must be determined for a formula before it is evaluated and then may not change. It is still possible
to have different instances of the same formula with different interpretations of the sorts and objects.

The goal is to automate the process of matching the intended meaning of features, objects, and sorts to
content of streams in a system. Therefore the representation of the semantics of streams needs to be machine
readable. This allows the system to reason about which stream content corresponds to which symbol in a
logical formula. The knowledge about the meaning of the content of streams needs to be specified by a
user, even though it could be possible to automatically determine this in the future. By assigning meaning
to stream content the streams do not have to use predetermined names, hard-coded in the system. This also
makes the system domain-independent, which implies that it could be used to solve different problems in a
variety of domains without reprogramming.

The approach to semantic integration in DyKnow uses semantic web technologies to define and rea-
son about ontologies. Ontologies provide suitable support for creating machine readable domain models
(Horrocks, 2008). Ontologies also provide reasoning support and support for semantic mapping which is
necessary for the integration of streams from multiple UASs.

The Web Ontology Language (OWL) (Smith et al., 2004) is used to represent ontologies. Features,
objects and sorts are represented in an ontology with two different class hierarchies, one for objects and one
for features.

To represent the semantic content of streams in terms of features, objects, and sorts, a semantic spec-
ification language called SSLT has been defined (Heintz and Dragisic, 2012). This is used to annotate the
semantic content of streams.

Finally, a semantic matching algorithm has been developed which finds all streams which contain infor-
mation relevant to a concept from the ontology, such as a feature. This makes it possible to automatically
find all the streams that are relevant for evaluating a temporal logical formula. These streams can then be
collected, fused, and synchronized into a single stream of states over which the truth value of the formula
is incrementally evaluated. By introducing semantic mapping between ontologies from different UASs and
reasoning over multiple related ontologies it is even possible to find relevant streams distributed among
multiple UASs (Heintz and Dragisic, 2012).

8.6 ROS-Based Implementation
The ROS-based implementation of DyKnow consists of three main parts: a stream processing part, a stream
reasoning part, and a semantic integration part. Each part consists of a set of components. There are three
types of components: engines, managers and coordinators. An engine takes a specification and carries out
the processing as specified. A manager keeps track of related items and provides an interface to these. A
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Figure 25: The components of DyKnow.

coordinator provides a high-level functionality by coordinating or orchestrating other functionalities. An
overview of the parts and the components is shown in Figure 25. This diagram corresponds to the DyKnow
component in Figure 2. The design is very modular as almost every component can be used independently.

The stream processing part is responsible for generating streams by for example importing, merging and
transforming streams. The Stream Manager keeps track of all the streams in the system. Streams can either
be generated by a stream processing engine or by some external program. A Stream Processing Engine
takes a stream specification and generates one or more streams according to the specification.

The semantic integration part is responsible for finding streams based on their semantics relative to a
common ontology. The Stream Semantics Manager keeps track of semantically annotated streams, where an
annotation describes the semantic content of a stream. The Ontology Manager keeps track of the ontology
which provides a common vocabulary. The Semantic Matching Engine finds all streams whose semantic
annotation matches a particular ontological concept. The semantic integration part is used by the stream
reasoning part to find the relevant streams in order to evaluate a logical formula.

The stream reasoning part is responsible for evaluating temporal logical formulas over streams as de-
scribed in Section 9.3. A Stream Reasoning Engine takes a logical formula and a stream of states and
evaluates the formula over this stream. A Stream Reasoning Coordinator takes a logical formula, finds all
the relevant streams needed to evaluate the formula, creates a stream specification for generating a single
stream of states from all the relevant streams, and instructs the stream reasoning engine to evaluate the
formula over the stream as it is generated by a stream processing engine.

8.7 A Traffic Monitoring Example
As a concrete example of the use of DyKnow, Figure 26 provides an overview of how part of the incremental
processing required for a traffic surveillance task can be organized as a set of DyKnow knowledge processes.

At the lowest level, a helicopter state estimation component uses data from an inertial measurement
unit (IMU) and a global positioning system (GPS) to determine the current position and attitude of the
UASTL RMAX. A camera state estimation component uses this information, together with the current
state of the pan-tilt unit on which the cameras are mounted, to generate information about the current
camera state. The image processing component uses the camera state to determine where the camera is
currently pointing. Video streams from the color and thermal cameras can then be analyzed in order to
generate vision percepts representing hypotheses about moving and stationary physical entities, including
their approximate positions and velocities. The data originating from the PFC and the PPC is provided by
the Data Interface through the Platform Server (Section 6.2.1).

Symbolic formalisms such as chronicle recognition (Ghallab, 1996) require a consistent assignment of
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Figure 26: Potential organization of the incremental processing required for a traffic surveillance task.

symbols, or identities, to the physical objects being reasoned about and the sensor data received about those
objects. Image analysis may provide a partial solution, with vision percepts having symbolic identities
that persist over short intervals of time. However, changing visual conditions or objects temporarily being
out of view lead to problems that image analysis cannot (and should not) handle. This is the task of the
anchoring system, which uses progression of formulas in a metric temporal logic to incrementally evaluate
potential hypotheses about the observed objects (Heintz et al., 2013). The anchoring system also assists in
object classification and in the extraction of higher level attributes of an object. For example, a geographic
information system can be used to determine whether an object is currently on a road or in a crossing. Such
attributes can in turn be used to derive relations between objects, including qualitative spatial relations such
as beside(car1,car2) and close(car1,car2). Concrete events corresponding to changes in such attributes
and predicates finally provide sufficient information for the chronicle recognition system to determine when
higher-level events such as reckless overtakes occur.

9 The Deliberative Layer
Conceptually, the deliberative layer includes all high autonomy functionalities normally associated with rich
world models and deep reasoning capabilities. Functionalities commonly associated with the deliberative
layer are automated task planners, motion planners, execution monitoring systems, diagnosis systems, and
knowledge bases with inference engines, among others. The temporal latencies associated with the decision
cycles for these functionalities are often far slower than for functionalities which exist in the reactive and
control layers. The decision cycles for the different layers are necessarily asynchronous where each of the
sets of functionalities run concurrently. The interfaces between the deliberative layer and the reactive and
control layers are essential for transitioning output from deliberative functionality into useful processes at
the lower layers of the architecture. In some sense, much of what happens is a form of dynamic compilation
which results in transforming qualitative goal-directed assertions into actual actuation commands associated
with the control layer of the architecture which contribute to the achievement of these goals.

A deliberative functionality, motion planning, and the dynamic compilation of its output has already
been described in Section 7. This section will describe two additional deliberative functionalities central
to high autonomy in the HDRC3 architecture. Section 9.2 describes an automated task-based planner,
TALplanner, and its integration in the HDRC3 architecture. Section 9.3 describes a novel execution moni-
toring system based on specifying monitoring queries in terms of temporal logical formulas and evaluating
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these formulas on-line in real-time. Due to the complex nature of these functionalities, an open research
issue is how one might provide verification and validation techniques for the use and integration of these
functionalities, in addition to the formal specification of high-level missions. The section therefore begins
with a brief presentation of a temporal action logic (TAL) which provides a formal basis for specifying
the semantics of TSTs, TALplanner, and the execution monitor (Section 9.1). Additionally, in Section 9.4,
it is shown that high-level missions can in fact be specified in terms of TSTs. Consequently, high-level
missions are not only provided with a formal semantics, but due to the relation between these specifications
and TSTs, there is a natural means of coupling declarative specification of missions with their procedural
execution.

9.1 Temporal Action Logic
Temporal Action Logic, TAL, is a well-established non-monotonic logic for representing and reasoning
about actions (Doherty et al., 1998; Doherty and Kvarnström, 2008). This logic provides both clear intu-
itions and a formal semantics for a highly expressive class of action specifications which supports temporal
aspects, concurrent execution, and incomplete knowledge about the environment and the effects of an ac-
tion. Therefore it is a highly suitable basis for describing and reasonable the elementary actions used in
realistic mission specifications. Here a limited subset of TAL is described and the reader is referred to
Doherty and Kvarnström (2008) for further details.

TAL provides an extensible macro language, L (ND), that supports the knowledge engineer and allows
reasoning problems to be specified at a higher abstraction level than plain logical formulas. The basic onto-
logy includes parameterized features f (x) that have values v at specific timepoints t, denoted by [t] f (x) =̂ v,
or over intervals, [t, t ′] f (x) =̂ v. Incomplete information can be specified using disjunctions of such facts.
Parameterized actions can occur at specific intervals of time, denoted by [t1, t2]A(x). To reassign a feature
to a new value, an action uses the expression R([t] f (x) =̂ v). Again, disjunction can be used inside R() to
specify incomplete knowledge about the resulting value of a feature. The value of a feature at a timepoint
is denoted by value(t, f ).

The logic is based on scenario specifications represented as narratives in L (ND). Each narrative con-
sists of a set of statements of specific types, including action type specifications defining named actions
with preconditions and effects. The basic structure, which can be elaborated considerably (Doherty and
Kvarnström, 2008), is as follows:

[t1, t2]A(v) (Γpre(t1,v) =⇒ Γpost(t1, t2,v))∧Γcons(t1, t2,v)

stating that if the action A(v) is executed during the interval [t1, t2], then given that its preconditions
Γpre(t1,v) are satisfied, its effects, Γpost(t1, t2,v), will take place. Additionally, Γcons(t1, t2,v) can be used
to specify logical constraints associated with the action. For example, the following defines the elementary
action fly-to: If a AV should fly to a new position (x′,y′) within the temporal interval [t, t ′], it must initially
have sufficient fuel. At the next timepoint t + 1 the AV will not be hovering, and in the interval between
the start and the end of the action, the AV will arrive and its fuel level will decrease. Finally, there are two
logical constraints bounding the possible duration of the flight action.
[t, t ′]fly-to(av,x′,y′) 
[t] fuel(av)≥ fuel-usage(av,x(av),y(av),x′,y′)→
R([t +1] hovering(av) =̂ False)∧
R((t, t ′] x(av) =̂ x′)∧R((t, t ′] y(av) =̂ y′)∧
R((t, t ′] fuel(av) =̂ value(t, fuel(av)− fuel-usage(av,x(av),y(av),x′,y′)))∧
t ′− t ≥ value(t,min-flight-time(av,x(av),y(av),x′,y′))∧
t ′− t ≤ value(t,max-flight-time(av,x(av),y(av),x′,y′))

The translation function Trans
()

translates L (ND) expressions into L (FL), a first-order logical language
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(Doherty and Kvarnström, 2008). This provides a well-defined formal semantics for narratives in L (ND).
This separation between the macro language and the base logic makes TAL highly extensible. When adding
new constructs to the formalism, new expression types are defined in L (ND) and Trans

()
is extended

accordingly, generally with no extension required in the base language L (FL).
The L (FL) language is order-sorted, supporting both types and subtypes for features and values. This

is also reflected in L (ND), where one often assumes variable types are correlated to variable names – for
example, av3 implicitly ranges over AVs. There are a number of sorts for values Vi, including the Boolean
sort B with the constants {true, false}. V is a supersort of all value sorts. There are a number of sorts for
features Fi, each one associated with a value sort dom(Fi) = V j for some j. The sort F is a supersort of
all fluent sorts. There is also an action sort A and a temporal sort T . Generally, t, t ′ will denote temporal
variables, while τ,τ ′,τ1, . . . are temporal terms. L (FL) currently uses the following predicates, from which
formulas can be defined inductively using standard rules, connectives and quantifiers of first-order logic.

• Holds : T ×F ×V , where Holds(t, f ,v) expresses that a feature f has a value v at a timepoint t,
corresponding to [t] f =̂ v in L (ND).
• Occlude : T ×F , where Occlude(t, f ) expresses that a feature f is permitted to change values at

time t. This is implicit in reassignment, R([t] f =̂ v), in L (ND).
• Occurs : T ×T ×A , where Occurs(ts, te,A) expresses that a certain action A occurs during the

interval [ts, te]. This corresponds to [ts, te]A in L (ND).

When a narrative is translated, Trans
()

first generates the appropriate L (FL) formulas corresponding to
each L (ND) statement. Foundational axioms such as unique names and domain closure axioms are ap-
pended when required. Logical entailment then allows the reasoner to determine when actions must occur,
but the fact that they cannot occur at other times than explicitly stated is not logically entailed by the trans-
lation. This problem is handled in a general manner through filtered circumscription, which also ensures
that fluents can change values only when explicitly affected by an action or dependency constraint (Doherty
and Kvarnström, 2008).

The structure of L (ND) statements ensures that the second-order circumscription axioms are reducible
to equivalent first-order formulas, a reduction that can often be performed through predicate completion.
Therefore, classical first-order theorem proving techniques can be used for reasoning about TAL narratives
(Doherty and Kvarnström, 2008). For unmanned systems, however, the logic will primarily be used to
ensure a correct semantics for planners, execution monitors and mission specification languages and cor-
relating this semantics closely to the implementation. Using TAL does not require theorem proving on
board.

9.2 Task Planning using TALplanner
When developing the architecture for a system capable of autonomous action execution and goal achieve-
ment, one can envision a spectrum of possibilities ranging from each behavior and task being explicitly
coded into the system, regardless of complexity, up to the other extreme where the system itself generates
complex solutions composed from a set of very primitive low-level actions. With the former end of the
spectrum generally leading to more computationally efficient solutions and the latter end generally being
far more flexible in the event of new and potentially unexpected tasks being tackled, the proper choice is
usually somewhere between the two extremes. In fact, several different points along the spectrum might be
appropriate for use in different parts of a complex system. This is also the case in the HDRC3 architecture:
Elementary action nodes in TSTs provide a set of high-level actions such as “take off” and “fly to point A”,
but one also makes use of automated planning techniques to compose such actions into plans satisfying a
set of declaratively specified goals. The goals themselves will vary depending on the nature of a mission.
For example, they could involve having acquired images of certain buildings or having delivered crates of
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Figure 27: Task planning called by TST executors for goal nodes.

emergency supplies to certain locations after a natural disaster.
Support for planning is closely integrated in the HDRC3 architecture through the use of goal nodes in

Task Specification Trees (Section 6.3). Any given TST can contain multiple goal nodes, each of which de-
scribes a simple or complex goal to be achieved at that particular point in the corresponding mission. When
a goal node is assigned to a specific agent, the executor for that goal node can call DyKnow (Section 8) or
use any other means at its disposal to acquire essential information about the current state of the world and
the AV’s own internal state (Figure 27). The node is then expanded by that agent through a call to an on-
board task planner, which in turn can call the motion planner and Motion Plan Info functionalities discussed
earlier (Section 7.1). The resulting concurrent plan is converted to a new “plan sub-tree” attached under the
goal node. Since TST structures are inherently distributable, the entire plan can then be distributed to the
participating agents. This is the principal means of invoking a task planning functionality.

Note that the resulting TST directly represents a plan using sequence and concurrency nodes together
with elementary action nodes corresponding to plan actions. Therefore a plan can be executed at the ap-
propriate time in the standard manner using TST executors. This obviates the need for a separate plan
execution system and results in an integrated means of executing a mission, regardless of the techniques or
combination of techniques that was used to generate it.

The planner that is used to expand a goal node can be changed freely, and in a heterogeneous system
different platforms may use different planners. Currently the planners most commonly used in the HDRC3
architecture are TALplanner (Doherty and Kvarnström, 2001; Kvarnström, 2005) and TFPOP (Kvarnström,
2011), two domain-independent concurrent temporal planners that were developed explicitly for use in this
architecture. These planners are similar in certain respects: Both have a semantics based on Temporal
Action Logic (Section 9.1), and both use domain-specific control formulas in this logic to guide the search
for a solution, leading to very rapid plan generation. However, they use different search spaces and plan
structures, and they differ in the expressivity of the temporal constraints they permit. TALplanner will be
described here, while the reader is referred to Kvarnström (2011) for further information about TFPOP.

TALplanner. TALplanner (Doherty and Kvarnström, 1999; Kvarnström, 2005; Kvarnström and Doherty,
2000) is a forward-chaining temporal concurrent planner where planning domains and problem instances
are specified as goal narratives in a version of TAL extended with new macros and statement types for plan
operators, resource constraints, goal specifications, and other types of information specific to the task of plan
generation. These macros serve to simplify planning domain specifications, but retain a basis in standard
TAL through an extended translation function. For example, plan operators are converted into standard TAL

action type specifications, and actions in a plan are represented as standard timed action occurrences of the
form [t1, t2] A(v).

Control Formulas. In addition to providing a declarative first-order semantics for planning domains, TAL

is also used to specify a set of domain-specific temporal control formulas acting as constraints on the set
of valid solutions: A plan is a solution only if its final state satisfies the goal and all control formulas are
satisfied in the complete state sequence that would result from executing the plan, which can be viewed as
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a logical model.
The use of control formulas serves two separate purposes. First, it allows the specification of complex

temporally extended goals such as safety conditions that must be upheld throughout the (predicted) execu-
tion of a plan. Second, the additional constraints on the final solution often allow the planner to prune entire
branches of the search tree – whenever it can be proven that every search node on the branch corresponds
to a state sequence that violates at least one control rule. Formulas can then be written to guide the planner
towards those parts of the search space that are more likely to contain plans of high quality, in terms of time
usage or other quality measures.

As an example, consider three simple control rules that could be used in an airplane-based logistics
domain. First, a package should only be loaded onto a plane if a plane is required to move it: If the goal
requires it to be at a location in another city. Regardless of which operator is used to load a package, one
can detect this through the fact that it is in a plane at time t +1, but was not in the same plane at time t.

∀t,obj,plane, loc.
[t] ¬in(obj, plane) ∧ at(obj, loc) ∧ [t+1] in(obj, plane)→
∃loc′ [ goal (at(obj, loc′)) ∧ [t] city_of(loc) 6=̂ city_of(loc′) ]

Second, if a package has been unloaded from a plane, there must be a valid reason for this: It must be the
case that the package should be in the city where the plane has landed.

∀t,obj,plane, loc.
[t] in(obj, plane) ∧ at(plane, loc) ∧ [t+1] ¬in(obj, plane)→
∃loc′ [ goal (at(obj, loc′)) ∧ [t] city_of(loc) =̂ city_of(loc′) ]

Third, if a package is at its destination, it should not be moved.

∀t,obj, loc.
[t] at(obj, loc) ∧ goal (at(obj, loc))→ [t+1] at(obj, loc)

Surprisingly, such simple hints to an automated planner can often improve planning performance by orders
of magnitude given that the planner has the capability to make use of the hints.

Concurrent Plan Structure. Forward-chaining planning is most often used for sequential plans, where
each new action is added immediately after the previous one in the plan. TALplanner uses a similar tech-
nique for concurrent plan generation, with a relaxed constraint on where a new action occurrence is placed.

Definition 9.1 (Concurrent Plan) A concurrent plan for a goal narrative G is a tuple of ground fluent-free
action occurrences with the following constraints. First, the empty tuple is a concurrent plan for G . Second,
given a concurrent plan p = 〈[τ1,τ

′
1] o1(c1), . . . , [τn,τ

′
n] on(cn)〉 for G , its successors are the sequences that

add one new action occurrence [τn+1,τ
′
n+1] on+1(cn+1) and satisfy the following constraints:

1. Let G ′ = G ∪{[τ1,τ
′
1] o1(c1), . . . , [τn,τ

′
n] on(cn)} be the original goal narrative G combined with the

existing plan. Then, the new action on+1(cn+1) must be applicable over the interval [τn+1,τ
′
n+1] in

G ′. This implies that its preconditions are satisfied, that its effects are not internally inconsistent and
do not contradict the effects of the operator instances already present in the sequence, and that the
duration τ ′n+1− τn+1 is consistent with the duration given in the operator specification.

2. τ1 = 0: The first action starts at time 0.
3. τn+1 ≥ τn: The new action cannot be invoked before any of the actions already added to the plan.
4. τn+1 ≤ max(τ ′1, . . . ,τ

′
n): There can be no gap between the time interval covered by the current plan

and the start of the newly added action.
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Algorithm 3 Concurrent TALplanner.
Input: A goal narrative G .
Output: A plan narrative entailing the goal Ngoal and the control formulas Ncontrol.

1 procedure TALplanner-concurrent(G )
2 γ ←

∧
G goal Conjunction of all goal statements

3 〈init, incr,final〉 ← generate-pruning-constraints(G control)
4 node← 〈init, /0,0,0,〈〉〉 〈cond. queue, visited states, latest invocation time, tmax, plan〉
5 Open← 〈node〉 Stack (depth first search)
6 while Open 6= 〈〉 do
7 〈C,S,τ0,τmax, p〉 ← pop(Open) Current plan candidate
8 G ′← G ∪ p∪occlude-all-after(G ,τ0) No knowledge about future
9 for all constraints α in C do Check queued constraints

10 if Trans+(G ′) |= Trans
(
α
)

then C←C \{α} Remove satisfied constraint
11 elsif Trans+(G ′) |= Trans

(
¬α
)

then backtrack Constraint violated
12 G ′′← G ∪ p∪{tmax = τmax} Narrative with complete knowledge
13 if Trans+(G ′′) |= false then backtrack Consistency check
14 if ∃s ∈ S.better-or-equal(s,final state of current plan) then backtrack
15 if Trans+(G ′′) |= Trans

(
γ ∧C∧ final

)
then Goal + queued + final ctrl satisfied

16 return G ′′

17 else Not a solution, but check children
18 S′← S∪{final state of current plan}
19 for all successor actions A = [ρ,ρ ′] oi(c) for p according to Def 9.1 do
20 C′←C∪ incri[ρ,c] Old conditions + incr control
21 C′←C′∪{prevail condition of A} Add prevail condition
22 push 〈C′,S′,ρ,max(τmax,ρ

′),〈p;A〉〉 onto Open
23 fail

Generating Concurrent Plans. The concurrent TALplanner algorithm will now be briefly described (Al-
gorithm 3). The reader is referred to Kvarnström (2005) for further details.

First, the planner conjoins all goal statements (line 2) and uses the control formulas in the goal narrative
to generate a set of pruning constraints. These constraints allow control formulas to be verified efficiently
when actions are incrementally added to a plan. Specifically, each control formula may result in an initial
constraint to be tested initially, a set of operator-specific incremental constraints to be tested whenever an
instance of a particular operator is added to a plan, and a final constraint to be tested in the final solution.

The initial search node is created (line 4), as is a stack of open search nodes (for depth first search).
As long as the search space has not been exhausted (line 6), the planner retrieves the topmost node in

the stack of open nodes. This node consists of a queue of constraints that remain to be evaluated (C), a set
of visited states to be used in cycle checking (S), the latest invocation time of any action in the current plan
(τ0), the latest end time of any action in the current plan (tmax), and the current plan candidate (p).

Assuming a completely specified initial state and deterministic actions, the narrative G ∪ p would now
contain complete information about the development of the world that would result from executing exactly
the plan p and nothing else. This then corresponds to a unique infinite state sequence specifying the values
of all TAL fluents at all points in time. However, the current search node must only be pruned if all possible
extensions of p violate a control formula. Given the constraints placed on successors in Definition 9.1, no
action added to p can be invoked earlier than τ0 and therefore all effects of actions added to p must take
place at τ0 + 1 or later. Line 8 therefore generates the narrative G ∪ p∪ occlude-all-after(G ,τ0) which has
additional formulas disclaiming knowledge about fluents after time t0.

In lines 9–11, the planner determines whether a queued constraint is now definitely true (in which case
it can be removed from the queue) or definitely false (in which case the planner has to backtrack).

Then, the planner must verify certain conditions under the assumption that no additional actions are
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added. A narrative G ′′ assuming complete information is therefore generated in line 12. If this is inconsis-
tent (which in practice can be tested efficiently given the expressivity of TALplanner operators), the planner
must backtrack (line 13). If a state that is better or equal has already been visited, the planner should
also backtrack (line 14). The better-or-equal relation can for example take into account resource availabil-
ity, where a state that is equal in all respects except that it provides more of a particular resource can be
considered strictly better.

In lines 15–16, TALplanner determines whether the current plan candidate satisfies the goal and all
remaining pruning constraints. If this is the case, a solution is found and can be returned. If not, the
node is expanded through the generation of a set of successors. Each successor may be given additional
incremental pruning constraints, instantiated with the actual invocation timepoints and actual arguments of
the corresponding action (line 20). Similarly, any prevail conditions (similar to preconditions but relating
to the entire execution interval of an action) are added to the condition queue, to be tested when more
information about future states is available.

9.3 Execution Monitoring
Regardless of the effort spent modeling all possible contingencies, actions and plans may fail. Robust
performance in a noisy environment therefore requires some form of supervision, where the execution
of a plan is constantly monitored in order to detect and recover from potential or actual failures. For
example, since an AV might accidentally drop its cargo, it should monitor the condition that whenever
it carries a crate, the crate remains until the AV reaches its intended destination. This is an example of
a safety constraint, a condition that must be maintained during the execution of an action or across the
execution of multiple actions. The carrier can also be too heavy, which means that one must be able to
detect takeoff failures where the AV fails to gain sufficient altitude. This can be called a progress constraint:
Instead of maintaining a condition, a condition must be achieved within a certain period of time. While
some of these constraints would best be monitored at the control level, there are also many cases where
monitoring and recovery should be lifted into a higher level execution monitor (Ben Lamine and Kabanza,
2002; De Giacomo et al., 1998; Fernández and Simmons, 1998; Fichtner et al., 2003; Gat et al., 1990).

The execution monitoring system described here is based on an intuition similar to the one underlying
the temporal control formulas used in TALplanner. As a plan is being executed, information about the
surrounding environment is sampled at a given frequency by DyKnow (Section 8). Each new sampling
point generates a new state which provides information about all state variables used by the current monitor
formulas, thereby providing information about the actual state of the world as opposed to what could be
predicted from the domain specification. The resulting sequence of states corresponds to a partial logi-
cal interpretation, where “past” and “present” states are completely specified whereas “future” states are
completely undefined.

Note that simply comparing the actual and predicted states and signaling a violation as soon as a dis-
crepancy is found is not sufficient, because not all discrepancies are fatal – for example, if the altitude was
predicted to be 5.0 meters and the current measurement turns out to be 4.984 meters. Also, some infor-
mation might be expensive or difficult to sense, in which case the ground operator should be given more
control over which information is actually gathered and used for monitoring. Sensing may even require spe-
cial actions that interfere with normal mission operations. Finally, the richer the planner’s domain model
is, the more it can predict about the development of the world. This should not necessarily lead to all those
conditions being monitored, if they are not relevant to the correct execution of a plan. Therefore, most
conditions to be monitored are explicitly specified, though many conditions can be automatically generated
within the same framework if so desired.

Execution Monitor Formulas in TAL. Execution monitor formulas are expressed in a variation of TAL

where the high-level language L (ND) is augmented with a set of tense operators similar to those used
in modal tense logics such as LTL (Emerson, 1990) and MTL (Koymans, 1990). Tense operators allow
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the expression of complex metric temporal conditions and are amenable to incremental evaluation as each
new state is generated. This allows violations to be detected as early and as efficiently as possible using
a formula progression algorithm, while the basis in TAL provides a common formal semantic ground for
planning and monitoring.

Three tense operators have been introduced into L (ND): U (until), ♦ (eventually), and � (always).
Like all expressions in L (ND), these operators are macros on top of the first order base language L (FL).

Definition 9.2 (Monitor Formula) A monitor formula is one of the following:

• τ ≤ τ ′, τ < τ ′, or τ = τ ′, where τ and τ ′ are temporal terms,
• ω ≤ ω ′, ω < ω ′, or ω = ω ′, where ω and ω ′ are value terms,
• f, where f is a boolean fluent term (state variable term),
• f =̂ ω , where f is a fluent term and ω is a value term of the corresponding sort,
• φ U[τ,τ ′]ψ , where φ and ψ are monitor formulas and τ and τ ′ are temporal terms,
• ♦[τ,τ ′]φ , where φ is a monitor formula and τ and τ ′ are temporal terms,
• �[τ,τ ′]φ , where φ is a monitor formula and τ and τ ′ are temporal terms, or
• a combination of monitor formulas using standard logical connectives and quantification over values.

The shorthand notation φ Uψ ≡ φ U[0,∞)ψ , ♦φ ≡ ♦[0,∞)φ , and �φ ≡�[0,∞)φ is also permitted.

Tense operators use relative time, where each formula is evaluated relative to a “current” timepoint. The
semantics of these formulas satisfies the following conditions (see Doherty et al. (2009) for details):

• The formula φ U[τ,τ ′]ψ (“until”) holds at time t iff ψ holds at some state with time t ′ ∈ [t + τ, t + τ ′]
and φ holds until then (at all states in [t, t ′), which may be an empty interval).
• The formula ♦[τ,τ ′]φ (“eventually”) is equivalent to trueU[τ,τ ′]φ and holds at t iff φ holds in some

state with time t ′ ∈ [t + τ, t + τ ′].
• The formula �[τ,τ ′]φ is equivalent to ¬♦[τ,τ ′]¬φ and holds at t iff φ holds in all states with time

t ′ ∈ [t + τ, t + τ ′].

Example 9.1 Suppose that an AV supports a maximum continuous power usage of M, but can exceed this
by a factor of f for up to τ units of time, if this is followed by normal power usage for a period of length at
least τ ′. The following formula can be used to detect violations of this specification:

�∀av.(power(av)> M→ power(av)< f ·M U[0,τ]�[0,τ ′] power(av)≤M) �

Note that this does not in itself cause the AV to behave in the desired manner. That has to be achieved in
the lower level implementations of the helicopter control software. The monitor formula instead serves as
a method for detecting the failure of the helicopter control software to function according to specifications.

Monitors and Actions. In many cases, conditions that should be monitored are closely related to the
actions currently being executed. Two extensions are made to facilitate the specification of such formulas.

First, monitor formulas can be explicitly associated with specific operator types. Unlike global monitor
formulas, such formulas are not activated before plan execution but before the execution of a particular step
in the plan, which provides the ability to contextualize a monitor condition relative to a particular action.
An operator-specific monitor formula can also directly refer to the arguments of the associated operator.
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Example 9.2 Execution should be monitored when an AV attempts to pick up a box. Since the arguments
of pickup-box include the av and the box, the following operator-specific monitor formula can be used:
♦[0,5000]�[0,1000] carrying(av,box)

Within 5000 ms, the AV should detect that it is carrying the box, and it should detect this for at least 1000
ms. The latter condition protects against problems during the pickup phase, where the box may be detected
during a very short period of time even though the ultimate result is failure. �

Second, a set of execution flags allow monitor formulas to query the internal execution state of an agent.
This is useful when one wants to state that a certain fact should hold during the execution of an action, or
that an effect should be achieved during the execution of an action or before the execution of another action.
For example, if an AV picks up a crate, it should sense the weight of the crate until it deliberately puts down
the crate.

An execution flag is an ordinary boolean state variable which holds exactly when the correspond-
ing action is being executed. By convention, this state variable will generally be named by prepending
“executing-” to the name of the corresponding operator: The pickup-box operator is associated with the
executing-pickup-box execution flag, which takes a subset of the operator’s parameters. TST executors for
elementary action nodes can set this flag when execution starts and clear it when execution ends.

Example 9.3 Consider the climb(av) operator, which should cause the AV to ascend to its designated flight
altitude. Here, one may wish to monitor the fact that the AV truly ends up at its flight altitude. This can be
achieved using the formula executing-climb(av)Ualtitude(av)≥ 7.0. �

When it is clear from context which operator is intended, the shorthand notation EXEC can be used to refer
to its associated execution flag with default parameters: EXEC Ualtitude(av)≥ 7.0.

Example 9.4 Whenever an AV picks up a box, it should detect the box within 5000 ms and keep detecting
it until it is explicitly put down. Using an operator-specific monitor formula for pickup-box:
EXEC U[0,5000](carrying(av,box)Uexecuting-putdown(av,box))

Automatic Generation of Monitor Formulas. The use of a single logical formalism for modeling both
planning and execution monitoring provides ample opportunities for the automatic generation of conditions
to be monitored. For example, one can automatically generate formulas verifying that preconditions and
prevail conditions (which must hold throughout the execution of an action) are satisfied, that expected
effects take place, and that bounds on action durations are not violated. Similarly one can automatically
extract causal links, where one action achieves one condition that is later needed by another, and generate
a formula verifying that this condition is never violated in the interval between these actions. Since there
are pragmatic reasons for not generating all possible monitor formulas, automatic generation only takes
place for those conditions that are flagged for monitoring. This provides the benefits of automatic formula
generation while keeping the control in the hands of the domain designer. See Doherty et al. (2009) for
details.

9.3.1 Recovery from Failures

Any monitor formula violation signals a potential or actual failure from which the system must attempt to
recover in order to achieve its designated goals. Recovery is a complex topic, especially when combined
with the stringent safety regulations associated with autonomous flight. Goals and constraints may be time-
dependent, making local repairs difficult: An AV might only be allowed to fly in certain areas at certain
times. Also, recovering from a failure for one AV may require changing the plans of another AV: If heli1
fails to deliver a box of medicine on time, heli2 might have to be rerouted. Therefore the main focus has
been on recovery through replanning. Given that the planner is sufficiently fast when generating new plans,
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this does not adversely affect the execution of a fully autonomous mission.
Having detected a failure, the first action of an AV is to suspend the execution of the current plan,

execute an emergency break if required, and then go into autonomous hover mode. Currently, one takes
advantage of the fact that the UAS Tech Lab RMAX and LinkQuads are rotor-based and can hover. For
fixed-wing platforms, this is not an option and one would have to go into a loiter mode if the recovery
involves time-consuming computation.

This is followed by the execution of a recovery operator, if one is associated with the violated monitor
formula. The recovery operator can serve two purposes: It can specify emergency recovery procedures that
must be initiated immediately without waiting for replanning, and it can permit the execution system to
adjust its assumptions about what can and cannot be done. For example, if an AV fails to take off with a
certain carrier, the associated recovery operator can adjust the AV’s assumptions about how many boxes it
is able to lift. This feeds back information from the failure into the information given to the planner for
replanning. The implementation of a recovery operator can also detect the fact that the AV has attempted
and failed to recover from the same fault too many times and choose whether to give up, try another method,
remove some goals in order to succeed with the remaining goals, or contact a human for further guidance.

9.3.2 Execution Monitoring with Inaccurate Sensors

Monitoring should not only maximize the probability that a failure is detected but also minimize the prob-
ability of false positives, where a failure is signaled but none has occurred. Some problems, such as those
caused by dropouts and communication delays, can be ameliorated by extrapolating historical values and
by delaying state generation slightly to allow values to propagate through the distributed system. Noise
could be minimized through sensor value smoothing techniques and sensor fusion techniques. However,
inaccuracies in the detected state sequence can never be completely eliminated. Therefore, the fact that
state values may be inaccurate should be taken into consideration when writing monitor formulas.

For example, the meaning of the condition �∀av.speed(av) ≤ T is that the sensed and approximated
speed of an AV must never exceed the threshold T . Since a single observation of speed(av) above the
threshold might be an error or a temporary artifact, a more robust solution would be to signal a failure if
the sensed speed has been above the threshold during an interval [0,τ] instead of at a single timepoint. This
can be expressed as �♦[0,τ] speed(av)≤ T : It should always be the case that within the interval [0,τ] from
now, the sensed speed returns to being below the threshold.

This formula is somewhat weak: It only requires that a single measurement in every interval of length τ

is below the threshold. An alternative would be to require that within τ time units, there will be an interval
of length τ ′ during which the AV stays within the limits: �(speed(av)> T → ♦[0,τ]�[0,τ ′] speed(av)≤ T ).

9.3.3 Formula Progression

To promptly detect violations of monitor conditions during execution, a formula progression algorithm is
used (Bacchus and Kabanza, 1998). By definition, a formula φ holds in the state sequence [s0,s1, . . . ,sn] iff
Progress(φ ,s0) holds in [s1, . . . ,sn]. In essence, this evaluates those parts of the monitor formula that refer
to s0, returning a new formula to be progressed in the same manner once s1 arrives.

If the formula ⊥ (false) is returned, then sufficient information has been received to determine that the
monitor formula must be violated regardless of the future development of the world. For example, this will
happen as soon as the formula �speed < 50 is progressed through a state where speed≥ 50. Similarly, if
> (true) is returned, the formula must hold regardless of what happens “in the future”. This will occur if
the formula is of the form ♦φ (eventually, φ will hold), and one has reached a state where φ indeed does
hold. In other cases, the state sequence complies with the constraint “so far”, and progression will return a
new and potentially modified formula that should be progressed again as soon as another state is available.

Definition 9.3 (Progression of Monitor Formulas) The following algorithm is used for progression of
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monitor formulas. Note that states are not first-class objects in TAL and are therefore identified by a
timepoint τ and an interpretation I . Special cases for � and ♦ can be introduced for performance.

1 procedure Progress(φ ,τ,I )
2 if φ = f (x) =̂ v
3 if I |= Trans

(
[τ] φ

)
return > else return ⊥

4 if φ = ¬φ1 return ¬Progress(φ1,τ,I )
5 if φ = φ1⊗φ2 return Progress(φ1,τ,I )⊗Progress(φ2,τ,I )
6 if φ = ∀x.φ // where x belongs to the finite domain X
7 return

∧
c∈X Progress(φ [x 7→ c],τ,I )

8 if φ = ∃x.φ // where x belongs to the finite domain X
9 return

∨
c∈X Progress(φ [x 7→ c],τ,I )

10 if φ contains no tense operator
11 if I |= Trans

(
φ
)

return > else return ⊥
12 if φ = φ1 U[τ1,τ2]φ2
13 if τ2 < 0 return ⊥
14 elsif 0 ∈ [τ1,τ2] return Progress(φ2,τ,I )∨ (Progress(φ1,τ,I )∧ (φ1 U[τ1−1,τ2−1]φ2))
15 else return Progress(φ1,τ,I )∧ (φ1 U[τ1−1,τ2−1]φ2)

The result of Progress is simplified using the rules¬⊥=>, (⊥∧α)= (α∧⊥)=⊥, (⊥∨α)= (α∨⊥)=α ,
¬> = ⊥, (>∧α) = (α ∧>) = α , and (>∨α) = (α ∨>) = >. Further simplification is possible using
identities such as ♦[0,τ]φ ∧♦[0,τ ′]φ ≡ ♦[0,min(τ,τ ′′)]φ .

For this approach to be useful, it must be possible to progress typical monitor formulas through the state
sequences generated during a mission using the often limited computational power available in an au-
tonomous robotic system. The following evaluation uses one synthetic test where one can study complex
combinations of time and modality. An earlier version of the actual DRC computer on board a UASTL
RMAX was used to run progression tests for formulas having a form that is typical for monitor formulas in
many applications. State sequences are constructed to exercise both the best and the worst cases for these
formulas.

The evaluation shows that even with the worst possible inputs, complex formulas can be evaluated in
less than 1 millisecond per state and formula on this CPU (1.4 GHz Pentium M). One example formula is
�¬p→ ♦[0,1000]�[0,999] p, corresponding to the fact that if the property p is false, then within 1000 ms,
there must begin a period lasting at least 1000 ms where p is true. For example, the previously discussed for-
mula�(speed(av)> T → ♦[0,τ]�[0,τ ′] speed(av)≤ T ) has this general form. To estimate the cost of evalu-
ating this formula, it was progressed through several different state streams corresponding to the best case,
the worst case, and two intermediate cases. A new state in the stream was generated every 100 ms, which
means that all formulas must be progressed within this time limit or monitoring will fall behind. Figure 28
shows the average time required to progress a certain number of formulas through each state in a sequence.
This indicates that 100 ms is sufficient for progressing between 1500 and 3000 formulas of this form on the
computer on-board the UASTL RMAX, depending on the state stream. Similar results have been shown
for formulas of different forms, such as �¬p→ ♦[0,1000]�[0,999] p and �¬p→ ♦[0,1000]�[0,999] p (Doherty
et al., 2009).

9.4 High-Level Mission Specification
The ability to clearly and concisely specify missions is fundamentally important for an unmanned system
to be practically useful, and requires a suitable mission specification language that should satisfy a variety
of requirements and desires. The language should be comprehensible to humans and not only useful as an
intermediate representation both generated and received by software. At the same time intuitions are not
sufficient: A strict formal semantics must be available. There should also be a close connection to mission
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Figure 28: Average progression time: Always ¬p→ Eventually Always p.

execution, allowing the actual semantics of the language to be used to specify the correct operation of the
system and thereby facilitating the validation of the system as a whole. A principled foundation where these
issues are considered, for single platforms (vehicles) as well as for fleets of homogeneous or heterogeneous
platforms, is essential for these types of systems to be accepted by aviation authorities and in society.

The mission specification language used in the HDRC3 architecture is designed to allow partial mission
specifications with constraints, including resource requirements and temporal deadlines. It extends the sup-
port for highly expressive elementary actions in Temporal Action Logic (TAL, Section 9.1) with temporal
composite actions that also provide a formal semantics for the high-level structure of a mission (Doherty
et al., 2012). The composite action constructs in the extended logic TALF correspond closely to the con-
trol structures supported by Task Specification Trees (Section 6.3). As shown in Figure 29, missions can
therefore be defined either in TALF or as TSTs and can be translated in either direction. The delegation
functionality discussed in Section 10 can then be used to delegate a mission in the shape of a TST to one or
more platforms for execution, resulting in a distributed task structure.

Composite actions in TALF are characterized recursively through the general construct “with VARS

do TASK where CONS”: Any composite action consists of a task TASK that should be executed in a context
characterized by a set of variables VARS constrained by a set of constraints CONS. The TASK, in turn, can
be an elementary TAL action or consist of a combination of composite actions using constructs such as
sequential composition, parallel (concurrent) composition, conditionals, (unbounded) loops, while-do, and
a concurrent for-each operator allowing a variable number of actions to be executed concurrently. At the
mission specification level considered here, each constraint definition can be as general as a logical formula
in TAL, giving it a formal semantics. For pragmatic use in a robotic architecture, a wide class of formulas
can be automatically transformed into constraints processed by a constraint satisfaction solver, allowing
a robotic system to formally verify the consistency of a (distributed) task through the use of (distributed)
constraint satisfaction techniques.

A composite action type specification declares a named composite action. This is useful in order to
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Figure 29: Mission specification, translation and delegation.

define a library of meaningful composite actions to be used in mission specifications. Each specification is
of the form [t, t ′]comp(v̄) A(t, t ′, v̄) where comp(v̄) is a composite action term such as monitor-pattern(x,y,
dist), consisting of an action name and a list of parameters, and A(t, t ′, v̄) is a composite action expression
where only variables in {t, t ′}∪ v̄ may occur free. A composite action expression (C-ACT), in turn, allows
actions to be composed at a high level of abstraction using familiar programming language constructs such
as sequences (A;B), concurrency (A || B), conditions and loops. The associated syntax is defined as follows:

C-ACT ::= [τ,τ ′]with x̄ do TASK where φ

TASK ::= [τ,τ ′]ELEM-ACTION-TERM |
[τ,τ ′]COMP-ACTION-TERM |
(C-ACT; C-ACT) |
(C-ACT || C-ACT) |
if [τ]ψ then C-ACT else C-ACT |
while [τ]ψ do C-ACT |
foreach x̄ where [τ]ψ do conc C-ACT

where x̄ is a potentially empty sequence of variables (where the empty sequence can be written as ε), φ is
a TAL formula representing a set of constraints, ELEM-ACTION-TERM is an elementary action term such
as fly-to(av,x,y), COMP-ACTION-TERM is a composite action term, and [τ]ψ is a TAL formula referring
to facts at a single timepoint τ . For brevity, omitting “with x̄ do” is considered equivalent to specifying the
empty sequence of variables and omitting “where φ” is equivalent to specifying “where TRUE”. Note that
the ; and || constructs are easily extended to allow an arbitrary number of actions, as in (A;B;C;D).

Like elementary actions, every composite action C-ACT is annotated with a temporal execution interval.
This also applies to each “composite sub-action”. For example,

[t1, t2]with av, t3, t4, t5, t6 do(
[t3, t4]fly-to(av,x,y); [t5, t6]collect-video(av,x,y)

)
where [t1]has-camera(av)

denotes a composite action where one elementary action takes place within the interval [t3, t4], the other one
within the interval [t5, t6], and the entire sequence within [t1, t2].

The with-do-where construct provides a flexible means of constraining variables as desired for the task
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at hand. In essence, “[t1, t2]with x̄ do TASK where φ” states that there exists an instantiation of the variables
in x̄ such that the specified TASK (which may make use of x̄ as illustrated above) is executed within the
interval [t1, t2] in a manner satisfying φ . The constraint φ may be a combination of temporal, spatial and
other types of constraints. Above, this constraint is used to ensure the use of an av that has a camera rather
than an arbitrary av.

As the aim is to maximize temporal flexibility, the sequence operator (;) does not implicitly constrain
the two actions fly-to and collect-video to cover the entire temporal interval [t1, t2]. Instead, the actions
it sequentializes are only constrained to occur somewhere within the execution interval of the composite
action, and gaps are permitted between the actions – but all actions in a sequence must occur in the specified
order without overlapping in time. Should stronger temporal constraints be required, they can be introduced
in a where clause. For example, t1 = t3∧ t4 = t5∧ t6 = t2 would disallow gaps in the sequence above. Also,
variations such as gapless sequences can easily be added as first-class language constructs if desired.

Formal Semantics. To define a formal semantics for TALF, the base logic L (FL) is first extended with
support for fixpoint formulas. This is required for unbounded loops and unbounded recursion, which cannot
be characterized in the first-order logic L (FL). A translation is then defined from TALF into the extended
base logic L (FLFP). As a result of this translation, a composite action is a theory in L (FLFP). Questions
about missions thereby become queries relative to an inference mechanism, allowing operators to analyze
mission properties both during pre- and post-mission phases. This also provides a formal semantics for
Task Specification Trees, which can be translated into TALF, and thereby for the execution system used in
the HDRC3 architecture. Details regarding translations and the resulting formal semantics are specified in
Doherty et al. (2012).

Examples. In November 2011, a powerful earthquake off the coast of Japan triggered a tsunami with
devastating effects, including thousands of dead and injured as well as extensive damage to cities and
villages. Another effect, which became increasingly apparent over time, was the extensive damage to the
Fukushima Daiichi nuclear plant which later resulted in a complete meltdown in three reactors. The exact
level of damage was initially difficult to assess due to the danger in sending human personnel into such
conditions. Here unmanned aircraft could immediately have assisted in monitoring radiation levels and
transmitting video feeds from a closer range. Several composite actions that can be useful for the problem
of information gathering in this situation will now be considered. The focus is on demonstrating the L (ND)
composite action constructs and some aspects of the actions below are simplified for expository reasons.

Assume the existence of a set of elementary actions whose meaning will be apparent from their names
and from the explanations below: hover-at, fly-to, monitor-radiation, collect-video, and scan-cell. Each
elementary action is assumed to be defined in standard TAL and to provide suitable preconditions, effects,
resource requirements and (completely or incompletely specified) durations. For example, only an AV with
suitable sensors can execute monitor-radiation.

In the following composite action, an AV hovers at a location (xav,yav) while using its on-board sensors
to monitor radiation and collect video at (xtarg,ytarg).

[t, t ′]monitor-single(av,xav,yav,xtarg,ytarg) 
[t, t ′]with t1, t2, t3, t4, t5, t6 do (

[t1, t2]hover-at(av,xav,yav) ||
[t3, t4]monitor-radiation(av,xtarg,ytarg) ||
[t5, t6]collect-video(av,xtarg,ytarg)

) where [t]surveil-equipped(av)∧ radiation-hardened(av)∧ t1 = t3 = t5 = t ∧ t2 = t4 = t6 = t ′

The first part of the constraint specified in the where clause ensures that an AV involved in a monitor-
ing action is equipped for surveillance and is radiation-hardened (in addition to the conditions placed on
monitor-radiation, which include the existence of radiation sensors). The temporal constraints model a
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requirement for these particular actions to be synchronized in time and for the AV to hover in a stable loca-
tion throughout the execution of monitor-single. These constraints could easily be relaxed, for example by
stating that hovering occurs throughout the action but monitoring occurs in a sub-interval.

The following action places four AVs in a diamond pattern to monitor a given location such as a nuclear
reactor at a given distance, counted in grid cells. The AVs involved are not specified as parameters to
the monitoring action but are chosen freely among available AVs, subject to the constraints modeled by
sub-actions such as monitor-single.

[t, t ′]monitor-pattern(x,y,dist) 
[t, t ′]with s1, . . . ,w4,av1,av2,av3,av4 do (

([s1,s2] fly-to(av1,x+dist,y); [s3,s4] monitor-single(av1,x+dist,y,x,y)) ||
([u1,u2] fly-to(av2,x−dist,y); [u3,u4] monitor-single(av2,x−dist,y,x,y)) ||
([v1,v2] fly-to(av3,x,y+dist); [v3,v4] monitor-single(av3,x,y+dist,x,y)) ||
([w1,w2] fly-to(av4,x,y−dist); [w3,w4] monitor-single(av4,x,y−dist,x,y)))

where
s3 = u3 = v3 = w3∧ s4 = u4 = v4 = w4∧ s4− s3 ≥ minduration

Four sequences are executed in parallel. Within each sequence, a specific AV flies to a suitable location and
then monitors the target. The target must be monitored simultaneously by all four AVs (s3 = u3 = v3 = w3
and s4 = u4 = v4 = w4), while s4− s3 ≥ minduration ensures this is done for at least the specified duration.
As flying does not need to be synchronized, the intervals for the fly-to actions are only constrained implicitly
through the definition of a sequence. For example, the translation ensures that t ≤ s1 ≤ s2 ≤ s3 ≤ s4 ≤ t ′, so
that each fly-to must end before the corresponding monitor-single.

All grid cells must also be scanned for injured people. The following generic action uses all available
AVs with the proper capabilities, under the assumption that each such AV has been assigned a set of grid
cells to scan. An assignment could be generated by another action or provided as part of the narrative
specification. For clarity, this includes several clauses (with ε do, where TRUE) that could easily be omitted.

[t, t ′] scan-with-all-uavs() 
[t, t ′] with ε do

foreach av where [t]can-scan(av) do conc
[t, t ′] with u,u′ do [u,u′] scan-for-people(av) where TRUE

where TRUE

As shown below, each AV involved in this task iterates while there remains at least one cell (x,y) that it
has been assigned (“owns”) and that is not yet scanned. In each iteration the variables (x′,y′) declared in
the nested with clause range over arbitrary coordinates, but the associated where clause ensures that only
coordinates that belong to the given AV and that have not already been scanned can be selected. Also in
each iteration, tc is bound to the time at which the constraint condition is tested and u,u′ are bound to the
timepoints at which the inner composite action is performed. The repeated use of u,u′ is intentional: The
scan-cell action will occur over exactly the same interval as the enclosing composite action construct.

[t, t ′] scan-for-people(av) 
[t, t ′] with ε do

while [tc] ∃x,y[owns(av,x,y)∧¬scanned(x,y)] do
[u,u′] with x′,y′ do [u,u′]scan-cell(av,x′,y′)where [tc]owns(av,x′,y′)∧¬scanned(x′,y′)

where TRUE

It is now possible to define a small mission to occur within the interval [0,1000], where scanning may use
the entire interval while the grid cell (20,25) is monitored at a distance of 3 cells and must terminate before
time 300.

[0,1000]([0,1000] scan-with-all-uavs() || [0,300] monitor-pattern(20,25,3))
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It should be emphasized that in the expected case, the task of generating specifications of this kind would
be aided by libraries of predefined domain-related actions as well as by user interfaces adapted to the task at
hand. The structure and high-level nature of the language remains important when ensuring that these tools
and their output are both correct and comprehensible to a human operator inspecting a mission definition.

10 Collaborative Systems
Though the main focus of this chapter has been on the operation of a single unmanned aircraft, issues related
to cooperation and collaboration are also essential for the successful use of such systems.

At the cooperative level, the combination of an aircraft or other robotic platform and its associated
software is viewed as an agent. Humans interacting with platforms through for example ground control
stations and other interfaces are also considered to be agents. Taken together, these agents form a collabora-
tive system where all participants can cooperate to perform missions. One aspect of a collaborative system
is that all agents are conceptually equal and independent in the sense that there is no predefined control
structure, hierarchical or otherwise. A consequence is that the control structure can be determined on a
mission-to-mission basis and dynamically changed during a mission.

When an unmanned system is viewed as an agent acting on behalf of humans, it is also natural to view
the assignment of a complex mission to that system as delegation – by definition, the act of assigning
authority and responsibility to another person, or in a wider sense an agent, in order to carry out specific
activities. Delegation is therefore part of the foundation for collaboration in this architecture: A delegator
can ask a contractor to take the responsibility for a specific task to be performed under a set of constraints.
Informally, an agent receiving a delegation request must verify that to the best of its knowledge, it will be
able to perform the associated task under the given constraints, which may for example concern resource
usage or temporal and spatial aspects of the mission. To ensure that a complex task is carried out in its
entirety, an agent may have to enlist the aid of others, which can then be delegated particular parts of the
task. This results in a network of responsibilities between the agents involved and can continue down to the
delegation of elementary, indivisible actions. If such a network can be generated in a way that satisfies the
associated constraints, the contractor can accept the delegation and is then committed to doing everything
in its power to ensure the task is carried out. If not, it must refuse. See Doherty et al. (2013) for a formal
characterization of delegation in terms of speech acts as well as a practical delegation protocol that also
determines how to allocate tasks to specific agents.

Delegation requires a flexible task structure with a clear formal semantics. This role is played by Task
Specification Trees (Section 6.3), whose hierarchical nature also leads to a natural recursive decomposition
of tasks where the children of a node are the subtasks that can be re-delegated to other agents. For example,
an automated multi-agent planner (Section 9.2) can generate a TST where elementary action nodes are not
assigned to specific agents. Then, the delegation process and its embedded task allocation functionality
(Doherty et al., 2013) can recursively determine how the plan can be executed in a way that satisfies asso-
ciated constraints. The formal semantics of the task being delegated is specified through a close connection
to TALF (Section 9.4). See Doherty et al. (2013, 2011); Doherty and Meyer (2012) for further details about
delegation, its close relation to adjustable autonomy and mixed-initiative interaction, and its integration
with automated planning.

Legacy Systems. When an agent-based architecture is used together with an existing platform such as
an unmanned aircraft, there may already be an existing legacy system providing a variety of lower-level
functionalities such as platform-specific realizations of elementary tasks and resources. Existing interfaces
to such functionalities can vary widely. The current instantiation of the architecture (Figure 30(a)) directly
supports the use of such legacy functionalities through the use of an agent layer and a gateway. The agent
layer (Figure 30(b)) encapsulates higher-level deliberative functionalities and provides a common interface
for multi-agent collaboration in complex missions, including support for mission specification languages,

60



Platform / Ground Station 

Agent Layer 

Legacy System 

Gateway 

Interface 

Delegation 
Capability 

Task Exec 
Capability 

… 

Legacy 
Functionalities 

Task Planning 
Capability 

Motion Planning 
Capability 

Resource 
Reasoning Cap. 

(a) Agentified platform or ground control station.

Collaborative Human Robot System 

Platform 1 

Agent 
Layer 

Legacy 
System 

Operator 1 

Agent 
Layer 

Legacy 
System 

Platform n 

Agent 
Layer 

Legacy 
System 

Operator m 

Agent 
Layer 

Legacy 
System 

(b) Overview of the collaborative human/robot system.

Figure 30: Agents in a collaborative system.

delegation, and planning. The gateway must have a platform-specific implementation, but provides a com-
mon platform-independent external interface to the available legacy functionalities. In essence, this allows
newly developed higher-level functionalities to be seamlessly integrated with existing systems, without
the need to modify either the agent layer or the existing system. The agent layer can then be developed
independently of the platforms being used.

Legacy control stations and user interfaces that human operators use to interact with robotic systems are
treated similarly, through the addition of an agent layer. The result is a collaborative human/robot system
consisting of a number of human operators and robotic platforms each having an agent layer and possibly a
legacy system, as shown in Figure 30(b).

11 Mission Applications
The research methodology used during the development of the HDRC3 architecture has been very much
scenario-based where very challenging scenarios out of reach of current systems are specified and serve
as longer term goals to drive both theoretical and applied research. Most importantly, attempts are always
made to close the theory/application loop by implementing and integrating results in AVs and deploying
them for empirical testing at an early stage. One then iterates and continually increases the robustness and
functionalities of the targeted components.

Due to the architecture described in the previous sections it is relatively easy to build on top of existing
functionalities and to add new ones in order to put together sophisticated autonomous missions. Below, two
such example mission applications are described.

11.1 Emergency Services Assistance
The first application focuses again on the ambitious emergency services scenario discussed in the intro-
duction. An emergency relief scenario in this context can be divided into two separate legs or parts.

11.1.1 Mission Leg I: Body Identification

In the first leg of the mission, a large region should be cooperatively scanned with one or more AVs to iden-
tify injured civilians. The result of this scan is a saliency map pinpointing potential victims, their locations
and associated information such as high resolution photos and thermal images. This information could then
be used directly by emergency services or passed on to other AVs as a basis for additional tasks.
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Algorithm 4 Saliency map construction
1: Initialize data structures
2: while scanning not finished do
3: Simultaneously grab two images: imgcolor, imgthermal

4: Analyze imgthermal to find potential human body regions
5: for each region in imgthermal do
6: Find corresponding region rcolor in imgcolor

7: Compute geographical location loc of rcolor

8: Execute human body classifier on rcolor

9: if classification positive then
10: if loc is new then
11: add location loc to map, initialize certainty factor pbody(loc)
12: else
13: update certainty factor pbody(loc)
14: end if
15: end if
16: end for
17: end while

A multi-platform area coverage path planning algorithm computes paths for n heterogeneous platforms
guaranteeing complete camera coverage, taking into account sensor properties and platform capabilities.

Two video sources (thermal and color) are used, allowing for high rate human detection at larger dis-
tances than in the case of using the video sources separately with standard techniques. The high processing
rate is essential in case of video collected onboard an AV in order not to miss potential victims.

A thermal image is first analyzed to find human body sized silhouettes. The corresponding regions in a
color image are subjected to a human body classifier which is configured to allow weak classifications. This
focus of attention allows for maintaining body classification at a rate up to 25 Hz. This high processing
rate allows for collecting statistics about classified humans and pruning false classifications of the "weak"
human body classifier. Detected human bodies are geolocalized on a map which can be used to plan supply
delivery. The technique presented has been tested on-board the UASTL RMAX helicopter platform and is
an important component in the lab’s research with autonomous search and rescue missions.

Saliency Map Construction. Information obtained from thermal and color video streams must be fused
in order to create saliency maps of human bodies. An overview of the method used is presented in Algo-
rithm 4. The execution of this algorithm starts when the host AV arrives at the starting position of the area
to scan and is terminated when the scanning flight is finished. Its output is a set of geographical locations
loci and certainty factors pbody(loci). Refer to (Doherty and Rudol, 2007; Rudol and Doherty, 2008) for
additional details.

After initializing the necessary data structures (line 1) the algorithm enters the main loop (line 2), which
is terminated when the entire area has been scanned. The main loop begins with simultaneously grabbing
two video frames. The thermal image is analyzed first (line 4) to find a set of regions of intensities which
correspond to human body temperatures (details below). Then (line 6), for each of these subregions a
correspondence in the color frame, as well its geographical location loc, are calculated (details below). The
calculated corresponding region in the color frame is analyzed with a human body classifier to verify the
hypothesis that the location loc contains a human body (details below). If the classification is positive and
the location loc has not been previously identified, then loc is added to the map and its certainty factor
initialized (line 11). Otherwise, the certainty factor of that location is updated (line 13, details below).

Thermal Image Processing. The image processing algorithm takes a pair of images as input and starts by
analyzing the thermal image (top row of Figure 31). The image is first thresholded to find regions of certain
intensities which correspond to human body temperature. The image intensity corresponding to a certain
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Figure 31: Example input to the image processing algorithm: Thermal images and corresponding color
images.

temperature is usually given by the camera manufacturer or can be calibrated by the user. The shapes of the
thresholded regions are analyzed and those which do not resemble a human body, due to the wrong ratio
between minor and major axes of the fitted ellipse or due to incorrect sizes, are rejected. Once human body
candidates are found in the thermal image, corresponding regions in the color image are calculated.

Image Correspondences and Geolocation. Finding corresponding regions using image registration or
feature matching techniques is infeasible because of the different appearance of features in color and thermal
images. Therefore a closed form solution, which takes into account information about the cameras’ pose in
the world, is preferred. In short, a geographical location corresponding to pixel coordinates for one of the
cameras is calculated. It takes into account the camera’s extrinsic and intrinsic parameters and assumes a
flat world. The obtained geographical location is then projected back into the other camera image.

The method can be extended to relax the flat world assumption given the elevation model. A geograph-
ical location of a target can be found by performing ray-tracing along the line going from the camera center
through a pixel to find the intersection with the ground elevation map.

The accuracy of the correspondence calculation is influenced by several factors. All inaccuracies of
parameters involved in calculating the position and attitude of cameras in the world contribute to the overall
precision of the solution. The evaluation of the accuracy involves investigating the AV state estimation
errors, pan-tilt unit position accuracy, camera calibration errors etc. In the case of the UASTL RMAX,
during the experimental validation, the corresponding image coordinates were within a subregion of 20%
of the video frame size (see the marked subregions in the color images in Figure 31).

Human Body Classification. After calculating the coordinates of the pixel in the color image, a region
with the Pc as center (the black rectangles in the bottom row images of Figure 31) is analyzed by an object
classifier. The classifier used was first suggested in Viola and Jones (2001). It uses a cascade of classifiers
for object detection, and includes a novel image representation, the integral image, for quick detection of
features. Classifiers in the initial stages remove a large number of negative examples. Successive classi-
fiers process a smaller number of sub-windows. The initial set of sub-windows can include all possible
sub-windows or can be the result of a previous classification in a thermal image additionally improving
processing rate. The method was also improved, for example in Lienhart and Maydt (2002) by extending
the original feature set.

The classifier requires training with positive and negative examples. During the learning process the
structure of a classifier is built using boosting. The use of a cascade of classifiers allows for dramatic speed
up of computations by skipping negative instances and only computing features with high probability for
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Figure 32: Schematic description of a cascade classifier.

positive classification. The speed up comes from the fact that the classifier, as it slides a window at all
scales, works in stages and is applied to a region of interest until at some stage the candidate is rejected
or all the stages are passed (see Figure 32). This way, the classifier quickly rejects subregions that most
probably do not include the features needed for positive classification (that is, background processing is
quickly terminated).

The implementation of the classifier used in this work is a part of the Open Source Computer Vision
Library (http://opencv.org/) and the trained classifier for upper, lower and full human body is a
result of Kruppa et al. (2003). The classifier is best suited for pedestrian detection in frontal and backside
views which is exactly the type of views an AV has when flying above the bodies lying on the ground.

The classifier parameters have been adjusted to minimize false negatives: In case of rescue operations
it is better to find more false positives than to miss a potential victim. The number of neighboring rect-
angles needed for successful identification has been set to 1 which makes the classifier accept very weak
classifications. The search window is scaled up by 20% between subsequent scans.

Map Building. Since the body classifier is configured to be "relaxed" it delivers sporadic false positive
classifications. The results are pruned as follows. Every salient point in the map has two parameters which
are used to calculate the certainty of a location being a human body: Tframe which describes the amount
of time a certain location was in the camera view and Tbody which describes the amount of time a certain
location was classified as a human body. The certainty factor is calculated by pbody(loci)=

Tbody
Tframe

. A location
is considered a body if pbody(loci) is larger than a certain threshold (0.5 was used during the flight tests)
and Tframe is larger than a desired minimal observation time. Locations are considered equal if geographical
distance between them is smaller than a certain threshold (depending on the geolocation accuracy) and the
final value of a geolocated position is an average of the observations.

Experimental Validation. The presented technique for geolocation and saliency map building has been
integrated as a perception functionality of the Control Kernel (Section 5.2) and tested in flight. A mission
has then been constructed in the shape of a Task Specification Tree that indirectly makes use of the take-off,
hovering, path following, and landing flight control modes (through FCL commands, Section 6.2.2), as well
as the pan-tilt unit (through PPCL commands, Section 6.2.3).

Test flights were then performed at the Swedish Rescue Services Agency Test Area (Figure 33A). Since
this is a city-like closed area with road structures, buildings etc., the video streams included different types
of textures such as grass, asphalt, gravel, water and building rooftops. An example complete push button
mission setup was as follows:

• Two UASTL RMAX helicopters were used starting from H1 and H2 in Figure 33B.
• An operator selected a rectangular area on a map where the saliency map was to be built (Figure 33B).
• On-board systems calculated the mission plan taking into account properties of the on-board sensors

(such as the field of view) of both AVs. The plan consisted of two separate flight plans for the two
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Figure 33: A. Map of the Swedish Rescue Services Agency Test Area in Revinge, B. A closeup view of the
area where the saliency map was built. Approximate flight paths are marked with solid lines.

AVs.
• The mission started with simultaneous takeoffs and flying to starting positions S1 and S2 in Fig-

ure 33B. After arriving at the starting positions the execution of the scanning paths autonomously
began and the saliency map building was initiated.
• Upon finishing the scanning paths at positions E1 and E2, the AVs flew to the takeoff positions and

performed autonomous landings.

Experimental Results. All eleven human bodies placed in the area were found and geolocated. Corre-
sponding color and thermal images for the identified objects are displayed vertically as pairs in Figure 34.
Images 7, 9 and 14 present three falsely identified objects, caused by configuring the human body classifier
to accept weak classifications. A more restrictive setup could instead result in missing potential victims.
The images could additionally be judged by a human operator to filter out the false-positive classifications.
Both human bodies and dummies were detected despite the lower temperature of the latter.

Figure 35 presents the generated saliency map. The scanning pattern segments for the platform starting
in position H2 is marked with a solid line, and its final position is marked with a cross icon. The fields of
view of the color and thermal cameras are depicted with light-grey and black rectangles, respectively. These
differ slightly as the two cameras have different properties as identified during calibration procedures.

The circles indicate the identified body positions. The lighter the shade of the color, the more certain the
classification. As can be seen the most certain body positions are objects number 2 and 11 (in Figure 34).
It is due to the fact that these body images are clearly distinguishable from the homogeneous background.
Nevertheless, even body images with more cluttered backgrounds were identified.

The accuracy of the body geolocation calculation was estimated by measuring GPS positions (without
differential correction) of bodies after an experimental flight. The measurement has a bias of approximately
two meters in both east and north directions. It is the sum of errors in GPS measurement, accuracy of
the camera platform mounting, PTU measurement and camera calibration inaccuracies. The spread of
measurement samples of approximately 2.5 meters in both east and north directions is a sum of errors of
the AV’s attitude measurement, the system of springs in the camera platform and time differences between
the AV state estimate, PTU angle measurement and image processing result acquisition.

The presented algorithm requires only a single pair of images for human body classification. In practice,
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Figure 34: Images of classified bodies. Corresponding thermal images are placed under color images.

however, the more pairs available the more certain the result of a classification can become. Additionally,
thanks to using the results of the thermal image analysis to focus the classification in the color image
subregions, a high rate of processing is achieved (above 20 Hz for the presented results).

11.1.2 Mission Leg II: Package Delivery

After successful completion of leg I of the mission scenario, one can assume that a saliency map has been
generated with geo-located positions of the injured civilians. In the next phase of the mission, the goal is
to deliver configurations of medical, food and water supplies to the injured. In order to achieve this leg of
the mission, one would require a task planner to plan for logistics, a motion planner to get one or more AVs
to supply and delivery points and an execution monitor to monitor the execution of highly complex plan
operators. Each of these functionalities would also have to be tightly integrated in the system.

For these logistics missions, the use of one or more AVs with diverse roles and capabilities is assumed.
Initially, there are n injured body locations, several supply depots and several supply carrier depots (see
Figure 37). The logistics mission is comprised of one or more AVs transporting boxes containing food and
medical supplies between different locations (Figure 36). Plans are generated in the millisecond to seconds
range using TALplanner (see Section 9.2) and empirical testing shows that this approach is promising in
terms of integrating high-level deliberative capability with lower-level reactive and control functionality.

Achieving the goals of such a logistics mission with full autonomy requires the ability to pick up and
deliver boxes without human assistance. Thus each AV has a device for attaching to boxes and carrying
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Figure 35: The resulting map with salient points marked as circles. The lighter the shade of the color the
higher the detection certainty.

them beneath the AV. The action of picking up a box involves hovering above the box, lowering the device,
attaching to the box, and raising the device, after which the box can be transported to its destination. There
can also be a number of carriers, each of which is able to carry several boxes. By loading boxes onto such
a carrier and then attaching to the carrier, the transportation capacity of an AV increases manifold over
longer distances. The ultimate mission for the AVs is to transport the food and medical supplies to their
destinations as efficiently as possible using the carriers and boxes at their disposal.

A physical prototype of a mechanism for carrying and releasing packages has been developed and
tested. Figure 38 presents two images of the prototype system. The logistics scenario has also been tested
in a simulated AV environment with hardware in-the-loop, where TALplanner generates a detailed mission
plan which is then sent to a simulated execution system using the same helicopter flight control software
as the physical AV. The execution monitor system has been tested in this simulation as well, with a large
variety of deviations tested through fault injection in the simulation system. The simulator makes use of
the Open Dynamics Engine (http://www.ode.org), a library for simulating rigid body dynamics, in
order to realistically emulate the physics of boxes and carriers. This leads to effects such as boxes bouncing
and rolling away from the impact point should they accidentally be dropped, which is also an excellent
source of unexpected situations that can be used for validating both the domain model and the execution
monitoring system.

11.2 Map Building using a Laser Range Finder
The second application presented here deals with the construction of an elevation map using a laser range
finder allowing AVs to navigate safely in unknown outdoor environments.

As described in Section 7.1, the path planning algorithms used here are based on a geometrical descrip-
tion of the environment to generate collision-free paths. The safety of a UAS operation therefore depends
on having a sufficiently accurate 3D model of the environment. Predefined maps may become inaccurate
or outdated over time because of the environment changes, for example due to new building structures and
vegetation growth. Therefore adequate sensors and techniques for updating or acquiring new 3D models of
the environment are necessary in many cases.
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Figure 36: The AV logistics simulatorA UAV Search and Rescue Scenario 11

Fig. 8. A Supply Depot (left) and a Carrier Depot (right)
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Fig. 9. System Architecture Overview

conditions to be monitored during execution of the plan by an execution moni-
tor in order to relax the assumption that no failures can occur. Such conditions
are expressed as temporal logical formulas and evaluated on-line using formula
progression techniques. This execution monitor notifies the plan executor when
actions do not achieve their desired results and one can then move into a plan
repair phase.

The plan executor translates operators in the high-level plan returned by
TALplanner into lower level command sequences which are given to the command
executor. The command executor is responsible for controlling the UAV, either
by directly calling the functionality exposed by its lowest level Flight Command

Figure 37: A supply depot (left) and a carrier depot (right)

Among the many sensors available for providing 3D information about an operational environment,
laser range finders provide high accuracy data at a reasonable weight and power consumption. One of the
reasons for the innovation in this particular sensor technology is its wide use in many industries, but laser
range finders have also received a great deal of interest from the robotics community, where their main usage
is in navigation and mapping tasks for ground robotic systems, such as localization (Burgard et al., 1997),
2D Simultaneous Localization and Mapping (SLAM (Montemerlo and Thrun, 2007)), 3D SLAM (includes
3D position (Cole and Newman, 2006)), and 6D SLAM (includes 3D position and attitude (Nüchter et al.,
2004)).

The device integrated with the UASTL RMAX system is the popular LMS-291 from SICK AG (http:
//www.sick.com). This unit does not require any reflectors or markers on the targets nor scene illumi-
nation to provide real-time measurements. It performs very well both in indoor and outdoor environments.
The system is equipped with a rotating mirror which allows for obtaining distance information in one plane
in front of the sensor with a selectable field of view of 100 or 180 degrees (Figure 39). It gives a resolution
of 1 cm with a maximum range of 80 meters, or a resolution of 1 mm with a range of 8 meters, an angular
resolution of 0.25, 0.5 or 1.0 degrees, and a corresponding response time of 53, 26 or 13 ms.

The laser unit has been modified to reduce its weight from 4.5 to 1.8 kg. It has then been mounted on
an in-house developed rotation mechanism supporting continuous rotation of the sensor around the middle
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Figure 38: Two frames of video presenting the prototype mechanism for carrying and releasing packages
using an electromagnet. An arrow points to a package being carried. The top left picture presents the
on-board camera view.

0°

40° 140°

Figure 39: Top view of the LMS-291 scanning field and the axis of rotation using the rotation mechanism.

laser beam (solid line in Figure 39), which allows for obtaining half-sphere 3D point clouds even when the
vehicle is stationary. A similar approach to the integration of the laser range finder with an UASTL RMAX
platform is used by Whalley et al. (2008).

System Integration. The 3D map building algorithm based on the data provided by LRF sensor has been
integrated as a perception functionality of the Control Kernel (Section 5.2) and tested in flight. A Task
Specification Tree node has been specified to achieve the required mission goals (Section 6.3). Similar to
the previous application example, the take-off, hovering, path following, and landing flight control modes
were used during the mission through Flight Control Language commands (Section 6.2.2). Additionally,
the Payload and Perception Control Language (Section 6.2.3) are used to set a constant angular speed of
the LRF rotational mechanism as well as the distance and angular resolutions of the sensor. The 3D maps
acquired are saved in the GIS Service database and available to the deliberative services (such as path
planners, discussed in Section 7).

Experimental Results. Several missions were performed during which both the LRF data and AV state
estimates were collected and integrated. Figure 40 presents a reconstructed elevation map of the Revinge
flight test area (the left side) focusing on two building structures. A photo of corresponding buildings is
presented on the right side of the figure. The elevation map is built by sampling the LRF data with 1 meter
resolution and constructing a set of triangles in order to represent the elevation.

In order to assess the fidelity of the newly generated model an overlay with the existing model was
generated. The result is presented in Figure 41a. The new map includes some changes in the environment,
including a metal container on the left in the figure (A.) and new vegetation (B.) that was not present in the
existing model.

The new models stored by the GIS Service can be used by the AV platform for path planning in order to
generate collision-free paths (see Section 7.1). Since generated models are based on noisy measurements a
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Figure 40: Overview of the reconstructed elevation map of the Revinge flight test area based on the laser
range finder data (left) and a photo of corresponding building structures (right).
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(a) Overlay of the new elevation map with the existing Revinge
flight test area model.

(b) Example of path planner use in the reconstructed map of
the Revinge area.

Figure 41: Results of the map building procedure.

safety margin during the planning is used. For the UASTL RMAX, a safety margin of 6 meters is used. An
example of path generated by the path planner using the new model is presented in Figure 41b.

The accuracy of models built with the raw LRF point clouds (without applying the scan matching
algorithms) is sufficient for navigation purposes if the necessary safety margins are used. The inaccuracies
introduced by the measurement errors and the uncertainty of the AV state estimate might result in narrowing
down the operational environment of the AV. For example, in Figure 41a a narrow passage (C.) can be
excluded from the collision-free space although the corridor between the two buildings is wide enough to
fly through. Further investigation of methods for improving the model quality is ongoing at the time of
writing this chapter.

12 Conclusions
The goal of this research is the development of autonomous intelligent systems for unmanned aircraft. This
chapter has described a hybrid deliberative reactive architecture which has been developed through the
years and successfully deployed on a number of unmanned aircraft. The focus was on an instantiation of
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this architecture with the UASTL RMAX. The architecture was described in a manner that should be useful
to the unmanned aircraft research community, because it isolates generic functionality and architectural
solutions that can be transferred and used on existing unmanned aircraft and also those envisioned for the
future. The experimental development of such systems has wider impact since the HDRC3 architecture and
its instantiation on the UASTL RMAX is an example of a new type of software system commonly known
as a software intensive system or cyber physical system. Such systems are characterized by a number of
features: the complex combination of both hardware and software; the high degree of concurrency used;
the distributed nature of the software; the network-centric nature of the environment in which they reside;
the open nature of these systems; and finally, the requirement that they are both scalable and adaptive since
specification of such systems is necessarily open due to their interaction with other components not part of
the system. The latter features are particularly important in the context of collaborative missions with other
heterogeneous systems.

The HDRC3 architecture encapsulates many of these features. Emphasis has been placed on the impor-
tance of clean transitional interfaces between the different layers of the architecture which are inhabited by
computational processes with diverse requirements in terms of temporal latency in the decision cycles and
the degree to which the processes use internal models. The HDRC3 architecture is also highly modular and
extensible.

The use of HCSMs separates specification of the behavior of the system from the atomic conditions and
activities which are implemented procedurally. This permits the use of a real-time interpreter for HCSMs
and alleviates the requirement for recompilation when new HCSMs are added to the system. The approach
is also amenable to distribution where federations of HCSM interpreters can inter-communicate with each
other on a single platform as is the case with the UASTL RMAX system, but also across platforms if
required.

The Platform Server provides a clean declarative interface to both the suite of flight control modes and
perception control modes through the use of two languages, FCL and PPCL, respectively. This approach
provides a primitive language of building blocks that can be structured and used by other functionalities
in the system to define higher level task specifications. Extending the suite of basic actions in the UASTL
RMAX system is done by defining new HCSMs which interface to new or existing control modes and then
extending the language interface in the Platform Server.

The task specifications themselves have a well-defined and extensible language, Task Specification
Trees, which are used by both the reactive and deliberative layers of the architecture as a declarative spec-
ification language for tasks. Primitive actions defined through the Platform Server interface can be used
with TSTs or if required, new actions can be defined by specifying new node types. The execution and
procedural implementation of these basic action and new node types is separated from their declarative
specification through the use of node executors and a node execution facility in the reactive layer of the
HDRC3 architecture.

This clean separation has a number of advantages besides extensibility and modularity. A declarative
specification of tasks permits the sharing of tasks implemented in different ways across platforms. This
is especially important in the context of collaborative robotics and heterogeneous robotic systems. It also
permits the translation of other task languages into a common representation. The translation of the output
of automated task planners is a case in point. There is a direct mapping from the declarative output of a
planner to grounded executable components in the architecture.

The DyKnow system is another extensible and modular functionality. Any source in an architecture
can become a stream-based data source. One naturally thinks of sensors as specific sources of data, but at
another extreme one can think of another platform as a source of streamed data, or a data base or the Internet.
The DyKnow system provides means for specifying, constructing, generating, using and managing these
diverse sources of data contextually at many different levels of abstraction. This is a unique component
in the HDRC3 architecture that has had widespread use by other functionalities such as the execution
monitoring system and the task and motion planners.
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Traditionally, verification and validation of autonomous systems has been a central research issue. In
the context of unmanned aircraft, a great deal of research has focused on the control kernel and to some
extent the lower parts of the reactive layer. In terms of the reactive layer itself and in particular the highly
non-deterministic functionality associated with the deliberative layer, very little effort has been put into
verification and validation because tools simply do not exist yet. A great deal of research effort has gone into
improving this absence of effort during the development of key functionalities in the HDRC3 architecture.
Many of the functionalities there such as the task planner, the task specification language, the mission
specification language and the execution monitoring system, each have a formal semantics based on the use
of Temporal Action Logics.

In fact the use of logic is highly integrated with many of the processes evoked by deliberative function-
ality. The execution monitoring system is essentially a real-time dynamic model-checking system where
temporal models are generated dynamically by DyKnow during the course of operation and various con-
straints are checked relative to those models by evaluating formulas through progression and checking for
their satisfiability. The output of TALplanner is a formal narrative structure in Temporal Action Logic.
Consequently both the process of generating a plan and the resulting output can be reasoned about using
inference mechanisms associated with TALplanner.

In summary, this chapter has described an empirically tested unmanned aircraft architecture that com-
bines many years of both engineering and scientific insight acquired through the successful deployment of
the UASTL RMAX system in highly complex autonomous missions. To the extent possible, these insights
have been described in a generic manner in the hope that many of the functionalities described can serve as
a basis for use by others in the continued and exciting development of such systems.
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