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Summary. Representing internal models of aspects of an autonomous agent’s surrounding
environment or of its own epistemic state and developing query mechanisms for these models
based on efficient forms of inference are fundamental components in any deliberative/reactive
system architecture used by an agent in achieving task goals. The problem is complicated by
the fact that the models in question necessarily have to be incomplete due to the complexity
of the environments in which such agents are intended to operate. Consequently, the querying
mechanisms must be framed in the context of anopen-world assumption. We propose an ar-
chitecture for such a system that involves generalizing classical deductive databases to rough
knowledge databases (RKDB), where relations in the database are defined as rough sets. We
also propose the use ofcontextually closed queries(CCQs) where a context for a query and a
local minimization policy are provided in terms of integrity constraints and techniques from
circumscription. The concept of a contextually closed query is a generalization of querying
in the context of a local closed-world assumption (LCW) previously proposed in the litera-
ture.CCQs have the effect of dynamically reducing the boundary regions of relations relative
to a particular set of integrity constraints associated with the query before actually querying
the RKDB. The general problem of querying the RKDB usingCCQs is co-NPTIME com-
plete, but we isolate a number of important practical cases where polynomial time and space
complexity is achieved.

1 Introduction

Consider an autonomous system, such as a ground robot or an unmanned aerial ve-
hicle (UAV), operating in a highly complex and dynamic environment. For systems
of this sort to function intelligently and robustly, it is useful to have both deliberative
and reactive capabilities. Such systems combine the use of reactive and deliberative
capabilities in achieving task goals. Reactive capabilities are necessary so that the
system can react to contingencies that arise unexpectedly and demand immediate
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response with little room for deliberation as to what the best response should be.
Deliberative capabilities are useful in the sense that internal representations of as-
pects of the system’s operational environment can be used topredict the course of
events in the near or intermediate future. These predictions can then be used to deter-
mine more selective actions or better responses in the present, which will potentially
save the system time, effort, and resources in the course of achieving task goals.

Due to the complexity of the operational environments in which such robotics sys-
tems generally operate and the inaccuracy of sensor data about the environment ac-
quired through different combinations of sensors, these systems cannot be assumed
to have complete information or models about their surrounding environment nor
the effects of their actions on these environments. On the other hand, the deliber-
ative component is dependent on synthesizing, managing, updating, and using of
incomplete qualitative models of the operational environment represented internally
in the system architecture. These internal models are used for reasoning about the
system’s environment and the effects of its actions on the environment while the
system attempts to achieve task goals. In spite of the lack ofcomplete information,
such systems quite often have, or can acquire, additional information that can be
used in certain contexts to assume additional knowledge about the incomplete parts
of the specification. This information may be of a normative or default nature, may
include rules of thumb particular to the operational domainin question, or may in-
clude knowledge implicit in the result of executing a sensing action.

One potentially useful approach that can be pursued in developing of on-line rea-
soning capabilities and representation of qualitative models of aspects of an au-
tonomous system’s operational environment is using traditional database technol-
ogy combined with techniques originating from artificial intelligence research with
knowledge-based systems. There are a number of different compositions of tech-
nologies that may be pursued, ranging from more homogeneouslogic programming
based deductive database systems to heterogeneous systemsthat combine the use
of traditional relational database technology with specialized front-end reasoning
engines.

The latter approach will be pursued in this chapter, but witha number of modifica-
tions of the standard deductive database framework. These modifications are made
necessary by the requirement of representing and reasoningabout incomplete qual-
itative models of the operational environments in which autonomous systems are
embedded. A number of fundamental generalizations of standard semantic concepts
used in the traditional deductive database approach will bemade:

� The extensional database (EDB) which represents and storesbase relations and
properties about the external environment, or the system’sinternal environment,
will be given formal semantics based on the use of rough sets [14, 19]. The
extension of a database relation or property will contain explicit positive and
negative information in addition to implicitly represented boundary information
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that is defined as the difference between upper and lower approximations of the
individual relations and properties.

� The intensional database (IDB) will contain two rule sets generating implicit
positive and negative information, respectively, via application of the rule sets
in the context of the facts in the EDB. Theclosed-world assumptionwill notbe
applied to the resulting information generated from the EDB/IDB pair.

� An open-world assumptionwill be applied to the extensional and intensional
database pair, which can be locally closed dynamically by using of contextually
closed queries. A CCQ consists of the query itself, a context represented as
a set of integrity constraints,1 and a local closure policy specified in terms of
the minimization/maximization of selected relations. Thecontextually closed
query layer (CCQ layer) represents the closure mechanism and is used to answer
individualCCQs.

In effect, theCCQ layer permits the representation of additional normative,default,
or closure information associated with the operational environment at hand and the
particular view of the environment currently used by the querying agent. Together
with the rough set semantics for relations, a rough set knowledge base in this context
represents an incompletely specified world model with dynamic policies that permit
the local closure of parts of the world model when querying itfor information.

The combination of the EDB, IDB, andCCQ layer will be called the rough knowl-
edge database. The computational basis for the inference engine used to query the
RKDB will be based on the use of circumscription, quantifier elimination, and the
ability to automatically generate syntactic characterizations for the upper and lower
bounds of rough relations in the RKDB.

1.1 Open-and Closed-World Reasoning

What is meant intuitively by open- and closed-world reasoning? In traditional data-
bases, reasoning is often based on the assumption that information stored in a spe-
cific database contains a complete specification of the application environment at
hand. If a tuple is not in a base relational table, it is assumed that it does not have
that specific property. In deductive databases, if the tupleis not in a base relational
table or any intensional relational tables generated implicitly by the application of
intensional rules, it is again assumed that it does not have these properties. Un-
der this assumption, an efficient means of representing negative information about
the world depends on applying theclosed-world assumption(CWA) [1, 20]. In this
case, atomic information about the world, absent in a world model (represented as a
database), is assumed to be false.

1 We accept a paradigm, according to which integrity constraints are statements about
database contents expressed as classical first-order formulas (see, e.g. [1]), that are to be
satisfied by the instances of the database. However, since wealso deal with incomplete in-
formation, we assume that the required satisfiability is restricted to tuples containing only
complete information.
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On the other hand, for many applications such as the autonomous systems appli-
cations already mentioned, the assumption of complete information is not feasible
nor realistic, and the CWA cannot be used. In such cases, anopen-world assumption
(OWA), where information not known by an agent is assumed to be unknown, is of-
ten accepted, but this complicates both the representational and implementational
aspects associated with inference mechanisms and the use ofnegative information.
The CWA and OWA represent two ontological extremes. Quite often, a reasoning
agent does have or acquires additional information that permits the application of
the CWA locally in a particular context. In addition, if it does have knowledge of
what it does not know, this information is valuable because it can be used in plan
generation to acquire additional information by using of sensors.

In such a context, various forms ofLCW assumptions have been defined (see, e.g., [8,
10]), and planning systems have been proposed (see, e.g., [11, 12]). The starting
point for the approach proposed by in [8] several authors of this chapter is based on
the approach to query answering usingLCW assumptions described in [10], where
the authors present a sound, but incomplete, tractable algorithm for LCW reason-
ing intended for use in the XII Planner [13]. The approach described in [10] was
substantially strengthened in [8] by

� Providing formal semantics for the case whereLCW assumptions and queries
are expressed by arbitrary first-order formulas. The semantics is based on the
use of formula circumscription and depends on minimizing formulas expressing
LCW constraints.

� Isolating a more expressive language forLCW assumptions which subsumes
that used in [10], permits limited use of negation and disjunction and still retains
tractability.

� Providing a sound and complete, tractable deduction methodfor the more ex-
pressive language.

The semantics ofLCW constraints, as defined in [8], depends on minimizingLCW
constraints where it is specified that all relations in a constraint vary. The mini-
mization process results in changing the varied database relations as a side effect
of the process. Queries are then posed to the changed database. Initial practice in
using the strengthened version ofLCW assumptions showed that a finer granularity
in the minimization policy forLCW assumptions was desirable as was a more intu-
itive methodology for expressingLCW policies to understand the results and provide
intuitive semantics for the database changes. These desiderata have led to the pro-
posal for the modifications and generalizations of deductive database technology
described above.

1.2 A New Approach to Rough Set Based LCW Techniques

In the current chapter, we propose semantics and methodology for LCW reasoning
that provides a more intuitive and general framework for integratingLCW reasoning
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in knowledge databases used by intelligent agents. The new approach differs from
and subsumes that of [8] in the following manner:

� It generalizes to deductive databases, whereas the previous approach described
in [8] is basically restricted to relational databases.

� Integrity constraints, absent in the previous approach, take on an important role
in characterizingLCW assumptions in a principled manner. In most knowledge
databases, the relationships between pieces of information are expressed by in-
tegrity constraints (e.g., defined by classical first-orderformulas). When apply-
ing LCW policies locally to particular relations, one minimizes those relations.
However, in such cases, the integrity constraints have to bepreserved. This can
result in implicit changes to some additional relations. However, the integrity
constraints are still preserved, thus the knowledge structure represented con-
tinues to satisfy the desired properties. Such informationwas missing in the
previous approach, thus it was much more difficult to understand the changes in
the resulting database and to develop pragmatic implementation techniques for
modifying and querying the knowledge database.

� Integrity constraints and local closure policies are decoupled from the knowl-
edge database itself and associated dynamically with individual agent queries.
The agents themselves possess local views and preferences about the world
model that may or may not be shared by other agents or even the same agent
using a different query.

� The formula-circumscription technique used in the previous approach is re-
placed by integrity constraints and standard circumscription. This modification
permits selected fixing, varying, and minimizing of specificrelations in integrity
constraints, whereas the previous approach forced varyingon all predicates in
anLCW constraint. This provides the user with more flexibility in definingLCW
constraints and brings the new approach closer to the methodology used in
circumscription-based knowledge representation. It should be emphasized that
the implementation is not always dependent on circumscription.

� At the semantic level we use rough sets to represent databaseinformation as
a natural tool.2 Rough sets contain information about tuples known to be in a
relation (the lower approximation of the relation), tuplesknown not to be in the
relation (the complement of the upper approximation of the relation) and tuples
for which it is unknown whether they belong to the relation (the difference
between the upper and lower approximation of the relation).

1.3 The Structure of This Chapter

In Sect. 2, we provide some notation and a number of definitions. In Sect. 3, we de-
scribe the basic architecture for rough knowledge databases consisting of the exten-
sional, intensional, and contextual closure query layer. In Sect. 4, a detailed example
from the domain of unmanned aerial vehicles is provided to demonstrate the need

2 As discussed, e.g., in [14], rough relations appear in databases in many important contexts.
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for the reasoning mechanisms we propose. In Sect. 5, we provide specifications of
the languages used for the three rough knowledge database layers, and in Sect. 6,
we provide the formal semantics for each of the three layers.In Sect. 7, we provide
a high-level specification for an algorithm for computing queries to rough knowl-
edge databases and consider complexity and expressivenessissues. In Sect. 8, we
isolate a number of important special cases based on restrictions in using language
at the three database layers which guarantee efficient mechanisms for computing
queries for these cases. In Sect. 9, we conclude with a summary of results and some
considerations on future work.

2 Preliminaries

We deal with the first-order language with equality,FI, over a fixed vocabulary with-
out function symbols, whereConst is a finite set ofconstant symbols, VI is a finite
set offirst-order variablesandRel is a finite set ofrelation symbols. Any rough
relationR

��
is defined by

� The positive part of the relation, containing positive information and denoted
by R��� [it is simply the lower approximation ofR

��
].

� The negative part of the relation, containing negative information and denoted
by R��� [it is the complement of the upper approximation ofR

��
].

� The boundary region of the relation, containing the unknown facts and denoted
by R��� [it is the difference of the upper and the lower approximation of R

��
].

By FII we denote the second-order language based on an alphabet whose symbols
are those ofRel, together with a denumerable setVII of n-ary predicate variables (for
eachn � 0). In the rest of the chapter, we shall use second-order circumscription.
Our definition follows [15].

Definition 1. Let P̄ be a tuple of distinct predicate constants,S̄be a tuple of distinct
predicate constants disjoint with̄P, and letT

�
P̄�S̄� be a finite theory in the lan-

guageFI. Thesecond-order circumscription of̄P in T
�
P̄�S̄� with variableS̄, written

CIRC
�
T
�
P̄�S̄�; P̄; S̄

�
, is the sentence (in the languageFII)

T
�
P̄�S̄���Φ̄

�
Ψ̄ 	
�T �

Φ̄�Ψ̄��
Φ̄ � P̄ � P̄ � Φ̄�� (1)

whereΦ̄ andΨ̄ are tuples of predicate variables similar tōP andS̄, respectively,3

Φ̄ � P̄ stands for

n�
i�1

��
x̄	Φi

�
x̄
� �Pi

�
x̄
� and P̄ � Φ̄ stands for

n�
i�1

��
x̄	Pi

�
x̄
� �Φi

�
x̄
�	

3 A tuple of predicate expressions̄X is said to be similar to a tuple of predicate constantsȲ
iff X̄ � �X1 � � � � �Xn�, Ȳ � �Y1 � � � � �Yn� and, for all 1� i �n, Xi andYi are of the same arity.
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In the following, we shall often writeCIRC
�
T; P̄; S̄

�
instead ofCIRC

�
T
�
P̄�S̄�; P̄; S̄

�
.

We also allow minimization of negative literals. Definition1 can easily be adjusted
to this case, since minimizing a literal, say�R, means maximizingR. Thus it suffices
to replace inequalities� of (1) by inequalities�, i.e., to reverse the corresponding
implication. We also require the following definition (see also [7,8]).

Definition 2. Let x̄ be a tuple of first-order variables,̄Q be a tuple of relation sym-
bols,Φ

�
Q̄
�

be a first-order formula positive w.r.t. all symbols in̄Q�andΨ
�
�Q̄

�
be a

first-order formula negative w.r.t. all symbols in̄Q. Then

� By asemi-Horn formula, we shall understand any formula of the following form

��
x̄	Φ�

Q̄
� � Q̄

�
x̄
� �Ψ

�
�Q̄

�	
� By a weak semi-Horn formula, we shall understand any formula of the follow-

ing form: �
Φ
�
Q̄
� �Qi

�
x̄
� �Ψ

�
�Q̄

�	
� By aweak Ackermann formulawe shall understand a weak semi-Horn formula,

in whichΦ does not contain the relationQi .

Observe that in Definition 2, one can replace all occurrencesof all relations ofQ̄
by their negations. This is useful for the application of dual forms of quantifier
elimination techniques used in our algorithms.

3 The Architecture of Rough Knowledge Databases

Let us now discuss the architecture of rough knowledge databases as understood
in this chapter. The kernel of the database is the so-called extensional database (see
Fig. 1). We assume that the extensional database contains positive and negative facts.
The facts that are not explicitly listed in the extensional database are assumed to be
unknown in this layer of the database. Thus, in the extensional database layer we ac-
cept the open-world assumption. The intensional database layer provides rules that
define some new relations, but also rules allowing one to extend the positive and
negative parts of the extensional relations.4 The outermost, most advanced layer,
which we call thecontextual closure query layer(CCQ layer), consists of theCCQ
inference mechanism which represents the query/answer mechanism used by indi-
vidualCCQs applied to the two lower layers of the RKDB.

The extensional database consists of rough relations. According to the methodology
developed in [5], the rules of the intensional database function as rough set trans-
ducers (see also Sect. 6.3), transforming combinations of rough extensional relations

4 We assume here that extensional and intensional databases are consistent. Let us note that
the consistency condition, expressed in the language we consider, is tractable.
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Fig. 1. The architecture of knowledge databases

into new relations that satisfy the constraints of the intensional rules. As in the ex-
tensional database, the open-world assumption is acceptedin the intensional layer.
Local closure context policies (LCC policies) allow us to minimize chosen relations
(or their complements), while at the same time preserving the integrity constraints
(ICs). Queries are posed via the outermost layer, but in someapplications, it might
be useful to submit queries to the intensional or even extensional layer. This feature
can be provided in an obvious manner. We will focus on theCCQ layer.

4 A UAV Scenario Sensor Usage Example

The WITAS5 Unmanned Aerial Vehicle Project [3] is a long-term basic research
project located at Linköping University (LiU), Sweden, and the authors are partic-
ipants in the project. The current work with rough knowledgedatabases andLCC
reasoning is intended to be used in an on-line query-answering system which is part
of the UAV’s system architecture.

The long-term goal of the WITAS UAV Project is the development of the technolo-
gies and functionalities necessary for successfully deploying a fully autonomous
UAV operating over road and traffic networks. While operating over such an en-
vironment, the UAV should be able to navigate autonomously at different altitudes
(including autonomous takeoff and landing); plan for mission goals such as locating,
identifying, tracking, and monitoring different vehicle types, and construct internal
representations of its focus of attention for use in achieving its mission goals. Addi-
tionally, it should be able to identify complex patterns of behavior such as vehicle
overtaking, traversing of intersections, parking lot activities, etc.

In the current project, we are using a Yamaha RMAX helicopteras the experimental
physical platform on which to pursue our research. The helicopter is equipped with

5 The Wallenberg Laboratory for Information Technology and Autonomous Systems (Pro-
nouncedVee-Tas).
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a sensor platform that includes a geographical positioningsystem (GPS), an inertial
navigation system (INS), elevation sensors, and a magneticcompass, in addition to
a video camera.

The system architecture for the UAV consists of both deliberative and reactive com-
ponents, and the communication infrastructure for the components is based on the
use of the standard object broker CORBA. There are a number ofdeliberative ser-
vices such as task planners, trajectory planners, prediction mechanisms, and chro-
nicle recognizers, that are dependent on internal qualitative representations of the
environment over which the UAV operates. The knowledge representation com-
ponents include a soft-real time database called the dynamic object repository, a
standard relational database, a geographic information system containing road and
geographic data, and a number of front-end query-answeringsystems that serve as
inference engines and may be used by other components in the architecture. The
research described in this chapter provides a basis for one of the inference engines.
In addition to these components, there is an image processing module used for low
and intermediate level vision tasks and a helicopter control module which is used to
position the helicopter and camera dynamically and maintain positions during the
execution of task goals which may include highly dynamic tasks such as tracking
vehicles through a small village with building obstacles.
Let’s examine a particular scenario from the UAV operational environment repre-
sentative of the use ofLCC reasoning in the UAV context.

Suppose the UAV receives the following mission goal from itsground control ope-
rator:

Identify and trackall moving vehicles in region X, and log the estimated
velocities and positions ofall small blue vehicles identified for the duration
of their stay in region X, or until the UAV is low on fuel.

Achieving a mission goal such as this in a fully autonomous mode is extremely
complex and would involve the concurrent use of many of the deliberative and re-
active services in the architecture, in addition to a great deal of sophisticated rea-
soning about the operational environment. Both hard and soft real-time constraints
must also be taken to consideration, particularly for query-answering during a plan
execution phase. In this example, we will focus on a particular type of reasoning ca-
pability made possible by the combined use ofLCC reasoning and rough knowledge
databases.

The first step in achieving the mission goal would be to generate a task plan which
would include the following steps:

1. Fly to a position that permits viewing region X and possibly an area surrounding
the region.

2. Focus the camera on region X, and maintain position, focus, and coverage.
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3. Initiate the proper image processing algorithms for identifying moving vehicles
in region X.

4. Use the sensor data gathered in the previous step to produce knowledge as to
what is seen or not seen by the UAV in region X.

5. Use the acquired knowledge to plan for the next series of actions which involve
tracking, feature recognition, and logging.

6. Maintain execution of the necessary services and processes until the mission
goal is completed.

We will concentrate on steps 3 and 4 whose successful completion is dependent on
a combination of the open-world assumption,LCC reasoning, and rough knowledge
database representation of relations and properties.

Observe that the mission goal above contains two universal statements, the first
asks to “identify and trackall moving vehicles in region X,” and the second asks
to “log the estimated velocities and positions ofall small blue vehicles identified.”
The meaning of the second universal is naturally dependent on the meaning of the
first universal. To achieve the mission goal, the inferencing mechanism used by the
UAV during plan generation and plan execution must be able tocircumscribe (in the
intuitive sense) the meaning of “all moving vehicles in region X” and that of “all
small blue vehicles identified.”

What the UAVcan perceive as moving, given the constraints under which it is op-
erating, the character of the dynamics of its current operational environment, and
the capabilities of its sensor and image processing functionalities in this context, is
not necessarily the same thing as whatis actually movingin region X. An additional
problem, of course, is that the inferencing mechanism cannot appeal to the use of the
closed-world assumption. If it could, it would register moving objects in region X
andassumevia application of the CWA that no other objects are moving. One cannot
appeal to this mechanism because the open-world assumptionis being used. Even
if one could, this would be erroneous. Certainly, there may be vehicles in region
X that are moving but can not be perceived due to limitations associated with the
UAV’s capabilities, and there may also be vehicles outside region X that are moving.

The key to solving this particular representational problem is to note that sensing
actions, such as step 3 in the plan sketch above, implicitly generate local or con-
textual closure information (LCC policies) and that the UAV agent can query the
rough knowledge database using the particular contextual closure that exists for the
purpose at hand. For example, the sensing action in step 3 above not only generates
information about specific moving individuals the UAV can perceive with its cur-
rent sensor and image processing capabilities, but it also generates knowledge that
this is all the UAV can see in the region of interest (ROI), region X. The nature of
this information is that it is specific knowledge of what the UAV agent does not see
rather than information derived via an assumption such as the CWA.
Of course, one has to (or more specifically, the UAV agent has to) supply the con-
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textual closure information. This will be supplied in termsof one or more integrity
constraints and anLCC policy consisting of particularLCC assumptions pertain-
ing to the minimization, maximization, fixing, or varying ofspecific relations. The
specific closure context for this situation could be paraphrased as follows:

After sensing region X with a camera sensor, assume that all moving vehi-
cles in the ROI (X) have been perceived except for those with asignature
whose color feature is��������.

In the following example, we provide the particulars for representing the scenario
above and reasoning about it using the proposed approach.

Example 1.[A UAV Scenario: Identify, Track, and Log]
Consider the situation where a UAV observes and classifies cars with different sig-
natures based on color.6 For the example, the domains considered consist of

� Cars�

����	 ��
 ��� ��� ���.

� Regions�


����	 ��
 ����.

� Signatures�

������������� ��������������.

The following relations are also defined:7

� Moving
��� the object� is moving.

� InROI
�
�
�

the region� is in the region of interest.
� See

����� the object� is seen by the UAV in region�.
� In

����� the object� is in region�.
� ContainedIn

�
����� region� is contained in region�

�
.

� Sig
����� the object� has signature�.

Suppose the actual situation in the operational environment over which the UAV
is flying is as depicted in Fig. 2. For the mission goal, the UAV’s initial region of
interest (ROI) is region�
.

At mission start, the following facts are in the UAV’s on-line extensional database
(EDB):



ContainedIn

�
����	��ContainedIn

�
�	��
��	

During mission preparation, the ground operator relays thefollowing information
to the UAV agent which is placed in the UAV’s on-line EDB:



In
��	 ��	��In��
 ��
��Moving

��	��
Sig

��	 �����������Sig
��
 ��������Sig

�� �����������InROI
�
�

��	

6 In an actual scenario, a vehicle signature would be more complex and contain features such
as width, height, and length, or vehicle type.

7 In addition, a number of type properties, such asCar��, Region��, etc. would also be de-
fined.
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�

Fig. 2. The situation considered in Example 1.

The following rules are associated with the intensional database:

ContainedIn
�
r�s� � �

t 	�ContainedIn
�
r�t ��ContainedIn

�
t �s�� (2)

InROI
�
s
� � �

r	�ContainedIn
�
s�r �� InROI

�
r
�	 (3)

The current EDB, together with the intensional database (IDB), would allow the
UAV agent to infer the following additional facts:



ContainedIn

�
����
��InROI

�
�	
��InROI

�
��
��	

Observe that complete information about theContainedInand InROI relations is
not yet assumed due to the application of an open-world assumption in the EDB and
IDB.

Assume that the UAV generates a plan similar to that described at the beginning
of this section and then executes steps 1–3 in this plan. Given its sensor capabil-
ities under current weather conditions, suppose that the UAV agent can assert the
following new set of facts in the EDB generated from its sensor actions and image
processing facilities (step 3 in the plan):



In
��������In��� �����Moving

�����Moving
�����Moving

����
Sig

����������Sig
��� ���������	

After executing the sensor action in step 3, the UAV’s on-line EDB contains the
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following facts:


In
��������In��	 ��	��In��
 ��
��In��� ����� (4)

Moving
�����Moving

��	��Moving
�����Moving

����
Sig

����������Sig
��	 �����������Sig

��
 ��������Sig
��� ���������

Sig
�������������ContainedIn

�
����	��ContainedIn

�
�	��
��

InROI
�
�

��	

At this point, observe that, due to the open-world assumption, it is unknown whether
�
 is moving and it is unknown what region�� is in or what color it is. Additionally,
it is unknown what region� is in or whether it is moving.

Before proceeding with the execution of the rest of the plan,the UAV must take
stock of what it knows about the ROI,�
. In other words, the UAV agent must query
the RKDB with a particular policy of contextual closure to determine not only what
it sees, butall that it sees under the current circumstances. The followingclosure
context discussed above,

after sensing regionX with a camera sensor, assume that all moving ve-
hicles in the ROIX have been perceived except for those with a signature
whose color feature is��������,

can be represented as the following integrity constraint:
�

x�r�z	�Moving
�
x
��

In
�
x�r �� InROI

�
r
��

Sig
�
x�z��

z �� �������� �See
�
x�r �� (5)

together with the followingLCC policy:8

LCC
�
See

�
x�r ��ContainedIn

�
x�y�;Moving

�� : �5�	 (6)

This combination states that relationsSee
�
x�r � and ContainedIn

�
x�y� are mini-

mized, relationMoving
��

is allowed to vary, and all other relations are fixed. The
integrity constraint (5) is to be preserved. In essence, theUAV agent is assuming
complete information locally about theContainedIn

��
andSee

��
relations by min-

imizing them. In addition, new information about moving mayalso be derived, but
the only information aboutSig

��
and the other fixed relations that can be inferred is

what is already in the EDB. That is the effect offixing relations in this context.

Another way to view the integrity constraint (5) of the contextual closure is as the
equivalent:

�
x�r�z	�In�x�r �� InROI

�
r
��

Sig
�
x�z��z �� ��������

�
(7)

�See
�
x�r � � �Moving

�
x
��

8 The formal definition of anLCC policy is provided in Sect. 5.3, but we first treat it infor-
mally here.
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which states that “if an object is in the ROI and it has a visible signature relative
to the current capabilities of the UAV agent’s sensors, if the UAV agent does not
see it, then it is not moving.” The integrity constraint is intended to represent strong
coupling between moving and seeing due to the character of the sensor capabilities
in this context.

After applying theLCC policy in theCCQ layer which includes integrity constraints,
the resulting EDB/IDB combination would contain (explicitly and implicitly) the
following facts:



In
��������In��	 ��	��In��
 ��
��In��� �����

Moving
�����Moving

��	��Moving
�����Moving

������Moving
��
��

Sig
����������Sig

��	 �����������Sig
��
 ��������Sig

��� ���������
ContainedIn

�
����	��ContainedIn

�
�	��
��ContainedIn

�
����
��

�ContainedIn
�
r�r �� for all pairsr�r � other than listed above,

InROI
�
��
��InROI

�
�	
��InROI

�
�

��	

It is useful to note the following about the UAV agent’s knowledge about the ROI,
resulting from its sensing action in step 3 and subsequent reasoning about it. It still
has incomplete information about the relationsIn

��
, Sig

��
, andInROI

��
. For exam-

ple, it is unknown what signature object�� has or where it is. The UAV agent now
knows that object�
 is not moving and it does have complete information about the
ContainedIn

��
relation.

What about the relationSee
��

, which has been minimized? One can now infer the
following facts related to the relationSee

��
and the ROI,�
:

� See
�����
�.

�
�See

��	 ��
���See
��
 ��
���See

��� ��
���See
�� ��
�.

�
 is not seen because it is not moving.�� is not seen because it is not in the ROI,�
.
�	 is not seen even though it is moving because of its signature.Most interestingly,
it is unknown whether�� is seen because the UAV agent could not discern which
region�� was in nor what its color signature was. In fact, since the UAVagent could
identify �� as moving, the failure to discern a region for�� could be deduced as the
reason for this, due to the tight coupling between moving andseeing. This could
provide a reason for focusing on�� and trying to discern its region.� is not seen
because of its signature. What is interesting is that minimization ofSee

��
does not

change the status of� w.r.t. Moving
��

, i.e.,Moving
��� remains unknown.

The fact thatSee
��� ��
� andMoving

��� remain unknown informs us of the sub-
tlety of minimization in the context of rough sets. The minimization of a relation
in the rough set context does not necessarily create a definition of the relation min-
imized. What it does do is move tuples in the boundaries of oneor more relations
into the positive or negative parts of the relation while meeting the conditions of the
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integrity constraints, whereas other tuples still remain in the boundaries. This is very
important because it satisfies the ontological intuition associated with open-world
reasoning.

It also worth emphasizing that if the integrity constraint (5) was defined as an inten-
sional rule, like the following,

See
�
x
��

Moving
�
x
��

In
�
x�r �� InROI

�
r
��

Sig
�
x�z��z �����������

then the minimization ofSee
��

would not result in changes in the relationMoving
��

appearing in the body of the rule.

These subtle forms of inferencing are precisely what may be required for realistic
inferencing mechanisms in fully autonomous systems, such as that described here,
that may often be in situations where there is no communication for longer periods
of time between the autonomous agent and ground operators. It remains to be seen
whether such complex forms of inferencing can be implemented efficiently. This
aspect will be considered in the remainder of the chapter.

5 The Languages of RKDBs

5.1 The Language of Extensional Databases

An extensional database consists of positive and negative facts. Thus, we assume
that the language of the extensional database is a set of literals, i.e., formulas of the
form R

�
c̄
�

or �R
�
c̄
�
, whereR�Rel is a relation symbol and ¯c is a tuple of constant

symbols. It is assumed that the extensional database is consistent, i.e., it does not
contain bothR

�
c̄
�

and�R
�
c̄
�
, for some relationR

��
and tuple ¯c.

5.2 The Language of Intensional Databases

The intensional database is intended to infer new facts, both positive and negative,
by applying intensional rules to the EDB. The process is similar to the approach
usingDatalog�� (see, e.g., [1]). The rules have the form,

�
P
�
x̄
���

P1
�
x̄1
�� 	 	 	 ��Pk

�
x̄k
�� (8)

where
�

is either the empty string or the negation symbol� and any variable that
appears in the head of a rule [i.e., any variable of ¯x in a rule of the form (8)] appears
also in the rule’s body (i.e., among variables of ¯x1� 	 	 	 �x̄k in the rule).
The rules can be divided into two layers, the first for inferring positive and the
second for inferring negative facts. The first layer of rules(called thepositiveIDB
rule layer), used for inferring positive facts, has the form,

P
�
x̄
���

P1
�
x̄1
�� 	 	 	 ��Pk

�
x̄k
�
; (9)

the second layer of rules (called thenegativeIDB rule layer), used for inferring
negative facts, has the following form:

�P
�
x̄
���

P1
�
x̄1
�� 	 	 	 ��Pk

�
x̄k
�	 (10)
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5.3 The Language of Integrity Constraints andLCC Policies

Integrity constraints are expressed as formulas of classical first-order logic. Intu-
itively, they can be considered implicit definitions of intensional relations that will
be minimized or maximized by theLCC assumptions in a specificLCC policy. In
the following sections, to obtain tractable instances of the general algorithm, we
will impose some syntactic restrictions on the syntactic form of ICs together with
theLCC assumptions in a specificLCC policy (see Sect. 8).

LCC policiesare expressions of the form,

LCC
�
L1� 	 	 	 �Lp;K1 � 	 	 	 �Kr :IC� (11)

whereL1 � 	 	 	 �Lp are (positive or negative) literals,K1 � 	 	 	 �Kr are relation symbols
not appearing inLi ’s, and IC is a set of integrity constraints. LiteralsL1 � 	 	 	 �Lp are
minimized and relationsK1 � 	 	 	 �Kr are allowed to vary. By anLCC assumption, we
mean a minimization or maximization of a single literal fromL1 � 	 	 	 �Lp in (11).
In the following sections, we often omit the part “:IC” of (11) if the corresponding
integrity constraints are known from the context.

6 The Semantics of RKDBs

6.1 Notational Conventions

Let us denote the facts in the extensional database by EDB andthe facts in the
intensional database by IDB. LetR1� 	 	 	 �Rn be all relations in the RKDB. For a
specific relationR in the RKDB, we denote the positive atoms ofR in the EDB by
EDB��R� and the negative atoms ofR in the EDB byEDB��R�. Assume that

� By EDB�, we denote the positive part of the EDB which is
n�

i�1

EDB��Ri
�
.

� By EDB�, we denote the negative part of the EDB which is
n�

i�1

EDB��Ri
�
.

The EDB is then equivalent toEDB��EDB�.

For a specific relationR in the RKDB, we denote the positive atoms ofR in the
IDB generated by the positive intensional rules of form (9) by IDB��R� (where it is
assumed thatIDB��R� � IDB��R� �EDB��R�) and the negative atoms ofR in the
IDB generated by the negative intensional rules of form (10)by IDB��R� (where it
is assumed thatIDB��R�� IDB��R� �EDB��R�). Assume also that

� By IDB�, we denote the positive part of the IDB which is
n�

i�1

IDB��Ri
�
.

� By IDB�, we denote the negative part of the IDB which is
n�

i�1

IDB��Ri
�
.

The IDB is then equivalent toIDB�� IDB�.
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Let D be a finite set (a domain of the database). The semantics of constant symbols
and variables is given by an assignment of domain values to constants and variables,
called avaluation:

v : Const�VI ��D 	
The valuationv is then extended to the vectors of constants and variables inthe
usual way. We also assume that the unique names assumption (UNA) holds, i.e., for
all different constantsc�c� in the RKDB, we assume thatc andc

�
denote different

objects. In other words, the formulaci �� c j is satisfied for eachi � j, wherei �� j.

In the semantics defined in the following sections, all relations are interpreted as
rough sets of tuples, where no form of domain closure is required. The symbol

�
will denote the RKDB entailment relation and the symbol�� will denote the classi-
cal two-valued entailment relation. By indexing relationswith EDB, IDB, andLCC,
we indicate that they are considered in the particular context as relations of the ex-
tensional, intensional, andCCQ layer of the RKDB, respectively.

6.2 The Semantics of Extensional Databases

The semantics of the extensional database is given by rough sets of tuples. LetR
��

be a relational symbol appearing in the extensional database. ThenR
��

is interpreted
as the rough set whose positive part contains all tuplesv

�
c̄
�

for which literalR
�
c̄
�

is
in the database, and the negative part contains all tuplesv

�
c̄
�

for which literal�R
�
c̄
�

is in the database. All other tuples are in the boundary region of R
��

.

EDB
�

R
�
ā
�

iff R
�
ā
�
�EDB��R��

EDB
�
�R

�
ā
�

iff �R
�
ā
�
�EDB��R��

whereR
��

is a relation of the EDB and ¯a is a tuple of constants.

Rough relations for the EDB are then defined as follows:

R�EDB �


v
�
ā
�

: EDB
�

R
�
ā
���

R�EDB �


v
�
ā
�

: EDB
�
�R

�
ā
���

R�EDB �


v
�
ā
�

: EDB ��R
�
ā
�
andEDB ���R

�
ā
��	

6.3 The Semantics of Intensional Databases

The semantics of the intensional database is given by rough sets of tuples after ap-
plication of the intensional rules to the extensional database. Intensional rules can
be viewed as rough set transducers (see [5]). Basically, a rough set transducer takes
rough sets as input and generates new or modified rough sets asoutput meeting the
constraints of the transducer, a set of formulas.

To provide the semantics of the IDB, we will use the definitionof the so-called
Feferman–Gilmore translation (see, e.g., [2]) as a basis.
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Definition 3. By aFeferman–Gilmore translation of formulaα, denoted byFG
�
α
�
,

we mean the formula obtained fromα by replacing all negative literals of the form
�R

�
ȳ
�

by R��ȳ� and all positive literals of the formR
�
ȳ
�

by R��ȳ�.
Let S̄�

�
S1 � 	 	 	 �Sp

�
contain all relation symbols of the formR� andR�, whereR is

a relation symbol in an IDB rule. For any relationSi, all rules withS�i (respectively,
S�i ) in their heads should be gathered into a single formula of the form,

�
ȳi 	�S�i

�
ȳi
��

αi
�
ȳi
��

where αi
�
ȳi
���

j

�
z̄j 	βi j

�
z̄j
�

whereβi j
�
z̄j
�

denotes the bodies of the appropriate rules and
�

stands for� or �,
respectively.

Denote byµS̄	�α�
S̄
� the least, and byνS̄	�α�

S̄
�, the greatest simultaneous fixed-

point operator ofα
�
S̄
�

(for the definition of simultaneous fixed-points see, e.g. [9]).
DefineS̄IDB

�
µS̄	�FG

�
α1

�� 	 	 	 �FG
�
αp

�	 In some cases the IDB might appear in-
consistent when there is a relationR

��
such thatR� �R� �� /0. In what follows we

require that the IDB is consistent, i.e., for all IDB relationsR
���R��R� � /0. This

consistency criterion can be verified in time polynomial in the size of the database.

The semantics of IDB rules is then defined as follows:

IDB
�

R
�
ā
�

iff ā �EDB��R�� IDB��R��
IDB

�
�R

�
ā
�

iff ā �EDB��R�� IDB��R��
whereR

��
is a relation in the EDB or in the head of an intensional rule, ¯a is a tu-

ple of constants, andIDB��R� andIDB��R� are computed from the simultaneous
fixed-point definitionS̄IDB defined above.

Rough relations for the IDB are then defined as follows:

R�IDB �


v
�
ā
�

: IDB
�

R
�
ā
���

R�IDB �


v
�
ā
�

: IDB
�
�R

�
ā
���

R�IDB �


v
�
ā
�

: IDB ��R
�
ā
�

andIDB ���R
�
ā
��	

Observe that

EDB
�

R
�
ā
�

impliesIDB
�

R
�
ā
��

EDB
�
�R

�
ā
�

impliesIDB
�
�R

�
ā
�	

Remark 1.If one wants to distinguish between facts entailed solely byapplication
of intensional rules, this can be done in a straightforward manner, but as a rule, one
is interested in querying both the EDB and IDB together, thusthe choice of RKDB
entailment from the IDB.
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6.4 The Semantics of theCCQ Layer and LCC Policies

The inference mechanism associated with theCCQ layer is intended to provide a
form of contextual closurerelative to part of the EDB and IDB when querying the
RKDB. A contextually closed queryconsists of
� Thequeryitself, which can be any fixed-point or first-order query.
� Thecontextrepresented as a set of one or more integrity constraints.
� A local closure policyrepresenting the closure context and consisting of a mi-

nimization policy representing the local closure.

An LCC policy consists of a context and a local closure policy.LCC policies may
also be viewed as rough set transducers with rough relationsin the EDB and IDB as
input, a transducer consisting of one or more integrity constraints and a minimiza-
tion policy, and modified rough relations in the RKDB as output.

Let the EDB and IDB be defined as before, let IC denote a finite set of integrity con-
straints, and let RKDB:LCC

�
L̄; K̄:IC denote querying the three layers of the RKDB

with a specificLCC policy LCC
�
L̄; K̄:IC. Then,9

RKDB:LCC
�
L̄; K̄:IC�

R
�
ā
�

iff

CIRC
�
IC � IDB�EDB; L̄; K̄

� ��R
�
ā
��

RKDB:LCC
�
L̄; K̄:IC�

�R
�
ā
�

iff

CIRC
�
IC � IDB�EDB; L̄; K̄

� �� �R
�
ā
��

where the notation is, as in Sect. 6.1, under the assumption that the circumscriptive
theory is consistent.

Thus, theCCQ layer has the purpose of dynamically redefining some relations to
satisfy ICs in a particular query. A relationR which is minimized, maximized or
allowed to vary is defined as the following rough relation:

R���� �


v
�
ā
�
: RKDB:LCC

�
L̄; K̄:IC�

R
�
ā
���

R���� �


v
�
ā
�
: RKDB:LCC

�
L̄; K̄:IC�

�R
�
ā
���

R���� �


v
�
ā
�
: RKDB:LCC

�
L̄; K̄:IC ��R

�
ā
�

and

RKDB:LCC
�
L̄; K̄:IC ���R

�
ā
��	

Intuitively, this means that the positive part ofR
��

contains tuples present in all ex-
tensions ofR

��
satisfying the ICs, the boundary part contains tuples present in some

extensions ofR
��

satisfying the ICs, but not in all of them, and the negative part of
R
��

contains tuples not present in any extension ofR
��

satisfying the ICs.

The relations that are not minimized, maximized, or allowedto vary are not changed;
thus their semantics is that given by the EDB and IDB layers ofthe RKDB.

9 Observe that we abuse notation somewhat by using sets of literals,L̄ �K̄ for minimized and
varied predicate constants in the circumscription formulaCIRC��. Formally, we should use
predicate constants contained inL̄ �K̄, respectively.
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Remark 2.The inference mechanism associated with theCCQ layer is almost al-
ways used with both layers of the EDB and IDB. If one wants to apply LCC infer-
ence to just the EDB, this can also be done in a straightforward manner.

7 The Computation Method

7.1 The Pragmatics of Computing Contextual Queries

A contextual query in its simplest form involves the (implicit) generation of the
extension of a relationR in the context of a set of integrity constraints and a mini-
mization policy and asking whether one or more tuples is a member of that relation.
Essentially, we are required to implicitly computeR����, R����, andR���� and deter-
mine whether the tuple or tuples are in any of the resulting rough set partitions of
R. In Sect. 7.2, we will describe an algorithm to do this. Basedon this specification,
we will be able to show that in some cases, where theLCC policy associated with
the query is restricted appropriately, querying the relation R can be done very ef-
ficiently. One of the more important results is that one can automatically generate
syntactic characterizations of each of the partitions of a rough set relation with-
out actually generating their explicit extensions. The syntactic characterizations can
then be used to efficiently query the RKDB.

Since integrity constraints are not associated with the EDB/IDB pair, but with an
agent posing a query, the integrity constraints associatedwith an agent are not nec-
essarily satisfied together with the EDB/IDB. Checking satisfiability is tractable in
this context, due to the first-order or fixed-point nature of the integrity constraints
and the finiteness of the database. Under additional syntactic restrictions, the sa-
tisfiability of the circumscriptive theory can also be guaranteed. In the case of in-
consistency, this would lead to the specification and computation of specific update
policies which is a topic for future research.

7.2 The Algorithm

The algorithm presented below applies to the general case, i.e., to the problem which
is co-NPTIME complete (see Sect. 7.4). However, in Sect. 8, we show speciali-
zations of the algorithm to some cases, where PTIME complexity is guaranteed.
The inputs to the algorithm are

� An extensional database EDB
� An intensional database IDB
� A set of integrity constraints IC
� An LCC policy LCC

�
L̄; K̄:IC

� A relation symbolR	10

10 The relation symbolR can be viewed as part of the query which consists of a number of
relations that are required to compute the full query.
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As output, the algorithm returns the definition of the relation R
��

obtained by ap-
plying theLCC policy and preserving the ICs, according to the semantics defined in
Sect. 6.

1. ConstructC
�

CIRC
�
IC � IDB�EDB; L̄; K̄

�
representing the givenLCC policy

applied to the IDB together with the EDB.
2. Eliminate second-order quantifiers from the formula obtained in step 1. In ge-

neral, the elimination may fail, and the result is the initial second-order formula
C, however, if certain restrictions concerning the form of ICare assumed, the
elimination of second-order quantifiers is guaranteed (seeSect. 8).

3. Calculate the intersection of all extensions ofR satisfying formulaC. If there
is not any relationR

��
satisfyingC, terminate and return the answer “unsatis-

fiable,” meaning that either the EDB and IDB pair is inconsistent, or the ICs
cannot be satisfied.

4. Calculate the union of all extensions ofR satisfying formulaC.
5. For any tuple ¯a:

� if v
�
ā
�

is in the intersection calculated in step 3, addv
�
ā
�

to R���.
� if v

�
ā
�

is not in the union calculated in step 4, addv
�
ā
�

to R���.
� if none of the above two cases applies, thenv

�
ā
�

is in R���.
In practice, one uses particular second-order quantifier elimination algorithms (see
e.g., [6,16,17,21]) that may fail. Since second-order formulas are useless as results,
it is reasonable to return the answer “unknown” when the elimination algorithm
used in step 2 fails. This implies that the algorithm is only sound relative to the se-
mantics provided in Sect. 6.4.

Observe also that, in practice, it is often better to calculate the definitions of new re-
lations rather than calculating their extensions as in the above algorithm. To achieve
this goal one can apply, e.g., techniques proposed in [4,7].

7.3 Expressiveness of the Approach

Noted that the approach we consider here subsumes that of [8], namely, consider a
policy LCW

�
β
�
R̄
� of [8], meaning that formulaβ

�
R̄
�

is to be minimized, whereas
all relations inβ, i.e. R̄, are allowed to vary. ThisLCW policy is expressible by the
following LCC policy:

LCC
�
S;R̄ :


�
x̄	�β�R̄� �S

�
x̄
���

wherex̄ denotes all free variables ofβ
�
R̄
�

andS is a fresh relation symbol, not ap-
pearing among symbols in̄R.

An interesting question arises whether the current approach allows one to express all
tractableLCC policies, where by atractableLCC policy, we mean anyLCC policy
such that all minimized, maximized, and varied relations are PTIME-computable.
The following characterization shows that the method presented is strong enough
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to express all tractableLCC policies. In other words, any tractableLCC policy can
always be reformulated in the form used in Lemma 1 below. In Sect. 8, we provide
additional syntactic characterizations ofLCC policies that guarantee tractability.

Lemma 1. Given theLCC semantics forLCC policies provided in Sect. 6.4 and
assuming that the database domain is ordered, all tractableLCC policies can be
expressed as policies of the form,

LCC
�
L̄; K̄ :



βi
�
x̄
� �Li

�
x̄
�

: Li � L̄��
where eachβi

�
x̄
�

is a first-order formula positive w.r.t.Li .

Proof. Any relation computable in PTIME can be expressed by means of the least
fixed-point of a formula of the form,

βi
�
x̄
� �Li

�
x̄
�� (12)

provided that the database domain is ordered (see, e.g., [9]). Since all minimized,
maximized, and varied relations are assumed to be tractable, they can be expressed
by the least fixed-points of formulas of the form (12), thus also by policyLCC

�
L̄; K̄ :


βi
�
x̄
� � Li

�
x̄
�
: Li � L̄�. ��

7.4 Complexity of the Approach

In general, the problem of querying the database in the presence of unrestricted ICs
is co-NPTIME complete. On the other hand, some classes ofLCC policies for which
the computation mechanism is in PTIME can be isolated (see, e.g., [8] and also
Sect. 8.3).

8 Important Particular Cases

In this section, we consider a number of restrictions on ICs that allow us to compute
explicit definitions of the new relations as first-order and fixed-point formulas. In
such cases, computing contextually closed queries is in PTIME .

Let M
�
R̄
�

stand forIC �EDB� IDB � and assume that the ICs have the following
form: �

x̄	�α�
x̄
� � β

�
x̄
�� (13)

whereα andβ are first-order formulas.

Definition 4. By a marking of relation symbols for the policyLCC
�
L̄; K̄:IC, we

understand a mapping assigning, to any relation symbol, both in the local closure
policy LCC

�
L̄; K̄ and IC in theLCC policy, the least subset of



min�max� that is

closed under the following rules:
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1. For any relation symbolSappearing in̄L positively, min is in the set of marks
of S.

2. For any relation symbolSappearing in̄L negatively, max is in the set of marks
of S.

3. If α
�
R
� �β

�
S
�

is in IC, R�S� L̄�K̄ andSoccurs inβ positively and is marked
by min, orSoccurs inβ negatively and is marked by max; then,
� If R occurs positively inα, min is in the set of marks ofR.
� If R occurs negatively inα, max is in the set of marks ofR.

4. If α
�
R
� � β

�
S
�

is in IC, R�S� L̄ � K̄ andα contains a positive occurrence of
R andR is marked by max, orα contains a negative occurrence ofR andR is
marked by min then:
� if Soccurs positively inβ, then ‘max’ is in the set of marks ofS.
� if Soccurs negatively inβ, then ‘min’ is in the set of marks ofS.

An LCC
�
L̄; K̄:IC policy is calleduniform if no relation symbol is marked by both

max and min.

Example 2.Let us consider the following integrity constraint:

�
Car

�
x
��

Red
�
x
� �RedCar

�
x
�	 (14)

The marking for the policy,

LCC
�


RedCar
�
x
��Car

�
x
��; 
Red

�
x
�� : �14

��
assigns the mark min to all the relation symbols. Thus the policy is uniform. On the
other hand, the marking for the policy,

LCC
�


RedCar
�
x
���Car

�
x
��; 
Red

�
x
�� : �14

��
assigns the mark min toRedand the marks



min�max� to Car andRedCar. Thus

the latter policy is not uniform.

8.1 The Case of UniversalLCC policies

Definition 5. By auniversalLCC policy, we understand any uniform policy,

LCC
�
L̄; K̄: IC,

in which IC is a set of constraints of the following form,

�
ȳ	
��P1

�
x̄1
�� 	 	 	��Pk

�
x̄k
� ��

P
�
x̄
�� � (15)

whereP1 � 	 	 	 �Pk �P are relation symbols, ¯y is the vector of all variables occurring in
x̄1 � 	 	 	 �x̄k �x̄�andx̄ � x̄1 � 	 	 	� x̄k.
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For universal integrity constraints, we will have a computation method much more
efficient than that described in Sect. 7.2. In the rest of thissection, we will consider
only universalLCC policiesLCC

�
L̄; K̄:IC, for given sets of literals̄L,K̄ and a set IC

of integrity constraints.

In the computation method for universal policies, we first construct minimal rough
relations satisfying the EDB, IDB, and the integrity constraints, where minimality
is defined w.r.t. the so-calledinformation orderingconsidered by Fitting and van
Benthem (see, e.g., [2]) in the context of three-valued logics. The definition of in-
formation ordering follows.

Definition 6. Let R andSbe rough relations. We defineinformation ordering, de-
noted byR�S, as follows:

R�S
def�

R� �S� andR� �S�	
To find minimal w.r.t.� rough relations satisfying IC, EDB, and IDB, we will use
the following tautologies of first-order logic:

�
x̄	
α�

R̄
� � �

β
�
R̄
��

M
�
ȳ
�� � �

x̄	
�α�
R̄
��

�M
�
ȳ
� �β

�
R̄
�� � (16)�

x̄	
�α�
R̄
��

M
�
ȳ
� �β

�
R̄
�� � �

x̄	
α�
R̄
� � �

β
�
R̄
��

�M
�
ȳ
�� �

where it is assumed that all double negations�� are removed.

Definition 7. Let I be an integrity constraint of the form:
�

x̄	
��R1
�
ȳ1
�� 	 	 	��Rm

�
ȳm

� ��
S
�
z̄
�� 	 (17)

Let P � LCC
�
L̄; K̄:I be anLCC policy. By theexpansion of I w.r.t.P , denoted by

ExpP
�
I
�
, we understand the least set of constraints of the form,

�
x̄	
���

k

Lk
�
x̄k
�
�
��

S
�
x̄S
���

obtained from (17) by applying the tautologies (16), such that any (possibly negated)
literal of (17) containing a relation symbol occurring in̄L; K̄, is a consequent of
exactly one constraint.

Example 3.Consider the integrity constraint

I
def� �

x�y	
��P
�
x
��

S
�
x�y� �P

�
y
���

and the policyP � LCC
�
P;S:I . The expansion ofI w.r.t. P is defined as the follo-

wing set of constraints:

ExpP
�
I
�
�

��
x�y	
��P

�
x
��

S
�
x�y� �P

�
y
���

x�y	
��P
�
y
��

S
�
x�y� �P

�
x
���

x�y	 
��P
�
x
��

�P
�
y
� � �S

�
x�y��� 	
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In the case of policyP
�
�LCC

�
S; /0:I , the expansion ofI is defined as

ExpP � �I � � ��
x�y	
��P

�
x
��

�P
�
y
� � �S

�
x�y��� 	

Let us fix anLCC policy P �LCC
�
L̄; K̄:IC. To compute the definition of minimal

w.r.t. � rough relations, satisfying the constraints IC, EDB, and IDB, we consider
the following cases:

� If Si �� L̄ � K̄ � then the positive part of the resulting relation,S�i
��

, contains
exactly the tuples present inEDB��Si

�� IDB��Si
�
, and the negative part of

the resulting relation,S�i
��

, contains exactly the tuples present inEDB��Si
��

IDB��Si
�	

� If S̄� L̄�K̄ � then we consider the set of integrity constraints:


FG

�
α
�

: α �ExpP
�
I
�

andI � IC ��
where FG is the Feferman–Gilmore translation defined in Definition 3.

We assume that the following integrity constraints, reflecting the contents of
EDB and IDB, are implicitly given:

�
ȳ	�EDB� �S�ȳ� �S��ȳ�� ��
ȳ	�EDB� �S�ȳ� �S��ȳ�� ��
ȳ	�IDB� �S�ȳ� �S��ȳ�� ��
ȳ	�IDB� �S�ȳ� �S��ȳ�� �

where the empty partsEDB��S�ȳ��, EDB��S�ȳ��, IDB��S�ȳ��, andIDB��S�ȳ��
are interpreted as false.

Now, for eachSi � S̄, gather all the ICs withS�i as the consequent into the
following single formula:

�
ȳ	
��

�

1�k�ki

�
z̄ik 	φik

�
R̄k
�
�
�S�i

�
ȳ
��� (18)

and all the ICs withS�i as the consequent into the following single formula:

�
ȳ	
��

�

1�j�j i

�
z̄i j 	ψi j

�
R̄j
�
�
�S�i

�
ȳ
��	 (19)

The following definitions of the positive and the negative part of the required
minimal rough relations wrt policyP , indicated by the indexP , can now be
derived:

S̄�
P

�
ȳ
� �

µS̄
�
ȳ
�	
�
�

1�k�k1

�
z̄1k 	φ1k

�
R̄k
�� 	 	 	 � �

1�k�kn

�
z̄nk	φnk

�
R̄k

�
�

(20)
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S̄�
P

�
ȳ
� �

µS̄
�
ȳ
�	
�
�

1�j�j1

�
z̄1 j 	ψ1 j

�
R̄j
�� 	 	 	 � �

1�j�jm

�
z̄m j 	ψm j

�
R̄j
�
�
	 (21)

Observe that the syntactic restrictions placed on the ICs guarantee that the for-
mulas under the fixed-point operators are positive, thus, the monotone w.r.t.
S and consequently, the fixed-points exist. Observe also, that for nonrecursive
universalLCC policies, the fixed-point operators can be removed, and the defi-
nitions obtained are classical first-order formulas.11

Having computed the suitable parts of the relations in all integrity constraints, one
can easily perform a consistency check, indicating whetherthe ICs can be satisfied
by the current contents of theEDB�IDB. For each relationR

��
, one needs to assure

thatR��R� � /0.

Definition 8. Let P �LCC
�
L̄; K̄:IC be anLCC policy. Therough negation for the

policyP , denoted by�P , is defined as follows:
�
�P satisfies the usual DeMorgan laws for quantifiers, conjunction, and disjunc-
tion, and

�P µR̄	α�
R̄
� def�

νR̄	�P α
�
R̄
��

�P νR̄	α�
R̄
� def�

µR̄	�P α
�
R̄
�	

� If S� L̄�K̄, then,

�P S��� def�
�S���� �P S��� def�

�S����
�P �S��� def�

S���� �P �S��� def�
S���	

� If S �� L̄�K̄, then,

�P S��� def�
S���� �P S��� def�

S����
�P �S��� def�

�S���� �P �S��� def�
�S���	

If the ICs are consistent withEDB� IDB, then the definitions of minimal and ma-
ximal rough relations satisfying the ICs and reflecting the semantics introduced in
Sect. 6.4 can be calculated as follows:12

S�min

�
ȳ
� �

S̄�
P
� (22)

S�min

�
ȳ
� �

�P S�min

�
ȳ
�� (23)

S�max
�
ȳ
� �

S̄�
P
� (24)

S�max
�
ȳ
� �

�P S�max
�
ȳ
�	 (25)

11 In both cases, however, computing the defined parts of relations can be done in time poly-
nomial in the size ofEDB

�
IDB.

12 Observe that theLCC policies provide us with direct information about which relations are
to be maximized, which are to be minimized, and which remain unchanged.



9 Using Contextually Closed Queries forLCW Reasoning in RKDBs 245

For nonrecursive universal policies, the fixed-point operators can be removed, as
before.

Observe that definitions of varied predicates can now be computed by noticing that
these are the minimal w.r.t.� rough relations satisfying the ICs in the new context
of minimized and maximized relations. It then suffices to apply definitions (20) and
(21) with minimized and maximized relations replaced by their definitions obtained
as (22–25) , as appropriate.

Example 4.Consider the UAV sensing example introduced in Sect. 4. The definition
of minimalSee

��
is given by

See�min

�
x�r � � See��x�r �� ��

z	 �Moving��x�� In��x�r ��
InROI��r ��Sig��x�z��z �� ���������� �

See�min

�
x�r � � �See��x�r �� ��

z	 ��Moving��x�� In��x�r ��
InROI��r ��Sig��x�z��z� ���������� 	

The varied relationMoving
��

is defined by

Moving�var
�
x
� �

Moving��x��
Moving�var

�
x
� �

Moving��x�� ��
r
�
z	 �In��x�r �� InROI��r ��

Sig��x�z��z �� ��������
�

See�min

�
x�r ��� 	

Example 5.Consider the problem of determining whether a given car on a road is
seen. We assume that large cars are usually seen. Our database contains the follo-
wing relations:
� Car

��
containing cars

� Large
��

containing large objects
� See

��
containing visible objects

� Ab
��

standing for abnormal objects, i.e., large but invisible objects.

Define the following integrity constraint IC:
�

x	
�Car
�
x
��

Large
�
x
��

�See
�
x
� �Ab

�
x
��	

We want to minimize abnormality, i.e., to minimize relationAb, while keeping the
relationsCar andLargeunchanged. The local closure policy is then

LCC
�


Ab
�
x
��; 
See

�
x
��.

According to Lemma 2.4, we obtain the following characterizations ofAb
��

and
See

��
:

Ab�min

�
x
� �

Ab��x�� �
Car��x��Large��x��See��x��

Ab�min

�
x
� �

Ab��x�� �
Car��x��Large��x���See��x��

See�var
�
x
� �

See��x�� �
Car��x��Large��x��Ab�min

�
x
��

See�var
�
x
� �

See��x�	
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8.2 The Case of Semi-HornLCC Policies

Assume that

1. Any integrity constraintIC j is expressed as a formula of the form

�
x̄	�β j

�
x̄
� �Sj

�
x̄
��

where for eachj � 1� 	 	 	 �n, Sj is a relation symbol andβ j
�
x̄
�

is a first-order
formula.

2. AnyLCC assumptionL j , in the givenLCC policy, has the formSj or �Sj , where
Sj is a relation symbol.

We now have the the following proposition.

Proposition 1. Under the above assumptions 1 and 2,

Circ
�
M
�
R
�
; L̄; /0

��
M
�
R̄
�� n�

j�1

�
ȳ	 ��L j

�
ȳ
��

�A j
�
ȳ
� � (26)

whereA j
�
ȳ
�

is the following second-order formula:

A j
�
ȳ
�� �

S̄
��

K̄
� 	
�

M
�
R̄
���

�L
�
j
�
ȳ
�� �

1�i�n�i
�� j

�
x̄	 ��L

�
i
�
x̄
��

Li
�
x̄
���� (27)

in which R̄
� �

S̄
�
� K̄

�
� �

R̄�S̄�K̄
�
, L

�
j stands forL j

�
S̄
�

S̄
� �K̄ �

K̄
� andM

�
R̄
��

representsIC
�
� IDB

�
�EDB

�
.

The following lemma holds under assumptions 1 and 2.

Lemma 2.

1. If theLCC assumptionL j has the form�Sj andβ j is a semi-Horn formula, then
the elimination of second-order quantifiers is guaranteed in time polynomial in
the size of formulaβ j .

2. If β j is expressed as a weak semi-Horn formula, then the elimination of second-
order quantifiers is guaranteed in PTIME. The resulting formulaA j

�
ȳ
�

is a clas-
sical or fixed-point first-order formula. It is also guaranteed that elimination of
second-order quantifiers from the formula

�
K̄Circ

�
K̄
�

succeeds in time polyno-
mial in the size of formulaβ j . However, necessary computations may require
calculation of simultaneous fixed-points.

3. If β j is expressed as a weak Ackermann formula, then the elimination of second-
order quantifiers is guaranteed in PTIME, andA j

�
ȳ
�

is a classical first-order
formula. Elimination of second-order quantifiers from the formula

�
K̄Circ

�
K̄
�

is also guaranteed in time polynomial in the size of formulaβ j .
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4. For of a consistent EDB, a uniformLCC policy, and nonrecursive integrity con-
straints,A j

�
ȳ
�

is expressed by the following formula:

A j
�
ȳ
��

�L
�
j
�
ȳ
��

K̄
� �

�K̄���K̄
� �

�K̄���
in which allL

�
j are replaced accordingly byβ j

�
K̄
��

or �β j
�
K̄
��

, �Ki are replaced
by �K�i � andKi by �K�i .

5. If L j is of the formSj and�β j is a semi-Horn formula, then the elimination
of second-order quantifiers is guaranteed. However, the resulting formulaA j

�
ȳ
�

may have an exponential size w.r.t. the size ofβ j .

For semi-Horn formulas, the following lemma, simplifying the inference method,
holds.

Lemma 3. If Ψ
�
R̄
�

is a semi-Horn formula, then

Ψ
�
R̄
��

R
�
ā
�

iff R̄min ��R
�
ā
��

Ψ
�
R̄
��

�R
�
ā
�

iff R̄max �� �R
�
ā
��

whereR̄min (resp.R̄max) is a minimal (resp., maximal) relation satisfyingΨ
�
R̄
�
. In

this case, both̄Rmin andR̄max can be computed in PTIME.

Thus, the general computation algorithm presented in Sect.7.2 can be specialized in
the following way: The inputs to the algorithm are the same asin Sect. 7.2, however,
the LCC policy LCC

�
L̄; K̄:IC is assumed to satisfy syntactic restrictions as formu-

lated in Lemma 2 by any of the points 1–4, accordingly. Note that assumptions 1
and 2 from the beginning of this section, as required by Lemma2, should also be
satisfied.

The specialized algorithm is formulated as follows:

1. ConstructC
�

CIRC
�
IC � IDB�EDB; L̄; K̄

�
representing the givenLCC policy

applied to the IDB together with the EDB.
2. Eliminate second-order quantifiers from the formula obtained in step 1. The

elimination is guaranteed to succeed in PTIME. As a result, a first-order or fixed-
point formula is obtained.

3. Calculate the minimal extension ofR satisfying formulaC. It can be done by
computing the minimalR from the second-order formula,

�
R	C�

R
�
. As a result,

a definition of relationR, which is a definition ofR�var
��

, and a coherence con-
dition are obtained. If the coherence condition is not satisfiable, terminate and
return the answer “unsatisfiable,” meaning that either the EDB and IDB pair is
inconsistent or the ICs cannot be satisfied. All of the above computations can
be performed in PTIME.

4. Calculate the maximal extension ofR satisfying formulaC. It can be done by
computing the maximalR from the second-order formula,

�
R	C�

R
�
. As a result,

a definition of the complement ofR�var is obtained. All of the above computa-
tions can be performed in PTIME .



248 P. Doherty, J. Kachniarz, A. Szałas

The algorithm presented above executes in PTIME and the necessary second-order
quantifier elimination can be performed automatically (using the techniques de-
scribed in [6,16,17,21]).

8.3 The Case of NonuniformLCC policies

Observe that in the case of nonuniformLCC policies, we still might obtain tractable
subcases of the general case of policies. One such large class is defined in [8]. The
other classes are also discussed in Sect. 8.2, in particular, in Lemma 2.

One of the promising methods depends on first computing the corresponding cir-
cumscription (applying the Doherty, Łukaszewicz, Szałas (DLS) algorithm of [6])
and then on computing the definitions of the required minimaland maximal rela-
tions by using the methodology developed in [4] and [7].

9 Conclusions

We proposed the use of rough knowledge databases to represent incomplete models
of aspects of an agent’s operational environment or world model. Relations repre-
sented as tables were generalized to rough sets with partitions for positive, negative,
and boundary information. Then, we introduced the idea of a contextually closed
query consisting of a query, a context represented as a set ofintegrity constraints,
and a local closure policy. TheLCC policy, consisting of integrity constraints and
local closure policy, was applied to the intensional and extensional database lay-
ers before actually querying the RKDB. The combination of a contextually closed
query and a RKDB provided the basis for an inference mechanism that could be
used under the open-world assumption.

The inference mechanism and modeling approach has many applications, particu-
larly in the area of planning with an open-world assumption,where sensor actions
and knowledge preconditions are essential components in a plan and an efficient
query/answer system is used in both the plan generation and execution process. We
demonstrated the idea with a scenario from an unmanned aerial vehicle project. In
the general case, the problem of querying the RKDB usingCCQs is co-NPTIME

complete, but we could isolate a number of important practical cases where polyno-
mial time and space complexity is achieved.

In the future, there are a number of interesting topics to pursue. The use of contextu-
ally closed queries in an open-world planner has already been mentioned. Another
particularly interesting issue has to do with updating the RKDB. Since each query-
ing agent “carries” its context with it, the issue of satisfiability of the integrity con-
straints relative to the EDB/IDB pair and satisfiability of the pursuant minimization
policy are essential aspects of the approach. We have shown that satisfiability can
be checked efficiently. Then, the research question is, “what should be done when
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a query is not satisfiable relative to the EDB/IDB pair?” Thisis a question posed
and considered in the area of belief revision and update or inwhat is more tradi-
tionally called view update in the relational database area. One final pragmatic issue
involves implementation of the techniques proposed in thischapter in an on-line
query/answering system for the WITAS UAV project discussedin the chapter. Parts
of a prototype system have already been implemented and empirical experiments in
a real-time context are planned for the future.
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