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Summary. This chapter proposes a framework for specifying, constructing, and
managing a particular class of approximate knowledge structures for use with in-
telligent artifacts ranging from simpler devices such as personal digital assistants
to more complex ones such as unmanned aerial vehicles. The notion of an approx-
imation transducer is introduced which takes approximate relations as input, and
generates a (possibly more abstract) approximate relation as output by combining
the approximate input relations with a crisp local logical theory which represents
dependencies between the input and output relations. Approximation transducers
can be combined to produce approximation trees which represent complex approxi-
mate knowledge structures characterized by the properties of elaboration tolerance,
groundedness in the application domain, modularity, and context dependency. Ap-
proximation trees are grounded through the use of primitive concepts generated
with supervised learning techniques. Changes in definitions of primitive concepts
or in the local logical theories used by transducers result in changes in the knowl-
edge stored in approximation trees by increasing or decreasing precision in the
knowledge in a qualitative manner. Intuitions and techniques from rough set the-
ory are used to define approximate relations where each has an upper and lower
approximation. The constituent components in a rough set have correspondences
in a logical language used to relate crisp and approximate knowledge. The inference
mechanism associated with the use of approximation trees is based on a generaliza-
tion of deductive databases that we call rough relational databases. Approximation
trees and queries to them are characterized in terms of rough relational databases
and queries to them. By placing certain syntactic restrictions on the local theories
used in transducers, the computational processes used in the query/answering and
generation mechanism for approximation trees remain in PTime.

1 Introduction and Background

In this introductory section, we will set the context for the knowledge rep-
resentation framework pursued in this chapter. We begin with a discussion
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of intelligent artifacts and society of agent frameworks [7]. We proceed to a
discussion of knowledge representation components for agents and consider
the need for self-adapting knowledge representation structures and concept
acquisition techniques. The core idea pursued in this chapter is to propose
a framework for the specification, construction and management of approx-
imate knowledge structures for intelligent artifacts. The specific structures
used are called approximation transducers and approximation trees. The spe-
cific implementation framework used is based on a generalization of deductive
database technology. We describe the intuitions and basic ideas behind these
concepts. We then conclude the introductory section with a brief description
of the experimental platform from which these ideas arose and from which
we plan to continue additional experimentation with the framework. The
experimental platform is a deliberative/reactive software architecture for an
unmanned aerial vehicle under development in the WITAS Unmanned Aerial
Vehicle Project at Linköping University, Sweden[1].

1.1 Intelligent Artifacts and Agents

The use of intelligent artifacts both at the workplace and in the home is be-
coming increasingly more pervasive due to a number of factors which include
the accessibility of the Internet/World-Wide-Web to the broad masses, the
drop in price and increase in capacity of computer processors and memory,
and the integration of computer technology with telecommunications. In-
telligent artifacts are man-made physical systems containing computational
equipment and software that provide them with capabilities for receiving
and comprehending sensory data, for reasoning, and for performing rational
action in their environment. The spectrum of capabilities and the sophistica-
tion of an artifact’s ability to interface to its environment and reason about
it varies with the type of artifact, its intended tasks, the complexity of the
environment in which it is embedded, and its ability to adapt its models of
the environment at different levels of knowledge abstraction. Representative
examples of intelligent artifacts ranging from less to more complex would
be mobile telephones, mobile telephones with Blue Tooth wireless technol-
ogy1, personal digital assistants (PDAs), collections of distributed communi-
cating artifacts which serve as components of smart homes, mobile robots,
unmanned aerial vehicles, and many more.

One unifying conceptual framework that can be used to view these in-
creasingly more complex integrated computer systems is as societies of agents
(virtually and/or physically embedded in their respective environments) with
the capacity to acquire information about their environments, structure the
information and interpret it as knowledge, and use this knowledge in a ratio-
nal manner to enhance goal-directed behavior which is used to achieve tasks
and to function robustly in their dynamic and complex environments.
1 BLUETOOTH is a trademark owned by Telefonaktiebolaget L M Ericsson, Swe-

den.
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1.2 Knowledge Representation

An essential component in agent architectures is the agent’s knowledge rep-
resentation component which includes a variety of knowledge and data repos-
itories with associated inference mechanisms. The knowledge representation
component is used by the agent to provide it with models of its embedding
environment and of its own and other agent capabilities in addition to rea-
soning efficiently about them. It is becoming increasingly important to move
away from the notion of a single knowledge representation mechanism with
one knowledge source and inference method to multiple forms of knowledge
representation with several inference methods. This viewpoint introduces an
interesting set of complex research issues related to the merging of knowl-
edge from disparate sources and the use of adjudication or conflict resolution
policies to provide coherence of knowledge sources.

Due to the embedded nature of these agent societies in complex dynamic
environments, it is also becoming increasingly important to take seriously the
gap between access to low-level sensory data and its fusion and integration
with more qualitative knowledge structures. These signal-to-symbol transfor-
mations should be viewed as an on-going process with a great deal of feedback
between the levels of processing. In addition, because the embedding envi-
ronments are often as complex and dynamic as those faced by humans, the
knowledge representations which are used as models of the environment must
necessarily be partial, elaboration tolerant and approximate in nature.

Self-Adaptive Knowledge Structures A long term goal with this re-
search is to develop a framework for the specification, implementation and
management of self-adaptive knowledge structures containing both quan-
titative and qualitative components, where the knowledge structures are
grounded in the embedding environments in which they are used. There has
been very little work in traditional knowledge representation with the dy-
namics and management of knowledge structures. Some related work would
include the development of belief revision and truth maintenance systems
in addition to the notion of elaboration tolerant knowledge representation
and the use of contexts as first-class objects introduced by McCarthy [6].
In these cases, the view pertaining to properties and relations is still quite
traditional with little emphasis on the approximate and contextual character
of knowledge. The assumed granularity of the primitive components of these
knowledge structures, in which these theories and techniques are grounded, is
still that of classical properties and relations in a formal logical context. We
will assume a finer granularity as a basis for concept acquisition, grounding
and knowledge structure design which is the result of using intuitions from
rough set theory.

Approximate Concept Acquisition and Management One important
component related to the ontology used by agents is the acquisition, integra-
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tion, and elaboration tolerant update of concepts. Here we will interpret the
notion of concept in a broad sense. It will include both properties of the world
and things in it and relations between them. The concepts and relations can
be epistemic in nature and we will assume the agent architectures contain
syntactic components which correlate with these concepts and relations. The
symbol grounding problem, that of associating symbols with individuals, per-
cepts and concepts and managing these associations, will be discussed and
the knowledge representation technique proposed will provide an interesting
form of grounding, which we hope can contribute to an eventual solution to
this important, complex, and as yet unsolved problem. The symbol ground-
ing problem includes not only the association of symbols with concepts, but
also ongoing concept acquisition and modification during the life of an agent.
This aspect of the problem will involve the use of concept learning techniques
and their direct integration in the knowledge structures generated.

To do this, we will assume that certain concepts which we call primi-
tive concepts have been acquired through a learning process where learning
samples are provided from sensor data and approximations of concepts are
induced from the data. One particularly interesting approach to this is the
use of rough set based supervised learning techniques. It is important to em-
phasize that the induced concepts are approximate in nature and fluid in
the sense that additional learning may modify the concept. In other words,
concepts are inherently contextual and subject to elaboration and change
in a number of ways. Primitive concepts may change as new sensor data is
acquired and fused with existing data through diverse processes associated
with particular sensory platforms. At some point, constraints associated with
other more abstract concepts having dependencies with primitive concepts
may influence the definition of the primitive concept.

As an example of these ideas, take a situation involving an unmanned
aerial vehicle operating over a road and traffic environment. In this case, the
meaning of concepts such as fast or slow, small or large vehicle, near, far, or
between, will have a meaning different from that in another application with
other temporal and spatial constraints.

Assuming these primitive concepts as given and that they are continually
re-grounded in changes in operational environment via additional learning or
sensor fusion, we would then like to use these primitive concepts as the ur -
elements in our knowledge representation structures. Since these ur -elements
are inherently approximate, contextual and elaboration tolerant in nature,
any knowledge structure containing these concepts should also inherit or be
influenced by these characteristics. In fact, there are even more primitive ur -
elements in the system we envision which can be used to define the primitive
concepts themselves if a specific concept learning policy based on rough sets
is used. These are the elementary sets used in rough set theory to define
contextual approximations to sets.
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1.3 Approximation Transducers and Trees

In the philosophical literature, W. V. O. Quine [11] has used the phrase web
of belief to capture the intricate and complex dependencies and structures
which make up human beliefs. In this chapter and in a companion chapter
in this book [2], we lay the ground work for what might properly be called
webs of approximate knowledge. In fact, a better way to view this idea is
as starting with webs of imprecise knowledge and gradually incrementing
these initial webs with additional approximate and sometimes crisp facts
and knowledge. Through this process, a number of concepts, relations and
dependencies between them become less imprecise and more approximate in
nature. There is a continual elastic process where the precision in meaning of
concepts is continually modified in a change-tolerant manner. Approximate
definitions of concepts will be the rule rather than the exception even though
crisp definitions of concepts are a special case included in the framework.

Specifically, webs of approximate knowledge will be constructed from
primitive concepts together with what we will call approximation transducers
in a recursive manner. An approximation transducer provides an approximate
definition of one or more output concepts in terms of a set of input concepts
and consists of three components:

1. An input consisting of one or more approximate concepts, some of which
might be primitive.

2. An output consisting of one or more new and possibly more abstract
concepts defined partly in terms of the input concepts.

3. A local logical theory specifying constraints or dependencies between the
input concepts and the output concepts. The theory may also refer to
other concepts not expressed in the input.

The local logical theory specifies dependencies or constraints an expert for
the application domain would be able to specify. Generally the form of the
constraints would be in terms of some necessary and some sufficient condi-
tions for the output concept. The local theory is viewed as a set of crisp
logical constraints specified in the language of first-order logic. The local the-
ory serves as a logical template. During the generation of the approximate
concept output by the transducer, the crisp relations mentioned in the local
theory are substituted with the actual approximate definitions of the input.
Either lower or upper approximations of the input concepts may be used in
the substitution. The resulting output specifies the output concept in terms
of newly generated lower and upper approximations. The resulting output
relation may then be used as input to other transducers creating what we
call approximation trees. The resulting tree represents a web of approximate
knowledge capturing intricate and complex dependencies among an agent’s
conceptual vocabulary.

As an example of a transducer that might be used in the unmanned aer-
ial vehicle domain, we can imagine defining a transducer for the approximate
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concept of two vehicles being connected in terms of visible connection, small
distance, and equal speed. The latter three input concepts could be generated
from supervised learning techniques where the data is acquired from a library
of videos previously collected by the UAV on earlier traffic monitoring mis-
sions. As part of the local logical theory, an example of a constraint might
state that “if two vehicles are visibly connected, are at a small distance from
each other and have equal speed then they are connected”.

Observe that the resulting approximation trees are highly fluid, approx-
imate, and elaboration tolerant. Changes in the definition of primitive con-
cepts will trickle through the trees via the dependencies and connections,
modifying some of the other concept definitions. Changes to the local theo-
ries anywhere in the tree will modify those parts of the tree related to the
respective output concepts for the local theories. This is a form of elaboration
tolerance. These structures are approximate in three respects:

1. The primitive concepts themselves are approximate and generated through
learning techniques. In the case of rough learning techniques, they consist
of upper and lower approximations induced from the sample data.

2. The output concepts inherit or are influenced by the approximate aspects
of the concepts input to their respective transducers.

3. The output concepts also inherit the incompletely specified sufficient and
necessary conditions in the local logical theory specified in part with the
input concepts.

It is important to point out that the transducers represent a technique for
combining both approximate and crisp knowledge. The flow of knowledge
through a transducer transforms the output concept from a less precise to-
wards a more approximate definition. The definition can continually be elab-
orated upon both directly by modifying the local theory and indirectly via
the modification of concept definitions on which it is recursively dependent
or through retraining of the primitive concepts through various learning tech-
niques.

1.4 The WITAS UAV Experimental Platform

The ultimate goal of the research described in this chapter is to use it as a
basis for specifying, constructing and managing a particular class of approx-
imate knowledge structures in intelligent artifacts. In current research, the
particular artifact we use as an experimental platform is an unmanned aerial
vehicle flying over operational environments populated by traffic. In such a
scenario, knowledge about both the environment below and the unmanned
aerial vehicle agent’s own epistemic state must be acquired in a timely man-
ner in order for the knowledge to be of use to the agent while achieving its
goals. Consequently, the result must provide for an efficient implementation
of both the knowledge structures themselves and the inference mechanisms
used to query these structures for information.
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WITAS (pronounced vee-tas) is an acronym for the Wallenberg Informa-
tion Technology and Autonomous Systems Laboratory at Linköping Univer-
sity. UAV is an acronym for Unmanned Aerial Vehicles. The WITAS UAV
Project is a long term project with the goal of designing, specifying and imple-
menting the IT subsystem for an intelligent autonomous aircraft and embed-
ding it in an actual platform [1]. In our case, we are using a Yamaha RMAX
VTOL (vertical take-off and landing system) developed by the Yamaha Mo-
tor Company Ltd. An important part of the project is in identifying core
functionalities required for the successful development of such systems and
doing basic research in the areas identified. The topic of this paper is one
such core functionality: approximate knowledge structures and their associ-
ated inference mechanisms.

The project encompasses the design of a command and control system for
a UAV and its integration in a suitable deliberative/reactive architecture; the
design of high-level cognitive tasks, intermediate reactive behaviors, low-level
control-based behaviors and their integration with each other; the integration
of sensory capabilities with the command and control architecture, in par-
ticular the use of an active vision system; the development of hybrid, mode-
based low-level control systems to supervise and schedule control behaviors;
the signal-to-symbol conversions from sensory data to qualitative structures
used in mediating choice of actions and synthesizing plans to attain opera-
tional mission goals; and the development of the systems architecture for the
physical UAV platform.

In addition the project also encompasses the design and development of
the necessary tools and research infrastructure required to achieve the goals of
the project. This would include the development of model-based distributed
simulation tools and languages used in the concurrent engineering required
to move incrementally from software emulation and simulation to the actual
hardware components used in the final product.

The intended operational environment is over widely varying geographical
terrain with traffic networks and vehicle interaction of varying degrees of
density. Possible applications are emergency services assistance, monitoring
and surveillance, use of a UAV as a mobile sensory platform in an integrated
real-time traffic control system and photogrammetry applications.

The UAV experimental platform offers an ideal environment for experi-
mentation with the knowledge representation framework we propose, because
the system architecture is rich with different types of knowledge representa-
tion structures, the operational environment is quite complex and dynamic,
and signal-to-symbol transformations of data are an integral part of the ar-
chitecture. In addition, much of the knowledge acquired by the UAV will be
necessarily approximate in nature. In several of the sections in this chapter,
we will use examples from this application domain to describe and motivate
some of our techniques.
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1.5 Generalized Deductive Databases

Due to the pragmatic constraints associated with the deployment and execu-
tion of systems such as the WITAS UAV platform, we will develop these ideas
in the context of deductive database systems. Deductive database systems of-
fer a reasonable compromise between expressiveness of the language used to
model aspects of the embedding environment and the efficiency of the infer-
ence mechanisms required in the soft and sometimes hard real-time contexts
in which the UAV operates. A deductive database concentric view of data
and knowledge flow in a generic artificial intelligence application contains a
number of components as depicted in Fig. 1.

Deductive database

Receiving data

Reasoning

Approximating

EvaluatingPlanning

Sensing �
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�
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Fig. 1. Deductive Database Concentric View of Data and knowledge flow

In the UAV architecture, there are in fact a number of databases, or
knowledge and data repositories. The dynamic object repository is a soft
real-time database used to store pre-processed sensory data from the sen-
sor platform and includes information about objects identified as moving in
the traffic scenarios observed by the UAV when flying over particular road
systems. In addition there is an on-line geographic information repository
containing data about the geographic area being flown over. This includes
road data, elevation data, data about physical structures, etc.

The approximation trees described in the introduction are stored in part
as relational database content and in part as additional specialized data struc-
tures. In this case though, both the nature of the relational tables, queries
to the database, and the associated inference mechanisms will all have to
be generalized. One reason for this is due to the fact that all relations are
assumed to be approximate, therefore the upper and lower approximations
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have to be represented. This particular type of generalized deductive data-
base is called a rough relational database and will be considered in section 6.
Rough relational databases, and the semantic and computational mechanisms
associated with them, provide us with an efficient means for implementing
query/answering systems for approximation trees. How this is done, will be
the main topic of the paper.

2 Chapter Outline

In the remaining part of the chapter, we will provide the details for the
knowledge representation framework discussed in the introductory section.
In section 3, we begin with a brief introduction of some of the basics of rough
set theory, primarily to keep the article self-contained for those not famil-
iar with these concepts and techniques. In section 4, we describe a logical
language for referring to constituents of rough sets. The language is used as
a bridge between more traditional rough set techniques and nomenclature
and their use or reference in a logical language. We also define a subset of
first-order logic which permits efficient computation of approximation trans-
ducers. In section 5, we provide a more detailed description of approximation
transducers and include an introductory example. In section 6, we introduce
a generalization of deductive databases which permits the use and storage
of approximate or rough relations. Section 7 contains the core formal re-
sults which provide a semantics for approximation transducers and justifies
the computational mechanisms used. The complexity of the approach is also
considered. In section 8, we provide a more detailed example of the frame-
work and techniques using traffic congestion as a concept to be modeled. In
section 9, we propose an interesting measure of the approximation quality of
theories which can be used to compare approximate theories. In section 10,
we summarize the results of the chapter and provide a pointer to additional
related work described in this volume.

3 Rough Set Theory

In the introductory section we described a framework for self-adaptive and
grounded knowledge structures in terms of approximation transducers and
trees. One basic premise of the approach was the assumption that approx-
imate primitive concepts could be generated via the application of learning
techniques. One particular approach to inducing approximations of concepts
is through the use of rough set supervised learning techniques in which sample
data is stored in tables and approximate concepts are learned. The result is a
concept defined in terms of both a lower and an upper approximation. In this
section we will provide a short introduction to a small part of rough set the-
ory and introduce terminology used in the remaining parts of the chapter. We
will only briefly mention rough set learning techniques by describing decision
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systems which provide the basic structures for rough set learning techniques.
Before providing formal definitions, we will first consider an intuitive example
from a UAV traffic scenario application.

Example 1. Consider a UAV equipped with a sensor platform which includes
a digital camera. Suppose that the UAV task is to recognize various situations
on roads. It is assumed that the camera has a particular resolution. It follows
that the precise shape of the road cannot be recognized if essential features of
the road shape require a higher resolution then that provided by the camera.
Figure 2 depicts a view from the UAV’s camera, where a fragment of a road
is shown together with three cars c1, c2, and c3.
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Fig. 2. Sensing a road considered in Example 1

Observe that due to the camera resolution there are collections of points that
should be interpreted as being indiscernible from each other. The collections
of indiscernible points are called elementary sets, using rough set terminology.
In Figure 2, elementary sets are illustrated by dashed squares and correspond
to pixels. Any point in a pixel is not discernible from any other point in
the pixel from the perspective of the UAV. Elementary sets are then used
to approximate objects that cannot be precisely represented by means of
(unions of) elementary sets. For instance, in Figure 2, it can be observed
that for some elementary sets one part falls within and the other outside the
actual road boundaries (represented by curved lines) simultaneously.
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Fig. 3. The approximate view of the road considered in Example 1

Instead of a precise characterization of the road and cars, using rough set
techniques, one can obtain approximate characterizations as depicted in Fig-
ure 3. Observe that the road sequence is characterized only in terms of a lower
and upper approximation of the actual road. A boundary region, containing
points that are unknown to be inside or outside of the road’s boundaries, is
characterized by a collection of elementary sets marked with dots inside. Cars
c1 and c3 are represented precisely, while car c2 is represented by its lower
approximation (the thick box denoted by c2) and by its upper approxima-
tion (the lower approximation together with the region containing elementary
sets marked by hollow dots inside). The region of elementary sets marked by
hollow dots inside represents the boundary region of the car.

The lower approximation of a concept represents points that are known
to be part of the concept, the boundary region represents points that might
or might not be part of the concept, and the complement of the upper ap-
proximation represents points that are known not to be part of the concept.
Consequently, car c1 is characterized as being completely on the road (inside
the road’s boundaries); it is unknown whether car c2 is completely on the
road and car c3 is known to be outside, or off the road.

As illustrated in Example 1, the rough set philosophy is founded on the
assumption that we associate some information (data, knowledge) with every
object of the universe of discourse. This information is often formulated in
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terms of attributes about objects. Objects characterized by the same informa-
tion are interpreted as indiscernible (similar) in view of the available informa-
tion about them. An indiscernibility relation, generated in this manner from
the attribute/value pairs associated with objects, provides the mathematical
basis of rough set theory.

Any set of all indiscernible (similar) objects is called an elementary set,
and forms a basic granule (atom) of knowledge about the universe. Any union
of some elementary sets in a universe is referred to as a crisp (precise) set;
otherwise the set is referred to as being a rough (imprecise, vague) set. In the
latter case, two separate unions of elementary sets can be used to approximate
the imprecise set, as we have seen in the example above.

Consequently, each rough set has what are called boundary-line cases, i.e.,
objects which cannot with certainty be classified either as members of the set
or of its complement. Obviously, crisp sets have no boundary-line elements
at all. This means that boundary-line cases cannot be properly classified by
employing only the available information about objects.

The assumption that objects can be observed only through the informa-
tion available about them leads to the view that knowledge about objects has
granular structure. Due to this granularity, some objects of interest cannot
always be discerned given the information available, therefore the objects ap-
pear as the same (or similar). As a consequence, vague or imprecise concepts,
in contrast to precise concepts, cannot be characterized solely in terms of
information about their elements since elements are not always discernible
from each other. In the proposed approach, we assume that any vague or im-
precise concept is replaced by a pair of precise concepts called the lower and
the upper approximation of the vague or imprecise concept. The lower ap-
proximation consists of all objects which with certainty belong to the concept
and the upper approximation consists of all objects which have a possibility
of belonging to the concept.

The difference between the upper and the lower approximation constitutes
the boundary region of a vague or imprecise concept. Additional information
about attribute values of objects classified as being in the boundary region
of a concept may result in such objects being re-classified as members of the
lower approximation or as not being included in the concept. Upper and lower
approximations are two of the basic operations in rough set theory.

3.1 Information Systems and Indiscernibility

One of the basic concepts of rough set theory is the indiscernibility relation
which is generated using information about particular objects of interest.
Information about objects is represented in the form of a set of attributes
and their associated values for each object. The indiscernibility relation is
intended to express the fact that, due to lack of knowledge, we are unable
to discern some objects from others simply by employing the available infor-
mation about those objects. In general, this means that instead of dealing



Approximation Transducers and Trees 13

with each individual object we often have to consider clusters of indiscernible
objects as fundamental concepts of our theories.

Let us now present this intuitive picture about rough set theory more
formally.

Definition 1. An information system is any pair A = 〈U, A〉 where U is
a non-empty finite set of objects called the universe and A is a non-empty
finite set of attributes such that a : U → Va for every a ∈ A. The set Va is
called the value set of a. By InfB(x) = {〈a, a(x)〉 : a ∈ B}, we denote the
information signature of x with respect to B, where B ⊆ A and x ∈ U .

Note that in this definition, attributes are treated as functions on objects,
where a(x) denotes the value the object x has for the attribute a.

Any subset B of A determines a binary relation INDA(B) ⊆ U × U ,
called an indiscernibility relation, defined as follows.

Definition 2. Let A = 〈U, A〉 be an information system and let B ⊆ A.
By the indiscernibility relation determined by B, denoted by INDA(B), we
understand the relation

INDA(B) = {(x, x′) ∈ U × U : ∀a ∈ B.[a(x) = a(x′)]}.
If (x, y) ∈ INDA(B) we say that x and y are B-indiscernible. Equiva-

lence classes of the relation INDA(B) (or blocks of the partition U/B) are
referred to as B-elementary sets. The unions of B-elementary sets are called
B-definable sets.

[x1]B
[x2]B

[x3]B [x4]B

Fig. 4. A rough partition INDA(B).

Observe that INDA(B) is an equivalence relation. Its classes are denoted
by [x]B . By U/B we denote the partition of U defined by the indiscernibility
relation INDA(B). For example, in Figure 4, the partition of U defined
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by an indiscernibility relation INDA(B) contains four equivalence classes,
[x1]B, [x2]B, [x3]B and [x4]B . An example of a B-definable set would be [x1]B∪
[x4]B, where [x1]B and [x4]B are B-elementary sets.

In Example 1, the indiscernibility relation is defined by a partition cor-
responding to pixels represented in Figures 2 and 3 by squares with dashed
borders. Each square represents an elementary set. In the rough set approach
the elementary sets are the basic building blocks (concepts) of our knowledge
about reality.

The ability to discern between perceived objects is also important for
constructing many entities like reducts, decision rules, or decision algorithms
which are used in rough set based learning techniques. In the classical rough
set approach the discernibility relation, DISA(B), is defined as follows.

Definition 3. Let A = 〈U, A〉 be an information system and B ⊆ A. The
discernibility relation DISA(B) ⊆ U × U is defined as (x, y) ∈ DISA(B) if
and only if (x, y) �∈ INDA(B).

3.2 Approximations and Rough Sets

Let us now define approximations of sets in the context of information sys-
tems.

Definition 4. Let A = 〈U, A〉 be an information system, B ⊆ A and X ⊆ U .
The B-lower approximation and B-upper approximation of X , denoted by
XB+ and XB⊕ respectively, are defined by XB+ = {x : [x]B ⊆ X} and
XB⊕ = {x : [x]B ∩ X �= ∅}.

The B-lower approximation of X is the set of all objects which can be
classified with certainty as belonging to X just using the attributes in B to
discern distinctions.

Definition 5. The set consisting of objects in the B-lower approximation
XB+ is also called the B-positive region of X . The set XB− = U − XB⊕ is
called the B-negative region of X . The set XB± = XB⊕ − XB+ is called the
B-boundary region of X .

Observe that the positive region of X consists of objects that can be classified
with certainty as belonging to X using attributes from B. The negative region
of X consists of those objects which can be classified with certainty as not
belonging to X using attributes from B. The B-boundary region of X consists
of those objects that cannot be classified unambiguously as belonging to X
using attributes from B.

For example, in Figure 5, The B-lower approximation of the set X , XB+ ,
is [x2]B ∪ [x4]B. The B-upper approximation, XB⊕ , is [x1]B ∪ [x2]B ∪ [x4]B ≡
[x1]B ∪XB+ . The B-boundary region, XB± , is [x1]B. The B-negative region
of X , XB− , is [x3]B ≡ U − XB⊕ .
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[x1]B
[x2]B

[x3]B [x4]B

X

Fig. 5. A rough partition INDA(B) and an imprecise set X.

3.3 Decision Systems and Supervised Learning

Rough set techniques are often used as a basis for supervised learning using
tables of data. In many cases the target of a classification task, that is, the
family of concepts to be approximated, is represented by an additional at-
tribute called a decision attribute. Information systems of this kind are called
decision systems.

Definition 6. Let 〈U, A〉 be an information system. A decision system is any
system of the form A = 〈U, A, d〉, where d �∈ A is the decision attribute and
A is a set of conditional attributes, or simply conditions.

Let A = 〈U, A, d〉 be given and let Vd = {v1, . . . , vr(d)}. Decision d deter-
mines a partition {X1, . . . , Xr(d)} of the universe U , where Xk = {x ∈ U :
d(x) = vk} for 1 ≤ k ≤ r(d). The set Xi is called the i-th decision class of
A. By Xd(u) we denote the decision class {x ∈ U : d(x) = d(u)}, for any
u ∈ U .

One can generalize the above definition to the case of decision systems of
the form A = 〈U, A, D〉 where the set D = {d1, ...dk} of decision attributes
and A are assumed to be disjoint. Formally this system can be treated as the
decision system A = 〈U, C, dD〉 where dD(x) = (d1(x), ..., dk(x)) for x ∈ U.

A decision table can be identified as a representation of raw data (or train-
ing samples in machine learning) which is used to induce concept approxima-
tions in a process known as supervised learning. Decision tables themselves
are defined in terms of decision systems. Each row in a decision table repre-
sents one training sample. Each column in the table represents a particular
attribute in A, with the exception of the first column which represents objects
in U and selected columns representing the decision attribute(s).

There is a wide variety of techniques that have been developed for in-
ducing approximations of concepts relative to various subsets of attributes
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in decision systems. The methods are primarily based on viewing tables as
a type of boolean formula, generating reducts for these formulas, which are
concise descriptions of tables with redundancies removed, and generating de-
cision rules from these formula descriptions. The decision rules can be used
as classifiers or as representations of lower and upper approximations of the
induced concepts. In this chapter, we will not pursue these techniques.

What is important for understanding our framework is the fact that these
techniques exist, they are competitive with other learning techniques and
often more efficient, and, given raw sample data, such as low level feature data
from an image processing system represented as tables, primitive concepts can
be induced or learned. These concepts are characterized in terms of upper
and lower approximations and represent grounded contextual approximations
of concepts and relations from the application domain. This is all we need to
assume to construct grounded approximation transducers and to recursively
construct approximation trees.

4 A Logical Language for Rough Set Concepts

One final component which bridges the gap between more conventional rough
set techniques and logical languages used to specify and compute with ap-
proximation transducers is a logical vocabulary for referring to constituent
components of a rough set when viewed as a relation or property in a logical
language. Note that this particular ontological policy provides the right syn-
tactical characterization of rough set concepts we require for our framework.
One could also envision a different ontological policy, with a higher level of
granularity for instance, that could be used for other purposes.

In order to construct a logical language for referring to constituent com-
ponents of rough concepts, we introduce the following relation symbols for
any rough relation R (see Figure 6):

• R+ – represents the positive facts known about the relation. R+ corre-
sponds to the lower approximation of R. R+ is called the positive region
(part) of R.

• R− – represents the negative facts known about the relation. R− corre-
sponds to the complement of the upper approximation of R. R− is called
the negative region (part) of R.

• R± – represents the unknown facts about the relation. R± corresponds
to the set difference between the upper and lower approximations to R.
R± is called the boundary region (part) of R.

• R⊕ – represents the positive facts known about the relation together with
the unknown facts. R⊕ corresponds to the upper approximation to R. R⊕

is called the positive-boundary region (part) of R.
• R� – represents the negative facts known about the relation together

with the unknown facts. R� corresponds to the upper approximation of
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Fig. 6. Representation of a rough set in logic

the complement of R. R� is called the negative-boundary region (part) of
R.

For the sake of simplicity, in the rest of this chapter we will assume that a
theory defines only one intensional rough relation. We shall use the notation
Th(R; R1, . . . , Rn) to indicate that R is approximated by Th, where the
R1, . . . , Rn are the input concepts to a transducer. We also assume that
negation occurs only directly before relation symbols.2

We write Th+(R; R1, . . . , Rn) (or Th+, for short) to denote theory Th
with all positive literals Ri substituted by Ri

+ and all negative literals sub-
stituted by R−

i . Similarly we write Th⊕(R; R1, . . . , Rn) (or Th⊕, in short)
to denote theory Th with all positive literals Ri substituted by R⊕

i and all
negative literals substituted by Ri

�. We often simplify the notation using the
equivalences ¬R−(x̄) ≡ R⊕(x̄) and ¬R+(x̄) ≡ R�(x̄).

4.1 Additional Notation and Preliminaries

In order to guarantee that both the inference mechanism specified for query-
ing approximation trees and the process used to compute approximate rela-
tions using approximation transducers are efficient, we will have to place a
number of syntactic constraints on the local theories used in approximation
transducers. The following definitions will be useful for that purpose.

2 Any first- or second-order formula can be equivalently transformed into this form.
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Definition 7. A predicate variable R occurs positively (resp. negatively) in a
formula Φ if the prenex and conjunctive normal form3 of Φ contains a literal
of the form R(t̄) (resp. ¬R(t̄)). A formula Φ is said to be positive (resp.
negative) w.r.t. R iff all occurrences of R in Φ are positive (resp. negative).

Definition 8. A formula is called a semi-Horn rule (or rule, for short) w.r.t.
relation symbol R provided that it is in one of the following forms:

∀x̄.[R(x̄) → Ψ(R, R1, . . . Rn)] (1)

∀x̄.[Ψ(R, R1, . . . Rn) → R(x̄)], (2)

where Ψ is an arbitrary classical first-order formula positive w.r.t. R and x̄
is an arbitrary vector of variable symbols. If formula Ψ of a rule does not
contain R, the rule is called non-recursive w.r.t. R.

Example 2. The first of the following formulas is a (recursive) semi-Horn rule
w.r.t. R, while the second one is a non-recursive semi-Horn rule w.r.t. R:

∀x, y.[∃u.(R(u, y) ∨ ∃z.(S(z, x, z) ∧ ∀t.R(z, t)))] → R(x, y)
∀x, y.[∃u.(T (u, y) ∨ ∃z.(S(z, x, z) ∧ ∀t.Q(z, t)))] → R(x, y)

The following formula is not a semi-Horn rule, since R appears negatively in
the lefthand side of the rule.

∀x, y.[∃u.(¬R(u, y) ∨ ∃z.(S(z, x, z) ∧ ∀t.R(z, t)))] → R(x, y)

Observe that one could also deal with dual forms of the rules (1) and (2),
obtained by replacing relation R by ¬R. It is sometimes more convenient to
use rules of such a form. For instance, one often uses rules like “if an object
on a highway is a car and is not abnormal then it moves”. Of course, the
results we present can easily be adapted to such a situation.

We often write rules of the form (1) and (2) without initial universal
quantifiers, understanding that the rules are always implicitly universally
quantified.

5 Approximation Transducers

As stated in the introduction, an approximation transducer provides a means
of generating or defining an approximate relation (the output) in terms of
other approximate relations (the input) using various dependencies between
the input and the output.4 The set of dependencies is in fact a logical theory
3 i.e. the form with all quantifiers in the prefix of the formula and the quantifier

free part of the formula in the form of a conjunction of clauses.
4 The technique also works for one or more approximate relations being generated

as output, but for clarity of presentation, we will describe the techniques using a
single output relation.
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where each dependency is represented as a logical formula in a first-order
logical language. Syntactic restrictions can be placed on the logical theory to
insure efficient generation of output.

Since we are dealing with approximate relations, both the inputs and
output are defined in terms of upper and lower approximations. In section 4,
we introduced a logical language for referring to different constituents of a
rough relation. It is not necessary to restrict the logical theory to just the
relations specified in the input and output for a particular transducer. Other
relations may be used since they are assumed to be defined or definitions can
be generated simultaneously with the generation of the particular output in
question. In other words, it is possible to define an approximation network
rather than a tree, but for this presentation, we will stick to the tree-based
approach. The network approach is particularly interesting because it allows
for limited forms of feedback across abstraction levels in the network.

The main idea is depicted in Fig. 7. Suppose one would like to define
an approximation of a relation R in terms of a number of other approxi-
mate relations R1, . . . , Rk. It is assumed that R1, . . . , Rk consist of either
primitive relations acquired via a learning phase or approximate relations
that have been generated recursively via other transducers or combinations
of transducers.

R1

R2

Rk

. . .

Th(R; R1, . . . , Rk)

R

�

� �

Fig. 7. Transformation of rough relations by first-order theories

The local theory Th(R; R1, . . . , Rk) is assumed to contain logical formulas
relating the input to the output and can be acquired through a knowledge
acquisition process with domain experts or even through the use of inductive
logic programming techniques. Generally the formulas in the logical theory
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are provided in the form of rules representing some sufficient and necessary
conditions for the output relation in addition to possibly other conditions.
The local theory should be viewed as a logical template describing a depen-
dency structure between relations.

The actual transduction process which generates the approximate defin-
ition of relation R uses the logical template and contextualizes it with the
actual contextual approximate relations provided as input. The result of the
transduction process provides a definition of both the upper and lower ap-
proximation of R as follows,

• The lower approximation is defined as the least model for R w.r.t. the
theory

Th+(R; R1, . . . , Rk),

• and the upper approximation is defined as the greatest model for R w.r.t.
the theory

Th⊕(R; R1, . . . , Rk),

where Th+ and Th⊕ denote theories obtained from Th by replacing crisp
relations by their corresponding approximations (see section 4). As a result
one obtains an approximation of R defined as a rough relation. Note that
appropriate syntactic restrictions are placed on the theory so coherence con-
ditions can be generated which guarantee the existence of the least and the
greatest model of the theory and its consistency with the approximation tree
in which its transducer is embedded. For details, see section 7.

Implicit in the approach is a notion of abstraction hierarchies where one
can recursively define more abstract approximate relations in terms of less
abstract approximations by combining different transducers. The result is one
or more approximation trees. This intuition has some similarity with the idea
of layered learning (see, e.g., [12]). The technique also provides a great deal
of locality and modularity in representation although it does not force this on
the user since networks violating locality can be constructed. If one starts to
view an approximation transducer or sub-tree of approximation transducers
as simple or complex agents responsible for the management of particular
relations and their dependencies, this then has some correspondence with
the methodology strongly advocated, e.g., in [7].

The ability to continually apply learning techniques to the primitive rela-
tions in the network and to continually modify the logical theories which are
constituent parts of transducers provides a great deal of elaboration tolerance
and elasticity in the knowledge representation structures. If the elaboration
is automated for an intelligent artifact using these structures, the claim can
be made that these knowledge structures are self-adaptive, although a great
deal more work would have to be done to realize this practically.
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5.1 An Introductory Example

In this section, we provide an example for a single approximation transducer
describing some simple relationships between objects on a road. Assume we
are provided with the following rough relations:

• V (x, y) – there is a visible connection between objects x and y.
• S(x, y) – the distance between objects x and y is small.
• E(x, y) – objects x and y have equal speed.

We can assume that these relations were acquired using a supervised learning
technique where sample data was generated from video logs provided by the
UAV when flying over a particular road system populated with traffic, or
that the relations were defined as part of an approximation tree using other
approximation transducers.

Suppose we would like to define a new relation C denoting that its ar-
guments, two objects on the road, are connected. It is assumed that we as
knowledge engineers or domain experts have some knowledge of this concept.
Consider, for example, the following local theory Th(C; V, S, E) approximat-
ing C:

∀x, y.[V (x, y) → C(x, y)] (3)

∀x, y.[C(x, y) → (S(x, y) ∧ E(x, y))]. (4)

The former provides a sufficient condition for C and the latter a necessary
condition. Imprecision in the definition is caused by the following facts:

• the input relations V, S and E are imprecise (rough, non-crisp)
• the theory Th(C; V, S, E) does not describe relation C precisely, as there

are many possible models for C.

We then accept the least model for C w.r.t. theory Th(C; V +, S+, E+) as
the lower approximation of C and the upper approximation as the greatest
model for C w.r.t. theory Th(C; V ⊕, S⊕, E⊕).

It can now easily be observed (and, in fact, be computed efficiently), that
one can obtain the following definitions of the lower and upper approxima-
tions of C:

∀x, y.[C+(x, y) ≡ V +(x, y)] (5)

∀x, y.[C⊕(x, y) ≡ (S⊕(x, y) ∧ E⊕(x, y))]. (6)

Relation C can then be used, e.g., while querying the rough knowledge data-
base containing this approximation tree or for defining new approximate con-
cepts, provided that it is coherent with the database contents. In this case,
the coherence conditions, which guarantee the consistency of the generated
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relation with the rest of the database (approximation tree), are expressed by
the following formulas:

∀x, y.[V +(x, y) → (S+(x, y) ∧ E+(x, y))]

∀x, y.[V ⊕(x, y) → (S⊕(x, y) ∧ E⊕(x, y))].

The coherence conditions can also be generated in an efficient manner pro-
vided certain syntactic constraints are applied to the local theories in an
approximation transducer.

6 Rough Relational Databases

In order to compute the output of an approximation transducer, syntactic
characterizations of both the upper and lower approximations of the output
relation relative to the substituted local theories are generated. Depending
on the expressiveness of the local theory used in a transducer, the results
are either first-order formulas or fixpoint formulas. These formulas can then
be used to query a rough relational database in an efficient manner using a
generalization of results from [4] and traditional relational database theory.

In this section, we define what rough relational databases are and consider
their use in the context of approximation transducers and trees. In the follow-
ing section we provide the semantic and computational mechanisms used to
generate output relations of approximation transducers, check the coherence
of the output relations, and ask queries about any approximate relation in
an approximation tree.

Definition 9. A rough relational database B, is a first order structure
〈U, ra1

1 , . . . , rak

k , c1, . . . , cl〉, where

• U is a finite set,
• for 1 ≤ i ≤ k, rai

i is an ai-argument rough relation on U , i.e. rai

i is given
by its lower approximation rai

i
+, and upper approximation rai

i
⊕

• c1, . . . , cl ∈ U are constants.

By a signature of B we mean a signature containing relation symbols Ra1
1 , . . . ,

Rak

k and constant symbols c1, . . . , cl together with equality =.

According to the terminology accepted in the literature, a deductive data-
base consists of two parts: an extensional and intensional database. The ex-
tensional database is usually equivalent to a traditional relational database
and the intensional database contains a set of definitions of relations in terms
of rules that are not explicitly stored in the database. In what follows, we shall
also use the terminology extensional (intensional) rough relation to indicate
that the relation is stored or defined, respectively.

Note that intensional rough relations are defined in this framework by
means of theories that do not directly provide us with explicit definitions of
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the relations. These are the local theories in approximation transducers. In
fact we apply the methodology developed in [4] which is based on the use
of quantifier elimination applied to logical queries to conventional relational
databases. The work in [4] is generalized here to rough relational databases.

According to [4], the computation process can be described in two stages.
In the first stage, we provide a PTime compilation process which computes
explicit definitions of intensional rough relations. In our case, we would like
to compute the explicit definitions of the upper and lower approximations
of a relation output from an approximation transducer. In the second stage,
we use the explicit definitions of the upper and lower approximations of the
intensional relation generated in the first stage to compute suitable relations
in the rough relational database that satisfy the local theories defining the
relations.

We also have to check whether such relations exist relative to the rough
relational database in question. This is done by checking so-called coherence
conditions. It may be the case that the complex query to the rough relational
database which includes the constraints in the local theory associated with
a transducer is not consistent with relations already defined in the database
itself. Assuming the query is consistent, we know that the output relation for
the approximation transducer in question exists and can now compute the
answer.

Both checking that the theory is coherent and computing the output rela-
tion can be done efficiently because these tasks reduce to calculating fixpoint
queries to relational databases over finite domains, a computation which is
in PTime (see, e.g., [5]). Observe that the notion of coherence conditions is
adapted in this paper to deal with rough relations rather than with precise
relations as done in [4].

7 Approximation Transducer Semantics and
Computation Mechanisms

Our specific target is to define a new relation, say R, in terms of some ad-
ditional relations R1, . . . , Rn and a local logical theory Th(R; R1, . . . , Rn)
representing knowledge about R and its relation to R1, . . . , Rn. The output
of the transduction process results in a definition of R+, the lower approx-
imation of R, as the least model of Th+(R; R1, . . . , Rn) and R⊕, the upper
approximation of R, as the greatest model of Th⊕(R; R1, . . . , Rn). The fol-
lowing problems must be addressed:

• Is Th(R; R1, . . . , Rn) consistent with the database?
• Does a least and greatest relation R+ and R⊕ exist, which satisfies

Th+(R; R1, . . . Rn) and Th⊕(R; R1, . . . Rn), respectively?
• Is the complexity of the mechanisms used to answer the above questions

and to calculate suitable approximations R+ and R⊕ reasonable from a
pragmatic perspective?
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In general, consistency is not guaranteed. Moreover, the above problems
are generally NPTime-complete (over finite models). However, quite similar
questions were addressed in [4] and a rich class of formulas has been isolated
for which the consistency problem and the other problems can be resolved in
PTime. In what follows, we will use results from [4] and show that a subset
of semi-Horn formulas from [4], which we call semi-Horn rules (or just rules,
for short) and which are described in section 4.1, guarantees the following:

• The coherence conditions for Th(R; R1, . . . , Rn) can be computed and
checked in polynomial time;

• The least and the greatest relations R+ and R⊕, satisfying
Th+(R; R1, . . . , Rn) and Th⊕(R; R1, . . . , Rn), respectively, always exist
provided that the coherence conditions are satisfied;

• The time and space complexity of calculating suitable approximations R+

and R⊕ is polynomial w.r.t. the size of the database and that of calculat-
ing their symbolic definitions is polynomial in the size of Th(R; R1, . . . , Rn).

In view of these positive results, we will restrict the set of formulas used in
local theories in transducers to (finite) conjunctions of semi-Horn rules as
defined in section 4.1. All theories considered in the rest of the paper are
assumed to be semi-Horn in the sense of Definition 8.

The following lemmas (Lemma 1 and 2) provide us with a formal justi-
fication of Definition 10 which follows. Let us first deal with non-recursive
rules5.

Lemma 1 is based on a lemma of Ackermann (see, e.g., [3]) and results of
[4].

Lemma 1. Assume that Th(R; R1, . . . , Rn) consists of the following rules:

∀x̄.[R(x̄) → Φi(R1, . . . , Rn)], (7)

∀x̄.[Ψj(R1, . . . , Rn) → R(x̄)], (8)

for i ∈ I, j ∈ J , where I, J are finite, nonempty sets and for all i ∈ I and
j ∈ J , formulas Φi and Ψj do not contain occurrences of R. Then there exist
the least and the greatest R satisfying (7) and (8). The least such R is defined
by the formula:

R(x̄) ≡
∨
j∈J

Ψj(R1, . . . , Rn) (9)

and the greatest such R is defined by the formula:

R(x̄) ≡
∧
i∈I

Φi(R1, . . . , Rn), (10)

5 In fact, Lemma 1 follows easily from Lemma 2 by observing that fixpoint formulas
(14), (15) and (16) reduce in this case to first-order formulas (9), (10) and (11),
respectively. However, reductions to classical first-order formulas are worth a
separate treatment as these are less complex and easier to deal with.
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provided that the following coherence condition is satisfied in the database:

∀x̄.

⎡
⎣∨

j∈J

Ψj(R1, . . . , Rn) →
∧
i∈I

Φi(R1, . . . , Rn)

⎤
⎦ (11)

Proof. Follows easily, e.g., from Theorem 5.3 of [4].

Denote by µS.α(S) the least and by νS.α(S) the greatest simultaneous fix-
point operator of α(S) (for the definition of fixpoints see, e.g., [5]). Then in
the case of recursive theories we can prove the following lemma, based on the
fixpoint theorem of [8] and results of [4].

Lemma 2. Assume that Th(R; R1, . . . , Rn) consists of the following rules:

∀x̄.[R(x̄) → Φi(R, R1, . . . , Rn)], (12)

∀x̄.[Ψj(R, R1, . . . , Rn) → R(x̄)], (13)

for i ∈ I, j ∈ J , where I, J are finite, nonempty sets. Then there exist the
least and the greatest R satisfying formulas (12) and (13). The least such R
is defined by the formula:

R(x̄) ≡ µR(x̄).[
∨
j∈J

Ψj(R, R1, . . . , Rn)] (14)

and the greatest such R is defined by the formula:

R(x̄) ≡ νR(x̄).[
∧
i∈I

Φi(R, R1, . . . , Rn)] (15)

provided that the following coherence condition holds:

∀x̄.

⎡
⎣µR(x̄).[

∨
j∈J

Ψj(R, R1, . . . , Rn)] → νR(x̄).[
∧
i∈I

Φi(R, R1, . . . , Rn)]

⎤
⎦(16)

Proof. Follows easily, e.g., from Theorem 5.2 of [4].

The following definition provides us with a semantics of semi-Horn rules used
as local theories in rough set transducers.

Definition 10. Let B be a rough relational database with extensional rela-
tion symbols R1, . . . , Rn and let R be an intensional relation symbol.

By an approximation transducer we intend the input to be R1, . . . , Rn,
the output to be R and the local transducer theory to be a first-order theory
Th(R; R1, . . . , Rn) expressed by rules of the form (12)/ (13) or (7)/(8). Under
these restrictions,

• the lower approximation of R is defined as the least relation R satisfying
Th(R; R1, . . . , Rn), i.e. the relation defined by formula (9)+ or (14)+,
respectively, with R1, . . . , Rn substituted as described in section 4
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• the upper approximation of R is defined as the greatest relation R satisfy-
ing Th(R; R1, . . . , Rn) i.e. the relation defined by formula (10)⊕ or (15)⊕,
respectively, with R1, . . . , Rn substituted as described in section 4,

provided that the respective coherence conditions (11)+ or (16)+, for the
lower approximation, and (11)⊕ or (16)⊕, for the upper approximation, are
satisfied in database B.

Observe that we place a number of restrictions on this definition that
can be relaxed, such as restricting use of relation symbols in the local theory
of the transducer to be crisp. This excludes use of references to constituent
components of other rough relations. In addition, since the output relation
of a transducer can be represented explicitly in the rough relational data-
base, approximation trees consisting of combinations of transducers are well
defined.

7.1 The Complexity of the Approach

This framework is presented in the context of relational databases with finite
domains with some principled generalizations. In addition, both explicit de-
finitions of approximations to relations and associated coherence conditions
are expressed in terms of classical first-order or fixpoint formulas. Conse-
quently, computing the approximations and checking coherence conditions
can be done in time polynomial in the size of the database (see, e.g., [5]).

In addition, the size of explicit definitions of approximations and coher-
ence conditions is linear in the size of the local theories defining the approxi-
mations. Consequently, the proposed framework is acceptable from the point
of view of a formal complexity analysis. This serves as a useful starting point
for efficient implementation of the techniques. It is clear though, that for
very large databases of this type, additional optimization methods would be
desirable.

8 A Congestion Example

In this section, we provide an example from the UAV-traffic domain which
demonstrates one approach to the problem of defining the concept of traffic
congestion using the proposed framework. We begin by assuming the follow-
ing relations and constants exist:

• l – is a traffic lane on the road.
• inFOA(l) – denotes whether lane l is in the focus of the UAV camera.
• inROI(x) – denotes whether a vehicle x is in a region of interest.
• Speed(x, z) – denotes the approximate speed of x, where

z ∈ {low, medium, high, unknown}.
• Distance(x, y, z) – denotes the approximate distance between vehicles x

and y, where z ∈ {small, medium, large, unknown}.
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• Between(z, x, y) – denotes whether vehicle z is between vehicles x and y.
• Number(x, y, z) – denotes the approximate number of vehicles between

vehicles x and y occurring in the region of interest, where
z ∈ {small, medium, large, unknown},

• TrafficCong(l) – denotes whether there is traffic congestion in lane l.

We define traffic congestion by the following formula:

TrafficCong(l) ≡ inFOA(l) ∧
∃x, y.[inROI(x) ∧ inROI(y) ∧ Number(x, y, large) ∧ (17)
∀z.(Between(z, x, y) → Speed(z, low)) ∧
∀z.(Between(z, x, y) → ∃t.(Distance(z, t, small)))].

Observe that formula (17) contains concepts that are not defined precisely.
However, for the example, we assume that the underlying database contains
approximations of these concepts. We can then use the approximated con-
cepts and replace formula (17) with the following two formulas representing
the lower and upper approximation of the target concept:

TrafficCong+(l) ≡ (18)
∃x, y.[inROI+(x) ∧ inROI+(y) ∧ Number+(x, y, large) ∧
∀z.(Between⊕(z, x, y) → Speed+(z, low)) ∧
∀z.(Between⊕(z, x, y) → ∃t.Distance+(z, t, small))]

TrafficCong⊕(L) ≡ (19)
∃x, y.[inROI⊕(x) ∧ inROI⊕(y) ∧ Number⊕(x, y, large) ∧
∀z.(Between+(z, x, y) → Speed⊕(z, low) ∧
∀z.(Between+(z, x, y) → ∃t.Distance⊕(z, t, small))]

These formulas can be automatically generated using the techniques de-
scribed previously.

It can now be observed that formula (17) defines a cluster of situations
that can be considered as traffic congestions. Namely, small deviations of data
do not have a substantial impact on the target concept. This is a consequence
of the fact that in (17) we refer to values that are also approximated such
as low, small and large. Thus small deviations of vehicle speed or distance
between vehicles usually do not change the qualitative classification of these
notions.

Let us denote deviations of data by dev with suitable indices. Now, as-
suming that the deviations satisfy the following properties:

x′ ∈ devinROI(x) ≡ [inROI+(x) → inROI+(x′)] (20)
x′ ∈ devSpeed(x) ≡ [Speed+(x, low) → Speed+(x′, low)]
(x′, y′) ∈ devNumber(x, y) ≡

[Number+(x, y, large) → Number+(x′, y′, large)]
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(x′, y′) ∈ devDistance(x, y) ≡
[Distance+(x, y, small) → Distance+(x′, y′, small)]

(z′, x′, y′) ∈ devBetween(z, x, y) ≡
[Between+(z, x, y) → Between+(z′, x′, y′)],

one can conclude that:

[TrafficCong+(l) ∧ l′ ∈ devTrafficCong(l)] → TrafficCong+(l′),

where devTrafficCong(l) denotes the set of all situations obtained by deviations
of l satisfying conditions expressed by (20).

The above reasoning schema is then robust w.r.t. small deviations of input
concepts. In fact, any approximation transducer defined using purely logical
means, enjoys this property since small deviations of data, by not changing
basic properties, do not change the target concept.

A formal framework which includes the topics of robustness and stability
of approximate reasoning schemas is presented, e.g., in [10,9], where these
notions have been considered in a rough mereological framework.

9 On the Approximation Quality of First-Order
Theories

So far, we have focused on the generation of approximations to relations
using local logical theories in approximation transducers and then building
approximation trees from these basic building blocks. This immediately raises
the interesting issue of viewing the approximate global theory itself as a
conceptual unit. We can then ask what the approximation quality of a theory
is and whether we can define qualitative or quantitative measures of the
theory’s approximation quality. If this is possible, then individual theories
can be compared and assessed for their approximative value. One application
of this measure would be to choose approximative theories for an application
domain at the proper level of abstraction or detail, moving across the different
levels of abstraction relative to the needs of the application. In this section,
we provide a tentative proposal to compare the approximation quality of
first-order theories.

9.1 Comparing Approximation Power of semi-Horn Theories

Definition 11. We say that a theory Th2(R) better approximates a theory
Th1(R) relative to a database B and denote this by Th1(R) ≤B Th2(R)
provided that, in database B, we have R+

1 ⊆ R+
2 and R⊕

2 ⊆ R⊕
1 , where for

i = 1, 2, R+
i and R⊕

i denote the lower and upper approximation of R defined
by theory Thi.
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Observe that the notion of a better approximation has a correspondence
to information orderings used in the model theory of a number of three-valued
and partial logics.

Example 3. Let CL(x, y) denote that objects x, y are close to each other,
SL(x, y) denote that x, y are on the same lane, CH(x, y) denote that objects
x, y can hit each other, and let HR(x, y) denote that the relative speed of x
and y is high. We assume that the lower and upper approximations of these
relations can be extracted from data during learning acquisition or are already
defined in a database, B. Consider the following two theories approximating
the concept D(x, y) which denotes a dangerous situation caused by objects
x and y:

• Th1(D; CL, SL, CH) has two rules:

∀x, y.[(CL(x, y) ∧ SL(x, y)) → D(x, y)]
∀x, y.[D(x, y) → CH(x, y)] (21)

• Th2(D; CL, SL, HR) has two rules:

∀x, y.[CL(x, y) → D(x, y)]
∀x, y.[D(x, y) → (HR(x, y) ∧ SL(x, y))]. (22)

Using Lemma 1, we can compute the following definitions of approximations
of D:

• relative to theory Th1(D; CL, SL, CH):

∀x, y.[D(1)+(x, y) ≡ (CL+(x, y) ∧ SL+(x, y))]

∀x, y.[D(1)⊕(x, y) ≡ CH⊕(x, y)] (23)

• relative to theory Th2(D; CL, SL, HR):

∀x, y.[D(2)+(x, y) ≡ CL+(x, y)]

∀x, y.[D(2)⊕ ≡ (HR⊕(x, y) ∧ SL⊕(x, y))]. (24)

Obviously D(1)+ ⊆ D(2)+. If we additionally assume that in our domain of
discourse (and by implication in database B) that HR ∩ SL ⊆ CH applies,
we can also obtain the additional relation that D(2)⊕ ⊆ D(1)⊕. Thus Th1 ≤B

Th2, which means that an agent possessing the knowledge implicit in Th2 is
better able to approximate concept D than an agent possessing knowledge
implicit in Th1.

These types of comparative relations between theories should prove to be
very useful in cooperative agent architectures, but we leave this application
for future work.
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10 Conclusions and Related Work

In this chapter, we have presented a framework for both the generation, struc-
turing and reasoning about approximate relations having dependencies with
each other. We began with a discussion of the the subclass of approximate
primitive concepts grounded in sensor or other data via the use of learn-
ing techniques. We then introduced the idea of an approximation transducer
as a basic constituent in the construction of more complex approximation
trees consisting of combinations of a number of approximation transducers.
An approximation transducer defines an approximate relation in terms of
other approximate relations and a local transducer theory where dependen-
cies between the relations are represented as logical formulas in a traditional
manner. This combination of both approximate and crisp knowledge brings
together techniques and concepts from two research disciplines. By provid-
ing syntactic characterizations of these ideas and techniques, we are able to
propose a novel type of approximate knowledge structure which is both elab-
oration tolerant, elastic, modular and grounded in the particular contexts
associated with various applications.

By restricting the syntax of local transducer theories, we can implement
the approximation tree inference mechanism in an efficient manner by us-
ing a slight generalization of deductive relational databases to include rough
relations. Efficient reasoning mechanisms are important because experimen-
tation is being done within the constraints of the WITAS UAV project where
these techniques are intended to be used on-board the UAV as an integral
part of its knowledge representation mechanisms. In the chapter we used a
number of examples specific to the UAV domain to demonstrate the use and
versatility of the techniques.

A richer and more complex type of generalized deductive database is pro-
posed in a companion chapter in this volume [2]. In this case, an open-world
assumption is assumed about relational information, rather than the standard
closed-world assumption view. In addition, the query language used is logical
in nature and permits what we call contextually closed queries. These queries
include the query itself, a local context in the form of integrity constraints
and a minimization/maximization policy which permits locally closing parts
of the database relative to a query. The latter technique replaces the global
closed world assumption and provides finer-grained closure policies which are
very useful for open-world planning applications. The use of approximate re-
lations, contextually closed queries and a logical query language imply the
use of a special inference mechanism. These generalized deductive databases
which we call rough knowledge databases provide us with an even richer form
of query/answering system which subsumes the idea of approximation trees
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and can also be used for many other applications involving queries on partial
models.6.
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