
Chapter 19
Logic-Based Roughification

Linh Anh Nguyen and Andrzej Szałas

Abstract. The current chapter is devoted to roughification. In the most general set-
ting, we intend the term roughification to refer to methods/techniques of construct-
ing equivalence/similarity relations adequate for Pawlak-like approximations. Such
techniques are fundamental in rough set theory. We propose and investigate novel
roughification techniques. We show that using the proposed techniques one can of-
ten discern objects indiscernible by original similarity relations, what results in im-
proving approximations. We also discuss applications of the proposed techniques in
granulating relational databases and concept learning. The last application is partic-
ularly interesting, as it shows an approach to concept learning which is more general
than approaches based solely on information and decision systems.

19.1 Introduction

Rough sets are typically used to model vague concepts and relationships. They are
defined in terms of lower and upper approximations of crisp sets/relations, where
approximations are in place when objects may be indiscernible due to incomplete,
imprecise, and approximate data or knowledge. Indiscernibility of objects is mod-
eled by similarity relations, originally assumed to be equivalence relations [19]. In
general, the lower approximation of a set consists of objects whose similarity neigh-
borhoods are contained in the set, while the upper approximation consists of objects
whose similarity neighborhoods intersect the set. Similarity neighborhoods, often
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being equivalence classes, are then substantial ingredients of approximate modeling
and reasoning.1

The current chapter is devoted to roughification. In the most general setting,
we intend that the term roughification refers to methods/techniques of constructing
equivalence/similarity relations adequate for approximations. For example,

• in [19] as well as many later works (see, e.g., [6, 20, 21] and references there),
equivalence relations are constructed from information tables and decision ta-
bles, for example, by reducing the number of attributes

• in [27, 28],2 equivalence relations are constructed by rough discretization and
applied in clustering and classification

• in the light of [7], approximations can be constructed on the basis of logical
theories, by projecting them into weaker languages.

We propose and investigate novel roughification techniques allowing one to con-
struct suitable equivalence relations on the basis of background knowledge. We
assume that knowledge is expressed by means of logical theories in the form of
relational databases (relational roughification) and description logic theories (ter-
minological roughification). The main idea depends on placing objects in the same
equivalence class when they are indiscernible by a given logical theory. We show
that using the proposed techniques one can often discern objects indiscernible by
original similarity relations, so improve approximations. We also discuss applica-
tions of the proposed techniques in granulating relational databases and concept
learning. The last application is particularly interesting, as it shows an approach to
concept learning which is more general than approaches based solely on information
and decision systems.

The first technique we propose is relational roughification, allowing one to ob-
tain congruences on the basis of knowledge contained in relational databases. This
technique, in fact, allows us to granulate arbitrary relational structures. We start with
a simplified case, when such knowledge consists solely of similarity relations on ob-
jects, and show a natural technique (similarity-based roughification) allowing one
to construct equivalence relations. This technique leads to better approximations
than those offered by original similarities. As a general methodological outcome,
we show that indiscernibility can actually be modeled by equivalence relations even
if one initially uses weaker similarity relations, perhaps more intuitive in a given ap-
plication domain. This places those other approaches back in the rough set context
originally proposed and developed by Pawlak.

A more advanced version of roughification introduced in this chapter is based on
bisimulations in the context of description logics. Namely, indiscernibility related
to a given concept can be approximated using the largest auto-bisimulation with
respect to the sublanguage consisting of concept names, role names and construc-
tors the concept depends on. Such bisimulations are equivalence relations. We give

1 For works, where similarity relations are not assumed to be equivalence classes, see [6, 8,
9, 12, 24, 29, 30] and references there.

2 Where the term roughification has most probably been introduced in the context of
discretization.
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a logical account of this approach, investigate its theoretical properties and use it to
study the problems of concept learning and concept approximation in information
systems based on description logics.

Let us emphasize that all solutions we propose are tractable in the sense that
data complexity of computing constructed new equivalence relations is in PTIME in
the size of the underlying domain assuming that the underlying knowledge is given
by means of relational/deductive databases or knowledge databases expressed by
means of description logics.

The chapter is structured as follows. We start with basic definitions and preliminar-
ies (Section 19.2). Then, in Section 19.3 we continue with similarity-based roughi-
fication and, in Section 19.4, with relational roughification. Section 19.5 is devoted
to terminological roughification. Concluding remarks are contained in Section 19.6.

19.2 Preliminaries

Let Δ be a finite set, further called a domain. Elements of Δ are called objects. By
a relational structure we understand a tuple 〈Δ,{ri}i∈I〉, where for each i ∈ I, ri is
a relation on Δ.

For the sake of simplicity, in the chapter we consider one-sorted domains only.
That is, we assume that objects are of the same type. The results we provide can be
generalized in a straightforward manner to many-sorted structures. This, however,
is not necessary for techniques we present.

A signature for relational structures consists of a finite set of individual names
(i.e. object names), a finite set of predicates (i.e. relation names), and an arity map-
ping that associates each of the predicates with a natural number called the arity of
the predicate.3

A relational structure over a signature Σ can be redefined to be a pair I =
〈
ΔI , ·I 〉

consisting of a non-empty set ΔI , called the domain of I , and a function ·I , called the
interpretation function of I , which maps each individual name a of Σ to an element
aI of ΔI and maps each n-argument predicate p of Σ to an n-argument relation pI

on ΔI .
By a congruence on 〈Δ,{Ri}i∈I〉 we understand any equivalence relation ≈ on

Δ which preserves all relations {Ri}i∈I , that is, such that for any i ∈ I, if Ri is an
n-argument relation and x1 ≈ x′1,. . .,xn ≈ x′n, then Ri(x1, . . . ,xn)≡ Ri(x′1, . . . ,x

′
n).

Let further σ ⊆ Δ×Δ be a binary relation on Δ, representing similarity on el-
ements of Δ. It models indiscernibility on Δ in the sense that objects x,x′ ∈ Δ are
indiscernible whenever σ(x,x′) holds. The pair 〈Δ,σ〉 is called a similarity space.

Given a similarity space S = 〈Δ,σ〉 and A⊆ Δ, Pawlak-like approximations of A
w.r.t. S are defined as follows:

3 For first-order logic, one would add to a signature also a finite set of function names and
information about their arities but we concentrate on relations only.
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• the lower approximation of A w.r.t. S , denoted by AS+ is defined by

AS+
def= {x | ∀y[σ(x,y)→ A(y)]} (19.1)

• the upper approximation of A w.r.t. S , denoted by AS⊕ is defined by

AS⊕
def= {x | ∃y[σ(x,y)∧A(y)]}. (19.2)

When S is known from context, we sometimes write A (respectively, A) to denote

the lower (respectively the upper) approximation of A w.r.t. S , that is, A
def= AS+ and

A
def= AS⊕ .
An information system in the rough set theory [19, 21, 20], called an RS infor-

mation system, is usually defined to be a pair 〈Δ,Attrs〉 of non-empty finite sets Δ
and Attrs, where Δ is the universe of objects, and Attrs is a set of attributes, that is,
functions A : Δ→VA, where VA is the set of values of attribute A, called the domain
of A.

19.3 Similarity-Based Roughification

Similarity-based roughification can be viewed as relational roughification intro-
duced in Section 19.4. Namely, a relational structure can contain solely a similarity
relation. However, similarities play a special role in defining relational roughifica-
tions. Also, intended applications make the technique interesting on its own. There-
fore we discuss it separately.

19.3.1 Definitions

Observe that even if two objects x,x′ are indiscernible w.r.t. a given similarity rela-
tion σ, that is, σ(x,x′) holds, it still might be the case that they can be discerned if
there is an object x′′ such that σ(x,x′′) and ¬σ(x′,x′′). The same holds when there
is an object x′′ such that σ(x′′,x) and ¬σ(x′′,x′). The first types of roughification
reflect this phenomenon.

Given a similarity space S = 〈Δ,σ〉, by a forward similarity-based roughification
induced by S we understand relational structure R �

S =
〈
Δ,ρ�

S
〉
, where:

ρ�
S (x,x′)

def≡ ∀x′′
[
σ(x,x′′)≡ σ(x′,x′′)]. (19.3)

By a backward similarity-based roughification induced by S we understand rela-
tional structure R �

S =
〈
Δ,ρ�

S
〉
, where:
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ρ�
S (x,x′)

def≡ ∀x′′
[
σ(x′′,x)≡ σ(x′′,x′)]. (19.4)

By a similarity-based roughification induced by S we understand relational structure
R ��

S =
〈
Δ,ρ��

S
〉
, where

ρ��
S

def= ρ�
S ∩ρ�

S . (19.5)

19.3.2 Properties

We have the following proposition.

Proposition 19.1. Let S = 〈Δ,σ〉 be a similarity space. Then:

• ρ�
S and ρ�

S are equivalence relations on Δ
• ρ��

S is a congruence on S .

Proof. The first claim is obvious by definitions (19.3) and (19.4).
To prove the second claim, note that ρ��

S is the intersection of two equivalence
relations, so it is an equivalence relation, too. To prove that it preserves σ, assume:

ρ��
S (x1,x

′
1) and ρ��

S (x2,x
′
2). (19.6)

We have to show that σ(x1,x2)≡σ(x′1,x′2). By (19.3)–(19.5) and (19.6), in particular
we have:

∀x′′[σ(x1,x′′)≡ σ(x′1,x′′)] and ∀y′′[σ(y′′,x2)≡ σ(y′′,x′2)]. (19.7)

Taking x′′ = x2 and y′′ = x′1 we have σ(x1,x2)≡ σ(x′1,x2) and σ(x′1,x2)≡ σ(x′1,x′2),
so also σ(x1,x2)≡ σ(x′1,x′2). �
We also have the following proposition.

Proposition 19.2. For any similarity space S = 〈Δ,σ〉 with reflexive σ, we have that
ρ�

S ⊆ σ, ρ�
S ⊆ σ and ρ��

S ⊆ σ.

Proof. Assume that ρ�
S (x,x′). By (19.3), for all x′′, σ(x,x′′)≡σ(x′,x′′). In particular,

for x′′ = x′ we have σ(x,x′) ≡ σ(x′,x′). By reflexivity of σ, we have that σ(x′,x′)
holds, so we also have that σ(x,x′) holds.

Analogously, using (19.4) we prove ρ�
S ⊆ σ. Of course, ρ��

S ⊆ ρ�
S , which proves

the last inclusion. �
Observe that reflexivity of σ corresponds to the property that for any set A, AS+ ⊆ A
(see, e.g., [10]). On the other hand, the weakest requirement placed on approxima-
tions, AS+ ⊆AS⊕ , is equivalent to the seriality of σ, that is, the property∀x∃y[σ(x,y)].
The following example shows that seriality is not sufficient to prove Proposition 19.2.

Example 19.1. Let S = 〈{a,b,c},σ〉, where σ= {(a,c),(b,c),(c,c)}. Obviously, σ
is serial. On the other hand, ρ�

S (a,b) holds, while σ(a,b) does not. �
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Using Proposition 19.2 one can show that each R �
S , R �

S and R ��
S approximates sets

better than S , as formulated in the following proposition.

Proposition 19.3. For any similarity space S = 〈Δ,σ〉 with reflexive σ and any A⊆
Δ,

AS+ ⊆ A(R �
S )+ ⊆ A(R ��

S )+ ⊆ A⊆ A(R ��
S )⊕ ⊆ A(R �

S )⊕ ⊆ AS⊕

AS+ ⊆ A(R �
S )+ ⊆ A(R ��

S )+ ⊆ A⊆ A(R ��
S )⊕ ⊆ A(R �

S )⊕ ⊆ AS⊕ . �

19.3.3 Selected Applications

Proposition 19.3 shows that the similarity-based roughification may discern objects
better than the original similarity relation. This allows us to sharpen perceptual ca-
pabilities, improving its accuracy. The following example illustrates this idea.

Example 19.2. Let a set of objects, say Δ = {o1,o2,o3}, be given. Assume that the
accuracy of a sensor platform does not allow us to discern certain objects on the
basis of their features. Such a situation is typically modeled by a similarity space
〈Δ,σ〉 where, for example,

σ(o1,o1),σ(o2,o2),σ(o3,o3),
σ(o1,o2),σ(o2,o1),σ(o2,o3),σ(o3,o2),

that is, o1 is indiscernible from itself and o2, etc. On the other hand, one can discern
o1 and o2 by comparing them with o3. Such a comparison provides different results,
allowing one to detect what object is being perceived. �

Similarity-based roughification can also be useful in decision rules mining. The ob-
tained rules can be judged, among others, w.r.t. their classification accuracy. One
faces here the overfitting/underfitting problem. Overfitting results in too many spe-
cialized rules, while underfitting causes poor classification results. The following
example illustrates how can one tune decision rules using similarities resulting in
better or worse approximations (by using Proposition 19.3).

Example 19.3. In the machine learning process one often obtains rules like:

IF bad condition(x) THEN maintenance(x), (19.8)

where objects are classified to be in “bad condition” on the basis of chosen attributes,
say rust and moisture level. Particular examples in the training sets may be very
specific. For example, an object o with rust level 0.743 and moisture level 0.92 may
be marked as being in bad condition. One could then derive the following rule:

IF rust(x,0.743) AND moisture(x,0.92) THEN maintenance(x),
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which definitely is too specific. One would also like to deduce that all similar (w.r.t.
rust and moisture level) objects require maintenance, too:

IF σ(x,o) THEN maintenance(x),

where σ is a similarity relation of a similarity space S = 〈Δ,σ〉 with Δ consisting of
value pairs 〈rust,moisture〉.

Now, if a given σ results in underfitting, one can use its roughification instead
(or any suitable relation σ′ such that ρ��

S ⊆ σ′ ⊆ σ). Then, by moving σ′ between
the boundaries ρ��

S and σ one can tune rules when new objects appear and are being
classified. �

19.4 Relational Roughification

Relational roughification extends similarity-based roughification. Given a relational
database, one can observe that object can be additionally discern by relations in-
cluded in the database.

19.4.1 Definitions

Assume that a similarity space S = 〈Δ,σ〉 is given and R ��
S =

〈
Δ,ρ��

S
〉

is the similarity-
based roughification induced by S .

Assume now that additional knowledge is provided by a relational or a deductive
database. Even if two objects are indiscernible by ρ��

S , they may still be discernible
by relations included in the database. For example, it might be the case that ρ��

S (o,o′)
holds, while for a relation R in the database, it could be R(ā,o, b̄) and ¬R(ā,o′, b̄). In
such a case we can discern o and o′ using R. We then have the following definition.

Given a similarity space S = 〈Δ,σ〉, by a relational roughification induced by
S and an m-argument relation R we understand relational structure R R

S =
〈
Δ,ρR

S
〉
,

where:4

ρR
S

def≡ ρ��
S − {(x,x′),(x′,x) | ∃x1 . . .∃xm−1[R(x1, . . . ,x, . . . ,xm−1)∧

¬R(x1, . . . ,x′, . . . ,xm−1)]}.
(19.9)

Let us emphasize that in (19.9) we do not fix the position of x. For example, if R is
a two-argument relation then (19.9) is to be understood as:

ρR
S

def≡ ρ��
S −

({(x,x′),(x′,x) | ∃x1[R(x1,x)∧¬R(x1,x′)]} ∪
{(x,x′),(x′,x) | ∃x1[R(x,x1)∧¬R(x′,x1)]}

)
.

(19.10)

4 Recall that ρ��
S is the similarity-based roughification induced by S and defined by (19.5).
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Observe that one can also consider tuples of relations rather than single relations.
Namely, let {Ri}i∈I be a (finite) tuple of relations. Then:

ρ{Ri}i∈I
S

def≡
⋂

i∈I

ρRi
S . (19.11)

19.4.2 Properties

Let us first prove that the construction provided in the previous section indeed results
in an equivalence relation.

Proposition 19.4. Let S = 〈Δ,σ〉 be a similarity space and R be a relation,
R⊆ Δ× . . .×Δ. Then ρR

S is an equivalence relation on Δ.

Proof. By Proposition 19.1, ρ��
S is an equivalence relation.

Suppose ρR
S is not an equivalence relation. This could be caused by removing

in (19.9) a pair (x,x′) from ρ��
S . Let us now show that this cannot violate reflexivity,

symmetry nor transitivity.
First note that reflexivity is preserved since there cannot exist x1, . . . ,xm−1 such

that R(x1, . . . ,x, . . . ,xm−1) and, at the same time, ¬R(x1, . . . ,x, . . . ,xm−1).
Suppose now that (x,x′) ∈ ρR

S and (x′,x) �∈ ρR
S . This cannot happen since pairs

(x,x′) and (x′x) are either not removed from ρ��
S or are removed both. Therefore,

symmetry is preserved.
Suppose that (x,x′),(x′,x′′) ∈ ρR

S and (x,x′′) �∈ ρR
S . Since ρR

S ⊆ ρ��
S , we have that

(x,x′),(x′,x′′) ∈ ρ��
S , so also (x,x′′) ∈ ρ��

S . Thus the assumption that (x,x′′) �∈ ρR
S

implies that (x,x′′) has been removed in (19.9), meaning that there are x1, . . . ,xm−1

such that

either R(x1, . . . ,x, . . . ,xm−1)∧¬R(x1, . . . ,x′′, . . . ,xm−1)
or ¬R(x1, . . . ,x′′, . . . ,xm−1)∧R(x1, . . . ,x′′, . . . ,xm−1).

Consider the first case.5 Since R(x1, . . . ,x, . . . ,xm−1) holds and (x,x′) ∈ ρR
S , we con-

clude that R(x1, . . . ,x′, . . . ,xm−1) holds (otherwise the pair (x,x′) was removed
in (19.9)). Now from the fact that R(x1, . . . ,x′, . . . ,xm−1) holds and assumption that
(x′,x′′)∈ρR

S , we also have that R(x1, . . . ,x′′, . . . ,xm−1) and a contradiction is reached.
�

The intersection of any collection of equivalence relations is also an equivalence
relation. We then have the following corollary.

Corollary 19.1. Let S = 〈Δ,σ〉 be a similarity space and {Ri}i∈I be relations such

that for all i ∈ I, Ri ⊆ Δ× . . .×Δ. Then ρ{Ri}i∈I
S is an equivalence relation on Δ. �

5 The second case can be proved analogously.
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Granular computing has been considered an important issue in rough set theory
and applications [15, 23, 25, 26, 17, 22]. The following proposition shows that the
constructed equivalence relation can serve as a basis for granulating relations.

Proposition 19.5. Let S = 〈Δ,σ〉 be a similarity space and R be a relation,
R⊆ Δ× . . .×Δ. Then ρR

S is a congruence on 〈Δ,R〉.

Proof. By Proposition 19.4, ρR
S is an equivalence relation. To show that it preserves

R, assume that:
ρR

S (x1,x
′
1), . . . ,ρR

S (xm,x′m). (19.12)

We have to show that
R(x1, . . . ,xm)≡ R(x′1, . . . ,x

′
m). (19.13)

To prove (19.13), we proceed by induction on 0≤ k ≤ m:

R(x1, . . . ,xk,xk+1 . . . ,xm)≡ R(x′1, . . . ,x
′
k,xk+1 . . . ,xm). (19.14)

1. If k = 0 then (19.14) is obvious.
2. Assume that the theorem holds for 0 ≤ k < m. We shall show that it also holds

for (k + 1):

R(x1, . . . ,xk,xk+1,xk+2, . . . ,xm)≡ (by inductive assumption (19.14))
R(x′1, . . . ,x

′
k,xk+1,xk+2, . . . ,xm)≡ (by definition (19.9), assumption (19.12))

R(x′1, . . . ,x
′
k,x

′
k+1,xk+2, . . . ,xm).

By analogy to Proposition 19.5 one can prove the following proposition providing
a technique for granulating relational databases (see also Section 19.4.3).

Proposition 19.6. Let S = 〈Δ,σ〉 be a similarity space and 〈Δ,{Ri}i∈I〉 be a rela-

tional structure. Then ρ{Ri}i∈I
S is a congruence on 〈Δ,R〉. �

By (19.9), we have that ρR
S ⊆ ρ��

S . By Proposition 19.2 we then have the following
proposition.

Proposition 19.7. For any similarity space S = 〈Δ,σ〉 with reflexive σ and relation
R on Δ× . . .×Δ, we have that ρR

S ⊆ σ. �

As a consequence we have the following proposition.

Proposition 19.8. For any similarity space S = 〈Δ,σ〉 with reflexive σ, any relation
R on Δ× . . .×Δ and any A⊆ Δ,

AS+ ⊆ A(R R
S )+ ⊆ A⊆ A(R R

S )⊕ ⊆ AS⊕ . �
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Remark 19.1. Note that relational roughification starts with some initial similarity
relation and then improves its accuracy. If such a relation is not given, one can start

with the total similarity relation σ def= Δ×Δ. If 〈Δ,{Ri}i∈I〉 is a relational structure

then the resulting equivalence classes of ρ{Ri}i∈I
S consist of objects indiscernible by

relations {Ri}i∈I . However, when σ = Δ× Δ, similarity-based roughification pro-
vides no improvement, as in this case we have ρ�� = σ. �

19.4.3 Granulating Relational Databases

A relational database is a relational structure of the form 〈Δ,{Ri}i∈I〉 with finite Δ
and I. Relational roughification allows us to granulate such databases in the sense
that rather than using objects, we can use equivalence classes. Since an equivalence
class may be represented by an arbitrary object it contains, such a granulation allows
us to reduce the size of the database as well as consider classes of similar objects
rather than singletons.

More precisely, given a relational database DB = 〈Δ,{Ri}i∈I〉 and a similarity
space S = 〈Δ,σ〉, by a granulation of DB w.r.t. S we understand

DB/ρ{Ri}i∈I
S

def=
〈
Δ/ρ{Ri}i∈I

S ,{�i}i∈I

〉
, (19.15)

where:

• Δ/ρ{Ri}i∈I
S

def= {‖x‖ | x ∈ Δ} is the set of equivalence classes of ρ{Ri}i∈I
S

• for i ∈ I, �i(‖x1‖, . . . ,‖xm‖) def≡ Ri(x1, . . . ,xm).

By Proposition 19.6, �i (i ∈ I) are well-defined.
Given a relational database DB = 〈Δ,{Ri}i∈I〉 and a similarity space S = 〈Δ,σ〉,

rather than storing all tuples of relations in DB, it suffices to store tuples with rep-

resentants of equivalence classes only. In addition, one needs to store ρ{Ri}i∈I
S in the

database, but the reduction od database size can be considerable.

19.5 Terminological Roughification

In this section we study roughification for information systems specified using the
formalism of description logics (DLs). Such logics describe the domain of interest
by means of individuals, concepts and roles [3, 4, 16]. A concept stands for a set of
individuals, while a role stands for a binary relation between individuals. DLs are
fragments of classical first-order logic and variants of modal logics. Indiscernibility
in DLs is related to bisimulation.
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In Sections 19.3 and 19.4 we had a particular similarity relation as a starting point
for the construction of the final equivalence relation (but see Remark 19.1). Here we
do not need such a starting relation. But whenever it is given, we can place it among
roles.

19.5.1 Description Logics and Information Systems

A DL-signature is a set Σ = ΣI ∪ ΣC ∪ ΣR, where ΣI is a finite set of individual
names, ΣC is a finite set of concept names, and ΣR is a finite set of role names.
Concept names are unary predicates, while role names are binary predicates. We
denote concept names by letters like A and B, role names by letters like r and s, and
individual names by letters like a and b.

We will consider some (additional) DL-features denoted by I (inverse), O (nom-
inal), Q (quantified number restriction), U (universal role), Self (local reflexivity of
a role). A set of DL-features is a set consisting of some of these names.

Let Σ be a DL-signature and Φ be a set of DL-features. Let L stand for ALC reg ,
which is the name of a description logic corresponding to propositional dynamic
logic (PDL). The DL language LΣ,Φ allows roles and concepts defined recursively
as follows:

• if r ∈ ΣR then r is role of LΣ,Φ
• if A ∈ ΣC then A is concept of LΣ,Φ
• if R and S are roles of LΣ,Φ and C is a concept of LΣ,Φ then

• ε, R◦ S , R!S, R∗ and C? are roles of LΣ,Φ
• ,, ⊥, ¬C, C D, C!D, ∀R.C and ∃R.C are concepts of LΣ,Φ
• if I ∈Φ then R− is a role of LΣ,Φ
• if O ∈Φ and a ∈ ΣI then {a} is a concept of LΣ,Φ
• if Q ∈ Φ, r ∈ ΣR and n is a natural number then ≥ nr.C and ≤ nr.C are

concepts of LΣ,Φ
• if {Q, I} ⊆Φ, r ∈ ΣR and n is a natural number then≥ nr−.C and≤ nr−.C

are concepts of LΣ,Φ
• if U ∈Φ then U is a role of LΣ,Φ
• if Self ∈Φ and r ∈ ΣR then ∃r.Self is a concept of LΣ,Φ.

An interpretation in LΣ,Φ is a relational structure I =
〈
ΔI , ·I 〉 over Σ. The interpre-

tation function ·I is extended to complex roles and complex concepts as shown in
Figure 19.1, where #Γ stands for the cardinality of the set Γ.

An (acyclic) knowledge base in LΣ,Φ is a pair KB = 〈T ,A〉, where:

• A is a finite set, called the ABox of KB, consisting of individual assertions of
the form A(a) or r(a,b), where A ∈ ΣC, r ∈ ΣR and a,b ∈ ΣI

• T is a finite list (ϕ1, . . . ,ϕn), called the TBox (terminological box) of KB, where
each ϕi is a definition of one of the following forms:

• A = C, where C is a concept of LΣ,Φ and A ∈ ΣC is a concept name not
occurring in C, A and ϕ1, . . . ,ϕi−1
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(R◦S)I = RI ◦SI

(R!S)I = RI ∪SI

(R∗)I = (RI )∗

(C?)I = {〈x,x〉 |CI (x)}
εI = {〈x,x〉 | x ∈ ΔI }

UI = ΔI ×ΔI

(R−)I = (RI )−1

,I = ΔI

⊥I = /0
(¬C)I = ΔI \CI

(C D)I = CI ∩DI

(C!D)I = CI ∪DI

{a}I = {aI }
(∃r.Self)I = {x ∈ ΔI | rI (x,x)}

(∀R.C)I = {x ∈ ΔI | ∀y [RI (x,y) implies CI (y)]}
(∃R.C)I = {x ∈ ΔI | ∃y [RI (x,y) and CI (y)]

(≥ nR.C)I = {x ∈ ΔI | #{y | RI (x,y) and CI (y)} ≥ n}
(≤ nR.C)I = {x ∈ ΔI | #{y | RI (x,y) and CI (y)} ≤ n}

Fig. 19.1. Interpretation of complex roles and complex concepts

• r = R, where R is a role of LΣ,Φ and r ∈ ΣR is a role name not occurring in
R, A and ϕ1, . . . ,ϕi−1.

The concept (respectively, role) names occurring in A are said to be primitive con-
cepts (respectively, roles), while the concept (respectively, role) names occurring
in the left hand side of ‘=’ in the definitions from T are called defined concepts
(respectively, roles).

An interpretation I in LΣ,Φ is a model of KB = 〈T ,A〉 if

• for every assertion A(a) ∈ A , we have aI ∈ AI

• for every assertion r(a,b) ∈ A , we have
〈
aI ,bI 〉 ∈ rI

• for every definition (A = C) ∈ T , we have AI = CI

• for every definition (r = R) ∈ T , we have rI = RI .

Example 19.4. Let

ΣI = {Alice,Bob,Claudia,Dave,Eva,Frank,George}
ΣC = {Human,Female,Male,Adult,Man,Woman,

Parent,ParentWMC,DecendantOfAlice}
ΣR = {has child,has descendant,has parent,has ancestor}
A = {Female(Alice),Female(Claudia),Female(Eva),Adult(Alice),

Adult(Bob),Adult(Claudia),Adult(Dave),Adult(George),
has child(Alice,Dave),has child(Bob,Dave),
has child(Claudia,Eva),has child(Dave,Eva),
has child(Claudia,Frank),has child(Dave,Frank)}
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T = (Human =,,

Male = ¬Female,

Woman = Human Female Adult,

Man = Human Male Adult,

Parent = ∃has child.,,

ParentWMC = (≥5has child.,),
has descendant = has child ◦ has child∗,
has parent = has child−,

has ancestor = has parent◦ has parent∗,
DecendantOfAlice = ∃has ancestor.{Alice}).

Then KB = 〈T ,A〉 is a knowledge base in LΣ,Φ, with Φ= {I,O,Q}. The definition
Human = , states that the domain of any model of KB consists of human beings.
Note that, Female and Adult are primitive concepts, and has child is a primitive role
of KB. �

A knowledge base as defined above is similar to stratified logic programs [1]. Hence,
we define the standard model of a knowledge base KB = 〈T ,A〉 in LΣ,Φ to be the
interpretation I such that:

• ΔI = ΣI (i.e. the domain of I consists of all the individual names of Σ)
• if A is a primitive concept of KB then AI = {a | A(a) ∈ A}
• if r is a primitive role of KB then rI = {〈a,b〉 | r(a,b) ∈ A}
• if A ∈ ΣC but A does not occur in KB then AI = /0
• if r ∈ ΣR but r does not occur in KB then rI = /0
• if A = C is a definition from T then AI = CI

• if r = R is a definition from T then rI = RI .

An information system specified by a knowledge base in LΣ,Φ is defined to be the
standard model of the knowledge base in LΣ,Φ. Note that such an information system
is finite.

Example 19.5. Consider the knowledge base KB given in Example 19.4. The infor-
mation system specified by KB is the interpretation I with:

ΔI = {Alice,Bob,Claudia,Dave,Eva,Frank,George}
xI = x, for x ∈ {Alice, . . . ,George}

HumanI = ΔI

FemaleI = {Alice,Claudia,Eva}
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MaleI = {Bob,Dave,Frank,George}
AdultI = {Alice,Bob,Claudia,Dave,George}

WomanI = {Alice,Claudia}
ManI = {Bob,Dave,George}

has childI = {〈Alice,Dave〉 ,〈Bob,Dave〉 ,
〈Claudia,Eva〉 ,〈Dave,Eva〉 ,
〈Claudia,Frank〉 ,〈Dave,Frank〉}

has parentI = (has childI )−1

has descendantI = has childI ∪ (has childI ◦ has childI )
has ancestorI = (has descendantI )−1

ParentI = {Alice,Bob,Claudia,Dave}
ParentWMCI = /0

DecendantOfAliceI = {Dave,Eva,Frank}. �

Observe that any RS information system with discrete (or Boolean) attributes can
be represented as an information system in LΣ,Φ with ΣR = /0 and Φ= /0. Namely,

• if an attribute A of an RS information system is Boolean, that is, VA = {true, false},
then it can be treated as a concept name, standing for the set {x ∈ Δ | A(x) =
true}

• if A is a discrete attribute, with VA = {v1, . . . ,vk}, then it can be replaced by
concept names Av1 , . . . ,Avk , where each Avi is interpreted as the set {x ∈ Δ |
A(x) = vi}.6

Example 19.6. Let

Attrs = {Brand,Color,OpenOnSunday}
VBrand = {grocery,RTV}
VColor = {red,green,blue}

Δ= {shop1,shop2,shop3,shop4,shop5}

and let attribute values of the objects be the following:

Brand Color OpenOnSunday
shop1 RTV red true
shop2 RTV green true
shop3 RTV blue true
shop4 grocery red false
shop5 grocery green false

6 For example, if Color is an attribute with possible values red, green and blue, then we
can replace it by concept names Red, Green, Blue, and instead of writing, for example,
Color(x) = red, we can write Red(x).



19 Logic-Based Roughification 531

Then the RS information system 〈Δ,Attrs〉 can be represented by the information
system I in LΣ,Φ specified as follows:

Φ= /0
ΣR = /0
ΣI = {shop1,shop2,shop3,shop4,shop5}
ΣC = {RTV,Grocery,Red,Green,Blue,OpenOnSunday}
ΔI = ΣI

RTV I = {shop1,shop2,shop3}
GroceryI = {shop4,shop5}

RedI = {shop1,shop4}
GreenI = {shop2,shop5}

BlueI = {shop3}
OpenOnSundayI = {shop1,shop2,shop3}. �

19.5.2 Bisimulation and Indiscernibility

In [5] Divroodi and Nguyen studied bisimulations for a number of DLs. In this sub-
section we generalize their notions and results to model indiscernibility of objects
and study the problem of learning concepts. Let:

• Σ and Σ† be DL-signatures such that Σ† ⊆ Σ
• Φ and Φ† be sets of DL-features such that Φ† ⊆Φ
• I and I ′ be interpretations in LΣ,Φ.

A binary relation Z ⊆ ΔI ×ΔI ′ is called an LΣ†,Φ†-bisimulation between I and I ′ if

the following conditions hold for every a∈Σ†
I , A∈ Σ†

C, r ∈Σ†
R, x,y∈ΔI , x′,y′ ∈ ΔI ′ :

Z(aI ,aI ′) (19.16)

Z(x,x′)⇒ [AI (x)⇔ AI ′(x′)] (19.17)

[Z(x,x′)∧ rI (x,y)]⇒∃y′ ∈ ΔI ′ [Z(y,y′)∧ rI ′(x′,y′)] (19.18)

[Z(x,x′)∧ rI ′(x′,y′)]⇒∃y ∈ ΔI [Z(y,y′)∧ rI (x,y)], (19.19)

if I ∈Φ† then

[Z(x,x′)∧ rI (y,x)]⇒∃y′ ∈ ΔI ′ [Z(y,y′)∧ rI ′(y′,x′)] (19.20)

[Z(x,x′)∧ rI ′(y′,x′)]⇒∃y ∈ ΔI [Z(y,y′)∧ rI (y,x)], (19.21)
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if O ∈Φ† then

Z(x,x′)⇒ [x = aI ⇔ x′ = aI ′ ], (19.22)

if Q ∈Φ† then

if Z(x,x′) holds then, for every r ∈ Σ†
R, there exists a bijection

h : {y | rI (x,y)}→ {y′ | rI ′(x′,y′)} such that h⊆ Z,
(19.23)

if {Q, I} ⊆Φ† then (additionally)

if Z(x,x′) holds then, for every r ∈ Σ†
R, there exists a bijection

h : {y | rI (y,x)} → {y′ | rI ′(y′,x′)} such that h⊆ Z,
(19.24)

if U ∈Φ† then

∀x ∈ ΔI ∃x′ ∈ ΔI ′ Z(x,x′) (19.25)

∀x′ ∈ ΔI ′ ∃x ∈ ΔI Z(x,x′), (19.26)

if Self ∈Φ† then

Z(x,x′)⇒ [rI (x,x)⇔ rI ′(x′,x′)]. (19.27)

A concept C of LΣ†,Φ† is said to be invariant for LΣ†,Φ†-bisimulation if, for ev-

ery interpretations I and I ′ in LΣ,Φ with Σ ⊇ Σ† and Φ ⊇ Φ†, and every LΣ†,Φ† -

bisimulation Z between I and I ′, if Z(x,x′) holds then x ∈CI iff x′ ∈CI ′ .
The following theorem can be proved in a similar way as [5, Theorem 3.4].

Theorem 19.1. All concepts of LΣ†,Φ† are invariant for LΣ†,Φ†-bisimulation. �
An interpretation I is finitely branching (or image-finite) w.r.t. LΣ†,Φ† if, for every

x ∈ ΔI and every r ∈ Σ†
R :

• the set {y ∈ ΔI | rI (x,y)} is finite
• if I ∈Φ† then the set {y ∈ ΔI | rI (y,x)} is finite.

Let x ∈ ΔI and x′ ∈ ΔI ′ . We say that x is LΣ†,Φ†-equivalent to x′ if, for every concept

C of LΣ†,Φ† , x ∈CI iff x′ ∈CI ′ .
The following theorem can be proved in a similar way as [5, Theorem 4.1].

Theorem 19.2 (The Hennessy-Milner Property). Let Σ and Σ† be DL-signatures
such that Σ† ⊆ Σ, Φ and Φ† be sets of DL-features such that Φ† ⊆ Φ. Let I and I ′
be interpretations in LΣ,Φ, finitely branching w.r.t. LΣ†,Φ† and such that for every

a ∈ Σ†
I , aI is LΣ†,Φ†-equivalent to aI ′ . Assume U /∈ Φ† or Σ†

I �= /0. Then x ∈ ΔI is

LΣ†,Φ† -equivalent to x′ ∈ ΔI ′ iff there exists an LΣ†,Φ†-bisimulation Z between I and
I ′ such that Z(x,x′) holds. �
We now have the following corollary.
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Corollary 19.2. Let Σ and Σ† be DL-signatures such that Σ† ⊆ Σ, let Φ and Φ†

be sets of DL-features such that Φ† ⊆ Φ, and let I and I ′ be finite interpretations
in LΣ,Φ. Assume that Σ†

I �= /0 and, for every a ∈ Σ†
I , aI is LΣ†,Φ†-equivalent to aI ′ .

Then the relation {〈x,x′〉 ∈ ΔI × ΔI ′ | x is LΣ†,Φ†-equivalent to x′} is an LΣ†,Φ†-
bisimulation between I and I ′. �
We say that I is LΣ†,Φ†-bisimilar to I ′ if there exists an LΣ†,Φ† -bisimulation between

I and I ′. We say that x ∈ ΔI is LΣ†,Φ†-bisimilar to x′ ∈ ΔI ′ if there exists an LΣ†,Φ† -
bisimulation between I and I ′ such that Z(x,x′) holds.

Remark 19.2. By Theorem 19.1, LΣ†,Φ† -bisimilarity formalizes indiscernibility by
the sublanguage LΣ†,Φ† . This is an important feature with many applications (see [7,
14, 31] for a more general context and numerous applications). Here let us empha-
size that such indiscernibility relation provides the best approximations of a given
concept expressed in the chosen sublanguage. Note that in [7, 14, 31] the underlying
indiscernibility relation has not been constructed. �
An LΣ†,Φ† -bisimulation between I and itself is called an LΣ†,Φ†-auto-bisimulation
of I . An LΣ†,Φ† -auto-bisimulation of I is said to be the largest if it is larger than or
equal to (⊇) any other LΣ†,Φ† -auto-bisimulation of I .

Given an interpretation I in LΣ,Φ, by ∼Σ†,Φ†,I we denote the largest LΣ†,Φ† -auto-
bisimulation of I , and by ≡Σ†,Φ†,I we denote the binary relation on ΔI with the
property that x ≡Σ†,Φ†,I x′ iff x is LΣ†,Φ† -equivalent to x′.

Theorem 19.3. Let Σ and Σ† be DL-signatures such that Σ† ⊆ Σ, Φ and Φ† be sets
of DL-features such that Φ† ⊆Φ, and I be an interpretation in LΣ,Φ. Then:

• the largest LΣ†,Φ†-auto-bisimulation of I exists and is an equivalence relation
• if I is finitely branching w.r.t. LΣ†,Φ† then the relation ≡Σ†,Φ†,I is the largest

LΣ†,Φ†-auto-bisimulation of I (i.e. the relations≡Σ†,Φ†,I and∼Σ†,Φ†,I coincide).
�

Theorem 19.3 can be proved as [5, Proposition 5.1 and Theorem 5.2].
By terminological roughification we mean any technique that uses the largest

LΣ†,Φ† -auto-bisimulation relations as the equivalence relation for defining
approximations.

The intended application areas are, in particular, concept learning and concept
approximation in description logic-based information systems. Such applications
and related techniques are studied in the next two subsections.

19.5.3 Concept Learning

Before presenting a method for learning concepts we first prove a theoretical result.
We say that a set Y is divided by a set X if Y \X �= /0 and Y ∩X �= /0. Thus, Y is not
divided by X if either Y ⊆ X or Y ∩X = /0. A partition P = {Y1, . . . ,Yn} is consistent
with a set X if, for every 1≤ i≤ n, Yi is not divided by X .
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Theorem 19.4. Let I be an information system in LΣ,Φ, and let X ⊆ ΔI , Σ† ⊆ Σ and
Φ† ⊆Φ. Then:

1. if there exists a concept C of LΣ†,Φ† such that X = CI then the partition of ΔI

by ∼Σ†,Φ†,I is consistent with X
2. if the partition of ΔI by∼Σ†,Φ†,I is consistent with X then there exists a concept

C of LΣ†,Φ† such that CI = X.

Proof. As I is finite, it is finitely branching w.r.t. LΣ†,Φ† . By Theorem 19.3,∼Σ†,Φ†,I
coincides with ≡Σ†,Φ†,I .

Consider the first assertion and assume that X =CI for some concept C of LΣ†,Φ† .
Since ∼Σ†,Φ†,I coincides with ≡Σ†,Φ†,I , if x and x′ belong to the same equivalence
class by ∼Σ†,Φ†,I , then x is LΣ†,Φ† -equivalent to x′, and hence x ∈ CI iff x′ ∈ CI ,
that is, {x,x′} is not divided by CI . Therefore, the partition of ΔI by ∼Σ†,Φ†,I is
consistent with X .

Consider the second assertion and assume that the partition of ΔI by ∼Σ†,Φ†,I is
consistent with X . Let the partition be {Y1, . . . ,Ym}∪{Z1, . . . ,Zn}, where X = Y1∪
. . .∪Ym. Since Yi and Zj are different equivalence classes of ≡Σ†,Φ†,I , we have that
for each pair (i, j) with 1≤ i≤m and 1≤ j≤ n there exists a concept Ci, j of LΣ†,Φ†

such that Yi ⊆ CI
i, j and Zj ∩CI

i, j = /0. For each 1 ≤ i ≤ m, let Ci = Ci,1  . . . Ci,n.
Thus, Yi ⊆CI

i , and Zj ∩CI
i = /0 for all 1 ≤ j ≤ n. Let C = C1! . . .!Cm. Then, for

all 1≤ i≤ m, Yi ⊆CI , and for all 1≤ j ≤ n, Zj ∩CI = /0. Therefore, CI = X . �

Let I be an information system in LΣ,Φ, which can be either explicitly given as
a finite interpretation in LΣ,Φ or specified by a knowledge base KB = 〈T ,A〉 in
LΣ,Φ. Let Ad ∈ ΣI be a concept name standing for the “decision attribute”. In the
case when I is specified by KB, assume that Ad is not defined by the TBox T of KB.
Suppose that Ad can be expressed by a concept C in LΣ,Φ not using Ad , and I is
given as a training information system. How can we learn that concept C on the
basis of I ? That is, how can we learn a definition of Ad on the basis of I ?

On the basis of machine learning techniques one can suggest that Ad is definable
in LΣ†,Φ† , for some specific Σ† ⊆ Σ\{Ad} andΦ† ⊆Φ. One can even guide the ma-
chine learning process by extending Σ, Φ and T with new concepts and new roles
together with their definitions before suggesting Σ† and Φ†. Without such sugges-
tions, one can take Σ† = Σ or Φ† = Φ, or use some method to try different possible
values of Σ† and Φ†.

In this subsection we assume that Σ† ⊆ Σ\ {Ad} and Φ† ⊆ Φ are given, and the
task is to study a definition of Ad in LΣ†,Φ† on the basis of I .

Our idea for this problem is based on the following observation:

if Ad is definable in LΣ†,Φ† then, by the first assertion of Theorem 19.4,
AI

d must be the union of some equivalence classes of ΔI w.r.t. ∼Σ†,Φ†,I .

Our general method is as follows:

1. Starting from the partition {ΔI }, make subsequent granulations to reach the
partition corresponding to ∼Σ†,Φ†,I .
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• The granulation process can be stopped as soon as the current partition is
consistent with AI

d (or when some criteria are met).
• The task can be done in the spirit of [5, Algorithm 1] for the case Φ† ⊆
{I,O,U}, which is based on Hopcroft’s automaton minimization algorithm
[13]. That algorithm of [5] runs in polynomial time and it can be extended
to deal also with the other cases of Φ†. Also, one can use another strategy,
optimizing some measure related to “quality” of the generated partition, but
not time complexity.

• In the granulation process, we denote the blocks created so far in all steps
by Y1, . . . ,Yn, where the current partition {Yi1 , . . . ,Yik} consists of only some
of them. We do not use the same subscript to denote blocks of different
contents (i.e., we always use new subscripts obtained by increasing n for
new blocks). We take care that, for each 1≤ i≤ n:
• Yi is characterized by an appropriate concept Ci (such that Yi = CI

i )
• we keep information about whether Yi is divided by AI

d
• if Yi ⊆ AI

d then LargestContainer[i] := j, where 1 ≤ j ≤ n is the sub-
script of the largest block Yj such that Yi ⊆ Yj ⊆ AI

d

2. At the end, let j1, . . . , jh be all the indices from {i1, . . . , ik} such that Yjt ⊆ AI
d

for 1≤ t ≤ h, and let {l1, . . . , lp}= {LargestContainer[ jt ] | 1≤ t ≤ h}. Let C be
a simplified form of Cl1 ! . . .!Clp . Return C as the result.

Example 19.7. Consider the information system given in Example 19.5. Assume
that we want to learn a definition of concept Parent in the sublanguage LΣ†,Φ† , where
Σ† = {Adult,Female,has child} and Φ† = /0. The respective steps are:

1. Y1 := ΔI , partition := {Y1}
2. partitioning Y1 by Adult:

• Y2 := {Alice,Bob,Claudia,Dave,George}, C2 := Adult
• Y3 := {Eva,Frank}, C3 := ¬Adult
• partition := {Y2,Y3}

3. partitioning Y2 by Female:

• Y4 := {Alice,Claudia}, C4 := C2 Female
• LargestContainer[4] := 4 (as Y4 ⊆ ParentI )
• Y5 := {Bob,Dave,George}, C5 := C2 ¬Female
• partition := {Y3,Y4,Y5}

4. partitioning Y3 by Female:

• Y6 := {Eva}, C6 := C3 Female
• Y7 := {Frank}, C7 := C3 ¬Female
• partition := {Y4,Y5,Y6,Y7}

5. partitioning Y4 by has child:

• Y8 := {Alice}, C8 := C4 ∃has child.C5

• LargestContainer[8] := 4
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• Y9 := {Claudia}, C9 := C4 ¬∃has child.C5

• LargestContainer[9] := 4
• partition := {Y5,Y6,Y7,Y8,Y9}

6. partitioning Y5 by has child:

• Y10 := {Bob,Dave}, C10 := C5 ∃has child.,
• LargestContainer[10] := 10 (as Y10 ⊆ ParentI )
• Y11 := {George}, C11 := C5 ¬∃has child.,
• partition := {Y6,Y7,Y8,Y9,Y10,Y11}.

The obtained partition is consistent with ParentI , with Y8, Y9, Y10 contained in
ParentI , and Y6, Y7, Y11 disjoint with ParentI . (It is not yet the partition correspond-
ing to ∼Σ†,Φ†,I .)

Since LargestContainer[8] = LargestContainer[9] = 4, the concept we take into
account before simplification is C4!C10, which is

(Adult Female)! (Adult ¬Female ∃has child.,).

This concept can be simplified to the following equivalent form

Adult (Female!∃has child.,)

which does not match the intended definition Parent = ∃has child.,. However, it
is equivalent in I to an acceptable definition Parent = Adult ∃has child.,, as all
women in I are parents. �

Example 19.8. Consider again the information system given in Example 19.5.
Assume that we want to learn a concept definition of X = {Dave, Eva, Frank} in
the sublanguage LΣ†,Φ† , where Σ† = {Alice, has child, has parent, has descendant,
has ancestor} and Φ† = {O}. This task can be realized as follows:

1. Y1 := ΔI , partition := {Y1}
2. partitioning Y1 by Alice using (19.22):

• Y2 := {Alice}, C2 := {Alice}
• Y3 := {Bob,Claudia,Dave,Eva,Frank,George}, C3 := ¬{Alice}
• partition := {Y2,Y3}

3. partitioning Y3:

• The “selectors” are:
• ∃has child.C3, ∃has parent.C2, ∃has parent.C3,
• ∃has descendant.C3, ∃has ancestor.C2, ∃has ancestor.C3.

• If we apply the entropy gain measure then the best selectors are
∃has parent.C3, ∃has ancestor.C2, ∃has ancestor.C3. Each of them parti-
tions Y3 into the following Y4 and Y5, but uses different C4 and C5:
• Y4 := {Dave,Eva,Frank}
• Y5 := {Bob,Claudia,George}.
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4. Since the current partition {Y2,Y4,Y5} is consistent with X , the returned concept
is C4, which can be one of the following:

• ¬{Alice} ∃has parent.¬{Alice}
• ¬{Alice} ∃has ancestor.{Alice}
• ¬{Alice} ∃has ancestor.¬{Alice}.

5. If we test these solutions on the information system specified by the knowl-
edge base that extends KB with the assertion has child(Bob,George) then the
solution ¬{Alice} ∃has ancestor.{Alice} has the best accuracy. �

Let us now describe our method in more details.
Let the current partition of ΔI be {Yi1 , . . . ,Yik}. Consider partitioning of a block

Yi j (1≤ j ≤ k). We want to find a concept D of LΣ†,Φ† , called a selector, to partition
Yi j . Such a selector should actually partition Yi j into two non-empty parts (i.e. Yi j

should be divided by DI ). It can be proved that to reach the partition corresponding
to the equivalence relation ∼Σ†,Φ†,I it suffices to consider the following kinds of
selectors:

• A, where A ∈ Σ†
C: this is related to (19.17)

• ∃r.Cit , where r ∈ Σ†
R and 1≤ t ≤ k : this is related to (19.18) and (19.19)

• in the case I ∈Φ†:

∃r−.Cit , where r ∈ Σ†
R and 1≤ t ≤ k : this is related to (19.20) and (19.21)

• in the case O ∈Φ†:

{a}, where a ∈ Σ†
I : this is related to (19.22)

• in the case Q ∈Φ†:

≥l r.Cit and≤mr.Cit , where r∈Σ†
R, 1≤ t ≤ k, 0 < l≤ #Cit and 0≤m < #Cit :

this is related to (19.23)

• in the case {Q, I} ⊆Φ†:

≥l r−.Cit and≤mr−.Cit , where r∈Σ†
R, 1≤ t≤ k, 0 < l≤ #Cit and 0≤ m < #Cit :

this is related to (19.24)

• in the case Self ∈Φ†:

∃r.Self, where r ∈ Σ†
R: this is related to (19.27).

Note that the conditions (19.25) and (19.26) are always satisfied when I ′ = I and Z
is an equivalence relation.

In practice, we prefer as simple as possible definitions for the learnt concept.
Therefore, it is worth to consider also the following kinds of selectors (despite that
they are expressible by the above mentioned ones), where n is the largest block
subscript used so far:

• ∃r.Ci, ∃r., and ∀r.Ci, where r ∈ Σ†
R and 1≤ i≤ n

• in the case I ∈Φ†: ∃r−.Ci, ∃r−., and ∀r−.Ci, where r ∈ Σ†
R and 1≤ i≤ n



538 L.A. Nguyen and A. Szałas

• in the case Q ∈Φ†: ≥ l r.Ci and ≤mr.Ci,
where r ∈ Σ†

R, 1≤ i≤ n, 0 < l ≤ #Ci and 0≤ m < #Ci

• in the case {Q, I} ⊆Φ†: ≥ l r−.Ci and ≤mr−.Ci,
where r ∈ Σ†

R, 1≤ i≤ n, 0 < l ≤ #Ci and 0≤ m < #Ci.

A concept C characterizing Ad in the training information system I may not match
the intended meaning of Ad . In particular, all of the above mentioned kinds of se-
lectors do not use role constructors (like R! S, R ◦ S or R∗). However, the user
acquainted with the machine learning problem for Ad may extend Σ and the TBox
of the knowledge base specifying I to define new complex roles and then choose
an appropriate Σ†. One can explicitly consider also selectors that use complex roles.
This latter approach, in our opinion, is not appropriate, as the search space will be
too large.

We now describe partitioning the block Yi j using a selector D. Recall that Yi j

should be divided by DI . The partition is done as follows:

• s := n + 1, t := n + 2, n := n + 2, Ys := Cij  D, Yt := Cij  ¬D
• If Yi j ⊆ AI

d then

• LargestContainer[s] := LargestContainer[i j]
• LargestContainer[t] := LargestContainer[i j]

else if Ys ⊆ AI
d then LargestContainer[s] := s

else if Yt ⊆ AI
d then LargestContainer[t] := t.

• The new partition of ΔI becomes {Yi1 , . . . ,Yik} \ {Yi j}∪{Ys,Yt}.

An important matter is: which block from the current partition should be partitioned
first? which selector should be used to partition it? This affects both the “quality”
of the final partition and time complexity of the process. Some guides and possible
strategies are given below:

• If two selectors D and D′ partition Yi j in the same way then the simpler one is
“better”. For example, if D = ∃r.Cl , D′ = ∃r.Cm, Ym ⊂ Yl , and D, D′ partition
Yi j in the same way, then Cl is simpler than Cm and D is more preferred than
D′. This technique together with the use of LargestContainer guarantees that
one can continue granulating the partition without the risk of worsening the
“quality” of the final result. (Remember, however, that different paths resulting
in the same partition may give different results, with different “quality”.)

• One may prefer to partition a block divided by AI
d first. Partitioning such a block,

we may use some measure to choose a selector. A possible way is to use the
entropy gain measure. Among the blocks of the current partition that are divided
by AI

d , to choose a block to partition we can also use some measure. Once
again, it may be the entropy gain measure, taking into account also the possible
selectors.

• Note, however, that one may be able to partition a block divided by AI
d only

after a block not divided by AI
d has been partitioned.
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• Simplicity of selectors and concepts characterizing blocks should be taken into
account (e.g., by combining it with the entropy gain measure). Let’s say the
form A is simpler than ∃r.B and {a}. One may put some limits on the number of
nominals and the nesting depth of ∀ and ∃ in a concept characterizing a block.

• As a possible strategy, one may follow the idea of Hopcroft’s automaton mini-
mization algorithm. The hope is that reducing the total number of created blocks
(in the whole granulation process) makes the concepts characterizing the blocks
of the final partition simpler. Besides, apart from quality of the result, time com-
plexity is also important.

As usual, we may also use backtracking to find different solutions. During the
search, only the best choices are tried and we will keep only a bounded number
of the best solutions (according to some measure). The final solution will be the one
that has the best accuracy on a test information system.

Simplifying a concept C to obtain a final definition for Ad can be done as follows:

1. We first normalize C while preserving equivalence, for example, by using the
method proposed in [18]. Such normalization uses negation normal form, which
may be essential for cutoffs described below.

2. Given a test information system I ′, we then simplify the obtained concept, with-
out preserving equivalence, by representing the concept as a tree and repeat the
following operations until accuracy of the definition cannot be improved on I ′:

• Cut off a leaf of the tree if it improves accuracy of the definition on I ′.
• If a subconcept of the definition can be replaced by a simpler one (e.g., ,

or ⊥) while not decreasing the accuracy on I ′ then do that replacement.
• After each simplification, normalize the concept (preserving equivalence).

The other problems deserving consideration are: allowing a definition C not exactly
matching Ad on I , and classifying a new object when inconsistencies occur. The
first problem can be dealt with by using standard methods and some measures. Con-
sider the second problem. Inconsistencies may occur as in the following situation:
converting a training RS information system I0 with a decision attribute Color and
VColor = {red,green,blue} to a training information system I in DL with concepts
Red, Green, Blue to be learnt, one may get concepts Cred , Cgreen, Cblue as the result
of the learning process, which overlap on a real information system I ′′. A decision
on whether an object x of I ′′ which belongs, for example, to both CI ′′

red and CI ′′
green

should be classified as red or green can be made based on the accuracy of Cred and
Cgreen on a test information system I ′.

Note that an attempt to extend concept approximation using description logics
was taken in [11] by using contextual indiscernibility relations used to represent un-
certain concepts. A context is defined in [11] as a set of concepts. Roughly speaking,
[11] proposes to define new atomic concepts by complex concepts and then to use
those new atomic concepts for machine learning, applying traditional methods not
based on description logics. The method we proposed is based on bisimulations and
we find it much more promising for applications.
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19.5.4 Bisimulation-Based Approximation of Concepts

The next problem we want to address is to learn a concept Ad not by giving its
definition C (where Ad is a concept name and C is a complex concept), but by giving
a pair (C,C) of concepts, where C plays the role of a lower approximation of Ad and
C plays the role of an upper approximation of Ad . This follows the lines of Pawlak’s
rough set theory.

The problem is specified as follows:

• given: a training information system I in LΣ,Φ, a concept name Ad ∈ ΣC, and
a sublanguage LΣ†,Φ† of LΣ,Φ with Σ† ⊆ Σ\ {Ad} and Φ† ⊆Φ

• goal: we want to learn an approximate definition of Ad , that is, a pair (C,C) of

concepts in the sublanguage LΣ†,Φ† such that CI ⊆ AI
d ⊆C

I
and CI , C

I
closely

approximate AI
d .

The result of such learning can be improved by a test information system.
Our method for this problem, as described below, is based on bisimulation:

• Compute the partition of ΔI by ∼Σ†,Φ†,I , further denoted by {Yi1 , . . . ,Yik}, to-
gether with concepts Cit characterizing Yit (i.e. CI

it = Yit for 1 ≤ t ≤ k) as de-
scribed in the previous subsection.

• Take C =Cj1 ! . . .!Cjh , where j1, . . . , jh are all the indices among i1, . . . , ik such
that Yjt ⊆ AI

d for all 1≤ t ≤ h.
• Take C = Cj′1 ! . . .!Cj′

h′
, where j′1, . . . , j′h′ are all the indices among i1, . . . , ik

such that Yj′t ∩AI
d �= /0 for all 1≤ t ≤ h′.

• Normalize C and C, while preserving equivalence.

The pair (C,C), obtained as above, is a pair of concepts in LΣ†,Φ† that approximates

Ad on I most closely (in the sense that CI ⊆ AI
d ⊆ C

I
and the sets AI

d \CI and

C
I \AI

d are the smallest ones).
The accuracy on I does not imply accuracy on other information systems. Fol-

lowing the Ockham’s razor principle, we pay attention to simplicity of (C,C) in
order to increase their overall accuracy. Here, we can use the following techniques:

• We use LargestContainer (see Subsection 19.5.3) to obtain a simpler form for
C.

• In the granulation process of ΔI , we can stop as soon as the current partition is
good enough according to some measure, and use it to compute C and C.

• Using a test information system we can simplify C and C (without preserving
equivalence) by applying different kinds of simplification as discussed in the
previous subsection, taking into account the accuracies of the lower and upper
approximations on the test information system and the relation between them.

Example 19.9. Consider again the information system given in Example 19.5. We
want to learn a concept definition or a concept approximation for the set X = {Alice,
Bob, Claudia} in the sublanguage LΣ†,Φ† , where Σ† = {Adult, has child} andΦ† =
/0. This task can be realized as follows:
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1. Y1 := ΔI , partition := {Y1}
2. partitioning Y1 by Adult:

• Y2 := {Alice,Bob,Claudia,Dave,George}, C2 := Adult
• Y3 := {Eva,Frank}, C3 := ¬Adult
• partition := {Y2,Y3}

3. partitioning Y2 by ∃has child.,:

• Y4 := {Alice,Bob,Claudia,Dave}, C4 := C2 ∃has child.,
• Y5 := {George}, C5 := C2 ¬∃has child.,
• partition := {Y3,Y4,Y5}

4. partitioning Y4 by ∃has child.C2 (we use the selector ∃has child.C2 instead of
∃has child.C4 because it is simpler and has the same effect):

• Y6 := {Alice,Bob}, C6 := C4 ∃has child.C2

• Y7 := {Claudia,Dave}, C7 := C4 ¬∃has child.C2

• partition := {Y3,Y5,Y6,Y7}
5. The current partition cannot be granulated anymore. (It corresponds to∼Σ†,Φ†,I .)
6. Since only Y6 from the current partition {Y3,Y5,Y6,Y7} is a subset of X , the

lower approximation of X is characterized by C6 = Adult  ∃has child., 
∃has child.Adult, which can be simplified to Adult ∃has child.Adult.

7. Since only Y6 and Y7 from the current partition {Y3,Y5,Y6,Y7} overlap with X ,
the upper approximation of X is characterized by C6!C7, which can be simpli-
fied to C4 = Adult ∃has child.,. �

19.6 Conclusions

In the current chapter, we have studied roughification methods allowing one to con-
struct indiscernibility relations on the basis of background knowledge. We have first
studied indiscernibility based on similarity relations, showing that such relations
can be turned into equivalence relations providing more accurate approximations.
Next, we introduced roughifications based on relational databases and finally ter-
minological roughifications, where indiscernibility coincides with indiscernibility
by formulas of considered description logics. To our best knowledge, the proposed
techniques and their applications are novel. It is worth emphasizing that our work
is a pioneering one that uses bisimulation for machine learning in the context of
description logics.

We have considered applications of the proposed techniques for improving
accuracy of approximations, granulating relational databases as well as in concept
learning and concept approximations. The last mentioned application areas have
usually been studied in the context of information systems using only attributes (and
sometimes also “external” relational structures) [21, 20]. In approaches based on
RS information systems, concepts are usually characterized by formulas built from
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unary predicates (corresponding to attributes), using propositional connectives. On
the other hand, concept learning and concept approximation in information sys-
tems based on description logics require new methods and algorithms. Most ideas
for them may be inspired from the traditional ones (like the ones based on deci-
sion rules, decision trees, reducts, and local reducts). However, additional ideas are
needed to generalize such approaches to the case of description logics. We have
shown that bisimulation is a good starting point.

As interesting continuations of the research reported in this chapter we consider
extensions of roughifications techniques by considering other logical formalisms.
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